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Abstract001

Large Language Models (LLMs) are increas-002
ingly used for Named Entity Recognition003
(NER) and synthetic data generation, yet their004
label annotation processes remain largely black005
boxes. This lack of transparency hinders re-006
liability and control in LLM-based annota-007
tion pipelines. To address this, we investigate008
whether Sparse Autoencoders (SAEs) can ex-009
tract interpretable features from LLM activa-010
tions to decode named entities directly. Evalu-011
ating on general and biomedical NER datasets,012
we show that SAEs effectively capture entity-013
relevant features, outperforming standard prob-014
ing classifiers in the biomedical domain. Our015
findings suggest that SAEs offer a promising016
step toward more transparent and controllable017
LLM-based annotation and synthetic data gen-018
eration pipelines.019

1 Introduction020

Generating high-quality labeled data is a persis-021

tent challenge for Information Extraction (IE) tasks022

like Named Entity Recognition (NER), particularly023

in low-resource domains. Large Language Mod-024

els (LLMs) offer a promising way for generating025

synthetic labeled data to address this scarcity (Josi-026

foski et al., 2023; Hiebel et al., 2023; Vuth et al.,027

2024). However, these works that use LLMs for028

annotation often treat the model as a black box.029

This lack of transparency hinders understanding030

why specific annotations are produced, limiting the031

controllability needed for robust synthetic data gen-032

eration pipelines. To improve the reliability and033

interpretability of LLM-based annotation for struc-034

tured tasks, there is a critical need for methods that035

provide insight into the LLM’s internal processing036

of relevant linguistic and semantic features.037

Mechanistic interpretability methods offer a way038

to open the "black box" of LLMs and understand039

the specific features they learn. Sparse Autoen-040

coder (SAE) is a promising technique that de-041

Figure 1: Visualization of the heuristic for decoding
named entity labels via Sparse Autoencoder.

composes dense neural activations into a sparse 042

set of interpretable, disentangled latent features 043

or "monosemantic neurons" (Bricken et al., 2023; 044

Cunningham et al., 2023; Gao et al., 2024; Raja- 045

manoharan et al., 2024). Recent works have shown 046

that SAE representations are useful for downstream 047

tasks, such as training classifiers for privacy-risk de- 048

tection (Bricken et al., 2024; Gallifant et al., 2025). 049

However, the potential of leveraging the learned 050

latent features for understanding and performing 051

structured prediction tasks like NER directly, with- 052

out training complex dense classifiers, is not well- 053

explored. Validating whether SAEs can capture 054

and provide direct access to entity-specific features 055

within LLMs is a crucial step towards building 056

more transparent and analyzable annotation pro- 057

cesses, including those used in synthetic data gen- 058

eration. 059

This paper investigates whether named entities 060

can be directly decoded from the interpretable la- 061

tent features learned by an SAE applied to LLM 062

hidden representations. We evaluate this approach 063

on general-domain and biomedical NER datasets, 064

demonstrating that SAEs effectively capture entity- 065

relevant features. Our findings show that decoding 066

entity labels directly from these interpretable fea- 067

tures is competitive with standard probing classi- 068
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fiers based on dense representations, and can even069

