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Abstract—Convolutional neural networks (CNNs) have made
tremendous success in optical images classification recently.
However, in synthetic aperture radar (SAR) target classification,
it is difficult to annotate a large amount of real SAR images to
train CNNs. Sufficient annotated images can be easily obtained
through simulation, but the disparity between the simulated
images and the real images makes them difficult to directly apply
to the real images classification. In this paper, we propose a model
that integrates multi-kernel maximum mean discrepancy (MK-
MMD) and domain-adversarial training to alleviate this problem.
Simulated SAR images with annotation and unlabeled real SAR
images are used to train our model. First, we use domain-
adversarial training to prompt the model to extract domain-
invariant features. Then, the MK-MMD between the hidden
representations of simulated images and real images is reduced
to narrow domain discrepancy. Experimental results on the real
SAR dataset demonstrate that our method effectively solves the
domain shift problem and improves the classification accuracy.

Index Terms—Synthetic aperture radar (SAR), unsupervised
domain adaptation (UDA), target classification, convolutional
neural network (CNN)

I. INTRODUCTION

Synthetic aperture radar (SAR) automatic target recognition
(ATR) is an important part of SAR image interpretation,
mainly composed of three stages: detection, discrimination,
and classification. With the rapid development of deep learning
in recent years, many excellent algorithms based on convolu-
tional neural network (CNN) have also emerged in SAR target
classification. Due to the limited SAR data and the sensitivity
to observation conditions, training CNN directly with SAR
data is easy to cause overfitting. Chen et al. proposed an
all-convolutional network (A-ConvNets), using convolutional
layers instead of fully connected layers to reduce the number
of free parameters, and achieved an average accuracy of 99%
on a ten-category classification task [1]. Pan et al. proposed
a Siamese network based on metric learning for SAR target
classification with few training samples, which increases the
amount of training data since the input is the sample pair
[2]. But these methods still require a number of labeled real
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images. Obtaining annotated real SAR data under different
imaging conditions is very expensive and time-consuming.

To solve the problem of insufficient measured data, using
simulated SAR images as the training samples may be a good
solution. Through electromagnetic simulation technology with
3-D models of different targets, the full-aspect SAR images
can be acquired. But in many cases, even if visually it is
difficult to distinguish between simulated SAR images and
real SAR images, CNN trained on simulated SAR images is
hard to classify real SAR targets accurately. Song et al. pro-
posed a method of nonessential factor suppression to realize
simulation-aided zero-shot learning for SAR ATR [3]. A series
of preprocessing, including non-maximum suppression, style
adjustment, and segmentation, is operated on the input to nar-
row the disparity between simulation data and measured data.
However, only the T72 target, one of the ten categories in the
dataset, is replaced by simulation images in this experiment,
which is limited in verifying the support effect of simulated
images on real images classification.

To achieve performance improvement in simulation-aided
SAR target classification, it is necessary to narrow the distance
between the feature distributions of simulated images and
real images. Unsupervised domain adaptation (UDA) may
be an effective approach, which focuses on the information
transfer from the labeled source domain to the unlabeled target
domain and common feature extraction methods between
different domains. Existing UDA methods can be divided
into four main types: discrepancy-based, adversarial-based,
reconstruction-based, and sample-generation-based. For exam-
ple, deep adaptation networks (DAN) can learn transferable
features with statistical guarantees by using an optimal multi-
kernel selection method for mean embedding match [4]. Ganin
et al. proposed a new back-propagation method based on the
gradient reverse layer (GRL), by which traditional CNNs can
learn discriminative and domain-invariant features [5].

Mention the application of domain adaptation in SAR target
classification task, Huang et al. elaborately discussed three
issues: what to transfer, where to transfer, and how to transfer
and proposed a transitive transfer method based on multi-
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source data with domain adaptation [6]. Zhang et al. proposed
a multi-level domain adaptation method to accomplish multi-
band SAR image classification. These indicate that domain
adaptation methods have great application prospects in SAR
image classification. But the research of simulation-aided SAR
target classification using UDA hasn’t been reported yet to the
authors’ knowledge.

In this paper, we conducted simulation-aided SAR target
classification via domain adaptation and proposed a model in-
tegrating domain-adversarial training and discrepancy metric,
which effectively improved the accuracy of classification.

The rest of this paper is organized as follows. Section II
introduces the proposed method in detail, including the model
framework, the network architecture, and the optimization
objective. The experimental data and results are depicted in
Section III. Section IV gives the conclusion.

II. METHODS

In this paper, we propose a simulation-aided SAR target
classification method via unsupervised domain adaptation,
which combines domain-adversarial training and multi-kernel
maximum mean discrepancy (MK-MMD) [9]. As is shown in
Fig. 1, the overall framework can be divided into three parts:
feature extractor, target classifier, and domain discriminator.

class label

domain label

source 

input

target 

input

MK-MMD MK-MMD 

loss_cls

+

loss_domain

extractor

features

classifier

disriminator

Fig. 1. The overall framework of our model.

