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ABSTRACT

Flow matching models are able to learn complex conditional distributions from
data. Nevertheless, they do not model the distribution of the conditioning itself,
which means they can confidently generate samples from conditioning inputs that
are not in the training distribution. In this work, we introduce Diverging Flows,
an approach to train flow matching models that enables a single model to detect
OOD conditions, without hindering its generative capabilities. Diverging Flows
augments standard flow matching training with a contrastive objective that learns
to separate the velocity fields produced by in- and out-of-distribution conditions,
effectively modeling the conditions’ distribution, and practically enforcing an ef-
fective telltale sign during the generation process. At inference time, we combine
this signal with conformal prediction to obtain statistically valid OOD decisions.
Additionally, Diverging Flows does not require real OOD data, enabling fully self-
contained training on the target domain. The results indicate that Diverging Flows
is competitive with other OOD detection methods while preserving the predictive
quality of the underlying flow model. Ultimately, these results pave the way in
adopting generative models as safe and robust predictors in high-stakes domains
like weather forecasting, robotics, and medical applications.

1 INTRODUCTION

Many of the recent advances in machine learning are driven by diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020), which enable the modeling of conditional multimodal data distributions
and allow sampling from them. These models form the basis of state-of-the-art methods in image
generation (Song et al., 2021; Karras et al., 2022) and imitation learning in robotics (Chi et al., 2023;
Huang et al., 2024). Flow matching (FM) is a related approach that builds on ordinary differential
equations and optimal transport (Lipman et al., 2022; Tong et al., 2023). In many cases, it is faster
and easier to train than diffusion models, and is therefore increasingly used as a replacement in
several domains (Jing et al., 2023; Jin et al., 2025; Chen & Lipman, 2024; Rouxel et al., 2025). In
this work, we focus on flow matching, but extensions to diffusion remain possible.

By design, both diffusion and flow matching models capture aleatoric uncertainty, that is, the vari-
ability inherent in the data, and repeated sampling produces diverse outputs that reflect this data
variability. However, they lack a built-in way to quantify epistemic uncertainty, i.e., uncertainty
about the model itself and whether its predictions can be trusted. While epistemic uncertainty quan-
tification is not critical in creative domains such as generating images or music (Mariani et al., 2024),
it becomes essential in safety-critical settings like weather forecasting (Price et al., 2025) or robotic
control (Rouxel et al., 2024), for which overconfident but incorrect predictions can lead to severe
risks.

Epistemic uncertainty in conditional generation arises mainly from two sources: (1) the limited
capacity of the model to represent the data (e.g., missing fine details, multimodality, not enough
training, etc.) and (2) out-of-distribution (OOD) conditioning, which forces the model to extrapolate.
In this work, we assume that modern models have a large capacity and that enough data is available to
learn the distribution. We therefore focus on detecting out-of-distribution conditions, which requires
upgrading the flow matching framework.
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Figure 1: Conceptual overview of Diverging Flows. The model augments flow matching with a
contrastive objective, forcing velocity fields induced by in-distribution and out-of-distribution con-
ditions to diverge. At inference, the variability of the predicted velocities provides a natural signal
for OOD detection.

A common strategy for OOD detection is to rely on explicit OOD datasets and cast OOD detection
as classification problem. However, such data is rarely available in practice. One-class classifiers
(Cui et al., 2023; Chalapathy & Chawla, 2019) offer an alternative, but they require training a second
model, separate from the main generative model, with its own hyperparameters and design choices
and computational overhead, complicating the overall framework. Our key intuition is that a distri-
bution modeling process should, by itself, provide evidence when queried with inputs that lie outside
its training distribution.

In this work, we exploit the underlying dynamics of the flow to extend the flow matching training
loop, enabling the model to recognize when a conditioning input is out-of-distribution. Our main
insight is that by contrasting the velocity fields induced by in- and out-of-distribution conditions, the
model can implicitly learn the distribution of valid conditions without requiring explicit OOD data.

