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Abstract

Foundation models have made significant strides in understanding the genomic
language of DNA sequences. However, previous models typically adopt the tok-
enization methods designed for natural language, which are unsuitable for DNA
sequences due to their unique characteristics. In addition, the optimal approach
to tokenize DNA remains largely under-explored, and may not be intuitively
understood by humans even if discovered. To address these challenges, we in-
troduce MxDNA, a novel framework where the model autonomously learns an
effective DNA tokenization strategy through gradient decent. MxDNA employs
a sparse Mixture of Convolution Experts coupled with a deformable convolu-
tion to model the tokenization process, with the discontinuous, overlapping, and
ambiguous nature of meaningful genomic segments explicitly considered. On
Nucleotide Transformer Benchmarks and Genomic Benchmarks, MxDNA demon-
strates superior performance to existing methods with less pretraining data and
time, highlighting its effectiveness. Finally, we show that MxDNA learns unique
tokenization strategy distinct to those of previous methods and captures genomic
functionalities at a token level during self-supervised pretraining. Our MxDNA
aims to provide a new perspective on DNA tokenization, potentially offering broad
applications in various domains and yielding profound insights. Code is available
at https://github.com/qiaoqiaoLF/MxDNA.

1 Introduction

Foundation models in natural language processing (NLP) have achieved remarkable success, trans-
forming how machines understand and generate human language [1, 2, 3]. Inspired by this success,
researchers are now exploring the application of foundation models to decode the complex “language”
of genomic sequences, aiming to potentially revolutionize our understanding of genomics [4, 5, 6, 7].
Tokenization, a critical initial step in NLP models, leverages human knowledge of natural language
structures such as grammar and punctuation to segment text into meaningful units. However, DNA
sequences present a distinct challenge: they lack natural delimiters and their “grammar” is not readily
understood by humans. These challenges make the tokenization process of DNA sequences not
straightforward.

Various tokenization methods have been employed by existing foundation models to analyse DNA
sequences [7, 4, 6, 5]. For example, single nucleotide tokenization [7] treats each nucleotide as an
individual token, K-mer [4, 6] segments the DNA blocks of k consecutive nucleotides, and Byte-Pair
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Figure 1: Evolution of tokenization and Ideal Properties. Left: The progression from basic tokeniza-
tion methods to more sophisticated techniques, with the direct but unsuitable applications from natural
language to genomic language. Right: the ideal tokenization properties for genomics—Meaningful,
Discontinuous, Overlapping, and Ambiguous—outlined in [8], which our MxDNA aims to achieve.

Encoding (BPE) [5] iteratively merges the most frequent pairs of existing tokens. All of these
methods are borrowed directly from NLP as depicted in Fig. 1, each with its own inherent limitations.
Single nucleotide tokenization, while offering high resolution for input, leads to an extremely large
number of tokens, significantly increasing the complexity of the model. K-mer comes in two forms:
overlapping and non-overlapping. Overlapping K-mer, despite its attempt to capture more contextual
information, does not offer substantial benefits over single nucleotide approaches and can suffer from
information leakage [5, 9]. Non-overlapping K-mer greatly reduces tokenized sequence length but
can disrupt a potentially meaningful unit by splitting it into separate K-mers. BPE, adopted from
NLP, attempts to optimize vocabulary size but often results in suboptimal segmentation that may not
correspond to meaningful units [10, 11].

Unlike natural languages, where linguistically meaningful units such as words and sentences are
almost standardized and well understood, the optimal approach to tokenize DNA remains under-
explored due to the complex and varied nature of genomics. In NLP, common tokenization strategies
have been validated by human knowledge, but such understanding does not extend to DNA. Con-
sequently, rather than relying manually crafted tokenization rules, it may be better to trust a neural
network to learn and determine the most effective tokenization strategy for genomic sequences. Addi-
tionally, recent research suggests that biologically meaningful protein tokens can be discontinuous,
overlapping, and may require mapping to several tokenization possibilities [8, 12, 13], properties
that are likely applicable to DNA sequences due to the genetic central dogma [14]. To handle these
complexities, we can further equip our model with capabilities to manage discontinuities, overlaps,
and the ambiguities of genomic sequences explicitly.

Building on the analysis above, we introduce MxDNA (“Mx” draws from Mixture of Experts [15]),
a novel framework designed to autonomously learn an effective DNA tokenization strategy solely
through gradient decent. The core of the framework starts with a sparse Mixture of Convolution
Experts that identifies and embeds basic units within DNA sequences. Unlike conventional Mix-
ture of Experts models, which focus on scaling up the model while maintaining computational
efficiency [15, 16, 17], the experts in MxDNA are uniquely designed to capture DNA basic units of
varied lengths. Following this, a deformable convolution [18, 19] assembles these basic units into
final tokens. Throughout the process, MxDNA is explicitly equipped to manage the inherent disconti-
nuities, overlaps and ambiguities in genomic sequences, enabling it to handle complex biological
characteristics it encounters. Furthermore, we incorporate a cross-attention mechanism to align the
output resolution with the original input during pretraining on a masked language modeling task [1].

The proposed MxDNA demonstrates strong performance on both the Nucleotide Transformer Bench-
marks [6] and the Genomic Benchmarks [20]. Despite only being pretrained on human reference
genome, it still outperforms or matches previous models [7, 4, 6, 5]—some pretrained on multi-
species data and for much longer duration, achieving state-of-the-art average performance and the
best on 15 of the 26 individual tasks. Finally, by visualizing the learnt tokenization process, we
illustrate that MxDNA learns unique tokenization strategy distinct to those of previous methods
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and captures genomic functionalities at a token level during self-supervised pretraining, potentially
offering novel biological insights. Our contributions can be summarized as follows:

• Learnt Tokenization: We highlight the unsuitability of current DNA tokenization methods
directly borrowed from NLP. Based on the belief that humans may not know the best
tokenization approach but a model could potentially discover it, we propose a novel approach
where the model autonomously learns an effective tokenization strategy.

• Architectural Design: We introduce a sparse Mixture of Convolution Experts coupled
with a deformable convolution to dynamically learn tokenization, specifically designed
to manage the inherent discontinuities overlaps and ambiguities in genomic sequences.
Additionally, we leverage cross attention to align input and output sequence length to enable
self-supervised pretraining.

• Empirical Results: MxDNA demonstrates robust quantitative performance with less pre-
training data compared to some existing models, achieving state-of-the-art average per-
formance on both Nucleotide Transformer Benchmarks and Genomic Benchmarks. Fur-
thermore, visual analysis of the tokenization behaviour and the token embedding space
highlights the unique strategy and capability to capture genomic functionalities at a token
level of MxDNA, potentially offering new biological insights.

2 Background and Related Work

2.1 Tokenization Methods

Tokenization is a fundamental step in both natural language processing (NLP) and DNA sequence
modelling, transforming complex texts or DNA sequences into manageable tokens. In NLP, whites-
pace tokenization uses spaces and punctuation as delimiters but faces out-of-vocabulary issues.
Similarly, in both fields, character (or single nucleotide in DNA) tokenization provides high res-
olution but can lead to computational inefficiency [21, 22, 7, 23]. N-gram in NLP and K-mer in
DNA analysis both use contiguous sequences of N (K) items from given inputs [24, 25, 6, 26, 4], but
can disrupt meaningful units due to their fixed-length nature (non-overlapping) or lead to potential
information redundancy or leakage (overlapping) [5, 9]. Byte-Pair Encoding (BPE) is employed
across both domains to reduce vocabulary size by merging frequent pairs of existing tokens [27, 5].
However, it might not adequately encode more complex patterns and are unreliable for finding
linguistically sound tokens [11, 10]. These rule-based methods show limitations in different aspects,
and our study aim to develop a learning-based tokenization method without these limitations.