outperform them in biomedical contexts. This re-070

search highlights the potential of interpretable fea-071

tures for label-efficient IE and provides founda-072

tional evidence for developing future LLM-based073

annotation methods grounded in model understand-074

ing.075

2 Related Works076

Utilizing the rich information within LLM hidden077

representations for downstream tasks like NER is a078

common technique. Probing classifiers (Tenney079

et al., 2019; Hewitt and Manning, 2019; Bom-080

masani et al., 2021) are a widely adopted method,081

training task-specific models on dense LLM rep-082

resentations. While effective for achieving perfor-083

mance on a task, these methods operate on high-084

dimensional, opaque vectors and train probe clas-085

sifiers, providing limited interpretability into the086

specific features driving predictions. Moreover, the087

efficacy of probing as a diagnostic tool remains088

debated, partly because its performance is highly089

dependent on the chosen classifier, making it diffi-090

cult to isolate and assess the quality of the under-091

lying representation itself (Pimentel et al., 2020;092

Belinkov, 2021; Zhou and Srikumar, 2021).093

Mechanistic interpretability aims to provide a094

more transparent view into LLM internals. SAE095

is a promising technique in this field, designed to096

decompose dense activations into a sparse set of dis-097

entangled and human-interpretable latent features.098

While SAEs have shown promise in revealing spe-099

cific concepts encoded in LLMs within classifica-100

tion tasks like privacy-risk detection (Bricken et al.,101

2024; Gallifant et al., 2025), their potential for di-102

rectly decoding information relevant to structured103

prediction tasks like NER from these interpretable104

features remains less explored. Our work investi-105

gates this specific application of SAEs, detailed in106

the following sections.107

3 Sparse Autoencoders (SAE)108

Neurons in deep neural networks are often not in-109

herently interpretable. Many are polysemantic, they110

respond to a mixture of seemingly unrelated fea-111

tures. For example, Bricken et al. (2023) found112

that a single neuron can simultaneously activate113

for academic concepts, English dialogue, HTTP114

requests, and Korean text. A leading explanation115

for this phenomenon is superposition (Elhage et al.,116

2022), where a model encodes more features than117

it has neurons by representing each feature as a 118

unique linear combination of neurons. 119

SAE aims to resolve this issue by extracting 120

more interpretable, monosemantic components 121

from a model’s internal representations. By enforc- 122

ing sparsity constraints, SAE encourages each fea- 123

ture to activate in isolation, therefore disentangling 124

polysemanticity in the hidden space. Intuitively, 125

SAE decodes what each neuron might represent 126

by first decomposing the input representation into 127

sparse features and then reconstructing it. For in- 128

stance, given a 100-dimensional activation vector 129

from a transformer’s MLP layer, we can train an 130

SAE to map this to a 256-dimensional hidden rep- 131

resentation with enforced sparsity, e.g., allowing 132

only 15 nonzero elements. This constraint forces 133

the model to discover interpretable features that 134

correspond more closely to human-understandable 135

concepts. 136

Concretely, SAE operates on hidden representa-
tions (e.g., from an MLP layer Ll

MLP)1 using a pair
of encoder and decoder functions:

f(x) := σ(Wencx+ benc)

x̂ := Wdecf(x) + bdec

Here, x ∈ Rn is the original activation vec- 137

tor, f(x) is the sparse encoded representation, 138

and x̂ is the reconstruction. Wenc ∈ Rm×n and 139

Wdec ∈ Rn×m are the encoder and decoder weight 140

matrices, respectively. Each column di of Wdec 141

represents a learned direction or feature dictionary 142

component into which x is decomposed. The acti- 143

vation function σ enforces non-negativity and spar- 144

sity. Different activation functions σ have been 145

used for training SAEs, such as ReLU (Bricken 146

et al., 2023; Cunningham et al., 2023), TopK ac- 147

tivation (Gao et al., 2024) and JumpReLU (Raja- 148

manoharan et al., 2024). 149

4 Experiment Setup 150

We use pre-trained SAE models released by 151

Lieberum et al. (2024), which were trained on the 152

hidden activations of Gemma 2-9B-IT.2 Specifi- 153

cally, we experiment with SAEs extracted from 154

three transformer layers: l ∈ 9, 20, 31, and two fea- 155

ture dictionary sizes: d ∈ 16k, 131k. We denote 156

each configuration as Sd
l . For evaluation, we use 157

1Activations may also be cached from attention layers or
residual streams.

2SAEs for the Gemma 2 model family are available at:
https://huggingface.co/google/gemma-scope
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two datasets from different domains: Re-DocRED158