We accomplish this by incorporating contrastive learning into flow matching, enriching the model
with a telltale signal that indicates whether a condition is OOD, without hindering its performance.
Importantly, our approach does not rely on real OOD datasets: it learns to discriminate between
in- and out-of-distribution conditions using only pseudo-OOD samples, such as Gaussian noise or
adversarial perturbations. To further enable deployment in safety-critical settings, we combine this
signal with conformal prediction, yielding statistically valid real-time OOD detection. While our
method is motivated by the development of safe generative predictors, it can also be used as a stan-
dalone OOD detection module by performing reconstruction instead of prediction. We validate our
approach through (i) a 2D toy example that illustrates how contrastive flow matching separates in-
and out-of-distribution conditions, (ii) benchmark OOD detection tasks across CIFAR-10, SVHN,
MNIST, and related datasets, and (iii) a real-world weather forecasting application where Diverging
Flows achieves accurate prediction and near-perfect OOD detection under conformal calibration.

2 PRELIMINARY

2.1 FLOW MATCHING

Let us define N d-dimensional data points X = {x(1), . . . , x(N)} ∈ Rd, a source distribution p
(typically a standard Gaussian), and a target distribution q, where X ∼ q. The goal of flow models
is to transform samples x0 ∼ p into samples x1 ∼ q. A flow ψt : [0, 1] × Rd → Rd evolves
according to the ODE, d

dtψt(x0) = ut(ψt(x0)), with initial condition ψ0(x0) = x0, where ut is a
time-dependent velocity field. In practice, a flow model parameterizes this velocity field as a neural
network

d

dt
xt = uθt (xt). (1)

Training by direct ODE simulation is costly. Flow matching avoids this by minimizing the discrep-
ancy between predicted and target instantaneous velocities (Lipman et al., 2022):

LFM = Et∼U [0,1], xt

[
∥uθt (xt)− ut(xt)∥2

]
. (2)
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To define (xt, ut), we interpolate linearly between source and target: xt = (1 − t)x0 + tx1 and
ut = ẋt = x1 − x0. After training, samples from q can be generated by forward integrating the
learned flow over a fixed number of steps.

2.2 CONTRASTIVE LEARNING

Contrastive learning aims to map data into a representation space where semantically similar inputs
are close while dissimilar ones are far apart (Oord et al., 2018). Given a dataset {x(i)}Ni=1, we con-
struct pairs of examples. For each x(i), we perform two random augmentations t1 and t2, producing
a positive pair x(i)P1 = t1(x

(i)) and x(i)P2 = t2(x
(i)), which represent different views of the same

sample. All other samples in the batch act as negatives relative to x(i).

An encoder fθ : Rd → Rk maps these inputs into a representation space, producing embeddings
z
(i)
P1 = fθ(x

(i)
P1), z

(i)
P2 = fθ(x

(i)
P2), and negatives z(j)N = fθ(x

(j)
N ). The training objective then

encourages z(i)P1 and z(i)P2 to be close, while pushing them away from the negatives.

After training, the encoder fθ produces representations that capture the semantic structure of the
data and can be used for downstream tasks such as clustering, retrieval, or classification. Several
loss formulations (e.g. InfoNCE (Oord et al., 2018; Chen et al., 2020), margin-based (Hadsell et al.,
2006)) implement this idea, but they all share the same principle of bringing positives together and
separating negatives.

3 DIVERGING FLOWS

Inspired by the contrastive learning paradigm, we propose Diverging Flows1, a contrastive flow
matching approach that incorporates OOD detection into conditional generation without hindering
the model’s performance. The key idea is to force flows under out-of-distribution conditions to
diverge from the in-distribution ones, so that this divergence provides a reliable signal for OOD
detection (Fig. 1). A flow model is practically a sampler that can sample data from a complex
distribution q(x1). Conditional generation guides this process toward the conditional distribution
q(x1 | c), where c ∈ Rd is the condition.