2.2 DNA Foundation Models

Recent advancements in DNA modeling have leveraged foundation models to decode the complex
language of genomes. DNABERT [4] pioneers the use of a BERT-like pretrained model for genomic
sequence analysis, enhancing the understanding of nucleotide relationships via attention mechanisms.
Nucleotide Transformer[6] offers a comprehensive analysis of foundation models pretrained on DNA
sequences, with model sizes reaching up to 2.5 billion parameters and pretraining data drawn from
the 1000G[28] human genomes and 850 various species. DNABERT2 [5] introduces an enhanced
genome foundation model, utilizing an efficient BPE tokenizer and techniques to address input
length constraints, resulting in reduced time and memory consumption while improving performance.
HyenaDNA [7] introduces a genomic foundation model capable of handling context with 1 million
tokens at single nucleotide resolution, enabling the first exploration of in-context learning in genomics.
DNAGPT [26] extends the traditional GPT model by integrating tasks such as binary classification
of DNA sequence order and numerical regression for predicting guanine-cytosine content, alongside
developing a comprehensive token language. Caduceus [23] designs an architecture that leverages the
long-range Mamba [29] block to support bi-directionality and reverse complementarity equivariance,
addressing specific challenges in genomic analysis. Following VQVAE [30], VQDNA [31] employs
a convolutional encoder alongside a vector-quantized codebook to model tokenization, sharing a
similar motivation with us yet ultimately adopting distinct solutions. Each work offers unique insights
and innovations to the filed. Our research specifically concentrate on the tokenization methods for
DNA, hopefully providing our unique contributions to the filed.
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Figure 2: Our proposed MxDNA. (Top) Overall pipeline of the MxDNA model: Black arrows
indicate pretraining data flow, and red arrows indicate finetuning data flow. The learnt tokenization
module tokenizes single nucleotide input into learnt tokens. (Bottom) Illustration of the learnt
tokenization module: Meaningful basic units are recognized with a linearly scoring layer and non-
maximum suppression, embedded through convolution experts (Sec. 3.2.1), and assembled into final
tokens by a deformable convolution. (Sec. 3.2.2) This process ensures meaningful, discontinuous,
overlapping, and ambiguous tokenization, addressing the unique properties of genomic data.

3.1 Motivation

The concept of “correct” tokenization in genomic sequences analysis remains undefined due to the
complex nature of genomics. Unlike natural languages, where linguistically meaningful units are
well-understood, biological units in genomics are not limited to contiguous nucleotide or amino
acid sequences. Instead, they often encompass discontinuous, overlapping, and ambiguous segments
crucial for understanding biological functions [8]. Current DNA modeling practices directly borrow
tokenization methods from natural language processing (NLP), such as single nucleotide tokenization,
K-mer and Byte-Pair Encoding (BPE). These fixed, predefined approaches, though useful, often fail
to capture the unique properties of DNA sequences, which lack explicit delimiters and consist of
biologically meaningful units that defy simple segmentation.

Recognizing these challenges, MxDNA was developed based on the belief that although an optimal
tokenization schema for genomic sequences is yet to be discovered, we can explicitly equip our model
with the desired tokenization properties—such as handling discontinuities, overlaps, and ambiguities,
and allow it to learn and adapt its tokenization strategy all by itself.

3.2 Learnt Tokenization Module

This section introduces our learned tokenization module, which is central to our approach. The
module first identifies meaningful basic units within the input sequence, which are then assembled
into tokens with discontinuous, overlapping, and ambiguous properties. Implementation details are in
Appx. A.2.
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3.2.1 Basic Units Recognition

Basic Units Scoring Initially, MxDNA identifies the basic units that serve as the building blocks
for tokens. It estimates the probability of the existence of various sized basic units centred at
each nucleotide position by a linear gating mechanism commonly used in Mixture of Experts
models. Following this, one-dimensional non-maximum suppression is applied to eliminate redundant
proposals and select the most significant basic units.

Specifically, given the input nucleotide sequence X ∈ Rl×d, where l is the sequence length and d
is the hidden dimension, X is first linearly scored to produce S ∈ Rl×n, where n represents the
number of experts. Training-time multiplicative jitter noise [16] is applied to introduce ambiguity,
while ensuring deterministic inference. The jitter noise is applied by multiplying the scores with a
random factor sampled uniformly between [1− 0.01, 1 + 0.01], resulting in slight perturbations to
the probability distribution used for tokenization.

Modified non-maximum suppression is then applied to S, where Sij indicates the presence probability
of a basic unit of length Lj centered at position i, and L ∈ Nn is a predefined set of lengths. The
results are tracked using an expert mask M ∈ Nl, where each Mi is a natural integer indicating the
presence of a basic unit’s center of length Mi at position i.

Basic Units Embedding After identifying the basic units, the nucleotides within each unit are
aggregated to form embeddings. Convolution kernels of corresponding sizes are applied to the center
of each basic unit to capture local features. The initial scoring and gating into specific convolution
experts is similar to the Mixture of Experts paradigm, with each expert being a convolutional unit
focusing on a specific segment rather than a single nucleotide.

Specifically, a basic unit at position i of length Lj = Mi is processed by the convolution expert Ej

with kernel size Lj , and weighted by softmax(Si)j , aggregating the nucleotides within the unit. This
transforms the original input X ∈ Rl×d into an array of basic units U ∈ Rl×d, where k is the number
of basic units:

Ui =

{
Ej(X[i−⌈Mi

2 ⌉+1:i+⌊Mi
2 ⌋]) · softmax (Si)j ,where Lj = Mi ,Mi > 0

0 ,Mi = 0
(1)

Then, the unwanted entries {i|Mi = 0} of U are removed to keep the basic units U ∈ Rk×d only,
where k is the number of basic units.

3.2.2 Basic Units Assembly

Distal Relation Estimation Building upon the identified basic units, the more complex genomic
patterns that extend beyond simple segmentation are modelled by a one-dimensional deformable
convolution. This technique uniquely accommodates the modeling of complex local geometric
transformations, adaptively adjusting to the input sequence. The linkages between the distal basic
units are modeled by the offsets and modulation factors of each basic unit.

Following [18, 19], offsets ∆P ∈ Rk×f and modulation factors ∆M ∈ Rk×f are computed based on
the basic units U to model the distal relationships among them. This strategy ensures the combination
of basic units is discontinuous, and reuses units across tokens achieve the overlapping property.

Final Tokens Embedding Using the computed offsets and modulation factors, deformable con-
volution is applied to embed basic units into final tokens. The embedding process for each position
incorporates deformations of the convolution kernel specified by the offsets, with the results modu-
lated by the modulation factors.

Specifically, a one-dimensional deformable convolution with kernel size f is applied to embed these
basic units into the final learnt tokens T ∈ Rk×d:

Ti =
∑

p∈{−⌈ f
2 ⌉+1,...,⌊ f

2 ⌋}
wp · Ui+p+∆p ·∆m (2)
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For a fractional location p′ = i+ p+∆p, bilinear interpolation is implemented as:

Up′ =
∑

q∈{1,...,k}

max (0, 1− |p′ − q|) · Uq (3)

3.3 Overall Pipeline

The framework begins with single nucleotide input represented as Xinput ∈ Rl×d. This single
nucleotide resolution input allows for fine-grained analysis of genomics from the beginning.

Initially, Xinput is processed through several transformer encoder blocks designed to extract global
relationships within the sequence, producing X ∈ Rl×d. This sets the stage for effective tokenization.
Following this, the learnt tokenization module transforms the nucleotide sequence X into a more
manageable form T ∈ Rk×d, improving the efficiency and focus of subsequent layers. The tokenized
output T is then passed through another series of transformer encoder blocks to further refine the
token representation to Toutput ∈ Rk×d, enhancing the model’s ability to encode deeper genomic
information.

For the mask language modeling pretraining stage, the enriched nucleotide level representation X
serves as the query, with the refined tokenized output Toutput acting as both the key and value. This
setup maps the output resolution to single nucleotides, essential for reconstructing masked tokens.
During the finetuning stage, the [CLS] token of Toutput is used for classification by convention.