(Tan et al., 2022) from the general domain, and159

AnEM (Ohta et al., 2012) from the biomedical do-160

main. As baselines, we train simple one-hidden-161

layer probing classifiers (ReLU, 512 units) on hid-162

den activations from the base model’s middle (lay-163

ers 10–20) and final residual layers, repeating each164

experiment five times.165

4.1 Feature to Label Dictionary166

Before inferring entity labels from sparse represen-167

tations, it is crucial to first identify which features168

are most relevant to each entity type. A straightfor-169

ward approach is to use the automatically generated170

auto-interp3 descriptions of each SAE feature and171

compare them against textual descriptions of the172

target entity types using cosine similarity.173

However, this approach often leads to ambigu-174

ous matches, as the LLM-generated descriptions175

are broad or overlapping. For instance, with SAE176

model S16k
31 , we observed the following cases:177

• Feature 8877: "reference to singular specific178

entities or specific items" label−−−→ [MISC]179

• Feature 11101: "reference to specific individ-180

uals or notable events" label−−−→ [PER, EVENT]181

• Feature 713: "names and references related182

to people, locations, and organizations" label−−−→183

[PER, LOC, ORG]184

To address this ambiguity, we propose a data-185

driven heuristic to cluster relevant features based186

on their activations across labeled data.187

Feature Filtering Heuristic. The core intuition188

behind our method is to identify features that con-189

sistently activate over specific entity spans by ana-190

lyzing their statistical association with labeled en-191

tity types. We run the SAE on a training dataset and192

cache feature activations for each entity span. For193

each feature, we compute its activation frequency194

across entity types and assess significance using a195

Chi-square test:196

χ2 =
∑
e∈E

∑
a∈A

(Oe,a − Pe,a)
2

Pe,a
(1)197

Here, E is the set of entity types, and A =198

{activated, not activated} denotes the activation199

3Each SAE feature is paired with a natural language de-
scription generated by a larger LLM.

status. Oe,a is the observed frequency of activa- 200

tion a for entity type e, and Pe,a is the expected 201

frequency under the null hypothesis of indepen- 202

dence. The heuristic is shown in Algorithm 1. 203

Algorithm 1: Feature Filtering
Input: SAE activations Y , labeled dataset

D, entity types E, significance
threshold α

Output: Feature-to-Label Dictionary
1 Cache activations from Y for labeled spans

in D;
2 Compute activation counts per feature f

and entity label e ∈ E;
3 foreach feature f do
4 Compute Chi-square statistic χ2 Eq. 1;
5 Compute p-value from Chi-square

distribution;
6 if p < α then
7 Assign feature f to entity label

with highest Oe,activated;
8 end
9 end

10 return Feature-to-Label Dictionary;

4.2 Inference 204

We used SAELens (Joseph Bloom and Chanin, 205

2024) to cache token-level feature activations from 206

different SAEs, Sd
l mentioned in Section 4. Specif- 207

ically, we selected SAEs trained on the residual 208

stream of Gemma 2-9B-IT with an average L0 209

sparsity closest to 100. Since SAE activations are 210

token-level representations, an aggregation strategy 211

is necessary to obtain span-level features. While 212

recent work Gallifant et al. (2025) employed top-N 213

activated features per token followed by binariza- 214

tion, we adopt a simpler approach: sum-pooling 215

activations across all tokens within the span. This 216

results in a fixed-size feature vector representing 217

the entire entity span. To infer entity labels from 218

these aggregated span representations, we compute 219

a probability distribution over entity types using 220

a softmax applied directly to the sum of relevant 221

feature activations: 222

P (e | ϕ) =
exp

(∑
f∈Fe

ϕ(f)
)

∑
e′∈E exp

(∑
f∈Fe′

ϕ(f)
) (2) 223

where Fe is the set of features associated with en- 224

tity type e, filtered using the heuristic described in 225
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LOC MISC NUM ORG PER TIME Macro-F1 Weighted-F1

Layer 9 16k 0.743 0.481 0.929 0.333 0.867 0.893 0.708 0.701
131k 0.765 0.540 0.910 0.444 0.857 0.889 0.734 0.729

Layer 20 16k 0.599 0.218 0.719 0.116 0.572 0.869 0.516 0.516
131k 0.592 0.256 0.654 0.209 0.661 0.681 0.509 0.516

Layer 31 16k 0.724 0.541 0.770 0.241 0.846 0.915 0.673 0.682
131k 0.697 0.476 0.751 0.206 0.833 0.887 0.642 0.651

Probing Mid 0.821 0.585 0.800 0.635 0.865 0.853 0.760 0.771
Last 0.795 0.507 0.786 0.599 0.784 0.842 0.719 0.729

Table 1: F1-scores across layers and dictionary sizes on Re-DocRED dataset.

Anatomical Cell Cellular Developing Immaterial Multi-tissue Organ Organism Organism Pathological Tissue Macro Weighted
System Component Anatomical Anatomical Structure Subdivision Substance Formation F1 F1

Layer 9
16k 0.000 0.620 0.296 0.213 0.000 0.631 0.439 0.133 0.786 0.735 0.000 0.352 0.526
131k 0.353 0.733 0.328 0.766 0.125 0.627 0.641 0.129 0.786 0.708 0.421 0.511 0.614

Layer 20
16k 0.000 0.636 0.065 0.000 0.000 0.509 0.103 0.035 0.740 0.467 0.000 0.232 0.401
131k 0.000 0.662 0.329 0.160 0.000 0.614 0.644 0.069 0.758 0.637 0.209 0.372 0.554

