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ABSTRACT

We present a novel approach called differentially private stochastic block coordinate
descent (DP-SBCD) for training neural networks with provable guarantees of
differential privacy under the hidden state assumption. Our methodology regards
neural networks as optimization problems and decomposes the training process
of the neural network into sub-problems, each corresponding to the training of a
specific layer. By doing so, we extend the analysis of differential privacy under
the hidden state assumption to encompass non-convex problems and algorithms
employing proximal gradient descent. Furthermore, in contrast to existing methods,
we adopt a novel approach by utilizing calibrated noise sampled from adaptive
distributions, yielding improved empirical trade-offs between utility and privacy.

1 INTRODUCTION

Machine learning models, especially deep neural networks, have exhibited remarkable progress in the
last decade across diverse fields. Their applications, such as face recognition (Erkin et al., 2009) and
large language models (Kandpal et al., 2022), have been integrated into people’s daily lives. However,
the increasing demand for large amounts of training data in the training process has given rise to
growing concerns regarding the potential privacy vulnerabilities (Fredrikson et al., 2015; Shokri et al.,
2017) associated with these models. For example, deep neural networks are shown to memorize the
training data (Zhang et al., 2017) so that we can even reconstruct part of the training data from the
learned model parameters (Haim et al., 2022). To address these issues, differential privacy (Dwork,
2006) has become the gold standard for making formal and quantitative guarantees on model’s privacy
and has been widely applied in learning problems (Abadi et al., 2016; Ha et al., 2019).

The predominate approach to ensuring differential privacy in the context of machine learning involves
the incorporation of calibrated noise during each update step in the training phase, which leads to
a trade-off between utility and privacy loss (Allouah et al., 2023; Alvim et al., 2012). Excessive
noise often leads to a significant loss in utility, while insufficient noise may result in privacy leakage.
Moreover, many privacy accountant methods, such as moment accountant (Abadi et al., 2016),
are typically based on the composition properties of differential privacy. Specifically, they usually
assume that the calibrated noise in each training iteration follows the same distribution and that the
algorithm’s internal states, i.e., the model’s parameters in each training step, can be revealed to the
adversaries. As a result, the total privacy loss of the algorithm significantly increases with the number
of training iterations, because more internal states will be revealed with more training iterations.
Such assumptions lead to a very loose privacy estimation of the algorithm, because, in practice, most
internal states are usually not even recorded during training.

The gap between theory and practice motivates researchers to consider more practical assumptions.
Recently, the hidden state assumption was proposed to narrow down this gap (Chourasia et al., 2021;
Feldman et al., 2018; Ye and Shokri, 2022). This assumption posits that the internal states of the
training phase are hidden, and that the adversaries only have access to the last iterate. Under this
assumption, Chourasia et al. (2021); Ye and Shokri (2022) use Langevin diffusion to track the change
rate of Rényi Differential Privacy (RDP) in each epoch and bound the privacy loss for Differential
Privacy Gradient Descent (DP-GD) and Differential Privacy Stochastic mini-batch Gradient Descent
(DP-SGD) (Abadi et al., 2016). Recently, Asoodeh and Diaz (2023) also considered directly using
hockey-stick divergence instead of Rényi divergence.These works claim a converged and small

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025
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Activation 
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Privacy Loss Analysis 
Under the HSA

Regard as  Langevin 
Process (9)

The privacy loss trajectory of composition theorem and HSA (Corollary 4.4):

Deca y ra te depend on both 
ca librated noise and the 

func tion smoothness 

Figure 1: DP-SBCD framework. (Left) Use auxiliary parameters to decouple non-convex constraints
and consider its Lagrangian function F(θ,x,u).(Middle) sub-problems of DP-SBCD algorithm in
solving the Lagrangian function.(Right) Privacy loss trajectory comparison for one sub-problem
under the composition theorem and the hidden state assumptions.

privacy loss (usually less than 1) under some strict assumption such as strongly convex loss function
and gradient Lipschitzness.

From a theoretical aspect, existing theorems (Feldman et al., 2018; Chourasia et al., 2021; Ye and
Shokri, 2022) indicate a valuable property that privacy loss could converge under the hidden state
assumption in learning problems with strongly convex and β-smooth loss functions. Otherwise, the
privacy loss based on their analysis framework will increase exponentially. Consequently, these
theorems cannot be directly applied to training deep neural networks, whose loss functions are
non-convex and may exhibit non-smoothness when using activation functions like ReLU (Krizhevsky
et al., 2012).

To extend existing analyses of differential privacy under the hidden state assumptions to deep learning
problems, we propose differentially private stochastic block coordinate descent (DP-SBCD) to avoid
the exponentially-increasing privacy loss for the traditional DP-SGD algorithm. By contrast, our
analyses provide tight theoretical guarantees in privacy loss under the hidden state assumption when
using DP-SBCD. As demonstrated in Figure 1, we first decouple the activation function to convert the
task of training neural networks as a constrained optimization problem and subsequently construct
the associated Lagrangian function. The DP-SBCD algorithm then considers each layer individually,
decomposing the original learning problem into multiple sub-problems. The loss function for each of
these sub-problems is convex, which facilitates our analyses to derive a tight privacy loss bound under
the hidden state assumption. It is worth noting that our algorithm’s privacy loss under the hidden
state assumption is significantly smaller than that derived under the composition theory.

In addition, this work investigates the connections between the calibrated noise and the smoothness
of the loss function in the context of differential privacy. Generally speaking, calibrated noise and
the smoothness of the loss function both contribute to the privacy loss. However, how the calibrated
noise influence the total privacy loss under the hidden state, which is still unknown so far, is valuable
in improve the privacy-utility trade-off (Du et al., 2021). Intuitively speaking, we need noise of larger
variance to achieve the same level of differential privacy if the Lipschitz constant of the loss gradient
is bigger, but noise of large variance harms the utility when the algorithm approaches the optimal
solution. This paper study the impact of the variance of the calibrated noise on differential privacy in
different training phases and propose to adaptively adjust it during training. We also explain why the
privacy loss will converge under the hidden state assumption. Empirically, our proposed algorithm
with adaptive calibrated noise achieves a better trade-off between the model’s utility and privacy.

In summary, we highlight our contributions as follows:

• We propose differentially private stochastic block coordinate descent (DP-SBCD), which, to
the best of our knowledge, is the first feasible method to solve non-convex problems with
differential privacy guarantees under the hidden state assumption.
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• The privacy analysis in this work possess a generic nature, rendering them compatible with
proximal gradient descent and adaptive calibrated noise. Our privacy analysis also answers
why the privacy loss can converge (Ye and Shokri, 2022; Feldman et al., 2018) under the
hidden state assumption.

• Our analysis and numerical experiments indicate that our algorithm’s privacy loss under the
hidden state assumption is minimal. Furthermore, by adaptively modifying the calibrated
noise, our algorithm can achieve a better privacy-utility trade-off.

Terminology and Notation The privacy loss refers to the Rényi differential privacy (RDP). When
using the diffusion process to analyze the update scheme, we use t to represent the time in the process.
We use ∥ · ∥2 to represent l2 norm for vectors and the spectral norm for matrices. In addition, ∥ · ∥F
denotes Frobenius norm. Other notations are explicitly defined before usage.

2 RELATED WORKS

Differential Privacy Differential Privacy (DP) (Dwork, 2006) was initially introduced to quan-
titatively ensure the privacy guarantees within the realm of databases. Nevertheless, its rigorous
mathematical foundations and nice properties, such as composition theorem and post-processing
immunity, have raised more and more interest in its application in machine learning. Among the
practical methods for achieving DP-guaranteed models, DP-SGD (Song et al., 2013) is the most
popular one, which involves the addition of calibrated noise to the clipped per-sample gradients in
each iterative update.

Besides the DP-guaranteed training algorithm, the proper accounting of privacy loss is also critical.
Most accountant methods rely on the composition theorem of differential privacy. In this regard, Abadi
et al. (2016) introduces the momentum accountant, Mironov (2017) further proposes Rényi differential
privacy (RDP), which turns out a better tool to analyze the algorithm’s privacy loss. Specifically,
a randomized mechanism M : D → R is said to have (α, ε)-RDP if for any adjacent datasets
d, d′ ∈ D, it holds that Dα(M(d)||M(d′)) ≤ ε where Dα denotes the Rényi divergence of order α.