Following the formulation of guided probability paths (Lipman et al., 2024), we define

pt|c(xt | c) =
∫
pt|1(xt | x1) q(x1 | c) dx1, (3)

which interpolates between the source distribution at t = 0 and the conditional target distribution at
t = 1. Importantly, this does not alter the mechanics of flow matching itself: the condition affects
only the endpoint distribution q(x1 | c), while the interpolation path remains unchanged because

pt,1|c(xt, x1 | c) = pt|1(xt | x1) q(x1 | c). (4)

In many applications, conditions correspond to simple class labels. However, in predictive tasks,
such as forecasting or trajectory prediction, the conditioning c is often a high-dimensional modality
(e.g., an image or state trajectory). Our focus in this work is on this latter, more challenging setting.

3.1 CONTRASTIVE FLOW MATCHING

Our contrastive flow matching training does not follow directly the contrastive learning paradigm.
In contrast to traditional contrastive learning, which operates on embeddings, our objective is to
distinguish between flows rather than individual embeddings. To achieve that, let us first define
c̃ ∈ Rd, which plays the role of an OOD condition, and ψt and ψ̃t, which are the in-distribution (ID)
and OOD flows, respectively. Previously, we referred to the neural network uθt , which approximates
the desired velocity field at time step t. Since, our work is based on the conditional generation case,
we slightly change the definition of uθ, which now implements uθ : (xt, t, c) 7→ uθt (xt, c). Hence,
during the contrastive training, we treat all predicted velocities ût,c as the positive pairs and the ût,c̃
as the negative pairs.

1The code will be published upon acceptance
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Figure 2: Histogram of the Flow Smoothness Score. We train our model on the CIFAR-10 dataset
and perform out-of-distribution detection on SVHN, Textures and CIFAR-100

For making ψt and ψ̃t diverge, we contrast ût,c and ût,c̃. We accomplish that by adding two margin-
based components (Balntas et al., 2016), Lrepel and Lcurve, to the original flow matching:

Lrepel = max{∥ut − uθt (xt, c)∥2 − ∥ut − uθt (xt, c̃)∥2 + α, 0} (5)

Lcurve = max{(1− sim(ut, u
θ
t (xt, c)))− (1− sim(ut, u

θ
t (xt, c̃))) + β, 0} (6)

where sim is the cosine similarity, α and β are the margins, which represents the desired distance
and angle between ût,c and ût,c̃. At last, our loss function is shaped as following

LDF = ∥ut − uθt (xt, c)∥2 + λ Lrepel + γ Lcurve (7)

with λ and γ being the weights of each component in the contrastive objective.

This new training objective equips the model with an implicit ability to capture the distribution of
valid conditions. The repulsion term encourages flows under OOD conditions to deviate, while the
curvature term further steers them away from the optimal trajectory. As a result, solving Eq. 1
yields flows that diverge substantially depending on the conditioning input. This divergence serves
as a natural signal to decide whether a condition is in- or out-of-distribution, and thus whether the
model’s predictions can be trusted.

So far, we have described the training objective, but a crucial component remains: the construction
of pseudo-OOD conditions. Our goal is not to train the model to discriminate between two datasets,
but rather to calibrate its expectations about which types of conditions are valid. To this end, we
generate artificial OOD conditions that allow the model to establish a separation boundary in the
velocity field space. We explore two strategies:

1. Gaussian noise: We sample pseudo-conditions as c̃ ∼ N (0, I). Such inputs carry no
structured information, encouraging the model to recognize that valid conditions should
provide structured, feature-specific guidance to the generation process.

2. Fast Gradient Sign Method (FGSM): We construct adversarial pseudo-conditions by per-
turbing a valid condition c in the direction of the gradient of the flow matching loss (Good-
fellow et al., 2014):

c̃ = c+ η · sign
(
∇cLFM(c)

)
,

where η controls the perturbation coefficient. This technique produces pseudo-OOD con-
ditions that remain close to the data manifold but still challenge the model, and thus, im-
proving its ability to distinguish subtle violations of the condition distribution.