A. Model Framework

In supervised learning, the model receives n labeled samples
{(xi,yi)

n
i=1} from X×Y , where X is the input space and Y is

the output space, which is {1,2, ...,N} in classification task. N
represents the number of categories. In unsupervised domain
adaptation, there are two different data distributions, the source
domain S and the target domain T . The model is trained
on labeled samples Ŝ = {(xs

i ,y
s
i )

n
i=1} from the source domain

and unlabeled samples T̂ = {(xt
i)

m
i=1} from the target domain.

To distinguish the data from the source domain or the target
domain, we use di to represent the domain label of the i-th
sample, that is, di = 0 if xi ∼ S and di = 1 if xi ∼ T .

For each input x, the model predicts its category label ŷ and
its domain label d̂. θe, θc, and θd stand for the parameters of
extractor, classifier and discriminator respectively. The input
x is mapped by the mapping Ge to a D-dimensional feature

vector f, i.e. f = Ge(x;θe). Then the predicted label ŷ is
obtained as ŷ = Gc(f;θc). Likewise, d̂ = Gd(f;θd).

During the training procedure, the simulation data and
the real data are fed into the model simultaneously. The
classification loss Losscls is calculated based on the truth label
ys

i and the output ŷs
i . Meanwhile, the MK-MMD is calculated

at the hidden layers of the classifier. To help the extractor
get domain-invariant features, we reverse the gradient from
the domain discriminator before passing it to the extractor
in back-propagation. In summary, we optimize classification
loss of the source training data, the MK-MMD, and domain-
adversarial loss jointly to achieve excellent performance on
the task transferred from simulation data to real data.

B. Network Architecture

Fig. 2 illustrates the network architecture used in this
paper. The feature extractor refers to the feature module
design of Alexnet [8], including five convolutional layers. The
discriminator and the classifier are both composed of two fully
connected layers.

Input image

Conv1. 64@11×11 /

ReLU

Maxpool 3×3

Conv2. 192@5×5 / ReLU

Maxpool 3×3

Conv3. 384@3×3 / ReLU

Maxpool 3×3

Conv4. 256@3×3 / ReLU

Conv5. 256@3×3 / ReLU

Flatten

FC6. 256 / ReLU

Dropout

FC7. N

FC8. 256 / ReLU

Dropout

FC9. 1 / Sigmoid

MK-MMD

MK-MMD

GRL

class label

domain label

Fig. 2. The network architecture of our model. The approaches shown in
the dotted line are only activated in training.

In the experiment, we first normalize the raw SAR ampli-
tude value into [0,1]. Subsequently, the images are centrally
cropped into 88×88 and resized into 224×224. The outputs
of the extractor are 256 feature maps with the size of 6×6. The
feature maps are flattened before they are fed into the classifier
and discriminator. The classifier converts the flattened feature
into an N-dimensional output, representing the scores for each
category. Meanwhile, the discriminator reduces the dimension
to 1, which indicates the predicted domain label.
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C. Optimization Objective

The optimization objective of our model mainly consists
of three parts: classification loss, MK-MMD, and domain-
adversarial loss, which are formulated in this section.

Classification loss. Since only the data from the source
domain are labeled, the classification loss is calculated on
training samples of the source domain. It is defined as:

Losscls =
1
n

n

∑
i = 1

di = 0

Jy(Gc(Ge(xi;θe);θc),yi) (1)

where Jy(·) is the softmax cross-entropy loss function. We try
to minimize Losscls to get an effective classification model on
the source domain.

MK-MMD. In a nutshell, utilizing MK-MMD to measure
the distance between the distributions s and t is to calculate
the distance between the mean embeddings of s and t in
reproducing kernel Hilbert space (RKHS). Denote by dk(s, t)
be the MK-MMD between s and t. The squared formulation
is defined as (2).

d2
k (s, t), ||Es[φ(xs)]−Et [φ(xt)]||2Hk

(2)

where Hk denotes the RKHS endowed with the kernel k,
and φ(·) is the feature mapping associated with kernel k.
The multiple kernels K are formulated as (3), in which the
constraints on coefficients {βu} are imposed to guarantee that
k is characteristic.

K , {k =
p

∑
u=1

βuku :
p

∑
u=1

βu = 1,βu ≥ 0,∀u} (3)

By adding an MK-MMD-based multi-layer adaptation reg-
ularizer to (1), the distributions of the source and target will
become similar under the hidden representations of f c6− f c7.
The optimization objective can be described as:

min
θe,θc

1
n

n

∑
i = 1

di = 0

Jy(Gc(Ge(xi;θe);θc),yi)+ γ

l2

∑
l=l1

d2
k (D

l
s,D

l
t) (4)

where γ > 0 is a penalty parameter, l1 and l2 are the index of
layers between which the MK-MMD regularizer is activated,
Dl
∗ is the hidden representation for the input in l-th layer. In

our implementation, γ = 2
1+exp(−10∗ j

epoch )
− 1, where j is the

current epoch number.
Domain-adversarial training. To obtain domain-invariant

features, we seek to find an extractor that can “cheat” the
domain discriminator. So we add a GRL [5] between the ex-
tractor and the discriminator. In forward propagation, the GRL
acts as an identity transform. In back-propagation though, it
gets the gradient from the subsequent layer, multiples it by
a negative constant, and passes it to the preceding layer. The
GRL can be described as (5)-(6).