Recently, the hidden state assumption has been explored in many works (Chourasia et al., 2021;
Feldman et al., 2018; Ye and Shokri, 2022). While the composition theory assumes that adversaries
have access to the intermediate states of the algorithm, which requires the summation of the privacy
loss across each training iteration (Ponomareva et al., 2023), the hidden state assumption posits that
these intermediate states remain concealed. In real-life applications, the intermediate states usually
cannot be tracked, so the hidden state assumption is more practical. It is first proposed in (Feldman
et al., 2018), which also proves that a sequence of contractive maps can exhibit bounded (α, ε)-RDP.
Subsequently, Chourasia et al. (2021) consider the update scheme as a Langevin diffusion process
and analyze the privacy loss for DP-GD using the log-Sobolev inequality (Vempala and Wibisono,
2019). Expanding upon this, Ye and Shokri (2022) analyze DP-SGD by leveraging the convergent
analysis of unadjusted Langevin algorithm proposed by Wibisono (2019).

Block Coordinate Descent The block coordinate descent algorithm is designed to decompose the
original problem into several sub-problems which allow for independent and efficient solutions. It
not only helps prevent the vanishing gradient problem (Zhang and Brand, 2017) but also facilitates
distributed or parallel implementations (Mahajan et al., 2017). In the era of deep learning, many
works focus on employing block coordinate descent to train neural networks (Gu et al., 2020; Zeng
et al., 2019; Zhang and Brand, 2017). Zhang and Brand (2017) utilize a lifting trick to solve the
learning problem of deep neural networks with ReLU activation function, which is then extended
by Gu et al. (2020); Mangold et al. (2022). Furthermore, Zeng et al. (2019) comprehensively analyzes
two general types of optimization formulas: Two-splitting and Three-splitting. They also investigate
the loss function, activation function, and architecture that these algorithms require.

3 SOLVING NEURAL NETWORK USING BLOCK COORDINATE DESCENT

In this section, we regard the deep neural network as a optimization problem and use auxiliary
parameters to decouple the input and the output of the activation function. Then, we use the block
coordinate descent and analyze the properties of the decomposed sub-problems.
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3.1 BLOCK COORDINATE DESCENT ALGORITHM

We consider learning an D-layer neural network parameterized by θ
def
= {θd}Dd=0:

min
θ
L(θ,x) def

= R (θDσD−1 (θD−1(. . . σ1(θ0x0))) ; y) (1)

Here, x def
= x0 is the input, R is the loss function, such as softmax cross-entropy function, which

is convex w.r.t. θD. Moreover, {σd}D−1
d=0 are activation functions, such as ReLU function, that

are Lipschitz continuous. Finally, {θd}Dd=0 are matrices representing the weights of linear layers,
including fully-connected layers and convolutional layers.

Note that the function defined in Equation (1) is highly non-convex as the variables are coupled via
the deep neural networks architecture, which is challenging in privacy loss analysis under the hidden
state assumption. Therefore, we first add auxiliary variables and convert Problem (1) as a constrainted
optimization problem(Zeng et al., 2019):

min
θ
L(θ,x) := R(θDxD; y) s.t. xd+1 = σd(ud), ud = θdxd d = 0, . . . , D − 1 (2)

where {xd}Dd=1 and {ud}D−1
d=0 are vectors representing the intermediate activations of each layer.

Problem (2) introduces auxiliary variables and constraints to decouple variables in Problem (1). Then,
we consider the Lagrangian function of Problem (2) with a multiplier co-efficient γ, which is set 1 in
this work.

F(θ,x,u) = R(θDxD; y) +
γ

2

D−1∑
d=0

(∥xd+1 − σd(ud)∥22 + ∥ud − θdxd∥22) (3)

where F is a function of {θd}Dd=0, {xd}Dd=0 and {ud}D−1
d=0 . For notation simplicity, we only explicitly

highlight the parameter we consider for F if there is no ambiguity. For example F(θ′d) means we
update the parameter θd in F while keeping the other parameters fixed. We use block coordinate
descent to update parameters of F where we treat each layer as a sub-problem. The algorithm is
summarized in Algorithm 1. Considering the loss functionR is a convex function w.r.t. both θD and
xD, we have for all d, F(θd) is convex w.r.t. θd, and ∀d, F(xd) is convex w.r.t. xd.

To update θd, Algorithm 1 also considers the damping term 1
2η∥θd − θ′d∥2F and the regularization

term rd(θ
′
d), which can be optimized by the proximal gradient descent elaborated in the next section.

To update xd, we have the analytical solution due to the convexity of F(xd).

xd ←

{(
θTd θd + I

)−1 (
θTd ud + σ(ud−1)

)
if d = 0, 1, ..., D − 1.

Prox 1
γ ,R(σd−1(ud−1)). if d = D

(4)

Additional, we clip the auxiliary xd by the threshold ρd, we will further explain it in the next section.

xd ← xd ·min(ρd/∥xd∥2, 1) (5)

To update ud, we utilize Zeng et al. (2019, Lemma 13) as follows to obtain the analytical solution.

ud ←


θdxd if− xd+1 ≤ θdxd ≤ −(

√
2− 1)xd+1 ≤ 0.

min{0, θdxd} if θdxd + xd+1 ≤ 0.
1
2 (θdxd + xd+1) otherwise.

(6)

3.2 THE SMOOTHNESS OF THE SUB-PROBLEMS

In this subsection, we analyze the smoothness of the sub-problem F(θd). In our algorithm, by
clipping xd , we bound each layer’s output xd.Then, we have the following lemma shows that the
sub-problem F(θd) as a function of θd is βd-smooth with the exact sommthness constant.
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Algorithm 1 Stochastic Block Coordinate Descent For
Neural Networks

Input: training set, regularization schemes {rd}Dd=0,
parameter η, batch size b, clipping threshold ρd.
Initialization: {θd}Dd=0, {xd}Dd=0, {Ud}D−1

d=0 .
for epoch k = 0, 1, . . . ,K − 1 do

for each mini-batch of size b do
for layer d = 0, 1, . . . , D do

Update θd, ud, xd simultaneously as follows:
xd ← argminx′

d
F(x′

d)

Clip xd by (5) with coefficient ρd.
ud ← argminu′

d
F(u′

d)

θd ← argminθ′
d
F(θ′d) + 1

2η
∥θd − θ′d∥2F +

rd(θ
′
d)

end for
end for

end for

Algorithm 2 Differentially Private Stochastic Block
Coordinate Descent For Neural Networks

Input: training set, regularization schemes {rd}Dd=0,
step size η, batch size b, noise control function
o(η, k, j), clipping threshold ρd.
Initialization: {θd}Dd=0, {xd}Dd=0, {Ud}D−1

d=0 .
for epoch k = 0, 1, . . . ,K − 1 do

for each mini-batch of size b do
for layer d = 0, 1, . . . , D do

Update θd, ud, xd simultaneously as follows:
xd ← argminx′

d
F(x′

d)

Clip xd by (5) with coefficient ρd.
ud ← argminu′

d
F(u′

d)

Update θd based on (8)
end for

end for
end for

Lemma 3.1. If the input xd is bounded with ρd and the activation function is ReLU, then the function
F(θd) for any layer 0 ≤ d ≤ D is βd-smooth and the smoothness constant βd is γρ2d.

The proof is deferred to Appendix A.1. Lemma 3.1 shows that for Algorithm 2, we could control
the smoothness sub-problem F(θd) by ρd. Moreover, We have to highlight that the F(θd) assumes
that other parameters except θd are fixed. In addition, Lemma 3.1 indicates that the smoothness
constant βd does not depend on other parameters. Based on this, we can calculate the Hessian matrix
of F(θd) as ∇2F(θd) = xdx

T
d ≥ 0. Therefore, F(θd) is convex w.r.t. θd.

4 DIFFERENTIALLY PRIVATE STOCHASTIC BLOCK COORDINATE DESCENT

In this section, we propose Differentially Private Stochastic Block Coordinate Descent (DP-SBCD),
i.e., the differentially private version of Algorithm 1. We then calculate the algorithm’s privacy loss
under the hidden state assumption. We discuss the privacy loss in a generic form, especially the case
when using adaptive calibrated noise.

4.1 DIFFERENTIALLY PRIVATE UPDATE SCHEME

We first consider the update scheme for θd in Algorithm 1 and use first order Taylor expansion of
F(θ′d) to write it in the proximal gradient descent format.