3.2 OUT-OF-DISTRIBUTION DETECTION

Now that we have established how to train our model (Alg. 1), we need a way to detect OOD
conditioning inputs. In the classic flow matching, the interpolated trajectories xt follow a straight
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Algorithm 1 Training Diverging Flows
Input: Training dataset: D
Initialize: Neural Network uθt
for each iteration do

Sample a batch and extract x1 and c
x0 ∼ p
t ∼ U [0, 1] ▷ Sample a time step t
xt = (1− t)x0 + tx1 ▷ Interpolate the two points at time step t
ut(xt) = x1 − x0 ▷ Acquire the desired velocity
ût,c = uθt (xt, c) ▷ Predict velocity
LFM = E∥ût,c − ut(xt)∥2 ▷ Compute FM loss
c̃ = c+ η sign(∇cLFM) ▷ Create the OOD condition
ût,c̃ = uθt (xt, c̃) ▷ Predict velocity with the OOD condition
Lrepel = E

[
max{∥ut − ût,c∥2 − ∥ut − ût,c̃∥2 + α, 0}

]
Lcurve = E

[
max{(1− sim(ut, ût,c))− (1− sim(ut, ût,c̃)) + β, 0}

]
▷ Contrast velocities

LDF = LFM + λLrepel + γ Lcurve

Update uθt using gradient descent
end for

path from x0 to x1 with constant velocity ut = x1 − x0. Thus, regardless of the quality of the final
output, at each step the model should strive to follow this straight trajectory with stable velocity.
When the condition is OOD, however, the Diverging Flows model produces velocity fields that
either fluctuate around the straight path or diverge completely from it. Quantifying this variability
provides a natural score for detecting OOD conditions.

During conditional generation, we collect the predicted velocities into Û = {ût,·,d}d=1,...,D
t=1,...,T , where

T is the number of generation steps and D the number of spatial dimensions. For each dimension
d, we compute the variance of predicted velocities over time, Vart[û·,·,d]. We then average these
variances across the spatial dimensions to obtain the Flow Smoothness Score (FSS):

SFSS(Û) =
1

D

D∑
d=1

Vart[û·,d]. (8)

A higher FSS indicates greater disturbance in the predicted velocities, which is an indication that
the conditioning input is OOD.

To make Diverging Flows practically useful for deployment, we must determine a decision threshold
for the FSS. We employ conformal prediction (Gammerman et al., 1998; Angelopoulos et al., 2024)
to compute a statistically valid threshold τ that guarantees a desired coverage level on ID conditions.
Specifically, given a calibration set of ID conditions, we query our model, and store the FSS values,
{SFSS(Ûcal)}Mi=1. Then, we set, τ = Quantile1−ϵ

(
{SFSS(Ûcal)}Mi=1

)
. At inference, a condition is

declared in-distribution if SFSS({ût,c}Tt=1) ≤ τ , and OOD otherwise.

3.3 IMPLEMENTATION DETAILS

Dual Conditioning The way conditioning inputs are introduced to the model plays a significant
role in creating diverging flows. The Diverging Flows approach is using a modified version of the
U-Net used in the Improved DDPM work (Nichol & Dhariwal, 2021). First, we employ the condi-
tioning used in HyperDM model (Chan et al., 2024). The conditioning input is appended channel-
wise to the primary input and reintroduced at the output stage, ensuring that structured information
is explicitly available to the decoder. This conditioning is important for the predictive ability of the
model. However, the information vanishes during the deep encoder–decoder transformations, and
thus, it is not sufficient to align the network’s dynamics with the given condition. Hence, we also
introduce the condition into the time embeddings. The condition input is processed through a con-
volutional encoder, projected into the time embeddings’ space and then applied using FiLM (Perez
et al., 2018). For visualization of the architecture refer to Appendix A.1
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Margin Selection Two key hyperparameters in our contrastive loss are the margins α and β. Large
margins are essential, since small values lead to saturation and weak gradients, while stronger mar-
gins enforce separation and maintain divergence between in- and out-of-distribution flows. In all
experiments, we set α = 100 and β = 0.8.