4 Experiments

In this section, we first introduce the implementation and pretraining settings of MxDNA. Then, we
evaluate MxDNA against other foundation models on Genomic Benchmarks [20] and Nucleotide
Transformer Benchmarks [6]. Next, we present ablation studies on the effect of different tokeniza-
tion methods and different components of MxDNA. Finally, we conduct a simple analysis on the
tokenization behaviors of MxDNA. Experiment settings and results are detailed in Appx. A.4.

4.1 Model Implementation & Pretraining

Our MxDNA is built on the architecture Nucleotide Transformer v2 100M model with 512 hidden
units and 22 layers, totaling approximately 100M parameters. Specifically, the model’s learnt
tokenization module includes 10 convolution experts with kernel sizes ranging from 1 to 10, along
with a deformable convolution block with a kernel size of three. We integrate this module by replacing
the fifth transformer block, aiming to avoid introducing additional computations.

MxDNA is pretrained on the whole Human Reference Genome [32] on masked language modeling
task [1] with 15% of the nucleotides randomly masked. An auxiliary balancing loss with a weight of
0.01 is used to prevent degradation towards a single expert, following [16]. The model undergoes
training for 500k steps for main performance comparisons and 100k steps for ablations.

4.2 Downstream Evaluation

We primarily follow the evaluation settings of HyenaDNA [7], performing evaluation on Nucleotide
Transformer Benchmarks and Genomic Benchmarks. To ensure fair comparison, we fully finetune all
the BERT-like DNA foundation models including Nucleotide Transformer v2 [6], DNABERT [4],
DNABERT2 [5], MxDNA under same hyperparameter settings. For HyenaDNA, we utilize the
hyperparameters recommended by [7, 23]. All experiments are repeated with three random seeds,
and we report the average performance with sample standard deviations. 3

4.2.1 Genomic Benchmarks

First, we begin our evaluation on the Genomic Benchmarks [20], which consists of eight regulatory
element classification tasks. For this benchmark, all BERT-like models are finetuned for 10 epochs
with Top-1 accuracy reported for each dataset.

3The Nucleotide Transformer and DNABERT2 are pretrained on much larger datasets than other models.
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Table 1: Genomic Benchmarks. Average performance across three random seeds for Nucleotide
Transformer v2 100M, DNABERT, DNABERT2, HyenaDNA and MxDNA with sample standard
deviations. We highlight the best values in bold type and underline the second best.

Dataset NTv2 DNABERT DNABERT2 HyenaDNA MxDNA

Average 88.13 ± 0.03 87.50 ± 0.13 88.29 ± 0.19 87.17 ± 0.15 89.13 ± 0.13

Mouse Enhancers 83.94 ± 0.41 81.54 ± 0.86 81.34 ± 0.84 80.99 ± 0.72 80.57 ± 0.97

Coding vs Intergenomic 94.50 ± 0.06 93.13 ± 0.05 94.94 ± 0.34 90.74 ± 0.11 95.28 ± 0.08

Human vs Worm 96.88 ± 0.18 96.98 ± 0.07 97.57 ± 0.04 96.53 ± 0.04 97.64 ± 0.01

Human Enhancer Cohn 74.33 ± 0.40 74.54 ± 0.27 75.93 ± 0.20 73.36 ± 0.15 74.67 ± 0.09

Human Enhancer Ensembl 92.05 ± 0.38 92.18 ± 0.14 92.31 ± 0.03 88.12 ± 0.17 93.13 ± 0.35

Human Regulatory 93.79 ± 0.12 88.16 ± 0.09 87.94 ± 0.54 93.08 ± 0.22 94.11 ± 0.08

Human OCR Ensembl 78.51 ± 0.55 81.40 ± 0.11 80.94 ± 0.09 79.15 ± 0.34 81.05 ± 0.07

Human NonTATA Promoters 91.05 ± 0.47 92.06 ± 0.20 95.34 ± 0.17 95.39 ± 0.26 96.56 ± 0.29

Table 2: Nucleotide Transformer Benchmarks. Average performance across three random seeds for
Nucleotide Transformer v2 100M, DNABERT, DNABERT2, HyenaDNA and MxDNA with sample
standard deviations. We highlight the best values in bold type and underline the second best.

Dataset NTv2 DNABERT DNABERT2 HyenaDNA MxDNA

Average 70.70 ± 0.12 68.61 ± 0.16 76.66 ± 0.20 75.96 ± 0.20 78.14 ± 0.12

Histone Markers Avg. 55.22 ± 0.21 51.67 ± 0.17 65.89 ± 0.46 65.24 ± 0.26 68.14 ± 0.19

H3 78.22 ± 1.15 77.41 ± 1.01 82.31 ± 0.22 80.86 ± 0.52 82.78 ±0.14

H3K14ac 51.76 ± 0.99 46.51 ±1.83 65.13 ± 1.10 65.96 ± 0.26 68.27 ±0.19

H3K36me3 59.18 ± 0.53 50.98 ± 0.75 68.19 ± 0.82 64.31 ± 0.33 67.05 ± 1.05

H3K4me1 51.87 ± 1.09 43.83 ± 0.34 56.09 ± 0.48 55.04 ± 1.07 56.15 ± 0.63

H3K4me2 29.63 ± 1.68 32.38 ± 0.98 49.25 ± 2.06 49.96 ± 0.90 55.59 ± 1.08

H3K4me3 38.76 ± 1.30 31.49 ± 3.40 57.90 ± 0.92 60.92 ± 0.72 63.68 ± 0.34

H3K79me3 60.98 ± 1.06 60.48 ± 0.50 71.94 ± 0.44 70.97 ± 0.77 74.29 ± 0.08

H3K9ac 54.57 ± 0.71 52.55 ± 0.85 64.35 ± 1.03 62.57 ± 0.46 64.78 ± 0.50

H4 79.19 ± 0.49 79.60 ± 0.55 80.71 ± 0.43 78.73 ± 0.66 81.18 ± 0.25

H4ac 48.02 ± 1.40 41.53 ± 0.24 63.03 ± 0.81 63.06 ± 0.62 67.65 ± 0.39

Regulatory Annotation Avg. 84.86 ± 0.01 84.83 ± 0.29 86.16 ± 0.17 84.87 ± 0.20 86.16 ± 0.07

Enhancer 78.16 ± 0.29 79.13 ± 0.56 79.40 ± 0.29 78.81 ± 0.54 79.90 ± 0.39

Enhancer Types 58.14 ± 1.02 54.73 ± 1.24 59.84 ± 0.45 58.36 ± 0.58 60.50 ± 0.59

Promoter All 96.23 ± 0.61 97.05 ± 0.05 97.37 ± 0.04 96.19 ± 0.14 97.16 ± 0.12

Promoter Non-TATA 96.69 ± 0.16 97.02 ± 0.16 97.65 ± 0.12 96.43 ± 0.09 97.24 ± 0.14

Promoter TATA 95.10 ± 0.24 96.22 ± 0.33 96.55 ± 0.24 94.55 ± 0.38 96.01 ± 0.09

Splice Site Annotation Avg. 98.71 ± 0.05 98.02 ± 0.09 96.69 ± 0.09 96.82 ± 0.11 98.09 ±0.09

All 98.36 ± 0.04 97.83 ± 0.06 95.68 ± 0.11 96.78 ± 0.18 98.14 ± 0.08

Accpetor 98.69 ± 0.14 97.81 ± 0.28 97.71 ± 0.11 96.52 ± 0.19 98.01 ± 0.13

Donor 99.09 ± 0.05 98.43 ± 0.05 96.67 ± 0.17 97.16 ± 0.16 98.10 ± 0.13

As shown in Table 1, MxDNA achieves the best performance on 5 out of 8 datasets and ranks
in the top-2 on 7 out o f 8 datasets. On average, MxDNA shows an improvement of 0.84 points
compared to the second-best model, DNABERT2. These results demonstrate MxDNA’s robustness
and effectiveness in regulatory element classification.

