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Abstract

Unlearning aims to remove copyrighted, sensitive, or private
content from large language models (LLMs) without a full
retraining. In this work, we develop a multi-task unlearning
benchmark (MUNCH) that features three tasks: (1) unlearn
synthetically generated creative short novels, (2) unlearn syn-
thetic biographies with sensitive information, and (3) unlearn
a collection of public biographies. We further release two fine-
tuned LLMs of 1B and 7B parameter sizes as the target models.
We conduct detailed evaluations of several recently-proposed
algorithms and present results on carefully crafted metrics to
understand their behavior and limitations.

Introduction
Given government regulations, such as the European Union’s
GDPR right to be forgotten (GDP 2018), legal actions from
original content creators (Grynbaum and Mac 2023; Mattei
2023), and a need to remove misinformation or toxic con-
tent from LLMs, there is an increasing demand for effective
unlearning algorithms as retraining model from scratch is
infeasible. We define effective unlearning algorithm as one
which: (i) effectively removes information to be unlearned,
(ii) uses computation commensurate with the size of the data
to be forgotten, and (iii) retains model’s overall performance
after unlearning.

To evaluate the performance of unlearning algorithms in
LLMs, there is a need for comprehensive benchmarks, which
is the focus of this work. While recent works, such as TOFU
(Maini et al. 2024) and MUSE (Shi et al. 2024), provide
promising first steps along this vein, they have few key limi-
tations that we highlight here: TOFU frames the unlearning
target as a downstream QA task containing fictitious authors,
and the QA task is less realistic than unlearning entire docu-
ments since the answers are relatively short and unlikely to
cause loss of other information (such as linguistic attributes).
Furthermore, unlearning only on synthetic information may
not test the algorithms for their real world performance on
noisy data. In addition, TOFU relies on GPT4 to generate the
synthetic content with downstream licensing implications.

MUSE is a more recent, concurrent work to ours, and con-
siders unlearning real book chapters and news articles. While
these tasks offer a realistic use case for unlearning, they carry
few drawbacks too: it may not be possible to obtain a clean

baseline model which was not exposed to the unlearned in-
formation for a robust measurement of utility drop due to the
unlearning algorithm itself (and not because of the data which
was unlearned). This is because the information contained in
the unlearned documents may appear in other disjoint training
documents, thereby limiting the effectiveness of unlearning
evaluation. Hence, we argue for a comprehensive benchmark
which contains both synthetic (tasks #1 and #2) and real doc-
uments (task #3) for a complete assessment of unlearning.
Compared to TOFU, we provide a higher sample of forget
data set with 1:1 ratio between forget and retain sets, which
makes our unlearning task more challenging. Further, neither
benchmarks cover Personally Identifiable Information (PII)
information which is an important use case for unlearning in
LLMs.

In this work, we address all of the gaps listed above and
develop a new benchmark named MUNCH (Multi-task UN-
learning benCHmark) for unlearning creative, sensitive, and
private content from LLMs. Our benchmark features three
distinct tasks: synthetically generated creative short novels
(task #1), synthetic biographies with PII (task #2), and public
biographies (task #3). Within each task, MUNCH tests for
unlearning of both full documents and QA pairs, thereby
overcoming the key limitations described earlier. Our full
benchmark will be released with the final publication. We
also release two fine-tuned model checkpoints (1B and 7B
parameters in size), and present evaluations using detailed
metrics on several state-of-the-art learning algorithms.

MUNCH: A Multitask Unlearning Benchmark
for LLMs

Given an LLM fine-tuned on a text corpus D, rougly speak-
ing, our unlearning goal is to effectively remove information
from a subset F ⊂ D (i.e., the forget set) with computational
effort proportional to its size. During unlearning, we only
have access to F and another subset R ⊂ D (i.e., the retain
set) to ensure performance outside F is preserved.

Benchmark Construction
We developed three distinct tasks to provide all round evalua-
tions of LLM unlearning algorithms.
Task 1 (Synthetic creative documents): LLMs trained on
Internet-scraped data are often exposed to copyrighted con-



Figure 1: Examples of full documents and test prompts for the three tasks covered in MUNCH.

tent, making unlearning a common requirement. However,
evaluating effectiveness of unlearning on only real creative
documents (Shi et al. 2024; Eldan and Russinovich 2023)
is challenging as information to be removed may appear in
other documents not being unlearned. For example, MUSE
uses Harry Potter books as its forget set, but similar content
may appear in Wikipedia and social media. Motivated by this,
in this task, we only include synthetically generated short
novels, created using Mixtral 8x7B (Jiang et al. 2023)1 as our
generator LLM.