Rλ (x) = x (5)

dRλ

dx
=−λ I (6)

where I is an identity matrix. λ = 1 in our experiment. After
introducing the GRL, the optimization objective of domain-
adversarial training is shown in (7).

min
θe,θd

1
q

q

∑
i=1

Jd(Gd(Rλ (Ge(xi;θe));θd),di) (7)

where Jd(·) is the binary cross-entropy loss function, and q is
the number of training samples for both source and target.

In a training iteration, (4) and (7) are alternately executed to
ensure that each part of the optimization objective converges
smoothly.

III. EXPERIMENTAL RESULTS

A. Data Description and Implementation Details

The moving and stationary target acquisition and recogni-
tion (MSTAR) dataset is used as the target in our experiment.
Table I shows the number and categories of the target data.
The simulation data are generated by the software developed
by JCSST Co. LTD and SEU of China using the shooting and
bouncing ray tracing method with clutter models. To expand
the diversity of samples, we produce simulation images with
not only two depression angles but also three backgrounds:
grassland automatically generated by the software, grassland
and soil simulated according to the optical images provided
in the MSTAR dataset, which are denoted by G1, G2, and S
respectively in Fig. 3. There are 721 simulation images for
each category in each background and each depression angle.
The training set and the test set of simulation data are divided
according to the ratio of 4:1. Fig. 3 gives the real images and
simulated images under the same azimuth and depression.

TABLE I
DESCRIPTION OF THE REAL SAR DATASET

Training Test
Class Target Depression Number Depression Number

0 BMP2 17◦ 233 15◦ 195
1 BTR70 17◦ 233 15◦ 196
2 T72 17◦ 232 15◦ 196

Our experiment was carried out in Pytorch 1.4.0, Linux
3.10.0. The hardware is based on Intel(R) Xeon(R) Gold
5218R CPU @ 2.10GHz CPU and NVIDIA Tesla V100S
GPU. The learning rate lr is initially set as lr0 = 0.01 and
decrease with the training epochs, i.e., lr = lr0

(1+10∗ j
epoch )

0.75 .

B. Experimental Results and Analysis

In this experiment, we compare the effects of the MK-
MMD-based multi-layer adaptation regularizer and domain-
adversarial training on improving classification performance.
The results shown in Table II indicate that both MK-MMD and
domain-adversarial training work in improving the accuracy
of simulation-aided SAR target classification. The confusion
matrixes of the MSTAR test set given in Fig. 4 prove that the
proposed method improves the classification accuracy of each
category.
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BMP2

BTR70

T72

MSTAR Simulation(G1) Simulation(G2) Simulation(S)

Fig. 3. The real SAR images and simulated images under the same azimuth
and depression.

TABLE II
ACCURACY OF THE MSTAR TEST SET USING DIFFERENT METHODS

Methods AccuracyMK-MMD Domain-Adversarial Training
% % 0.7462
! % 0.7599
% ! 0.8092
! ! 0.9012

To further demonstrate and analyze the effectiveness of the
proposed method, we visualized the features generated by
the extractor utilizing t-SNE [10]. By comparing Fig. 5(a)
and Fig. 5(b), it can be concluded that the proposed method
effectively makes the distribution of similar targets from
different domains closer.

(a) Non-adapted (b) Adapted

Fig. 4. The confusion matrixes of the MSTAR test set.

(a) Non-adapted (b) Adapted

BMP2

BTR70

T72

Simulated BMP2

Simulated BTR70

Simulated T72

BMP2

BTR70

T72

Simulated BMP2

Simulated BTR70

Simulated T72

Fig. 5. Visualization of extracted features using t-SNE.

In order to verify the convergence of our model, the trend
of loss and accuracy during the training procedure is reported
in Fig. 6. We can see that the classification accuracy of the
MSTAR test set increased with the decline of the MK-MMD
and domain classification accuracy. The trend of the curves
proves that the training process of our model is smooth and
convergent.

(a) loss-epoch (b) acc-epoch

 

   

   

   

                

 

  

  

  

  

   

                

MK-MMD

Classification Loss

Domain_train_acc

Source_train_acc

Source_test_acc

Target_test_acc

Fig. 6. The loss and accuracy curves during the training procedure.

IV. CONCLUSION
In practice, CNN-based SAR target classification methods

are limited due to the lack of labeled real data. To alleviate the
problem, we propose a unified model integrating MK-MMD
and domain-adversarial training. It transfers the knowledge
learned from simulation data to the real SAR data with totally
unsupervised settings. Experimental results on the MSTAR
dataset demonstrate that our method can effectively boost the
performance of electromagnetic-simulation-aided SAR target
classification.
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