4.2.2 Nucleotide Transformer Benchmarks

Next, we evaluate MxDNA on the Nucleotide Transformer Benchmarks [6], which includes 18
datasets across three task types: histone marker prediction, regulatory annotation prediction, and
splice site annotation prediction. For this benchmark, the BERT-like models are finetuned for 20
epochs. Following [23], we use the Matthews Correlation Coefficient (MCC) for histone markers
tasks, F1 score for regulatory and splice site annotation tasks, except accuracy for splice site all task.
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Table 3: Average results on Nucleotide Transformer Benchmarks and Genomic Benchmarks with
different tokenization methods. We highlight the best values in bold type, underline the second best.

Method NT Benchmarks Genomic Benchmarks

Single Nucleotide (1-mer) 75.07 ± 0.26 88.56 ± 0.02

Overlapping k-mer (6-mer) 74.35 ± 0.35 88.55 ± 0.07

Non-overlapping k-mer (6-mer) 67.65 ± 0.17 86.83 ± 0.06

Byte-pair Encoding (4096 tokens) 74.96 ± 0.16 87.30 ± 0.16

MxDNA (Learnt Tokenization) 77.52 ± 0.18 88.89 ± 0.05

Table 4: Average results on Nucleotide Transformer Benchmarks and Genomic Benchmarks with
components added successively. We highlight the best values in bold type, underline the second best.

Method NT Benchmarks Genomic Benchmarks

Single Nucleotide Baseline 75.07 ± 0.26 88.56 ± 0.02

+ Mixture of Convolution Experts 77.00 ± 0.05 88.72 ± 0.07

+ Deformable Convolution 77.35 ± 0.12 88.86 ± 0.18

+ Jitter Noise (MxDNA) 77.52 ± 0.18 88.89 ± 0.05

As shown in Table 2, MxDNA achieves the best performance on 10 out of 18 datasets and ranks
in the top-2 on 16 out of 18 datasets. On average, MxDNA shows an improvement of 1.48 points
compared to the second-best model, DNABERT2. Notably, MxDNA significantly outperforms all
other models in the histone markers tasks while maintaining competitive performance in regulatory
annotation and splice site annotation tasks.

4.3 Ablation Studies

Different Tokenization Methods: We compare various tokenization methods by pretraining mod-
els for 100k steps using the same backbone but different tokenization methods. The results in
Table 3 show that our learnt tokenization significantly outperforms traditional methods such as
non-overlapping K-mer, BPE, overlapping K-mer, and single nucleotide tokenization. Among the
rule-based methods, single nucleotide tokenization performs best, possibly because it doesn’t incor-
porate human biases and focuses solely on the raw data, though it may make it difficult to capture
higher-level semantics. Conversely, non-overlapping K-mer might disrupt meaningful units, BPE
might fail to segment DNA sequences meaningfully, and overlapping K-mer could suffer from
information leakage.

Different Components: We assess the impact of individual components by incrementally integrat-
ing each into the baseline model and pretraining them for 100k steps. Starting with a baseline of single
nucleotide tokenization, we sequentially add the Mixture of Convolution Experts, the deformable
convolution and jitter noise, resulting in the proposed MxDNA. The results in Table 4 show substantial
performance gains from the Mixture of Convolution Experts alone, demonstrating the effectiveness
of the idea which allows the model to learn tokenization autonomously rather than depending on
predefined tokenization. There are also noticeable performance improvements contributed by the
deformable convolution and jitter noise, showing the effectiveness of explicitly equipping the model
with capabilities to handle discontinuities, overlaps and ambiguities.

4.4 Analysis

We conduct an analysis of the tokenization behaviors of MxDNA against previous methods on both a
sample and dataset level, and present a output embedding analysis at a token level. Notably, MxDNA
exhibits unique tokenization strategy distinct from prior methods and is able to inherently capture and
differentiate genomic functionalities at a token level during self-supervised pretraining, potentially
providing new biological insights. Visualization details are in Appx A.6.

Sample Level We first visualize the tokenization of a DNA sequence. For MxDNA, two individual
forward passes with identical input and model yield slightly different results during training. It is
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Input DNA Sequence: GAGAAGGAGCAGCCTGTGAGGTAGCGAAAATCAAGT

GAGAAGGAGC          TGTG

AGGTAG
CGAAAATCAAGT

AGGTAG             ATCAAGT
AGCC          AGGTAG
AGCCTGTG

GAGAAGGAGCAGCCTGTGAGGTAGCGAAAATCAAGT

GAGAAGGAGCAGCCTGTGAGGTAGCGAAAATCAAGT

GAGAAGG          GCCTGTGAGG
AGCAGCCTGTGAGG

GCCTGTGAGG  AGCGAAA

TAGCGAAA
TAGCGAAAATCAAGT

ATCAAGT

GAGAAGGAGCAGCCTGTGAGGTAGCGAAAATCAAGT GAGAAGGAGCAGCCTGTGAGGTAGCGAAAATCAAGT

GAGAAGGAGCAGCCTGTGAGGTAGCGAAAATCAAGT

GAGAAGAGAAGGGAAGGA······AATCAAATCAAGTCAAGT

Overlapping K-mer

Basic Units 

Recognition

Basic Units 

Assembly

Basic Units 

Recognition

Basic Units 

Assembly

Single Nucleotide

Non-overlapping K-mer

Adaptive Tokenization with MxDNA

Byte-Pair Encoding

Previous Rule-based Methods

Forward Pass Ⅰ Forward Pass Ⅱ

Figure 3: Tokenization results of MxDNA over two individual forward passes (left) compared to
those of traditional rule-based methods (right). A block of the same colour refers to a single token.
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Figure 4: Distribution of token lengths for BPE (top) and MxDNA (bottom) across different down-
stream datasets, illustrating the distinct strategy of MxDNA for handling DNA tokenization. For the
sake of simplicity, we regard the basic units as tokens for MxDNA.

worth mentioning that there are usually a small number of differences between the two results, and
we display the region where the tokenization outcomes are different to show the ambiguous property
for illustrative purposes. For previous rule-based methods, tokenization is static and performed only
once. As depicted in Fig. 3, our learnt tokenization method tokenize the DNA sequence in a way
distinctly different from previous rule-based method. Moreover, the discontinuous, overlapping and
ambiguous tokenization results validate our design choices to manage these properties.

Dataset Level To gain more insights, we measure the distribution of token lengths across different
downstream datasets for both MxDNA and BPE. For simplicity, we regard the basic units as tokens
for MxDNA. BPE and MxDNA shows very distinct distribution of token lengths. As shown in
Fig. 4, BPE tends to produce a bell-shaped distribution, inherently biased by its frequency-based
merging rule. Conversely, MxDNA’s distribution is closer to a uniform distribution with preferences
for specific lengths, reflecting its adaptive, task-oriented segmentation capabilities. Moreover, the
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MxDNA DNABERT DNABERT2

HyenaDNA-tiny HyenaDNA-large NTv2-100M

Histone Marker Enhancer Promoter Splice Site

Figure 5: t-SNE visualization of the output embeddings at a token level across different functional
sequences of different models, demonstrating MxDNA’s unique capability to inherently capture and
differentiate genomic functionalities at a token level.

variability in token distribution across datasets might suggest that DNA sequences of different
functions might possess distinct patterns and meaningful units.

Token Embedding Analysis Next, we use t-SNE to visualize the pretrained output tokens in
sequences with different genomic functions of different foundation models. As is shown in Fig. 4.4,
without any finetuning, the token embedding distributions of MxDNA are different across sequences
with different functions: the tokens of Histone Marker, Promoter and Splice Site form unique clusters.
While for all other foundation models, their tokens do not form clear clusters as MxDNA does. This
shows MxDNA’s superior capability to inherently capture and differentiate genomic functionalities
at a token level, suggesting its robustness and specificity in representing biological sequences even
before any supervised finetuning is applied.