θd ← argmin
θ′
d

⟨∇F(θd), θ′d − θd⟩+
1

2η
∥θ′d − θd∥2F + rd(θ

′
d) = Proxη,rd (θd − η∇F(θd)) (7)

Owing to the post-processing immunity of differential privacy, the privacy guarantee is required
for each sub-problem. Furthermore, as the algorithm converges gradually, the gradient ∇F(θd)
diminishes, prompting the use of calibrated noise with an adaptive variance instead of a fixed one. As
a result, we propose the following update scheme:

θd ← Proxη,rd (θd − η∇F(θd) +N (0, 2η · o (η, k, j) I)) (8)

where N (0, I) is the standard Gaussian distribution, o(η, k, j) is a function of the step size η, epoch
index k and iteration index j to control the magnitude of the calibrated noise. By incorporating
the update scheme (8) into Algorithm 1, we obtain Algorithm 2, which will be proved to guarantee
differential privacy in the following section.

4.2 PRIVACY LOSS OF SUB-PROBLEMS

We now study the privacy loss of Algorithm 2. Leveraging the post-processing immunity and
composition property, we can establish an upper bound of the privacy loss of Algorithm 2 by

5
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summing the privacy losses of its individual sub-problems. Consequently, our primary focus here is
to estimate the privacy loss associated with each sub-problem. For notation simplicity, we omit the
subscript d in this subsection, as our analyses apply to any sub-problem.

In each iteration of Algorithm 2, the value of θ is updated by (8) and then normalized by (5). Among
them, it is clear that the scaling operation of θ in (5) does not contribute to the privacy loss, so we
focus on the update scheme (8).

We regard the update scheme (8) in Algorithm 2 as a diffusion process (Balle et al., 2019; Chourasia
et al., 2021; Ye and Shokri, 2022). Specifically, the update scheme consists of three parts: The
gradient descent part θ − η∇F(θ); The noise part o(η, k, j); The proximal operator associated with
a convex regularization function r. From a distributional perspective, let Θ be the distribution of the
parameter θ, then the distribution of the parameter after one-step update in (8) can be represented as
follows:

Θ̃ = T#(F#(Θ) ∗ N (0, 2t · o(η, k, j)Id)) (9)

where F# and T# are two push-forward mappings. F represents the gradient descent update, T
represents the proximal operator, and ∗ represents the convolution operator between two distributions.

Based on the smoothness property of F(θ) indicated in Lemma 3.1, we prove the Lipschitz continuity
of the first part of the update scheme (8).

Lemma 4.1 (Lipschitz continuity for F ). If F(θ) is a β-smooth function and ∇2F(θ) ≥ ω, then
the update function F (θ) = θ − η∇F(θ) is Lipschitz continuous with a constant LF ≤ max{|1−
ηω|, |1− ηβ|}.

The proof is deferred to Appendix A.2. We also need to highlight that the F(θ) in the Lemma 4.1
assumes that other parameters except θ are fixed. In addition, the bound of the Lipschitz constant
derived in Lemma 4.1 does not depend on other parameters. That is to say, the bound in Lemma 4.1 is
valid for arbitrary values of other parameters. Since F(θ) is proven convex in Section 3, 0 ≤ ω ≤ β.
As a result, the Lipschitz constant will be dominated by the convexity term |1− ηω| when the step
size η ≤ 2

ω+β and otherwise the smoothness term |1− ηβ|.

Similarly, we can prove the Lipschitz continuity of the third part of the update scheme (8).

Lemma 4.2 (Lipschitz continuity for T ). If η > 0 and r(θ) is a convex function, then the proximal

operator function T (θ) = Proxη,r(θ) = argminθ̃

{
r(θ̃) + 1

2η∥θ̃ − θ∥22
}

is Lipschitz continuous
with a constant LT ≤ 2.

The proof is deferred to Appendix A.3. Typical examples of the regularization function r include
1) no regularization: r(θ) = 0, and then Proxη,r(θ) = θ; 2) l2 regularization in weight decay:
r(θ) = 1

2∥θ∥
2
2, and then Proxη,r(θ) = η

1+η θ; 3) l1 regularization in LASSO: r(θ) = ∥θ∥1, and then
Proxη,r(θ) = sign(θ) ·max(0, |θ| − η). In all these three cases, the proximal function is Lipschitz
continuous and the Lipschitz constant is 1.

Now we assume that θ for each sub-problem satisfies the log-Sobolev inequality (LSI), which is a
benign assumption used in Vempala and Wibisono (2019); Ye and Shokri (2022) for the distribution
of parameter θ. The formal definition of log-Sobolev inequality is provided in Definition A.1 in the
appendix for reference. The LSI assumption is very mild, Vempala and Wibisono (2019) shows that
strongly log-concave distribution, such as Gaussian distribution, uniform distribution, and some non-
logconcave distribution satisfy the LSI assumption.Based on the log-Sobolev inequality assumptions
and Lipschitzness (Lemma 4.1,4.2), we consider the recursive privacy dynamics for Equation (9) and
bound the change rate of RDP during one step of noisy mini-batch proximal gradient descent. Our
formal result is demonstrated as Theorem A.2 in Appendix A.4. It is an extension of Ye and Shokri
(2022, Lemma 3.2) to the cases of non-convex loss functions, proximal gradient descent and adaptive
calibrated noise.

To derive the privacy loss of Algorithm 2, we assume a bounded sensitivity of the total gradient for
sub-problem F(θ), which is popular used in (Ye and Shokri, 2022; Das et al., 2023).

Assumption 4.3. (Sensitivity of the Total Gradient) The l2 sensitivity of the total gradient ED∇F(θ)
is finite. That is to say, ∃Sg < +∞ such that for any dataset D and its neighbouring dataset D′ that
only differs in one instance, we have Sg = maxD,D′,θ ∥ED∇F(θ)− ED′∇F(θ)∥2.

6
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Based on Lemma 3.1, Sg = γρ . Then, we apply the Theorem A.2 to the case of two neighboring
datasets and directly obtain the privacy loss of the Algorithm 2 for each iteration. The proof is nearly
the same as Ye and Shokri (2022, Lemma 3.2), we omit the proof detail for the sake of brevity.
Corollary 4.4. Under Assumption 4.3 where the sensitivity of the total gradient is Sg < +∞, let
D, D′ be an arbitrary pair of the neighboring datasets that only differ in the i0-th data point (i.e.
xi0 ̸= x′

i0
). Let Bj

k be a fixed mini-batch used in the j-th iteration of the k-th epoch in Algorithm
2, which contains b different training instances whose indices are sampled from {0, 1, . . . , n− 1}.
We denote θjk and θ′

j
k as the intermediate parameters in Algorithm 2 when using datasets D and D′,

respectively. If the distributions of θjk and θ′
j
k satisfy log-Sobolev inequality with a constant c, the

update function F (θ) = θ − η∇F(θ) and the proximal operator T (θ) = Proxη,r(θ) are Lipschitz
continuous with Lipschitz constant LF and LT , respectively, then the following recursive bound for
Rényi divergence holds for any order α > 1:

1) If i0 ̸∈ Bj
k, then Rα(θj+1

k ||θ′j+1
k )

α is upper bounded by Rα′ (θ
j
k||θ

′j
k)

α′ ·
(
1 + c·2η·o(η,k,j)

L2
F

)−1/L2
T

where

the order α′ = (α− 1)
(
1 + c·2ηo(η,k,j)

L2
F

)−1

+ 1.

2) If i0 ∈ Bj
k, then Rα(θj+1

k ||θ′j+1
k )

α is upper bounded by Rα(θj
k||θ

′j
k)

α +
ηS2

g

4b2·o(η,k,j) .

Compared with the results discussed in Ye and Shokri (2022) which only study the case without
proximal operator, the privacy loss decay rate in the first case of Corollary 4.4 is powered by −1/L2

T
instead of −1, corresponding to the factor 1/L2

T in the formulation of ct in the change rate of RDP
in Theorem A.2. This indicates that the Lipschitz constant LT of the proximal operator also affects
the privacy loss decay, a.k.a. privacy amplification when we run Algorithm 2 in the hidden state
assumption. The smaller L2

T is, the better privacy guarantee will be obtained. Corollary 4.4 concludes
the change of the privacy loss for one iteration in Algorithm 2.