Layer 31
16k 0.000 0.774 0.390 0.160 0.176 0.622 0.693 0.423 0.796 0.786 0.282 0.464 0.637
131k 0.000 0.803 0.390 0.160 0.278 0.593 0.601 0.119 0.751 0.733 0.395 0.442 0.615

Probing
Mid 0.422 0.442 0.317 0.337 0.252 0.309 0.699 0.478 0.652 0.293 0.315 0.409 0.427
Last 0.317 0.348 0.185 0.350 0.169 0.285 0.560 0.357 0.621 0.233 0.300 0.338 0.358

Table 2: F1-scores across layers and dictionary sizes on AnEM dataset.

Algorithm 1, and ϕ(f) denotes the activation value226

of feature f over the span. The final predicted227

entity type is defined as:228

ŷ = argmax
e∈E

P (e | ϕ) (3)229

4.3 Results and Discussion230

The results of our experiments are presented in Ta-231

ble 1 and Table 2. We observe that using feature232

activations from layer 9 consistently outperforms233

layers 20 and 31. This contrasts with previous234

findings, where feature activations from layer 20235

were reported to yield the best performance (when236

used for training a classifier) (Gallifant et al., 2025).237

Our findings suggest that early layers (e.g., layer238

9) may retain more generalizable and disentangled239

features, which are beneficial for NER. We also240

observed different behaviors with respect to SAE241

width. On the general-domain dataset Re-DocRED,242

the 16k-width SAE tends to yield better results,243

whereas the opposite is true for the biomedical-244

domain dataset AnEM. We attribute this to the245

phenomenon of feature splitting (Bricken et al.,246

2023), where narrower SAEs tend to decompose247

features into more specialized ones when scaled up.248

These specialized features benefit closed-domain249

datasets like AnEM, which require finer-grained250

features that activate on niche token spans. Across251

both datasets, hidden activations from middle lay-252

ers tend to yield better performance when used253

to train probing classifiers. Notably, predictions254

from SAE layer 9 remain competitive with those 255

of trained probes on Re-DocRED. However, these 256

predictions struggle with ambiguous classes such 257

as MISC and ORG. Our error analysis indicates that 258

this is due to overlapping or ambiguous features 259

between classes like LOC, MISC, and ORG. Further 260

refinement of our filtering heuristic is needed to re- 261

solve this. While on AnEM, SAE predictions from 262

layer 9 significantly outperform probing classifiers. 263

These observations reinforce that different classi- 264

fiers may be needed to reach optimal performance 265

(Zhou and Srikumar, 2021). While probing classi- 266

fiers can learn to make accurate predictions when 267

given sufficient data (as seen with Re-DocRED), 268

direct decoding from interpretable SAE features 269

demonstrates advantages where the learned feature 270

space is well-aligned with the task, particularly in 271

specialized domains. 272

5 Conclusion 273

This work demonstrates that named entities can 274

be directly decoded from interpretable latent fea- 275

tures learned by SAE. Evaluating this approach, we 276

found performance competitive with probing clas- 277

sifiers in general domains and outperformed them 278

in biomedical contexts. Our findings highlight the 279

utility of interpretable features for transparent Infor- 280

mation Extraction, supporting the development of 281

more reliable LLM-based annotation and synthetic 282

data generation pipelines. 283
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Limitations284

This study has several limitations that point towards285

important paths for future work.286

• Our experiments are limited to SAEs trained287

on a specific model (Gemma 2-9B-IT) and288

solely using residual stream activations. Fu-289

ture research should explore other LLM archi-290

tectures and different activation sources (e.g.,291

MLP, Attention layers) to assess the general-292

izability of our findings.293

• The current method relies on access to ground-294

truth entity offsets to extract and cache acti-295

vations for relevant spans. This limits its di-296

rect applicability in real-world scenarios. A297

crucial direction is developing heuristics or298

models for automatic detection of entity men-299

tion spans. One potential heuristic is to lever-300

age constituent parsing to identify syntactic301

boundaries aligned with entity mentions.302

• Our analysis is currently restricted to English.303

Future work should extend this analysis to304

multilingual settings to understand how well305

SAE representations generalize across lan-306

guages, particularly for potential impact in307

low-resource languages.308

Addressing these limitations could pave the way309

for developing fully automated, interpretable anno-310

tation pipelines using SAE features, which would311

be especially valuable for generating high-quality312

synthetic data for low-resource domains.313
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