5 Conclusion

Summary We present MxDNA, a framework developed to autonomously learn effective DNA
tokenization strategies solely through gradient descent. MxDNA demonstrates strong performance
against existing sota models and tokenization methods across 26 diverse genomic tasks in Nucleotide
Transformer Benchmarks and Genomic Benchmarks with no additional cost. We also perform an
analysis of the tokenization mechanism and the token embedding space of MxDNA, showing its
distinct tokenization strategy against previous methods and unique capability to capture genomic
functionalities at a token level.

Limitations & Future Works While MxDNA demonstrates strong quantitative performance on
various downstream tasks, direct biological validation of the model’s tokenization decision remains
limited. Furthermore, the evaluation on long range tasks is lacking due to quadratic cost of self-
attention, although the learnt tokenization is expected to help reduce sequence length effectively
and can be combined with sub-quadratic architectures [29, 33]. Future research will focus on
refining MxDNA’s design to learn a better and more interpretable tokenization strategy, and testing
its applicability to broader genomic analyses especially on more long range tasks.
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A Appendix / supplemental material

A.1 Extended Related Works

A.1.1 Image Tokenization

Tokenization in computer vision (CV) attempts to transform images into formats that can be effi-
ciently processed by machine learning models especially transformers. In line with Character-level
tokenization, [34] directly using raw pixels as input units. The Vision Transformer (ViT) [35] splits
an image into patches of identical sizes and treats these patches as tokens in NLP, demonstrating
remarkable performance on standard image recognition tasks. Inspired by [30], [36, 37] utilized
an image tokenizer learnt by discrete variational autoencoder (dVAE) to map pixels into discrete
tokens according to a visual codebook. Meanwhile, researchers also utilize detection or segmentation
features for visual representations. For instance, [38, 39] used a pretrained Faster R-CNN model [40]
to extract region features. Recently, [41, 42] exploit Segment Anything Model (SAM) [43] to
construct a sub-word tokenization and semantic tokenization respectively.

A.1.2 Mixture of Experts

(Sparse) MoE is first designed to improve the capacity of neural networks while maintaining total
computations. [15] uses MoE as a general purpose neural network component and realizes sparse
gating, demonstrating its use as a practical way to massively increase model capacity. By replacing
FNN with Mixture of Experts, [16, 17] successfully combine sparse MoE and Transformers, achieving
superior capabilities with less computational cost. Previous methods generally replace a layer of
the neural networks with multiple, sparsely activated identical alternatives, governed by a gating
mechanism. Recently, [44] explicitly adds interpretability to each expert by letting each expert solve
the constraint over smaller decomposed domains through differentiable optimization.

A.1.3 Deformable Convolution

Deformable convolution explicitly equips the model with ability to adapt to the geometric varia-
tions of different objects [18, 19]. Unlike the attention mechanism, which focuses on capturing
long-range relationships, deformable convolution locally samples feature maps using learnt offsets
and modulation factors. By modeling complex geometric transformations effectively, deformable
convolution networks achieve significant performance improvements in various tasks, including
image classification, object detection and semantic segmentation.

A.1.4 Combination of Convolution and Transformer

The integration of convolutional layers with transformer architectures has emerged as a powerful
approach across various domains, effectively combining the strengths of both techniques. Con-
former [45] applies this hybrid design to audio processing, enhancing the capture of local and global
dependencies in audio signals. In computer vision, the CvT [46] introduces convolutions into trans-
formers to improve efficiency and representational power, while Early Convolution [47] in Vision
Transformer incorporates convolutional layers early in the architecture to enhance input feature
representations. Extending to genomic data, Enformer [48] applies a similar approach as in [47] to
model complex dependencies in DNA sequences and reduce the computational cost, showcasing the
potential of hybrid architectures to handle highly specialized data types like genomic sequences.

A.2 Method Details

For the convolution expert, we adapt design principles from [45]. Our 1-D convolution expert starts
with a pointwise convolution W in

pj paired with a Gated Linear Unit (GLU), followed by a 1-D grouped
convolution Wgj . Subsequent to the grouped convolution, a Layer Normalization (LayerNorm) and
a Swish activation layer W out

pj (Swish()) are applied. The grouped convolution here has number of
groups equal to the factor of hidden size closest to kernel size, and number of output channel equal to
number of input channels. This ensures that each convolution expert has similar parameter counts in
spite of different kernel sizes.

Ej

(
X) = W out

pj

(
Swish

(
LayerNorm(Wgj ∗ GLU

(
W in

pj X
))))

(4)
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Term Description
l Number of nucleotides
d Dimension of hidden states
n Number of experts
k Number of basic units
f Kernel size of the deformable convolution
i Indices of nucleotides or tokens
j Indices of experts
X ∈ Rl×d Input nucleotide sequence
S ∈ Rl×n Confidence scores of basic units existence
L ∈ Nn Kernel sizes of convolution experts
M ∈ Nl Mask indicating the existence of basic units
Ej ∈ RLj×d → Rd Convolution experts
U ∈ Rk×d Basic units
∆P ∈ Rk×f Offsets ofthe deformable convolution
∆M ∈ Rk×f Modulation factors of the deformable convolution
T ∈ Rk×d Final tokens

Table 5: Glossary of terms used in describing the method.

A.2.1 Non-Maximum Suppression

The pseudocode in 1 describes the selection process for optimal basic units based on scores, ensuring
no overlaps, and using kernel sizes to guide the selection.

The input consists of: positions (all nucleotide positions), kernel sizes (all kernel sizes), scores (scores
for each (position, kernel size) pair) for the possibility of a basic unit of a given size existing at a
given position. The output is a mask indicating selected basic units with their corresponding kernel
sizes.

Algorithm 1 Detailed Non-Maximum Suppression for Basic Unit Placement
1: procedure NMS(positions P = [1, 2, . . . , l], kernel sizes L ∈ Nn, scores S ∈ Rl×n)
2: Sort all (Pi, Lj) pairs by Sij in descending order, where i ∈ [1, 2, . . . , l] and j ∈ [1, 2, . . . , n].
3: Initialize an output array with zeros M ∈ Nl.
4: for each (Pi, Lj) pair in the sorted pairs do
5: Calculate the start and end of the region at Pi with width Lj .
6: if the region is not overlapped with any region in M then
7: MPi ∈ N← Lj

8: end if
9: end for

10: return M .
11: end procedure

A.2.2 Sparse Mixture of Convolution Experts

The pseudocode in 2 outlines the selective activation of convolutions at positions determined by
Non-Maximum Suppression, using corresponding kernel sizes.

The input consists of: input (embeddings of nucleotides), positions (at a nucleotide level) of selected
basic units with their corresponding kernel sizes. The output is the embeddings of the selected basic
units.

A.2.3 Deformable Convolution

The pseudocode in 3 details how deformable convolution dynamically adjusts based on input features
by modifying its parameters for each input segment.

The input consists of: input (embeddings of selected basic units). The output is the embeddings of
the final tokens.
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Algorithm 2 Detailed Sparse Convolution
1: procedure SPARSE CONVOLUTION(input X ∈ Rl×d, selected positions with kernel sizes

M ∈ Nl)
2: k← number of non-zero elements in M .
3: Initialize an output array with zeros U ∈ Rk×d.
4: Initialize counter cnt = 0.
5: for each i in [1, 2, . . . , l] do
6: if Mi ̸= 0 then
7: cnt← cnt + 1.
8: Extract the segment of X centered at i with width Mi.
9: Ucnt ∈ Rd← Apply the convolution expert of kernel size Mi to the segment.