By applying Corollary 4.4 iteratively, we can obtain the algorithm’s privacy loss for the whole training
phase. The formal theorem is demonstrated below.
Theorem 4.5. Under Assumption 4.3 where the sensitivity of the total gradient is Sg < +∞, the
distribution of θ satisfies log-Sobolev inequality with a constant c. In addition, the update function
F (θ) = θ − η∇F(θ) and the proximal operator T (θ) = Proxη,r(θ) are Lipschitz continuous with
Lipschitz constant LF and LT , respectively. If we use Algorithm 2 to train model parameters θ for
K ≥ 1 epochs, then the algorithm satisfies (α, ε(α))-Rényi differential privacy with the constant:

εK(α) ≤ 1

α− 1
log

n/b−1∑
j0=0

b

n
· e(α−1)(εK(α,j0))


where:

εK(α, j0) ≤ α

K−1∑
k=0

ηS2
g

4b2 · o(η, k, j0)
·

(
cj0+1
k

c
n/b−1
K

(
1

L2
FL

2
T

)(n/b−1)(K−k)−j0 K∏
l=k

cj0+1
l

cj0l

)−1/L2
T

(10)
In Inequality (10), cjk is the log-Sobolev inequality constant for the distribution of the model parame-
ters in the j-th iteration of the k-th epoch. The value of cjk is calculated based on Lemma A.3 in the
appendix.

Proof Sketch. For each iteration of the Algorithm 2, the update scheme (8) fixed parameters except the
θ. Hence, although the F(θ) in the update scheme differs among each iteration because of different
fixed parameters, it maintains Lipschitzness in each iteration. Hence, we could use Corollary 4.4 to
analyze the algorithm’s privacy loss. In each epoch, there is one and only one different mini-batch for
two neighboring datasets, so we assume it is the j0-th batch w.l.o.g. and apply case 2) of Corollary 4.4
for this mini-batch update and case 1) of Corollary 4.4 for the other updates. For any α, the original
privacy loss is 0 and the recursive bound in Corollary 4.4 holds. Therefore, we can uniformly
bounded the value of εK(α,j0)

α for any α. Finally, since j0 is uniformly distributed among the index
set {0, 1, . . . , n/b− 1}, we use the joint convexity of scaled exponentiation of Rényi divergence to
bound the final privacy loss εK(α). The complete proof is deferred to the AppendixA.5. □
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Figure 2: Common hyper-parameter settings: batch size b = 100, stepsize η = 0.01, xd threshold ρ = 1,
data set n = 2100, RDP order α = 10. (a) Each epoch’s privacy loss contribution for the Algorithm 2
for K = 30 epochs. We study the scenarios of both fixed and adaptive noise. Each scenario contains
three situations(j0 = 0, 15, 30). In the fixed noise scenario, the o(η, k, j) = 0.01, while in the adaptive
noise scenario, the o(η, k, j) = 0.01 − 0.003k. (b) Privacy loss for different numbers of epochs K for
Algorithm 2. We show four scenarios: noise decay means o(η, k, j) = 0.001− 0.0003k, noise constant means
o(η, k, j) = 0.0005, noise increase means o(η, k, j) = 0.0001 + 0.0003k, and noise decrease-constant means
that o(η, k, j) = 0.0005− 0.00003k where k ∈ [1, 10] and remain o(η, k, j) = 0.0002 where k ∈ [10, 30].

εK(α, j0) in the Theorem 4.5 represents the privacy loss when the only different instance of the two
neighboring datasets is in the j0-th mini-batch of each epoch. The εK(α, j0) shows that the overall

privacy loss is the summation of each epoch’s privacy loss term
ηS2

g

4b2·o(η,k,j) times a decay rate term(
c
j0+1

k

c
n/b−1
K

(
1

L2
FL2

T

)(n/b−1)(K−k)−j0 ∏K
l=k

c
j0+1

l

c
j0
l

)−1/L2
T

. More importantly, Algorithm 2 maintains

the decay rate term smaller than 1 and decreases with the increase in K.

Theorem 4.5 improves the results in existing works from many aspects for estimating the differential
privacy under hidden state assumptions. Firstly, it is more generally applicable to different algorithms.
Theorem 4.5 could easily extend the analyses and privacy guarantees from the gradient descent
algorithm with calibrated noise from a fixed distribution to proximal gradient descent with adaptive
calibrated noise. Second, it provides a feasible privacy loss accountant for non-convex problems
with adaptive noise. In contrast to the assumption of strong convexity and β-smoothness on the
objective function in existing results, Theorem 4.5 shows that Algorithm 2 applicable to general
neural networks with Lipschitz constraints. Finally, even when downgrading to the case of gradient
descent with calibrated noise sampled from fixed distributions, Theorem 4.5 has a tighter bound than
previous work (Ye and Shokri, 2022, Theorem 3.3). This is because we directly bound εK(α, j0)
by recursively applying Corollary 4.4. By contrast, Ye and Shokri (2022) approximate the bound
εK(α, j0) by part of iterations in one epoch rather than the whole epoch.Corollary 4.4 shows an
exponential decrease in privacy loss, so such approximation affects the final privacy loss accountant,
we draw a Figure in the Appendix to indicate the difference.

4.3 PRIVACY LOSS VARIATION UNDER THE ADAPTIVE NOISE

As discussed above, the bound of εK(α, j0) in Theorem 4.5 elucidates how each epoch influences
the cumulative privacy loss, exhibiting a decay rate. Specifically, these contributions are inversely
proportional to o(η, j, k), i.e., the variance of the noise, and decrease exponentially 1 as the number
of iterations and epochs increase. That is to say, under the hidden state assumption, the calibrated
noise in the last few epochs primarily contributes to the total privacy loss.

1While not strictly exponential due to variations in the log-Sobolev inequality constant, the behavior closely
resembles that of an exponential function curve in simulations.
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We illustrate this phenomenon in Figure 2(a), which encompasses scenarios with both constant and
non-constant o(η, j, k) values. The numerical results align with the analysis, as indicated by the
near-linear curves observed in the logarithmic scale graph. Furthermore, we observe that a larger
value of j0, signifying a delayed occurrence of the mini-batch containing the unique instance, leads
to a smaller privacy loss during the initial stages of training. However, as the training progresses, this
disparity diminishes. This observation is consistent with Theorem 4.5, as the privacy loss is zero for
the first j0 mini-batches of the first epoch.

Theorem 4.5 also enhances our understanding of the convergence of the privacy loss, initially proposed
in Feldman et al. (2018): when o(η, k, j) is a constant, an equilibrium solution emerges between
the privacy loss and the decay rate after several epochs, resulting in the convergence of privacy loss
under the hidden state assumption. In the case of adaptive calibrated noise, Figure 2(b) shows the
tendency of privacy loss under four distinct noise settings. Empirical findings suggest that privacy loss
converges when a constant magnitude of noise is utilized in the later stages of training. Conversely,
the privacy loss diverges if the noise magnitude continues to decrease in the late phase of training. In
contrast, increasing the noise magnitude can even lead to a decrease in privacy loss. However, it is
worth noting that noise with a smaller variance tends to yield better utility for the model compared
to noise with a larger variance, which is consistent with the utility-privacy trade-off (Allouah et al.,
2023; Alvim et al., 2012).

5 DISCUSSION AND FUTURE WORKS

Feldman et al. (2018); Ye and Shokri (2022) shows that the privacy loss can converge under the hidden
state assumption for strongly convex problem. However, such appealing result cannot be applied to
neural network training because of the high non-convexity of the corresponding loss function (1).
In this work, instead of directly use the gradient descent in training, we proposed the Differentially
Private Stochastic Block Coordinate Descent (DP-SBCD) algorithm and calculate the corresponding
privacy loss under the hidden state assumption, which is tight and generally applicable. To the best of
our knowledge, our method is the first feasible method to solve non-convex problems with differential
privacy guarantees under the hidden state assumption. We also implement our algorithm on various
of datasets in Appendix B.1 to show the validation of our algorithm.

Furthermore, our privacy loss analysis further explains why the privacy loss will converge under the
hidden state assumption. As demonstrated in the Section 4.3, the privacy loss under the hidden state
assumption does not actually converge. An equilibrium solution emerge once the calibrated noise
is fixed, and it will modify once the calibrated noise is changed. Moreover, Inspired by the fact Yu
et al. (2019); Du et al. (2021) that adaptively allocate privacy budget could improve the utility-privacy
trade-off. Our algorithm also consider adaptively modify the calibrated noise. Although our paper
does not provide further theoretical analysis on what is the optimal adaptive calibrated noise due to
the page limitation, the experiment in Appendix B.2 shows that adaptively choosing the calibrated
noise could empirically provide a better utility-privacy trade-off under the hidden state assumption.

