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ABSTRACT

Non-professional video, commonly known as User Generated Content (UGC) has
become very popular in today’s video sharing applications. However, objectively
perceptual quality assessment of UGC-videos is still a challenge problem, which
is arose from many reasons. First, the pristine sources of UGC-videos are not
available, which makes the appropriate technique is the no-reference NR video
quality assessment VQA (NR-VQA). Another factor leads the NR-UGC-VQA to
a challenge is that subjective mean option scores (MOS) of all the UGC-datasets
are not uniformly distributed. The largest UGC video dataset—YouTube-UGC
still faces a problem that the database has right-skewed MOS distribution. In ad-
dition, authentic degradations occurred in the videos are not unique, therefore, not
predicable. For example, an over- or under-exposure video, brightness and con-
trast static information is critical for evaluation. Only employing verified priori
statistic knowledge or generalized learning knowledge may not cover all possible
distortions. To solve these problems, we introduce a novel NR-VQA framework—
Progressive Regress Network (PRNet) in this paper. For the skewed MOS prob-
lem, a progressive regression module is proposed, which utilizes the coarse-to-
fine strategy during the training process. This strategy can turn sparse subjective
human rating scores into integers with denser samples, which can address the in-
balanced sample problem and make the converging progress faster. For the unpre-
dictable distortions problem, a wide and deep feature extraction module is devel-
oped, which employs both low-level features generated from natural scene statis-
tics (NSS) and high-level semantic features extracted by deep neural networks, to
fuse memorizing priori knowledge and generalizing learning features. Experimen-
tal results demonstrate that our proposed method PRNet achieves state-of-the-art
performance in currently three main popular UGC-VQA datasets (KoNVid-1K,
LIVE-VQC, and YouTube-UGC).

1 INTRODUCTION

Videos, especially created/generated by amateur videographers, namely, user-generated videos
(UGC), contrary to the professional-generated videos (PGC), overwhelmingly prevail over the
world. It becomes a dominant medium to record, communicate, demonstrate, and broadcast peo-
ple’s lives, which makes the UGC content extremely diverse. UGC videos typically created by ama-
teurs often suffer from unsatisfactory perceptual quality, which arises from uncertain shooting skills,
imperfect capture equipments, a variety of possible content processes, and compression and trans-
mission degradations. These videos are normally affected by various degradations with uncertain
degree, such as noise, over-/under-exposure, blur, artifacts, color errors, quantization degradation,
transmission degradation, etc., which promote pretty diverse kinds of video qualities. However,
for the business-driven environment, how re-distributors assess video quality largely influences the
popularity of their videos. A good and appropriate video quality assessment method can boost the
propagation of videos and bring more profits to themselves. Under this circumstances, an effective
UGC video quality assessment (UGC-VQA) algorithm becomes a vital tool to guide the optimiza-
tion of the content platform, such as TikTok, YouTube, and Facebook.
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One can imagining that the traditional full-reference (FR) quality assessment, where pristine sources
are required for reference, is not appropriate, since the source videos are corrupted due to acquisition,
edition, and transmission. Also, as we stated in the above paragraph, distortions existing in these
UGC videos are probably not unique and very sophisticated. Therefore, no-reference (NR) quality
assessment (NR-VQA) is the only feasible solution, however, also the most challenging one.

The UGC datasets face the problem of the non-uniform MOS distribution, even if constructing
a database such as YouTube-UGC by crawling and sampling from a large content repository in
contrary to one created from pictures captured directly from a set of user videos cameras Tu et al.
(2020c). In this paper, we first propose a progressive regression neural network (PRNet) to attenuate
this non-uniform distribution problem in the UGC-VQA datasets. The PRNet utilizes the coarse-to-
fine strategy during the training process, which can turn sparse subjective human rating scores into
integers with denser samples. During the training process, it can alleviate the in-balanced sample
problem and make the training process converging faster and smoother.

As far as we know, most of effective and valid NR-VQA methods are based on natural scene statis-
tics (NSS) Mittal et al. (2012); Saad et al. (2012); Moorthy & Bovik (2011). Recently, a few of
works have made successful progresses by introducing deep-level semantic features extracted by
deep neural networks Kim et al. (2018); Liu et al. (2018); Zhang et al. (2018); Li et al. (2019).
Inspired by the wide & deep learning works Cheng et al. (2016), we make an assumption that the
UGC-VQA can achieve better performance by jointly training a wide linear model for memoriza-
tion (low-level statistical features) alongside a deep neural network for generalization (high-level
semantical features). For example, the concrete features representing one kind of NSS can avoid the
problem, which only using the deep network sometimes leads to some irrelevant and unexplainable
results, perhaps due to paying less attention to people’s subjectively concerns such as brightness,
contrast, blur, etc. Therefore, besides deep feature extraction branch, another branch generating
statistical features is employed to further enhance the capability of network by fusing memorizing
prior knowledge and generalizing learning features.