10: end if
11: end for
12: return U .
13: end procedure

Algorithm 3 Detailed Deformable Convolution
1: procedure DEFORMABLE CONVOLUTION(input U ∈ Rk×d)
2: Initialize an output array with zeros T ∈ Rk×d.
3: for each i in [1, 2, . . . , k] do
4: Calculate offsets ∆Pi ∈ Rf based on Ui.
5: Calculate modulation factors ∆Mi ∈ Rf based on Ui.
6: Extract the deformed segment of U centred at i according to ∆Pi.
7: Weight the segment by ∆Mi.
8: Ti ∈ Rd← Compute the segment’s dot product with the convolution kernel of size f .
9: end for

10: return T .
11: end procedure

A.3 Back Propagation

The tokenization module is learnt solely through gradient descent. In this section, we will focus on
the gradients with respect to the Basic Units Scoring Block and Distal Relation Estimation Block.

A.3.1 Sparse Mixture of Convolution Experts

Recall the forward process in Eq. 1:

Ui = Ej

(
X[i−⌈Mi

2 ⌉+1:i+⌊Mi
2 ⌋]

)
· softmax (Si)j · 1 (Mi > 0) ,where Lj = Mi

1(Mi > 0) =

{
1,Mi > 0

0,Mi ≤ 0
, softmax(Si)j =

eSij∑
k e

Sik
,

(5)

The gradient w.r.t the score Sik is as follows:

∂Ui

∂Sik
= Ej

(
X[i−⌈Mi

2 ⌉+1:i+⌊Mi
2 ⌋]

)
· 1(Mi > 0) · ∂softmax(Si)j

∂Sik
,where Lj = Mi

∂softmax(Si)j
∂Sik

=

{
softmax(Si)j · (1− softmax(Si)j) , k = j

−softmax(Si)j · softmax(Si)k , k ̸= j

(6)

A.3.2 Deformable Convolution

Recall the forward process in Eq. 2:
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Ti =
∑

p∈{−⌈ f
2 ⌉+1,...,⌊ f

2 ⌋}
wp · Ui+p+∆p ·∆m (7)

Up′ =
∑

q∈{1,...,k}

max (0, 1− |p′ − q|) · Uq (8)

The gradients w.r.t the offset ∆p and the modulation ∆m are as follows:

∂Ti

∂∆p
=

∑
p∈{−⌈ f

2 ⌉+1,...,⌊ f
2 ⌋}

wp ·∆m ·
∑

q∈{1,...,k}

∂max (0, 1− |i+ p+∆p− q|)
∆p

· Uq (9)

∂Ti

∂∆m
=

∑
p∈{−⌈ f

2 ⌉+1,...,⌊ f
2 ⌋}

wp · Ui+p+∆p ·
∂∆m

∂∆m
=

∑
p∈{−⌈ f

2 ⌉+1,...,⌊ f
2 ⌋}

wp · Ui+p+∆p (10)

A.4 Experiment Setting Details

A.4.1 Settings

Model Implementation MxDNA is built on the Nucleotide Transformer V2 architecture which
incorporates several architectural improvements recognized in the NLP community, such as rotary
positional encodings [49], SwishGLU MLP [50], and the exclusion of linear bias terms [3, 51].
Consistent with Nucleotide Transformer V2 100M, MxDNA has 512 hidden units, an expansion
factor of 4, 16 attention heads, and 22 layers, totaling approximately 100M parameters. Specifically,
the model’s learnt tokenization module includes 10 convolution experts with kernel sizes ranging
from 1 to 10, along with a deformable convolution block with a kernel size of three. We integrate this
module by replacing the fifth transformer block, aiming to avoid introducing additional computations.
We utilize FlashAttention [52, 53] for efficient attention calculations.

Pretraining Following [4], MxDNA is pretrained on the whole Human Reference Genome [32]
using Masked Language Modeling. We removed all sequences gaps and unannotated regions and
extracted 70 to 510-nt-long sequences as training data. We mask 15% of the tokens, with 80%
replaced by a special [MASK] token, 10% replaced with a random vocabulary token, and 10% left
unchanged. All masking happens at the initial input stage(single nucleotide, 6mer tokens, bpe tokens).
For model using single nucleotide tokenization, non-overlapping 6mer and BPE, the masking is
performed randomly and mask out 15% of total tokens except of special tokens. For model using
overlapping 6mer, we follow the strategy used in [4], with contiguous k-length spans of certain
k-mers are masked, totalling around 15% of the tokens. An auxiliary balancing loss with a weight of
0.01 is used to prevent degradation towards a single expert, following [16]. The model is trained with
a learning rate of 1e-4 and a batch size of 512. We employ the AdamW optimizer with β1 = 0.9,
β2 = 0.98, ϵ = 1e− 6, a weight decay of 0.01, and a cosine annealing learning rate scheduler with a
linear warm-up over the first 10% of steps. The model undergoes training for 500k steps for main
performance comparisons and 100k steps for ablations.

Downstream We download the data from https://huggingface.co/spaces/InstaDeepAI/
nucleotide_transformer_benchmark for Nucleotide Transformer Benchmarks and https://
github.com/ML-Bioinfo-CEITEC/genomic_benchmarks for Genomic Benchmarks. Moreover,
in Nucleotide Transformer Benchmarks, the BERT-like models are finetuned using PEFT (parameter
efficient finetuning) without providing the exact hyperparameters. Believing that fully fine-tuning
these models will better leverage their capabilities and provide a fairer comparison , we decide to
proceed with full finetuning for all models. We keep the original data splits in [6, 20]. We do not
perform cross validation as [23] does since it will be too computationally expensive for BERT-like
models and we decide to follow the practice of HyenaDNA [7] instead. Additionally, we repeat all
experiments under three random seeds, report the average results with sample standard deviations.

All the BERT-like models are fully finetuned with a batch size of 32 and a learning rate of 3e-5. We
employ the AdamW optimizer with β1 = 0.9, β2 = 0.999, ϵ = 1e− 8, and a weight decay of 0.01.
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Models are trained for 10 epochs on Genomic Benchmarks and 20 epochs on Nucleotide Transformer
Benchmarks, with the learning rate linearly warmed up over the first epoch and then decaying to
zero during the remaining epochs. For the Mouse Enhancers dataset (sequence lengths with mean
= 2381, std = 984.4, max = 4707), we truncate the sequence to a maximum length of 4096, which
is considered acceptable. For DNABERT, which can not handle sequences of length over 512, we
truncate the sequence to a maximum length of 512.

For HyenaDNA, we fully finetune the pretrained model from https://huggingface.co/
LongSafari/hyenadna-tiny-1k-seqlen-d256 using the hyperparameters provided by [7] in
docker image hyenadna/hyena-dna-nt6:latest for Nucleotide Transformer Benchmarks, and
https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen with modified hyperpa-
rameters recommended by [23] for Genomic Benchmarks. Their research suggests that training with
sequence lengths 2 to 4 times the length of sequences used in downstream tasks typically yields the
best performance. Thus, the tiny models are the best choice for most of the downstream tasks in
Nucleotide Transformer Benchmarks and Genomic Benchmarks since most of tasks have sequence
length of around a few hundreds and the tiny model are pretrained with 1000 length sequence.
Notice that although our reproduced results is a bit lower than the results reported by the authors of
HyenaDNA, the performance of MxDNA is still better than originally reported results on most of the
tasks.

A.4.2 Metrics

This section defines the metrics used to evaluate the performance of models on various genomic tasks.
On Nucleotide Transformer Benchmarks, We used the Matthews Correlation Coefficient (MCC) for
histone marker tasks, F1 scores for regulatory and splice site annotation tasks, except accuracy for
splice site all task. Top-1 Accuracy is used for all tasks in Genomics Benchmarks.

Matthews Correlation Coefficient (MCC) The Matthews Correlation Coefficient is a robust
statistical rate which takes into account true and false positives and negatives and is generally
regarded as a balanced measure that can be used even if the classes are of very different sizes.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP , TN , FP , and FN are the numbers of true positives, true negatives, false positives, and
false negatives, respectively.