Although our algorithm has a lower privacy loss than DP-SGD, it’s important to note that direct
comparisons of privacy loss may be misleading because of different privacy loss assumptions: DP-
SBCD is under the hidden state assumption and the DP-SGD is under the composition theorem. As
demonstrated in the Section 4.3, the privacy loss under the hidden state assumption is predominated
by the last few epochs, but the privacy loss under the composition theorem is proportional to the
training iterations. In the Appendix B.1, we list the privacy loss of DP-SGD to provide an intuitive
comparison. Moreover, the DP-SBCD algorithm and the DP-SGD algorithm have totally different
parameter settings, such as the optimal step size and batch size, which is important in both the privacy
loss accountant and the algorithm’s utility.

Compare with the SGD algorithm, the coordinate descent algorithm requires less memory in training
process because it only update one block of the model parameters. Recently, Luo et al. (2024) shows
that the coordinate descent algorithm can reduce the memory consumption in large language training.
However, coordinate descent also introduces new challenges: the stochastic of mini-batch and the
block-wise parameter update leads to a high variance of the mini-batch gradient. In our experiment,
we use large batch size to effectively mitigate the high variance of the mini-batch gradient, which
increases memory consumption and might influence the utility. Although there are many works
discussing variance reduction (Ding and Li, 2020; Gorbunov et al., 2020; Ding and Li, 2021) and large

9
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batch training technique (Keskar et al., 2016; Hoffer et al., 2017), further improving our algorithm
requires rigorously analyzing the algorithm’s convergence and exploring the integration of these
techniques. We leave this as future works.

6 CONCLUSION

We propose differentially private stochastic block coordinate descent (DP-SBCD) algorithm, which
includes proximal gradient descent and adaptive noise, to train neural networks. As far as we are
aware, DP-SBCD is the first algorithm capable of addressing non-convex training problems while
ensuring a tight differential privacy guarantee under the hidden state assumption. Our theoretical
analyses indicate different contributions of privacy loss in different training phases under the hidden
state assumption, inspiring the idea of adaptively adjusting the calibrated noise during training. The
adaptive noise proposed in our method can provide adjustable trade-offs between the model’s utility
and privacy. Moreover, our observations indicate that under proper settings, DP-SBCD could provide
a better trade-off between utility and privacy. Going forward, our future research will concentrate on
further refining the convergence and performance of the algorithm.
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A PROOFS

A.1 PROOF OF LEMMA 3.1

Proof. We first calculate the gradient of F(θd) as follows:

∇F(θd) = γ(Ud − (θdxd))x
T
d

where xd and Ud is fixed. Therefore, ∀θd, θ′d, we have the following bound:

∥∇F(θd)−∇F(θ′d)∥2 ≤ γ∥xd∥22∥θd − θ′d∥2 (11)

Let ∥xd∥2 ≤ Xd, so the smoothness constant is γX2
d .

A.2 PROOF OF LEMMA 4.1

Proof. Based on the definition of Lipschitz continunity, we have:

∥F (θ)− F (θ′)∥2 = ∥ (θ − η∇F(θ))− (θ′ − η∇F(θ′)) ∥2

≤
∥∥∥∥(I− η · ∇F(θ)−∇F(θ

′)

θ − θ′

)
(θ − θ′)

∥∥∥∥
2

= ∥I− η∇2F(θ̃)∥2∥θ − θ′∥2

where θ̃ is between θ and θ′. Based on the smoothness of F and the assumption, we have ωI ≤
∇2F(θ̃) ≤ βI. Therefore, ∥I− η∇2F(θ̃)∥2 ≤ max{|1− ηω|, |1− ηβ|}, which is the bound of the
Lipschitz constant.

A.3 PROOF OF LEMMA 4.2

Proof. Let θ̃1 = Proxη,r(θ1) and θ̃2 = Proxη,r(θ2), we then have the following inequalities based
on the optimality:

r(θ̃1) +
1

2η

∥∥∥θ̃1 − θ1

∥∥∥2
2
≤ r

(
θ̃1 + θ̃2

2

)
+

1

2η

∥∥∥∥∥ θ̃1 + θ̃2
2

− θ1

∥∥∥∥∥
2

2

r(θ̃2) +
1

2η

∥∥∥θ̃2 − θ2

∥∥∥2
2
≤ r

(
θ̃1 + θ̃2

2

)
+

1

2η

∥∥∥∥∥ θ̃1 + θ̃2
2

− θ2

∥∥∥∥∥
2

2

(12)

Based on the convexity of the function r, we have 2r
(

θ̃1+θ̃2
2

)
≤ r(θ̃1) + r(θ̃2). Summing this

inequality and the ones in (12), we obtain the following inequality.∥∥∥θ̃1 − θ1

∥∥∥2
2
+
∥∥∥θ̃2 − θ2

∥∥∥2
2
≤

∥∥∥∥∥ θ̃1 + θ̃2
2

− θ1

∥∥∥∥∥
2

2

+

∥∥∥∥∥ θ̃1 + θ̃2
2

− θ2

∥∥∥∥∥
2

2

We simplify the inequality above and obtain ∥θ̃2 − θ̃1∥22 ≤ 2⟨θ̃2 − θ̃1, θ2 − θ1⟩. Since ⟨θ̃2 − θ̃1, θ2 −
θ1⟩ ≤ ∥θ̃2 − θ̃1∥2∥θ2 − θ1∥2, so we have ∥θ̃2 − θ̃1∥2 ≤ 2∥θ2 − θ1∥2.

A.4 PROOF OF THEOREM A.2

For proof completeness, we first provide the formal definition of Log-Sobolev Inequality (LSI).
Definition A.1. (Log-Sobolev Inequality Vempala and Wibisono (2019)) A distribution ν over Rd

satisfies log-Sobolev inequality (LSI) with a constant c if ∀ smooth function g : Rd → R with
Eθ∼ν [g

2(θ)] < +∞,

Eθ∼ν [g
2(θ) log

(
g2(θ)

)
]− Eθ∼ν [g

2(θ)] logEθ∼ν [g
2(θ)] ≤ 2

c
Eθ∼ν [∥∇g(θ)∥22] (13)

13
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Then, we go to the formal proof of Theorem A.2.

Theorem A.2. (Rate of RDP) Let µ, ν be two distributions on Rd. F, T : Rd → Rd are measurable
mappings. We use pt(θ) and p′t(θ) to represent the probability density functions of F#(µ) ∗N (0, 2t ·
o(η, k, j) · Id) and F#(ν) ∗N (0, 2t · o(η, k, j) · Id). In addition, we use ht(θ) and h′

t(θ) to represent
the probability desity function of T#(F#(µ) ∗ N (0, 2t · o(η, k, j) · Id)) and T#(F#(ν) ∗ N (0, 2t ·
o(η, k, j)·Id)). Furthermore, we use P to represent the probability transition function by the mapping
T#, i.e., ht(θ) = P (pt(θ)) and h′

t(θ) = P (p′t(θ)) are composition functions. If µ, ν satisfy log-
sobolev inequality (LSI) with constant c, and if the mappings F ,T are LF ,LT -Lipschitz continuous,
P is a linear function, then for any α > 1, we have the following bound for the Rényi divergence of
order α between ht(θ) and h′

t(θ):

∂

∂t
Rα(ht(θ)||h′

t(θ)) ≤ −2ct · o(η, k, j) ·
(
Rα(ht(θ)||h′

t(θ))

α
+ (α− 1)

∂

∂α
Rα(ht(θ)||h′

t(θ))

)
(14)

where ct =
(

L2
F

c + 2t · o(η, k, j)
)−1

/L2
T .

Proof. Denote Eα(ht(θ)∥h′
t(θ)) =

∫
h′
t(θ)·

ht(θ)
α

h′
t(θ)

α dθ to be the moment of the likehood ratio function,
then

Rα(ht(θ)∥h′
t(θ)) =

1

α− 1
logEα(ht(θ)∥h′

t(θ)) (15)

We compute the rate of Rényi divergence with regard to t as follows:

∂Rαht(θ)∥h′
t(θ)

∂t
=

1

α− 1
logEα(ht(θ)∥h′

t(θ))

=
1

(α− 1)Eα(ht(θ)∥h′
t(θ))

· ∂
∂t

(∫
ht(θ)

α

h′
t(θ)

α−1
dθ

) (16)

By exchanging the order of derivative and integration since they are with respect to different variables,
we have:

∂Rα(ht(θ)∥h′
t(θ))

∂t
=

1

(α− 1)Eα(ht(θ)∥h′
t(θ))

·∫ (
α · ht(θ)

α−1

h′
t(θ)

α−1
· ∂ht(θ)

∂pt(θ)
· ∂pt(θ)

∂t

−(α− 1) · ht(θ)
α

h′
t(θ)

α
· ∂h

′
t(θ)

∂p′t(θ)
· ∂p

′
t(θ)

∂t

)
dθ

(17)

Since the µ ∗ N (0, 2t · o(η, k, j) · Id) and ν ∗ N (0, 2t · o(η, k, j) · Id) are heat flow at time t ∈
[0, o(η, k, j)]. Therefore pt(θ) and p′t(θ) satisfy the following Fokker-Planck equations (Kadanoff,
2000).