For each document, we randomly select a genre from
Action, Fantasy, Thriller, Comedy, Mystery, Science Fic-
tion, Young Adult and Romance. One to four unique char-
acter names are generated using a random name gener-
ator (pypi.org/project/unique-names-generator), and loca-
tions are generated from the city list of a random address
generator (pypi.org/project/random-address) for all genres
except Fantasy. For Fantasy, we sample unique fantasy
city names using a Dungeons and Dragons town genera-
tor (perchance.org/dndtowngen). Given this information, we
prompt the Mixtral model to create a short story with 150-
200 words. To validate the generated stories, we conducted
manual reviews (each short story was reviewed by two differ-
ent authors of this work) and filtered out stories with similar
content to prior reviewed stories. Our final dataset contains
393 unique short stories.

1mistral.mixtral-8x7b-instruct-v0:1 on Amazon Bedrock.

Task 2 (Synthetic biographies with sensitive PII): We use
rule based heuristics to generate 500 personal biographies
with following PII fields: a randomly generated name, a birth-
day randomly sampled between 01/01/1964 and 01/01/1991,
a fake Social Security number (SSN) within the range 900-
xx-xxxx (which can never belong to a real person (ssa 2011)),
a random phone number, an email address of the form
firstname_lastname@me.com and a non-existent physical
home addresses obtained by combining a random street ad-
dress from a US state with an alternate city and zip-code from
a different state. For each synthetic individual, we prompt the
Mixtral model to create a short biography by including the
fictitious PII information.
Task 3 (Real biographies): To evaluate effectiveness of
unlearning on real data, we include real biographies as the
third task. Specifically, we sampled 750 biographies spanning
100 to 200 words from Wikipedia documents released in the
Dolma (Soldaini et al. 2024) v1.6 corpus, which was part of
the training dataset for the OLMo models (Groeneveld et al.
2024) we fine-tuned for this task.

Figure 1 and Table 1 show example data and statistics of
MUNCH, respectively.

Unlearning Model Candidates
We fine-tuned 1B (OLMo-1B-0724-hf) and 7B
(OLMo-7B-0724-Instruct-hf) OLMo models (Groen-
eveld et al. 2024) on all three tasks and release them as
unlearning candidates. We selected OLMo because of its
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(a) GA
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(b) GD
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(c) KL
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(d) NPO

Figure 2: Performance on retain and forget subsets for benchmarked unlearning algorithms for Tasks 1 to 3 (respectively from
top to bottom). Reg: Regurgitation Rate (r), Kno: Knowledge Accuracy (t). Split refers to data subset (forget or retain) used in
evaluations.

Forget Retain

Task 1 199 194 393
Task 2 203 202 405
Task 3 295 294 589

697 690 1,387

Table 1: Number of unique documents for both data subsets
within each task. For each document, we create multiple
regurgitation and knowledge datasets leading to 4,394 unique
examples.

permissive license and open sourced training dataset (with
logs) which enables downstream task specific analyses of
model behavior.

Evaluation
We use following metrics for detailed evaluation.
Regurgitation Rate (r): We create sentence completion
prompts for all documents by sampling a random position
in second half of the document with the sentences before
it as the input. We compute ROUGE-L (Lin 2004) scores
for the model generated outputs with respect to the expected
sentence completions.
Knowledge Test Accuracy (t): We create question answer-
ing prompts for each document using an agentic workflow for
Tasks 1 and 3 where we prompt the data generator LLM (see
Appendix ) with few-shot Chain of Thought prompting (Wei

et al. 2022) and construct an unambiguous question with a
single concise answer. We verify the quality of QA pairs us-
ing three verification LLMs.2 We discard QA samples if any
of the verification LLMs are unable to answer the question
accurately with the corresponding document. For Task 2, we
use simple template based heuristics to frame unique ques-
tions of the form What is the birth date of John Smith?. For
all QA prompts, we use case insensitive exact match between
model output and the expected answer to measure prediction
accuracy.
Membership Inference Attacks (MIA) (m): We use the
black-box MIA attack framework from (Duan et al. 2024)
to implement Loss based attacks to assess data leakage risk
after unlearning. We use a subset of the memorized Wikipedia
biographies from Task 3 as the member set and a disjoint
sample of similar biographies not exposed to the model as
the non-member set.
Model Utility: We also test for overall model utility on
MMLU (Hendrycks et al. 2021), a general benchmark for
LLM utility.

Experiments
In this section, we benchmark several recently proposed un-
learning approaches on MUNCH and discuss our observations.

2We use Claude 3 (anthropic.claude-3-sonnet-20240229-v1:0),
Titan Text Express (amazon.titan-text-express-v1) and Mixtral 8x7B
for verification
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Figure 3: MIA rates per epoch.

Baseline Unlearning Algorithms: We test following pop-
ular unlearning algorithms on MUNCH (detailed review is in
the Appendix).
• Gradient Ascent (GA) reverses the gradient direction on

the forget set F to steer the model away this information.
• Gradient Difference (GD) (Liu, Liu, and Stone 2022)

augments the gradient ascent objective applied on F with
a gradient descent objective on R.