F1 Score We use the macro-averaged F1 score, which is computed using the arithmetic mean of all
the per-class F1 scores. The (per-class) F1 score is the harmonic mean of precision and recall and is
particularly useful when the costs of false positives and false negatives are high.

(per-class) F1 = 2× precision× recall
precision + recall

where precision = TP
TP+FP and recall = TP

TP+FN .

Accuracy Accuracy is the proportion of true results (both true positives and true negatives) among
the total number of cases examined.

Accuracy =
TP + TN

TP + TN + FP + FN

A.5 Ablation Results Details

A.5.1 Different Tokenization Methods

Detailed results on each datasets with different tokenization methods are presented in Table 6 and
Table 7. “1-mer” stands for single nucleotide. “Ovlp 6-mer” stands for overlapping 6-mer. “Non-
Ovlp” stands for non-overlapping 6-mer. “BPE” stands for Byte-pair Encoding with a vocabulary
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Table 6: Genomic Benchmarks. Different tokenization methods.

Dataset 1-mer Ovlp 6-mer Non-Ovlp 6-mer BPE MxDNA

Average 88.56 ± 0.02 88.55 ± 0.07 86.83 ± 0.06 87.30 ± 0.16 88.89 ± 0.05

Mouse Enhancers 77.56 ± 0.94 78.81 ± 0.85 82.43 ± 0.90 80.44 ± 1.44 80.44 ± 0.63

Coding vs Intergenomic 95.05 ± 0.13 94.97 ± 0.06 92.73 ± 0.08 92.25 ± 0.11 94.78 ± 0.04

Human vs Worm 97.52 ± 0.04 97.14 ± 0.11 96.35 ± 0.04 96.59 ± 0.01 97.27 ± 0.07

Human Enhancer Cohn 73.70 ± 0.53 73.07 ± 0.56 72.72 ± 0.19 72.92 ± 0.23 73.98 ± 0.40

Human Enhancer Ensembl 92.79 ± 0.09 92.98 ± 0.07 91.79 ± 0.23 92.38 ± 0.08 92.73 ± 0.08

Human Regulatory 94.03 ± 0.02 94.21 ± 0.08 93.73 ± 0.08 89.70 ± 0.10 94.10 ± 0.12

Human OCR Ensembl 80.84 ± 0.50 81.36 ± 1.05 75.64 ± 0.64 77.87 ± 0.45 80.62 ± 0.42

Human NonTATA Promoters 97.00 ± 0.05 95.84 ± 0.69 89.24 ± 0.24 96.22 ± 0.17 97.22 ± 0.23

Table 7: Nucleotide Transformer Benchmarks. Different tokenization methods.

Dataset 1-mer Ovlp 6-mer Non-Ovlp 6-mer BPE MxDNA

Average 75.07 ± 0.26 74.35 ± 0.35 67.65 ± 0.17 74.96 ± 0.16 77.52 ± 0.18

Histone Markers Avg. 63.13 ± 0.34 61.88 ± 0.66 50.36 ± 0.28 64.58 ± 0.13 67.29± 0.23

H3 80.92 ± 0.85 80.94 ± 0.64 74.77 ± 0.32 80.26 ± 0.15 82.14 ± 0.76

H3K14ac 62.00 ± 1.79 62.17 ±0.80 46.33 ± 0.72 65.91 ± 0.72 68.29 ±0.65

H3K36me3 62.59 ± 1.50 63.26 ± 1.60 50.49 ± 1.72 63.83 ± 0.73 65.46 ± 1.74

H3K4me1 51.66± 0.57 50.11 ± 3.63 41.26 ± 1.05 54.33 ± 0.53 54.97 ± 1.50

H3K4me2 49.51 ± 0.95 35.59 ± 5.72 29.99 ± 0.93 49.48 ± 0.74 55.30 ± 0.49

H3K4me3 54.14 ± 0.95 54.15 ± 0.56 30.83 ± 0.59 58.10 ± 0.55 63.82 ± 0.92

H3K79me3 70.36± 1.58 71.30 ± 0.04 59.99 ± 0.45 70.89 ± 0.74 73.74 ± 0.78

H3K9ac 60.63 ± 2.73 64.70 ± 0.32 50.24 ± 1.31 62.22 ± 0.54 63.15 ± 0.26

H4 80.23 ± 0.79 80.09 ± 0.59 78.27 ± 0.60 79.29 ± 0.41 80.89 ± 0.23

H4ac 59.25 ± 1.36 56.49 ± 1.02 41.42 ± 0.89 61.45 ± 0.80 65.14 ± 0.23

Regulatory Annotation Avg. 85.38 ± 0.15 84.95 ± 0.12 84.13 ± 0.09 84.62 ± 0.32 85.70 ± 0.21

Enhancer 78.93 ± 0.70 76.65 ± 0.80 78.48 ± 0.88 77.17 ± 0.80 79.73 ± 0.42

Enhancer Types 58.90 ± 0.72 59.12 ± 0.13 56.50 ± 0.61 59.57 ± 0.39 59.79 ± 0.52

Promoter All 96.92 ± 0.08 96.94 ± 0.12 95.76 ± 0.10 95.77 ± 0.09 96.87 ± 0.10

Promoter Non-TATA 97.04 ± 0.05 96.84 ± 0.07 95.87 ± 0.08 95.83 ± 0.16 96.81 ± 0.13

Promoter TATA 95.09 ± 0.34 95.21 ± 0.18 94.02 ± 0.01 94.77 ± 0.33 95.32 ± 0.17

Splice Site Annotation Avg. 97.70 ± 0.19 98.25 ± 0.06 97.85 ± 0.08 93.46 ± 0.02 98.00 ±0.13

All 98.07 ± 0.17 98.18 ± 0.11 97.91 ± 0.15 93.25 ± 0.41 98.05 ± 0.13

Accpetor 97.61 ± 0.44 98.18 ± 0.15 97.65 ± 0.15 94.40 ± 0.34 97.68 ± 0.20

Donor 97.42 ± 0.58 98.39 ± 0.16 98.00 ± 0.16 92.72 ± 0.42 98.28 ± 0.07

Table 8: Genomic Benchmarks. Different components.

Dataset 1-mer + MoCE + Def Conv + Noise (MxDNA)

Average 88.56 ± 0.02 88.72 ± 0.07 88.86 ± 0.18 88.89 ± 0.05

Mouse Enhancers 77.56 ± 0.94 79.66 ± 0.79 80.36 ± 0.39 80.44 ± 0.63

Coding vs Intergenomic 95.05 ± 0.13 94.64 ± 0.10 94.57 ± 0.43 94.78 ± 0.04

Human vs Worm 97.52 ± 0.04 97.20 ± 0.03 97.31 ± 0.05 97.27 ± 0.07

Human Enhancer Cohn 73.70 ± 0.53 74.78 ± 0.52 73.75 ± 1.10 73.98 ± 0.40

Human Enhancer Ensembl 92.79 ± 0.09 92.59 ± 0.19 92.78 ± 0.19 92.73 ± 0.08

Human Regulatory 94.03 ± 0.02 93.93 ± 0.04 94.15 ± 0.11 94.10 ± 0.12

Human OCR Ensembl 80.84 ± 0.50 80.27 ± 0.34 81.14 ± 0.08 80.62 ± 0.42

Human NonTATA Promoters 97.00 ± 0.05 96.92 ± 0.32 96.81 ± 0.26 97.22 ± 0.23
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Table 9: Nucleotide Transformer Benchmarks. Different components.