4 RELATED WORK

OOD detection in generative models. While a large literature exists on out-of-distribution (OOD)
detection for discriminative models (Liang et al., 2017; Sun et al., 2022; Li et al., 2023; Du et al.,
2022; Wang et al., 2022), there is comparatively less work addressing OOD detection for condi-
tional flow- or diffusion-based models. Prior efforts in unsupervised OOD detection mainly rely on
reconstruction-based scores or likelihood-based criteria. However in generative models likelihood-
based approaches often fail because deep generative models can assign high likelihood to OOD
inputs and low likelihood to in-distribution data (Choi et al., 2018; Nalisnick et al., 2018; Hendrycks
et al., 2018; Serrà et al., 2019). Reconstruction-based methods often rely on autoencoders or, more
recently, diffusion models to reconstruct inputs and detect anomalies from reconstruction errors.
While some works use masking or inpainting within diffusion models, such strategies operate on
outputs rather than assessing the validity of the conditioning input itself.

Diffusion- and flow-based approaches. More recent methods have explored the dynamics of dif-
fusion models for OOD detection, using statistics computed along the reverse diffusion path (Heng
et al., 2024) combined with a statistical model for scoring or reconstruction errors from inpaint-
ing with diffusion models (Liu et al., 2023). While these methods are designed for unconditional
generation, they do not extend naturally to conditional predictors. Nonetheless, Chan et al. (2024)
proposed a hyper-diffussion model for efficient ensemble creation, which was utilized for both pre-
diction and uncertainty quantification. Similarly, several works have applied flow matching models
for prediction tasks with some incorporating uncertainty estimation (Zhang et al., 2024; Kollovieh
et al., 2024), but none of them address OOD detection.

Our contribution. To our knowledge, no prior work extends flow matching with an integrated
OOD detection mechanism. Diverging Flows fills this gap by introducing a contrastive objective
over instantaneous velocities, paired with a conformal prediction rule, to enable reliable OOD de-
tection without degrading the predictive performance of the underlying flow matching model. Un-
like many existing OOD methods that depend on large pretrained diffusion models, our approach is
trained simultaneously both for generation and OOD detection, making it applicable even in settings
where no pretrained models are available.

5 EXPERIMENTS

For the evaluation of Diverging Flows (DF), we begin with a two-dimensional toy example, which
provides an intuitive visualization of how contrastive flow matching facilitates OOD detection. We
then turn to standard benchmark datasets, which allow for a quantitative comparison with existing
OOD detection approaches. Although the goal of Diverging Flows is to unify OOD detection and
conditional generation within a single framework, we first isolate the OOD detection component by
evaluating the model on a reconstruction task. This setting allows direct comparison with state-of-
the-art OOD detection methods that are specifically designed solely for OOD detection. Finally,
we demonstrate the applicability of Diverging Flows in a real-world weather forecasting task that
requires both accurate prediction and reliable OOD detection via conformal calibration.

We evaluate OOD detection performance using the area under the receiver operating characteristic
curve (AUROC) (Fawcett, 2006). Moreover, to assess the quality of reconstructions and predic-
tions, we additionally report mean squared error (MSE) and the structural similarity index measure
(SSIM) (Wang et al., 2003; 2004). The hyperparameters used in the experiments are reported at
Appendix A.2.

Datasets We evaluate Diverging Flows on both RGB and grayscale image datasets. For the RGB
setting, we use CIFAR-10 (C10) (Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011) as in-
distribution datasets, along with Textures and CIFAR-100 (C100) (Krizhevsky et al., 2009) as OOD
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datasets. For the grayscale setting, we consider MNIST (LeCun & Cortes, 2005), FashionMNIST
(FMNIST) (Xiao et al., 2017), and KMNIST. In addition, we evaluate Diverging Flows on a real-
world weather forecasting task, following the setup of HyperDM (Chan et al., 2024). The task
involves predicting surface air temperature maps from the ERA5 reanalysis dataset (Hersbach et al.,
2020), consisting of 1,240 samples recorded at six-hour intervals.