• KL Regularization (KL) (Maini et al. 2024) augments
the gradient ascent objective with a regularization term
which minimizes the KL divergence with respect to the
original model.

• Negative Preference Optimization (NPO) Zhang et al.
(2024) uses a modified version of Direct Preference Op-
timization, adapted to remove the sensitive information
from F .

Similar to TOFU and MUSE, we run each algorithm for
10 epochs with learning rate of 1e− 5 and batch size of 32.

Results: Figure 2 highlights epoch wise performance of
each unlearning algorithm on forget and retain subsets.3
Across all tasks and on both forget/retain sets, at epoch 0
all metrics reveal perfect regurgitation, highlighting complete
memorization by the fine-tuned models (without a drop in
model utility as shown in Figure 4 where the performance
starts with baseline MMLU levels for the OLMo 7B model).

As evidenced by the rapid drop in both regurgitation and
knowledge scores as unlearning proceeds, none of the algo-
rithms we evaluate were successful in achieving the joint
objectives of unlearning the forget set while retaining infor-
mation from the retain set. Except NPO, all the approaches
reach zero on both metrics across all three tasks, suggest-
ing substantial degradation in model quality. NPO performs
relatively better but also trends towards zero. The observed
variance in unlearning performance for the three tasks sug-
gests varying levels of unlearning difficulty for the samples
from each task which was recently also observed in (Zhao
et al. 2024).

For Gradient Difference, while performance drops rapidly
on both forget and retain sets, performance on the retain set
starts increasing with time. This is because of the objective
used in GD which reduces the prediction loss on the retain

3due to space limitations, we present results only on the 7B
model here.
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Figure 4: MMLU rates per epoch.

set while jointly increasing loss on the forget set. As train-
ing proceeds we can see the impact of the gradient descent
objective which increases memorization of the retain set.

Privacy Leakage: Figure 3 highlights the MIA success
rates (AUC) for the unlearned checkpoints after each epoch.
Initially, all models start with perfect memorization and hence
have 100% attack success rates, but as unlearning proceeds,
GA, GD and KL drop to the desired attack success rate of
50% (i.e. random chance levels), with GA observed to have
the fastest drop. However, NPO attack success rates remain
high after 10 epochs, suggesting that this approach does not
truly remove the unlearned information and is vulnerable to
privacy leakage from such attacks post unlearning.

Impact on Utility: We report aggregate accuracy scores
among all 57 tasks of MMLU in Figure 4. We observe con-
siderable performance drops in all approaches we evaluate,
highlighting the challenge in unlearning sensitive informa-
tion without impacting model utility. GA had the highest
drop suggesting substantial model degradation (owing to its
unbounded loss term), followed by KL, GD and NPO.

Related Work
Various machine unlearning methods have been proposed
for removing knowledge from LLMs (Zhang et al. 2024;
Pawelczyk, Neel, and Lakkaraju 2024; Chen and Yang 2023).
However, most of them report results on small evaluation sets
such as (Eldan and Russinovich 2023). Recently, (Maini et al.
2024) and (Shi et al. 2024) proposed to benchmark unlearn-
ing methods with various evaluation metrics but carry key
limitations we address. We provide more detailed discussion
compared to these works in the Appendix.

Conclusion
We propose MUNCH, a new benchmark covering three dis-
tinct tasks to evaluate unlearning in LLMs. We release two
fine-tuned checkpoints, and our evaluation strategy uses ro-
bust metrics covering different aspects of model unlearning
and utility. Detailed experiments reveal the challenge pre-
sented by our benchmark since most algorithms fail to suffi-
ciently unlearn the forget set without substantial degradations
on the retain set and model utility. We hope our benchmark
spurs further developments in LLM unlearning research.
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Limitations and Future Work
Carlini et al. (2022) show that the risk of memorization increases with large model size. However, due to computational limitations
and easy availability of large public LLMs, we only provide finetuned checkpoints for 1B and 7B OLMo, and defer release of
larger models to future work. Moreover, licensing restrictions prevent us from releasing fine-tuned models based on few publicly
available LLMs such as LLaMa (lla 2023).

We acknowledge that LLM-generated data can exhibit specific biases found in their training data set. We partially mitigate this
by seeding the generation prompt with pre-sampled character and location names to ensure diversity in generated content. We
also conducted manual evaluations of the generated creative content to ensure its quality.

Ethical Considerations
Task 2 deals with sensitive PII information which warrants careful considerations to avoid privacy leakage of individuals. We
avoid this risk entirely by carefully designing the generation process so that it closely mimics real individuals, despite being
generated synthetically. We also ensure all the tools used in generating our benchmark data are open sourced, thereby avoiding
any licensing restrictions.