Dataset 1-mer + MoCE + Def Conv + Noise (MxDNA)

Average 75.07 ± 0.26 77.00 ± 0.05 77.35 ± 0.12 77.52 ± 0.18

Histone Markers Avg. 63.13 ± 0.34 66.58 ± 0.11 67.02 ± 0.10 67.29± 0.23

H3 80.92 ± 0.85 81.18 ± 0.52 81.65 ± 0.82 82.14 ± 0.76

H3K14ac 62.00 ± 1.79 67.68 ± 0.44 66.12 ± 0.46 68.29 ±0.65

H3K36me3 62.59 ± 1.50 66.51 ± 0.46 65.26 ± 1.33 65.46 ± 1.74

H3K4me1 51.66± 0.57 53.18 ± 2.31 56.14 ± 1.04 54.97 ± 1.50

H3K4me2 49.51 ± 0.95 53.86 ± 4.01 54.13 ± 1.22 55.30 ± 0.49

H3K4me3 54.14 ± 0.95 63.82 ± 1.72 61.42 ± 1.58 63.82 ± 0.92

H3K79me3 70.36± 1.58 72.72 ± 0.71 72.88 ± 0.75 73.74 ± 0.78

H3K9ac 60.63 ± 2.73 63.78 ± 0.43 64.95 ± 1.57 63.15 ± 0.26

H4 80.23 ± 0.79 79.96 ± 0.42 81.47 ± 0.97 80.89 ± 0.23

H4ac 59.25 ± 1.36 64.09 ± 0.73 66.21 ± 0.41 65.14 ± 0.23

Regulatory Annotation Avg. 85.38 ± 0.15 85.60 ± 0.32 85.71 ± 0.29 85.70 ± 0.21

Enhancer 78.93 ± 0.70 79.07 ± 0.29 78.91 ± 0.29 79.73 ± 0.42

Enhancer Types 58.90 ± 0.72 60.07 ± 0.82 60.28 ± 1.20 59.79 ± 0.52

Promoter All 96.92 ± 0.08 96.92 ± 0.17 96.80 ± 0.03 96.87 ± 0.10

Promoter Non-TATA 97.04 ± 0.05 96.71 ± 0.13 96.96 ± 0.11 96.81 ± 0.13

Promoter TATA 95.09 ± 0.34 95.25 ± 0.34 95.69 ± 0.25 95.32 ± 0.17

Splice Site Annotation Avg. 97.70 ± 0.19 97.39 ± 0.14 97.86 ± 0.11 98.00 ±0.13

All 98.07 ± 0.17 98.20 ± 0.03 98.13 ± 0.09 98.05 ± 0.13

Accpetor 97.61 ± 0.44 97.08 ± 0.13 97.76 ± 0.21 97.68 ± 0.20

Donor 97.42 ± 0.58 96.90 ± 0.52 97.69 ± 0.50 98.28 ± 0.07

size of 4096 borrowed from DNABERT2. All models are trained for 100k steps with same backbone
but different tokenization methods.

A.5.2 Different Components

Detailed results on each datasets with components added from the single nucleotide tokenization
baseline are presented in Table 8 and Table 9. “1-mer” stands for the baseline. “+ MoCE” stands for
adding the sparse Mixture of Convolution Experts.“+ Def Conv” stands for adding the deformable
convolution block. “+ Noise” stands for adding the multiplicative jitter noise. These components are
added successively, finally equivalent to MxDNA. All models are trained for 100k steps with same
backbone and components added sequentially.

A.6 Visualization Details

The BPE tokenizer used here is directly borrowed from DNABERT2 with a vocabulary of size 4096.
The visualization methods for traditional tokenization methods is straightforward. Below are the
visualization details for MxDNA.

Sample Level: For MxDNA, we perform a forward process of the model using the sequence as
input, extracting the Mask of basic units existence M , Offsets ∆P and Modulation factors ∆M of the
deformable convolution. First, we colour the recognized basic units based on M . Then, we determine
the distal relations using ∆P and ∆M . Specifically, a distal relation is considered to be visualized
only if the the product of the corresponding modulation weight and the bilinearly interpolated offset
weight exceeds one. Eventually, a final learnt token is made up of a group of related basic units and
coloured by the colour of the central basic unit.

Dataset Level: For dataset level, we first finetune the MxDNA model on downstream datasets and
use the refined models to generate the Mask of basic units existence M for all samples in the dataset.
We then calculate the proportion of the lengths of each recognized basic units as indicated by M .
Specifically, we finetune MxDNA on H3, Enhancer, Promoter All and Splice Site All in Nucleotide
Transformer Benchmarks for Histone Marker, Enhancer, Promoter and Splice Site respectively.
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Table 10: Comparison of various models based on their computational complexity.

Model Flops (G) Macs (G) Parameters (M) Number of Tokens

DNABERT2 24.80 12.39 117.07 104.2
NTv2 100M 16.63 8.31 97.89 86
DNABERT 99.48 49.70 89.20 507
HyenaDNA tiny d256 1.67 0.832 1.64 511
HyenaDNA tiny 0.441 0.219 0.436 511
MxDNA 35.94 17.93 100.09 512→ 101.6
Learnt Tokenization Module 0.914 0.446 11.69 512→ 101.6
Single Nucleotide Baseline 94.85 47.38 92.95 512

Table 11: Assets used in this work

Asset License

GRCh38 [32] CC BY 4.0
Genomic Benchmarks [20] Apache-2.0
Nucleotide Transformer [6] CC BY-NC-SA 4.0
DNABERT [4] Apache-2.0
DNABERT2 [5] Apache-2.0
HyenaDNA [7] Apache-2.0
FlashAttention [52, 53] BSD-3-Clause
Pytorch [54] BSD-3-Clause
Pytorch Lightning [55] Apache-2.0
Huggingface [56] Apache-2.0
Pybind11 [57] BSD-3-Clause
Scikit-Learn [58] BSD-3-Clause
Numpy [59] BSD-3-Clause
Matplotlib [60] Matplotlib License
Seaborn [61] Apache-2.0

Token Embedding Analysis: For the token embedding analysis, we utilize various pretrained
models to embed sequences with different functions and analyse the output embeddings at the token
level. Initially, we perform principal component analysis to reduce the dimensionality to one hundred,
which facilitates the visualization process. Subsequently, we employ t-SNE to visualize these token
embeddings in a two-dimensional space. Specifically, we use the H3, Enhancer, Promoter All, and
Splice Site All sequences from the test set of the Nucleotide Transformer Benchmarks to represent
Histone Marker, Enhancer, Promoter, and Splice Site, respectively.

A.7 Computational Resources

We train and evaluate the models on NVIDIA RTX 3090 and NVIDIA A100 GPUs. The pretraining
of MxDNA takes around 3 days for 500k steps using 4 A100 GPUs. Finetuing MxDNA on all the
downstream tasks takes approximately 1.5 Days using 1 A100 GPU. This is true for other BERT-like
foundation models with around 100M parameters.

The detailed computational costs of the models (averaged across 5 samples of sequence length of
510) are outlined in Table 10. The integration of a mixture of convolution experts and the deformable
convolution introduces an increased computational overhead initially due to the O(l log(l)) time
complexity of the learned tokenization mechanism (where l represents the number of nucleotides).
This complexity is mitigated by the substantial reduction in sequence length after tokenization, which
decreases the number of tokens processed by subsequent transformer layers.

A.8 Assets

The assets used in this work along with their licenses including data, pretrained weights, benchmarks,
libraries, and software are presented in Table 11.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As pointed out in Sec. 1, We propose a method where the model autonomously
learns to tokenize DNA and it achieves great performance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper is generally empirical, not theoretical.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed experiment settings are provided in Appx. A.4. The results can
be reproduced following these settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our code will be make public in the github repository once ready. We use
publicly available data for our experiments as illustrated in Appx. A.4.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
Benchmarks).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The detailed experiment settings are provided in Appx. A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We finetune all the models under three random seeds and report the average
results with sample standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments compute resources are given in Appx. A.7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We review and follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper focuses on tokenization techniques of DNA foundation models.
While there maybe misuse of DNA foundation models, our learnt tokenization method will
neither increase nor decrease the risk of the potential misuse.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets are summarized in Appx. A.8 and cited throughout the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets for now since it is not ready.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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