In all, the three main contributions of our work are as follows.

1. We propose a novel UGC-VQA method PRNet based on deep neural networks (DNN). In
contrast with previous works based on DNN, our method utilizes a progressive regression
method, which can attenuate the in-balanced sample problem during the process.

2. To further improve our proposed network performance, we combine the low-level features
generated natural scene statistics (NSS) and the deep-level features extracted by CNNs. As
we expected, this strategy can further enhance the performance of the proposed framework.

3. Experimental results on three current popular UGC-VQA datasets (KoNViD-1K Hosu et al.
(2017), LIVE-VQC Sinno & Bovik (2018), and YouTube-UGC Yim et al. (2020)) show that
the proposed method outperforms the state-of-the-art methods in the application domain of
UGC video processing, no matter which are developed based on low-level features or/and
deep-level features.

The outline of this paper is organized as follows: Section II briefly reviews relevant prior work
in the area of NR image and video quality assessment, while Section III introduces the proposed
framework. Experimental results and ablation study are demonstrated in Section IV. The conclusions
are stated in Section V.

2 RELATED WORK

2.1 NO-REFERENCE IMAGE QUALITY ASSESSMENT (NR-IQA)

NR-IQA can directly measure image perceptual quality by exploiting features that are discriminant
for image degradations. Most successful approaches use Natural Scene Statistics (NSS) based fea-
tures. Traditional NSS based features are extracted in image transformation domains, such as the
wavelet domain Moorthy & Bovik (2011) or the DCT domain Saad et al. (2012). Also, recent meth-
ods CORNIA Ye et al. (2012; 2013) and BRISQUE Mittal et al. (2012) are capable of extracting
features from the spatial domain, where CORNIA demonstrates that it is possible to learn discrimi-
nant image features directly from the raw image pixels, instead of using handcrafted features.
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Figure 1: The proposed PRNet framework.

Methods based on features extracted by deep neural networks have also achieved great success in
NR-IQA. Kang et al. Kang et al. (2014) combines feature learning and regression as a complete op-
timization process, which enable them to employ modern training techniques to boost performance.
Bosse et al. Bosse et al. (2017) significantly increases the depth of DNN by stacking ten convo-
lutional and two fully connected layers, whose architecture was inspired by the VGG16 network
for image classification. Bianco et al. Bianco et al. (2018) investigates the use of deep learning
for NQ-IQA, in which they compare different design choices, ranging from the use of features ex-
tracted from pre-trained networks, to the use of features extracted from a fine-tuned network for the
IQA task. Multi-task learning for mutual regularization technique is also introduced into NR-IQA
area Ma et al. (2017), where they decompose the IQA task into two subtasks, distortion identification
and quality predication, with dependent loss function.

2.2 NO-REFERENCE VIDEO QUALITY ASSESSMENT (VQA)

Many researchers have proposed possible solutions to the NR-VQA problem Tu et al. (2020a), where
a simple strategy is to compute frame-level based quality scores generated by NR-IQA methods, then
to conclude the overall video score by applying temporal pooling on the frame-level quality score.
These temporal pooling strategies ranges from simple temporal average pooling Saad et al. (2014);
Mittal et al. (2015); Tu et al. (2020c), harmonic mean Li et al. (2018), Minkowski mean Rimac-Drlje
et al. (2009); Seufert et al. (2013), percentile pooling Moorthy & Bovik (2009); Chen et al. (2016),
adaptively weighted sums Park et al. (2012); Tu et al. (2020b), to hysteresis mean Seshadrinathan &
Bovik (2011); Xu et al. (2014).