∂pt(θ)

∂t
= o(η, k, j)∆pt(θ),

∂p′t(θ)

∂t
= o(η, k, j)∆p′t(θ) (18)

Then Equation (17) can be written as

∂Rα(ht(θ)∥h′
t(θ))

∂t
=

o(η, k, j)

(α− 1)Eα(ht(θ)∥h′
t(θ))

·∫ (
α · ht(θ)

α−1

h′
t(θ)

α−1
· ∂ht(θ)

∂pt(θ)
·∆pt(θ)

−(α− 1) · ht(θ)
α

h′
t(θ)

α
· ∂h

′
t(θ)

∂p′t(θ)
·∆p′t(θ)

)
dθ

(19)
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We apply Green’s first identity to further simplify the equation above:∫
α · ht(θ)

α−1

h′
t(θ)

α−1
· ∂ht(θ)

∂pt(θ)
·∆pt(θ)dθ = −

∫
∇
(
α · ht(θ)

α−1

h′
t(θ)

α−1
· ∂ht(θ)

∂pt(θ)

)
· ∇pt(θ)dθ

= −α
∫
∇
(
ht(θ)

α−1

h′
t(θ)

α−1

)
· ∂ht(θ)

∂pt(θ)
· ∇pt(θ)dθ

= −α
∫
∇
(
ht(θ)

α−1

h′
t(θ)

α−1

)
· ∇ht(θ)dθ

(20)

To avoid confusion, all ∇ operators represent the derivative with respect to θ. Note that ht(θ) =

P (pt(θ)) and P is a linear function, so ∂ht(θ)
∂pt(θ)

is a constant. This is why we can move the term ∂ht(θ)
∂pt(θ)

outside the∇ operator.

Using the same technique, we can bound the second term of Equation (19):∫
−(α− 1) · ht(θ)

α

h′
t(θ)

α
· ∂ht(θ)

∂pt(θ)
·∆p′(θ)dθ = (α− 1)

∫
∇
(
ht(θ)

α

h′
t(θ)

α

)
· ∇h′

t(θ)dθ (21)

Plug Equation (20) and (21) into Equation (19), we have the following equation:

∂Rα(ht(θ)∥h′
t(θ))

∂t
=

α · o(η, k, j)
Eα(ht(θ)∥h′

t(θ))
·
(
1

α

∫
∇
(
ht(θ)

α

h′
t(θ)

α

)
· ∇h′

t(θ)dθ

− 1

α− 1

∫
∇
(
ht(θ)

α−1

h′
t(θ)

α−1

)
· ∇ht(θ)dθ

)
=

α · o(η, k, j)
Eα(ht(θ)∥h′

t(θ))

(∫
ht(θ)

α−1

h′
t(θ)

α−1
·
〈
∇
(
ht(θ)

h′
t(θ)

)
,∇h′

t(θ)

〉
dθ

−
∫

ht(θ)
α−2

h′
t(θ)

α−2
·
〈
∇
(
ht(θ)

h′
t(θ)

)
,∇ht(θ)

〉
dθ

)
= − α · o(η, k, j)

Eα(ht(θ)∥h′
t(θ))

∫
ht(θ)

α−2

h′
t(θ)

α−2
·
〈
∇
(
ht(θ)

h′
t(θ)

)
,∇
(
ht(θ)

h′
t(θ)

)〉
h′
t(θ)dθ

def
= −α · o(η, k, j) · Iα(ht(θ)||h′

t(θ))

Eα(ht(θ)||h′
t(θ))

(22)

where we define Iα(ht(θ)∥h′
t(θ)) =

∫ ht(θ)
α−2

h′
t(θ)

α−2 ·
〈
∇
(

ht(θ)
h′
t(θ)

)
,∇
(

ht(θ)
h′
t(θ)

)〉
· h′

t(θ)dθ =

Eθ∼h′
t

(
ht(θ)

α

h′
t(θ)

α

∥∥∥∇ log ht(θ)
h′
t(θ)

∥∥∥2
2

)
.

Based on Vempala and Wibisono (2019, Lemma 16, Lemma 17), we can conclude ht(θ) and h′
t(θ)

satisfy log-Sobolev inequality with a constant ct =
(

L2
F

c + 2t · o(η, k, j)
)−1

/L2
T . In this regard, we

can utilize Ye and Shokri (2022, Lemma D.1) and Vempala and Wibisono (2019, Lemma 5) to bound
Iα(ht(θ)∥h′

t(θ))
Eα(ht(θ)∥h′

t(θ))
as follows:

Iα(ht(θ)∥h′
t(θ))

Eα(ht(θ)∥h′
t(θ))

≥ 2ct
α2
·Rα (ht(θ)∥h′

t(θ)) +
2ct
α2
· α(α− 1)

∂

∂α
Rα(ht(θ)∥h′

t(θ)) (23)

Combine Inequality (23) with Equation 22, we conclude the proof.

The theorem A.2 bound the rate of Rényi divergence follows Ye and Shokri (2022); Vempala and
Wibisono (2019). One assumption in Theorem A.2 is P being a linear function. The function
P depicts the change of the probability density functions before and after the proximal operator.
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For the three typical regularization function r discussed previously, including no regularization, l2
regularization and l1 regularization, it is clear that all their corresponding P functions are linear. In
addition, the Lipschitz continuity of function F and T is guaranteed in Lemma 4.1 and Lemma 4.2,
respectively. Therefore, we can conclude that the assumptions in Theorem A.2 are not restrictive.

Theorem A.2 considers the recursive privacy dynamics during one step of noisy mini-batch proximal
gradient descent in (8). In the corollary 4.4, we apply the Theorem A.2 in the context of differential
privacy. Under Assumption 4.3, we can then apply Theorem A.2 to the case of two neighboring
datasets and obtain the following corollary.

A.5 PROOF OF THEOREM 4.5

Before proving the main theorem, we first calculate the LSI constant sequence in Algorithm 2.
Lemma A.3. (LSI constant sequence in Algorithm 2) For each layer’s update scheme in Algorithm
2 with a batch size of b, if the update function F (θ) = θ − η∇f(θ) and the proximal operator
T (θ) = Proxη,r are Lipschitz continuous with Lipschitz constant LF and LT , respectively, then the
distribution of parameter θjk in the j-th iteration of the k-th epoch satisfies cjk log-Sobolev inequality
(LSI) and the constant cjk is calculated by:

cjk =
1

2ηL2
T

 k−1∑
k′=0

n/b−1∑
j′=0

o(η, k′, j′)(LFLT )
2((k−k′)(n/b)−j′+j−1)

+

j−1∑
j′=0

o(η, k, j′)(LFLT )
2(j−j′−1)

−1

Proof. Based on Definition A.1, the LSI constant of the Gaussian distribution N (0, 2t · o(η, k, j)) is
1

2t·o(η,k,j) .

Then, Using the LSI under Lipschitz mapping (Vempala and Wibisono, 2019, lemma 16) and Gaussian
convolution (Vempala and Wibisono, 2019, lemma17), we have 1

cjk
= L2

cj−1
k

+ 2ηL2
T · o(η, k, j − 1)

where L = LFLT for notation simplicity. By applying this equation iteratively via j and k, we
obtain:

1

cjk
=

L2j

c0k
+ 2ηL2

T ·
j−1∑
j′=0

o(η, k, j′)L2(j−j′−1)

=
L2(k·n/b+j)

c00
+ 2ηL2

T ·

 k−1∑
k′=0

n/b−1∑
j′=0

o(η, k′, j′)L2((k−k′)(n/b)−j′+j−1)

+

j−1∑
j′=0

o(η, k, j′)L2(j−j′−1)


Because the initialization is point distribution around θ0, θ00 satisfies the log-Sobolev inequality with
constant c00 =∞, and the lemma is then proved.

We now return to Theorem 4.5 and provide the complete proof below.