Baselines We compare Diverging Flows mainly with recent diffusion-based OOD detection ap-
proaches, which represent the current state of the art. The generative baselines include LMD (Liu
et al., 2023), the two DiffPath variants (Heng et al., 2024), and DDPM-OOD (Graham et al., 2023).
For the DiffPath RGB experiments, we follow the authors and use their pretrained model trained on
CelebA as the base distribution. For the grayscale experiments, we train DiffPath from scratch on
the respective in-distribution dataset. To isolate the contribution of our contrastive objective, we also
report ablations of Diverging Flows without the contrastive term, evaluating both likelihood-based
and FSS-based (FM-FSS) AUROC. As a non-generative baseline, we include a reconstruction-based
Autoencoder (AE). For all baselines, we use the official code released by the authors, except for
LMD where we report results directly from the original paper and from the DiffPath work.

5.1 TOY EXAMPLE

For our toy example, we design a two-dimensional spiral distribution and sample 10K points, which
can be viewed as coordinates on a plane in the range [−1, 1]2. The task for Diverging Flows is the
following: given in-distribution coordinates as conditions, the model should transport noise samples
to the specified locations while following the optimal straight trajectory as closely as possible. After
training, we construct a dense grid of points over the plane and identify those that do not overlap
with the spiral distribution (Appendix Fig. 6). These grid points serve as OOD conditions. The
objective of Diverging Flows at inference is to detect conditioning inputs that lie outside the training
distribution.

Figure 3: Demonstration of the diverging flow training on a toy example. The blue lines represent
the ID conditional generations, whereas the red lines represent the OOD ones, as detected by the
conformal threshold. Left to right: training progress from epoch 20 to 5000, showing increasingly
sharper separation.

In the 2D spiral toy task, Diverging Flows quickly learns to separate valid from invalid conditions.
The ID inputs produce smooth, near-linear transport trajectories, while OOD inputs yield irregular,
fluctuating flows that are easily detected via the FSS. Using the conformal calibration, we achieve
an AUROC of 0.991.

5.2 OUT-OF-DISTRIBUTION DETECTION RESULTS

The OOD detection results across benchmarks are reported in Table 1. For training Diverging Flows,
we use 10K samples from each dataset due to computational constraints. In the case of the Textures
dataset, images are resized to match the resolution of the in-distribution datasets.

The results show that Diverging Flows outperforms the state-of-the-art diffusion-based OOD de-
tection methods, achieving perfect AUROC scores on the majority of benchmarks. Additionally,
we should highlight that it is the only method to reach such high performance on the challenging
CIFAR-10 vs. CIFAR-100 task, which is practically a near-OOD task. For the CIFAR-10 task, we
illustrate the FSS histogram at Fig. 2.
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Table 1: Comparison of various baselines across different ID and OOD datasets. We report the
AUROC of each approach. Higher is better. Bold represents the best result across the baselines and
second best is underlined. In instances, where multiple baselines are tied, all of them are marked.

Methods C10 vs SVHN vs MNIST vs KMNIST vs FMNIST vs

SVHN Textures C100 C10 Textures FMNIST KMNIST MNIST FMNIST MNIST KMNIST

AE-MSE 0.305 0.520 0.581 0.934 0.846 0.987 0.975 0.508 0.608 0.971 0.990
FM Likelihood 0.400 0.500 0.500 0.700 0.652 0.214 0.133 0.614 0.138 0.652 0.609

DiffPath-1D 0.956 0.685 0.551 0.971 0.949 0.988 0.863 0.699 0.420 0.818 0.696
DiffPath-6D 0.911 0.922 0.590 0.939 0.981 1.00 0.949 0.885 1.00 1.00 1.00

LMD 0.922 0.667 0.604 0.919 0.914 0.999 0.984 0.978 0.993 0.992 0.990
DDPM-OOD 0.390 0.598 0.536 0.951 0.910 0.997 0.996 0.770 0.518 0.924 0.908

Ours

FM-FSS 0.973 0.902 0.264 0.005 0.196 0.996 0.972 0.406 0.992 0.788 0.806
DF + Noise 0.924 0.999 0.313 1.00 1.00 1.00 1.00 0.301 0.905 0.453 1.00
DF + FGSM 1.00 1.00 0.938 1.00 1.00 1.00 1.00 0.502 1.00 0.802 1.00

A performance drop is observed, however, in the KMNIST vs. MNIST setting. We speculate that
the problem originates from the strong visual similarity between the two datasets and the fact that
MNIST digits typically occupy a smaller spatial area than KMNIST digits. As a result, MNIST
conditions resemble ”underfilled” KMNIST samples rather than clearly distinct OOD inputs, making
them borderline in-distribution.