Long Form Example Generation
Model Input:

Create a short novel of at least 150 words. The novel should be from fantasy genre and set in the city of Atlantis. It

should include following characters: Kyle , Stan , Kenny and Eric.

Model Output:

A short story about four friends lost in the magical realm below the oceans , known to ousiders as Atlantis. Kyle had

always held a deep fascination for the deep blue ocean , and this naturally led him to take up a major in oceanic

studies ...

Short Form Example Generation
Model Input:

Create a biography for Jon Smith with date of birth: 1/2/1989 , SSN: 900123456 , phone number: 0987654321 , email:

jon_smith@me.com , home address: 10 Summertime Lane , New York City , NY, USA.

Model Output:

Jon Smith was both in New York City on the first of February in 1989 ,...

Question Generation Prompt
Model Input:

You are given a short story. First , find all the proper nouns in this story. If it does not contain a proper noun , say "

I can 't use this statement since it does not contain any proper nouns .". If it contains proper nouns , use your

reasoning to create an unambiguous question , for which there would be *only* one answer. Give a concise answer (i.e

. one word or phrase) which accurately answers the question. If you cannot create such an unambiguous question , say

"I'm unable to create an unambiguous question for this story". Use the examples below for reference.

Examples:

1. Example #1

2. Example #2

3. Example #3

4. Example #4

5. Example #5

Here 's the story: <input_story >. Generate a question with an unambiguous answer using this story.

Further details on Unlearning Algorithms
We review unlearning methods tested in this paper in the following.

• Gradient Ascent: This is a straightforward algorithm for model unlearning where we reverse the direction of model update
by flipping the sign in gradient descent, in order to steer the model away from the sensitive model outputs in the forget set.
While easy to implement, this approach has a significant drawback since the gradient ascent training objective is unbounded,



which can lead to model divergence with nonsensical outputs for all inputs. The loss term in this algorithm reverses sign of
the standard training objective and is applied only on the forget set F as shown below.

−L(F ; θ)

• Gradient Difference (Liu, Liu, and Stone 2022): In this approach, we augment the gradient ascent objective applied on
forget set, by adding a gradient descent objective on the retain set. By jointly optimizing on both sets, we steer the model
away from regurgitating the sensitive information from the retain set, while ensuring it does not lose performance in the retain
set. Despite being a promising alternative to Gradient Ascent, this quality of model performance on non-sensitive dataset
depends on the size of the retain set used in model training, and can lead to poor generalization on new examples. The loss
term jointly increases the likelihood of generating responses in the retain set R while reducing the likelihood of generating F ,
as shown below.

−L(F ; θ) + L(R; θ)

• KL Divergence (Maini et al. 2024) Similar to Gradient Difference, in this baseline, we augment the gradient ascent objective
with a Kullback-Leibler Divergence term to ensure the model does not deviate too far from the original model.

• Negative Preference Optimization (Zhang et al. 2024): This baseline uses a modified version of the Direct Preference
Optimization objective, adapted to remove the sensitive information from the forget set.

More details on related work
Given the nascent stage of unlearning research in LLMs, few prior works exist which address the task of robustly evaluating the
success of unlearning. Triantafillou et al. (2023) presented a new challenge task in which the goal was to to unlearn information
contained in select images within the task of image based age prediction. While successful, the specific task addressed in this
challenge was narrow, focusing only on image based age prediction - a classification problem with 10 classes with limited
applicability in the unbounded text generation task of large language models. But the growing interest in LLMs and their tendency
to regurgitate sensitive or private information necessitates a distinct and focused evaluation benchmark.

Maini et al. (2024) released a new evaluation framework named TOFU which partially addressed this task of evaluating
LLM unlearning algorithms. Their framework was evaluated on question answering task applied on biographies of synthetically
created fake authors. They train target models on this synthetic data and evaluate the ability of unlearning algorithms to forget a
portion of this synthetic dataset. While being a promising first step, this work has a few key limitations: unlearning the targeted
information required for the QA task does is unlikely to cause loss of any other substantial information, specially linguistic
attributes such as grammar. Further, this work leverages GPT4 to generate the synthetic content, which may have downstream
licensing implications owing to GPT4’s proprietary license.

More recently, Shi et al. (2024) released a benchmark named MUSE which evaluated model unlearning using real data set for
containing news documents and Harry Potter book chapters. This benchmark released detailed evaluation metrics to robustly
evaluate the unlearning algorithms. However since it only leverages real data set the benchmark does not provide a clean test
bed to evaluate model performance. Specifically, the information contained in the unlearn documents may also appear in other
disjoint training documents, limiting the effectiveness of unlearning. While the TOFU benchmark mentioned before avoids
this by only using synthetic documents, the data set coverage is rather limited (it only containts biographic information). The
benchmark developed in this work addresses both these shortcomings together and presents a single holistic testbed to evaluate
model unlearning in LLMs.