Asides from the IQA based VQA methods, people also developed some new algorithms produc-
ing good accurate quality predictions. The VSFA model Li et al. (2019) employs a pre-trained
image classification CNN as a deep feature extractor, then integrated the frame-wise deep features
using a gated recurrent unit and a subjectively-inspired temporal pooling layer, achieving leading
performance on several natural video datasets. You et al. You & Korhonen (2019) use 3D convolu-
tion network to extract local spatial-temporal features from small clips in the video. The proposed
method not only addresses the problem of insufficient training data, but also helps effectively cap-
tures the perceptual features, which are finally fed into the LSTM network to predict the whole
video quality. The C3DVQA model Xu et al. (2020) introduces C3D network into quality assess-
ment task, which is capable of pooling temporal feature together to regress the final score. Utke
et al. Utke et al. (2020) present a framework to build a deep-learning based quality metric to as-
sess gaming video quality. The paper has not proposed a new CNN architecture, but it compare four
popular architectures, DenseNet-121 Huang et al. (2017), ResNet50 He et al. (2016), Xception Chol-
let (2017), and MobileNetV2 Sandler et al. (2018) with their pre-trained weights on the Imagenet
database Russakovsky et al. (2015). The results demonstrate that ResNet50 and DenseNet-121 de-
liver the best results among the four architectures. Agarla et al. Agarla et al. (2021) introduce an
effective and efficient method, which consists of a sampling algorithm that removes temporal re-
dundancy by selecting a set of representative frames. These frames are passed to two lightweight
CNNs—MobileNetV2 to get frame-level encoding features, which then are aggregated into video-
level features and finally mapped to a quality score using a Support Vector Regressor (SVR). The
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PVQ model Ying et al. (2020) combines the feature generated by both 2D and 3D CNN networks.
Then, these features are fed to a time series regressor InceptionTime Fawaz et al. (2020) to learn to
accurately predict both global video and local space-time v-patch quality. Tu et al. Tu et al. (2020c)
propose a new fusion-based model VIDEVAL, which uses a feature ensemble and selection proce-
dure on top of existing efficient NR VQA models and achieves state-of-the-art performance at a very
reasonable computational cost. Later, Tu et al. Tu et al. (2021) combine and leverage the advantages
of both scene statistics features and sematic deep features, which helps them designing the method
RAPIQUE and achieving good performance on recent UGC-Video datasets.

3 PROPOSED ALGORITHM FOR VQA

Figure 1 introduces our proposed PRNet, which includes one feature extraction module and one pro-
gressive regression (PR) module. For the feature extraction module, two branches: deep branch and
wide branch are designed to separately extract deep-level semantic features and low-level statistical
features. The details of the PRNet are introduced in the following subsections.

3.1 PROBLEM DEFINITION

About the problem of NR-VQA, people collects a lot of training samples X = xv
V
v=1 and their

corresponding labels Y = yv
V
v=1, where V is the number of videos. For every single video xv

(xv = xvt
T
t=1), the number of frames is T , where xvt stands for the tth frame of xv . Therefore, the

purpose of training process is to find a optimal model F to solve the problem of NR-VQA, which
can minimize the difference between the predicted score ỹv by model F (xv) = ỹv and the subjective
score yv .

3.2 FEATURE EXTRACTION

The feature extraction module is composed by two branches, deep branch and wide branch, each
of them is designed to extract different kinds of features. For example, the deep feature extraction
branch is going to generalize high-level semantic features extracted by a pre-trained ResNet50 net-
work based on ImageNet dataset. Sampled frames are separately put through the pre-trained encoder
to get their individual feature embedding. Simply put, the last convolutional layer of the ResNet50
is used to represent extracted high-level semantic feature. Then, a global-average-pooling operation
is applied to the output of the last convolutional layer to get the final frame-level embedding feature
from the deep branch.

Another branch is assigned to calculate low-level statistical features in the spatial domain, which has
the methodology of BRISQUE Mittal et al. (2012), GM-LOG Xue et al. (2014), HIGRADE Kundu
et al. (2017), FRIQUEE Ghadiyaram & Bovik (2017), and TLVQM Korhonen (2019). 60 kinds of
validated statistical features Tu et al. (2020c) are employed to evidently infuse low-level features in
our network. Besides the 60 validated features based on feature selection algorithm Tu et al. (2020c),
experiments show that more or less kinds of statistical features can also enhance the performance of
the proposed network.

The video-level feature for each branch is averaged from all frame-level features generated from
associated branch. After normalization process, wide and deep features from both branches are
concatenated together to represent the feature of the input video.

3.3 PROGRESSIVE REGRESSION

About the problem of right-skewed MOS score, our strategy turns sparse subjective human rating
scores into integers with denser samples. For example, for different VQA datasets, we first equally
divide the score range S into N sectors, where quality score Y = [0, S]. Therefore, we have total
N + 1 integer points, and the interval of each sector is S

N .