Considering the creation of pseudo-OOD conditions during training, FGSM perturbations consis-
tently result in stronger performance than Gaussian noise. This is expected, as FGSM generates
more challenging near-OOD samples, enabling the model to learn a sharper representation of the
condition distribution. Nevertheless, Gaussian noise remains a viable choice for tasks where a sim-
pler separation is sufficient.

The FM-FSS baseline highlights that dual conditioning alone can influence the flow dynamics, es-
pecially in tasks where ID and OOD samples are easily distinguishable. However, in more difficult
scenarios, FM-FSS is less effective, and competitive results are only achieved with the addition of
the contrastive objective.

In Table 2, we also report reconstruction quality for Diverging Flows compared to vanilla flow
matching. The results show that incorporating the contrastive objective not only preserves recon-
struction quality (Appendix A.4) but also improves it according to SSIM. This improvement is ex-
pected due to the effect of the triplet margin loss, which provides an additional training signal by
pulling positive samples closer to the anchor. Next, we present the weather forecasting task, where
we demonstrate how Diverging Flows can be combined with conformal prediction to deliver both
accurate predictions and reliable OOD detection.

Table 2: Comparison of the reconstruction ability between Diverging Flows and flow matching
training.

C10 SVHN MNIST KMNIST FMNIST
MSE ↓ SSIM ↑ MSE ↓ SSIM ↑ MSE ↓ SSIM ↑ MSE ↓ SSIM ↑ MSE ↓ SSIM ↑

DF 0.043 0.994 0.033 0.996 0.003 0.983 0.002 0.983 0.002 0.972
FM 0.045 0.988 0.030 0.994 0.011 0.925 0.001 0.944 0.001 0.941

5.3 WEATHER FORECASTING

Weather forecasting is regarded as a critical application, where diffusion models have been quite
successful (Price et al., 2025; Andrae et al., 2025). In our weather forecasting task, we train both
Diverging Flows and HyperDM (Chan et al., 2024) using 64×64 resolution images. Using the ERA5
dataset (Hersbach et al., 2020), the objective is to predict surface temperature heatmaps six hours into
the future, given the current map. We construct OOD cases by following the HyperDM experiments,
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which introduces an artificial hotspot in a region that typically exhibits low temperatures in the
training set. From the training data, we also reserve a calibration split for computing the conformal
prediction bound. The ϵ parameter can be fine-tuned to provide the best possible results. In our case,
we use an ϵ = 0.05.

Table 3: Weather forecasting results using the ERA5 dataset. The models predict the temperature
heatmap six hours in the future, given the current one. We report the MSE, SSIM, AUROC, and
Conformal AUROC (AUROC after conformal calibration to ensure statistically valid thresholds).

MSE ↓ SSIM ↑ AUROC ↑ Conformal AUROC ↑
HyperDM 0.014 0.954 — —
DF (Ours) 5× 10−5 0.965 0.999 0.969

The results of the weather forecasting indicate that Diverging Flows is highly performant in predic-
tion tasks. Some examples of the predictions are shown in Fig. 4. Regarding the OOD detection,
the method attains near-perfect AUROC. A slight decrease in performance is observed when ap-
plying conformal prediction, but this reduction is negligible given the benefit of a statistically valid
threshold that enables reliable, real-time OOD detection in real-world scenarios.

In-distribution
Input

True Temperature
Changes Prediction

Predicted Temperature
Changes

Out-of-distribution
Input

Prediction w/
Out-of-Distribution Input 

Figure 4: Prediction results on two samples of weather forecasting. We show how both ID and OOD
inputs are predicted by the flow model. We also present how the ground truths and predictions differ
from the input to better capture the expected result.