Proof. We denote θjk and θ′
j
k as the intermediate parameters in the j-th iteration of the k-th epoch in

Algorithm 1 when using two neighboring datasets D and D′. In addition, we use εjk(α) = Rα(θ
j
k||θ′

j
k)

to represent the Rényi divergence of order α between them. In this regard, it is clear that ε00(α) = 0.

Without the loss of generality, we assume that the only different data point is in the j0-th batch.
Therefore, the privacy bound after K epochs can be decomposed into three parts by using 4.4: 1)
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the first j0 − 1 mini-batch updates in the first epoch; 2) the remaining mini-batch updates in the first
epoch; 3) the rest epochs.

In the first stage, we have ∀j ∈ {0, 1, . . . , j0 − 1} and ∀α > 1, εj0(α) = 0 based on Lemma 4.4.

In the second stage, we have ∀α, ε
j0
0 (α)
α ≤ ηS2

g

4b2·o(η,0,j0) . Then we bound the privacy loss in the end of
the first epoch by the following inequality. Note that, this inequality is applicable for any α > 1.

∀α > 1,
ε
n/b−1
0 (α)

α
≤

ηS2
g

4b2 · o(η, 0, j0)

n/b−1∏
j=j0+1

(
1 +

cj0 · 2η · o(η, 0, j)
L2
F

)−1/L2
T

(24)

In the third stage, we first consider the second epoch, especially the j0-th iteration and the last
iteration. Based on Lemma 4.4, we have the following inequalities:

εj01 (α)

α
≤ ε−1

1 (α′)

α′

j0−1∏
j=0

(
1 +

cj1 · 2η · o(η, 1, j)
L2
F

)−1/L2
T

+
ηS2

g

4b2 · o(η, 1, j0)

ε
n/b−1
1 (α)

α
≤ εj01 (α′′)

α′′

n/b−1∏
j=j0+1

(
1 +

cj1 · 2η · o(η, 1, j)
L2
F

)−1/L2
T

≤

ε−1
1 (α′′′)

α′′′

j0−1∏
j=0

(
1 +

cj1 · 2η · o(η, 1, j)
L2
F

)−1/L2
T

+
ηS2

g

4b2 · o(η, 1, j0)


·

n/b−1∏
j=j0+1

(
1 +

cj1 · 2η · o(η, 1, j)
L2
F

)−1/L2
T

(25)

Here, we use ε−1
1 to represent the privacy bound before the first iteration of the second epoch. It

is clear that ε−1
1 = ε

n/b−1
0 . In addition, α′, α′′ and α′′′ are the j0, (n/b − 1 − j0) and (n/b − 1)

fold mapping value of α under the repeated mapping α ← (α − 1) ·
(
1 +

cj1·2η·o(η,1,j)
L2

F

)−1/L2
T

,
respectively.

Considering inequality (24) holds for any α > 1 and the fact α′′′ > 1, we can then plug inequality (24)
into inequality (25) and obtain the following inequality:

ε
n/b−1
1 (α)

α
≤

ηS2
g

4b2 · o(η, 0, j0)

n/b−1∏
j=j0+1

(
1 +

cj0 · 2η · o(η, 0, j)
L2
F

) −1

L2
T

n/b−1∏
j=0,j ̸=j0

(
1 +

cj1 · 2η · o(η, 1, j)
L2
F

) −1

L2
T

+
ηS2

g

4b2 · o(η, 1, j0)

n/b−1∏
j=j0+1

(
1 +

cj1 · 2η · o(η, 1, j)
L2
F

) −1

L2
T

(26)

By recursively applying Equation (26), we can obtain the privacy bound of the whole training phase.
For notation simplicity, we use Φ(k1, k2) to denote the RDP’s decay rate between the k1-th epoch
and the k2-th epoch.

Φ(k1, k2) =

k2−1∏
k=k1

n/b−1∏
j=0,j ̸=j0

(
1 +

cjk · 2η · o(η, k, j)
L2
F

)−1/L2
T

(27)

In Lemma A.3 we have 1

cj+1
k

=
L2

FL2
T

cjk
+ 2ηL2

T · o(η, k, j) based on the LSI under Lipschitz
mapping (Vempala and Wibisono, 2019, Lemma 16) and Gaussian convolution (Vempala and
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Wibisono, 2019, Lemma 17), so 1 +
cjk·2η·o(η,k,j)

L2
F

=
cjk

cj+1
k

· 1
L2

FL2
T

. Therefore, Equation (27) can be
further simplified as follows:

Φ(k1, k2) =

(
c0k1

c
n/b−1
k2−1

(
1

L2
FL

2
T

)(n/b−1)(k2−k1) k2−1∏
k=k1

cj0+1
k

cj0k

)−1/L2
T

(28)

Therefore, we can obtain the privacy bound after K epochs as follows:

ε
n/b−1
K (α)

α
≤

K−1∑
k=0

ηS2
g

4b2 · o(η, k, j0)
· Φ(k + 1,K) ·

n/b−1∏
j=j0+1

(
1 +

cjk · 2η · o(η, k, j)
L2
F

)−1/L2
T

=

K−1∑
k=0

ηS2
g

4b2 · o(η, k, j0)

(
cj0+1
k

c
n/b−1
K

(
1

L2
FL

2
T

)(n/b−1)(K−k)−j0 K∏
l=k

cj0+1
l

cj0l

)−1/L2
T

(29)

Note that the right-hand side of inequality (29) depends on j0 as well. We now explicitly rewrite
ε
n/b−1
K (α) as εn/b−1

K (α, j0) and bound the value of εK(α) in a similar way to Ye and Shokri (2022,
Theorem 4.2):

εK(α) = Ej0ε
n/b−1
K (α, j0) =

1

α− 1
log e(α−1)Ej0

ε
n/b−1
K

≤ 1

α− 1
log
(
Ej0e

(α−1)ε
n/b−1
K

)
=

1

α− 1
log

n/b−1∑
j0=0

b

n
· e(α−1)ε

n/b−1
K (α,j0)

 (30)

B NUMERICAL EXPERIMENTS

In this section, we first use several datasets to verify the utility of our algorithm. Then, we further
shows that the adaptive noise could provide better privacy-utility trade-off. To accelerate the algorithm,
we use a variant of the Algorithm 2 demonstrated in the Appendix C.

B.1 UTILITY VERIFICATION

In this section, we apply our algorithms on MNIST and Adults, which are widely used in membership
inference attacks, to show the validation of our algorithm.

We employ a four-layer multilayer perceptron (MLP) model, where each layer consists of 1200
neurons. The activation function is ReLU, and we use the squared loss as the loss function. To
reduce the variance, we use data augmentation to double the original dataset and set the batch size
to 60000. Furthermore, we set the layer-wise Lipschitz constant ρ = 1 and the step size η = 0.99.
Since this experiment primarily demonstrates the effectiveness of our algorithm, we provide a fixed
differential privacy setting rather than different initial noise, which will be discussed in the next
subsection. The experiment chooses α = 100 and adds calibrated noise of per epoch, resulting in a
final noise variance of o(η,K, j) = 0.001. We implement our algorithm with above setting on both
MNIST dataset and Adult dataset. Based on Theorem 4.5. Note that the two dataset shares nearly
the same RDP loss is because they shares the same setting except b. The experiment demonstrates
that our algorithm can converge with a small privacy loss. We also implement our algorithm on the
(convolution neural network) CNN. The implementation trick is demonstrated in Appendix C.1.

We have to emphasize that we cannot directly compare the privacy loss between DP-SBCD under the
hidden state assumption and the DP-SGD with the DP-SGD under the composition theorem because
that the two algorithms the assumption are totally different, and they also holds totally different
settings. However, in order to provide a intuitively comparison between two algorithm, we also
compare the utility between the two algorithm. We use the FastDP library Bu et al. (2023) with the
auto-clipping mode, which normalize the gradient and add calibrate noise. Bu et al. (2024) shows

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Dataset Avg Acc (DP-SBCD) Architecture (α, ϵ) RDP Loss

MNIST 94.63(±0.68) MLP (100, 0.0404)
MNIST 96.36(±0.42) LeNet (100, 0.0506)

Fashion-MNIST 82.82(±0.80) MLP (100, 0.0404)
Fashion-MNIST 79.21(±0.97) LeNet (100, 0.0506)

Adults 83.57(±0.82) MLP (100, 0.0404)

Table 1: The accuracy(in % under 95% confidential interval) for DP-SBCD with hidden state assumption

that this mode could outperforms or matches the state-of-the-art. The auto clipping mechanism also
simplify the super parameter choose. For vanilla DP-SGD, we need to carefully choose clipping
threshold as well as learning rate, which make it more difficult to balance the privacy loss and utility
The epoch is 50 because the number of epoch is necessary for the privacy accountant of the DP-SGD
algorithm. Moreover, the utility may be even worse when epoch is larger because it will add larger
calibrated noise to the training gradient. 2. Moreover, the learning rate is crucial for DP-SGD’s
utility and privacy loss accountant. In our experiment, we choose different learning rate for different
architecture and dataset.