6 CONCLUSION

In this work, we introduced Diverging Flows, a contrastive flow matching framework that extends
vanilla flow matching with built-in out-of-distribution detection in conditional generation. Our ap-
proach preserves the generative quality and all core properties of standard flow matching, while
additionally providing a reliable signal to identify OOD conditions. As such, Diverging Flows can
serve as a drop-in replacement for flow matching in most applications, combining strong generation
with robust OOD awareness.

Through experiments on benchmark datasets and a real-world weather forecasting task, we showed
that Diverging Flows achieves almost perfect OOD detection performance while maintaining strong
generative capabilities. Diverging Flows directly targets the conditioning mechanism of flow models
by exploiting the velocity fields as discriminative signals. This intrinsic coupling between generation
and OOD detection explains the near-perfect AUROC on challenging benchmarks such as CIFAR-
10 vs. CIFAR-100. This highlights the potential of Diverging Flows as a reliable tool for safe
conditional prediction in high-stakes domains.

The main limitations are that training with the contrastive objective can be unstable and requires
careful tuning of the margins and loss weights, and that generating pseudo-OOD conditions with
FGSM introduces additional computational overhead due to the extra gradient step. As for future
directions, we will explore how we can use the dynamics of the flow models for uncertainty quan-
tification, how to incorporate these components into pretrained models and apply Diverging Flows
in complex high-stakes robotics applications.

9
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A APPENDIX

A.1 DUAL CONDITIONING DETAILS
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Figure 5: Dual Conditioning architecture visualization.

In Figure 5, we illustrate the dual conditioning mechanism used in our U-Net model. The model
receives three inputs: the noise x0, the condition c, and the time variable t. The noisy input is
concatenated with the condition and processed through an initial block that consists of a convolution
layer, normalization, and activation function. The normalization that is applied is implemented with
Group Normalization, which normalizes features across groups of channels as

GroupNorm(x) =
x− µg√
σ2
g + ϵ

· γ + β,
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where µg, σg are computed per group. The number of groups used in the experiments is 32. The
non-linearity is the SiLU (Swish) activation,

SiLU(x) = x · σ(x) = x

1 + e−x
.

Then the condition c is further processed by a dedicated encoder, then flattened and projected to pro-
duce scaling and shifting parameters [s, δ] ∈ Rm. The time variable t is embedded using sinusoidal
features, which are then mapped through an MLP to yield a time embedding et. Both condition and
time embeddings are combined to modulate the U-Net feature maps through FiLM

h′ = s⊙ h+ δ,

where h is the intermediate feature map and ⊙ denotes elementwise multiplication.

At the decoder side, the output of the U-Net is concatenated with the output of the Init Block. The
result then passes through a residual block and its output serves as the input to final output block,
which produces the predicted velocity field ût,c. This design provides dual conditioning: (i) through
the time-condition embedding, which is applied across all U-Net blocks, and (ii) reintroduction of
the condition at the input and output. Together, these pathways preserve the generative quality under
in-distribution inputs while encouraging divergence under out-of-distribution conditions.

A.2 HYPERPARAMETERS

In Table 4, we present the hyperparameters used in our experiments.

Table 4: List of Hyperparameters used in our experiments.

Hyperparameters
Model Layers
Convolution Kernels 3× 3
GroupNorm Channels 32
Embedding Size 256
Number of Downsampling Blocks 3
Number of Middle Blocks 2
Model Training
Epochs 10,000
Batch Size 64
Optimizer AdamW
Learning Rate 1× 10−4

Weight Decay 1× 10−2

Learning Rate Scheduler Linear
Scheduler Start Factor 1
Scheduler End Factor 1× 10−4

EMA Rate 0.999
FGSM
Perturbation Coefficient η 0.3
Losses
Margin α 100
Margin β 0.8
Weight λ 0.2
Weight γ 0.1

A.3 2D TOY EXAMPLE DATA

In Figure 6, we illustrate the data points used for the evaluation of the toy example.

A.4 RECONSTRUCTION EXAMPLES

In Figures A.4 and A.4, we present some reconstructions produced by the Diverging Flows model.
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Figure 6: Visualization of the 2D points used in the toy task.

CIFAR-10 SAMPLES

SVHN SAMPLES
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