Dataset Avg Acc (DP-SBCD) Avg Acc (DP-SGD) Architecture (α, ϵ) RDP Loss

MNIST 94.63(±0.68) 80.09(±0.55),lr=0.1 MLP (100, 0.0404)
MNIST 96.36(±0.42) 81.80(±1.43),lr=0.5 LeNet (100, 0.0506)

Fashion-MNIST 82.82(±0.80) 74.74(±0.43),lr=0.05 MLP (100, 0.0404)
Fashion-MNIST 79.21(±0.97) 70.84(±1.28),lr=0.5 LeNet (100, 0.0506)

Adults 83.57(±0.82) 75.86(±0.63),lr=0.01 MLP (100, 0.0404)

Table 2: The accuracy(in % under 95% confidential interval) for DP-SBCD and DP-SGD where epoch is 50

B.2 UTILITY-PRIVACY TRADE-OFF

In this section, we run numerical simulations in this section to investigate the model’s utility and
privacy loss in different training phases when we use different distributions to sample calibrated
noise.

The Madelon dataset was originally introduced as a challenging classification problem in the NIPS
2003 feature selection challenge (Guyon et al., 2004). This synthetic dataset comprises 6000 instances,
each with 20 features and belonging to one of the five classes. To ensure an unbiased evaluation, we
divided the dataset into a training set, accounting for 80% of the data, and a testing set, containing
the remaining 20%. The batch size is 960.

We employ a smaller with four layers, each of which has 200 neurons. The activation function is the
commonly used ReLU function, and we use squared loss as the loss function. In addition, we set the
layerwise Lipschitz constant ρ = 0.1 and the step size η = 0.99. To guarantee privacy, we applied
Theorem 4.5 and employed the privacy loss calculation with α = 100. All the experiments can be
efficiently executed on a single NVIDIA RTX 5000 Ada GPU.

The experiment compares the algorithm’s utility under different noise strategies: the constant strategy
with o(η, k, j) = 0.014 and the decrease strategy with a linear decay rate of 0.00075 per epoch and
final noise variance o(η,K, j) = 0.01. The decrease strategy is designed in a manner so that the
privacy loss of both strategies will be approximately the same for the same number of epochs K.
Based on the aforementioned setup, we train the model 40 times where the total number of epochs K
varies from 10 to 50. We run the whole experiment 3 times and report both the average performance
and the standard deviation. The results are demonstrated in Figure 3 and Table 3.

The experiment results validate the effectiveness of Algorithm 2. What’s more, with proper settings
of adaptive calibrated noise, the algorithm can demonstrate a better trade-off between the model’s
utility and privacy. For the examples in Table 3, we see higher utilities and lower privacy loss when
we use adaptive calibrated noise. In Figure 3, we see the curve of adaptive calibrated noise above one
of its counterparts in most cases.
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Table 3: The accuracy(in % under 95% confidential
interval) and the privacy loss of Algorithm 2 when we
use different noise strategies and train the model for
different numbers of epochs. D means noise decrease
scenario and C means noise constant scenario

EPOCH NOISE
PRIVACY

LOSS
AVG
ACC.

10 D 0.040466 35.08(±5.99)
20 D 0.040538 68.57(±9.58)
30 D 0.040652 89.78(±1.92)
40 D 0.040881 94.49(±0.67)
10 C 0.040466 23.95(±1.94)
20 C 0.040539 71.98(±3.72)
30 C 0.040655 85.03(±3.21)
40 C 0.040881 90.30(±2.13)

1.393 1.392 1.391 1.390 1.389
privacy loss(common logarithmic scale)
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Figure 3: Relationship between model’s utility and
privacy loss under different noise strategies. For each
noise strategy, we run Algorithm 2 for different numbers
of epochs to plot the curve. The points are plotted in the
order of epochs and we annotate some points aligned
with the Table 3

C THE VARIANT OF ALGORITHM 2 USED IN THE EXPERIMENTS

In our experiment, we scale down the update scheme and employ weight decay to expedite the
convergence rate. These techniques are aligned with our differential privacy analysis and do not
increase privacy loss. We derive the algorithm in this section, omitting the subscript d for simplicity.

For each iteration i, we have:

θ(i+1) = θ(i) −∇θF(θ) +N (0, 2η · o (η, k, j) I)

= θ(i) + η
(
UTx− θ(i)xTx

)
+N (0, 2η · o (η, k, j) I)

= θ(i)(I− ηxTx) + ηUTx+N (0, 2η · o (η, k, j) I)

(31)

where ∇wF(θ) = −(UTx − θ(i)xTx). We could regard the I − ηxTx)−1 ≤ 1 as a weigh decay
term. In privacy loss analysis, we could ignore the weight decay term and regard the LT = 1. Then,
we have:

θ(i+1) = θ(i) − ηUTx+N (0, 2η · o (η, k, j) I) (32)

Since (I + ηxTx)−1 ≤ 1, it does not increase the privacy loss. Subsequently, we scale down the
entire update scheme:

θ(i+1) = (θ(i) − ηUTx+N (0, 2η · o (η, k, j) I)) · (I+ ηxTx)−1 (33)

Given that (I+ ηxTx)−1 ≤ 1, the privacy loss remains unaffected. The rationale for transforming
the original update scheme to (33) is that it is the close form of the original sub-problem:

θd ← argmin
θ′
d

⟨F(θ), θ′ − θ⟩+ 1

2η
∥θ′ − θ∥2F (34)

In practice, employing the update schemes (33) is more convenient because the linear approximation
form (31) typically requires some iterations to reach the optimal value of each sub-problem. However,
the linear approximation format is more advantageous in theoretical analysis.
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C.1 IMPLEMENTATION ON CONVOLUTIONAL NEURAL NETWORK

The algorithm 2 can be also applied to CNN since the convolution operator can also be regard as
a linear operations. More specifically, we could use the image to column algorithm to convert the
θ ∗ xd to xdθ. Moreover, in solving the sub-problem F(x), we need to convert θ ∗ xd to θxd where
xd need to be flatten as a vector and generate the Topelitz matrix. We take a 3 × 3 input x with a
2× 2 kernel w, with stride equals 1 for example.

x11 x12 x21 x22

x12 x13 x22 x23

x21 x22 x31 x32

x22 x23 x32 x33

 ∗
w11

w12

w21

w22



w11 w12 0 w21 w22 0 0 0 0
0 w11 w12 0 w21 w22 0 0 0
0 0 0 w11 w12 0 w21 w22 0
0 w11 w12 0 w21 w22 0 0 0

 ∗



x11

x12

x13

x21

x22

x23

x31

x32

x33


D PRIVACY BOUND COMPARISON WITH YE AND SHOKRI (2022)

In this section, we intend to provide a intuitive comparison between our privacy loss accountant
bound (Theorem 4.5) and (Ye and Shokri, 2022, Corollary 5.3).
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Figure 4: RDP loss comparison where common hyper-parameter settings are: learning rate η = 0.1,
Lipschitz constant LF = 0.9, batch size b = 60, data set n = 240, sensitivity Sg = 1, RDP order
α = 10q
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The Figure 4 illustrates the privacy loss for a strongly convex problem with different calibrated noise
for our privacy loss accountant method and Ye and Shokri (2022)’s method. It is evident that our
algorithm provide a tighter privacy loss bound than Ye and Shokri (2022). The enhanced tightness of
our bound is attributable to the comprehensive consideration of each epoch’s privacy loss decreasing
phase. Specifically, The Corollary 4.4 elucidates that when i0 /∈ Bj

k, the privacy loss will decrease
exponentially. Ye and Shokri (2022)’s work approximate the overall privacy loss by overlook part of
the decreasing phase in each epoch. However, when using adaptive noise, the calibrated noise can be
modified in each iteration, so we carefully derive each iteration’s privacy loss in proving Theorem 4.5
and yield a tighter bound.
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