Once the concatenated feature is put through the post-MLP network, the result generated by the
MLP is a vector such as ~Pv = (pv0, pv1, · · ·, pvN−1, pvN ). Each pi stands for the probability of ith
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sector. Therefore, the predicted video quality score is:

ỹv =
S

N

N∑
i=0

pviNi. (1)

Where Ni ∈ (0, N) and
∑N

i=0 pvi = 1.

3.4 LOSS FUNCTION

Therefore, to achieve the goal of progressive regression, a progressive regression loss including two
parts is designed as follows:

loss1 =

V∑
v=1

N∑
i=0

pvi(Ni − Yvmean)
2, (2)

loss2 =

V∑
v=1

(
S

N

N∑
i=0

Nipvi − yv)2, (3)

Yvmean = b ykv
( S
N )
c. (4)

Where, yv is the ground truth of the vth video quality score; S
N is the interval of each sector; Ni is

the ith sector; pvi represents the predicted probability of the vth video in the sector i. loss1 makes
the regression process converge to the sector first. After that, loss2 helps the regression process
further converge to the final score.

At the beginning of training process, to make it converging faster, the weight of the loss1 is relatively
higher, which helps the model firstly to localize the quality sector, instead of the precise score. Then,
the weights between two loss loss1 and loss2 are going to shift at the latter training stage. Therefore,
we designed a dynamic loss as:

loss = α ∗ loss1 + (1− α) ∗ loss2, (5)
where

α = λ
epoch
β (λ ∈ (0, 1), β > 1). (6)

4 EXPERIMENTS

In this section, evaluation datasets, evaluation metrics, and model parameters are introduced. Then,
the performance and the ablation study of our proposed model are demonstrated.

4.1 UGC DATASET BENCHMARKS

To conduct NR-VQA performance evaluation, three UGC-VQA datasets: KoNViD-1K Hosu et al.
(2017), LIVE-VQC Sinno & Bovik (2018) , and YouTube-UGC Yim et al. (2020) are used.
KoNViD-1K database consists of 1,200 public-domain videos sampled from the YFCC100M dataset
and was annotated by 642 crowd-workers. LIVE-VQC was another large-scale UGC-VQA database
with 585 videos, crowdsources on Amazon Mechanical Turk to collect human options from 4,776
unique participants. The most recently published UGC-VQA database is the YouTube-UGC Dataset
comprising 1,380 20-second video clips sampled from millions of YouTube Videos, which were
rated by more than 8,000 human subjects Tu et al. (2020c).

Four commonly used performance metrics are adopted: the Spearman Rank-Order Correlation Co-
efficient (SRCC) and the Kendall Rank-Order Correlation Coefficient (KRCC) are non-parametric
measures of prediction monotonicity, while the Pearson Linear Correlation Coefficient (PLCC) with
corresponding Root Mean Square Error (RMSE) are computed to assess prediction accuracy. Except
the last one metric RMSE, the higher of the first three metrics means better performance. Note that
PLCC and RMSE are computed after performing a nonlinear four-parametric logistic regression to
linearize the objective predictions to be on the same scale of MOS Seshadrinathan et al. (2010):

f(x) = β2 +
β1 − β2

1 + exp(−x+ β3/|β4|)
. (7)
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4.2 TRAINING

Our models are trained using the pre-trained ResNet50 models of ImageNet and the initial learn-
ing rate is set to 1e-3 and decayed by a factor of 0.1 every 20 epochs. The deep neural network
branch extracts 2048 dimension features. For another wide branch, 60 kinds of low-level features
are extracted by the BRISQUE, GM-LOG, HIGRADE, FRIQUEE, and TLVQM methods Tu et al.
(2020c), which totally extracts 60 dimension features. In all, one being evaluated video is repre-
sented by 2108 dimension features (2048 deep features and 60 statistical features). The regression
sub-network is composed by a MLP network, which is composed by the following stricture: FC
layer (2108, 1024) -¿ dropout layer (drop out rate 0.6)-¿ PReLu (α = 0.25) -¿ FC layer (1024, 128)
-¿ FC layer(128, N + 1) -¿ Softmax layer. In the regression loss function, λ is 0.8, β is 20, epoch is
set as 400.

All three datasets are randomly split into non-overlapping training and testing sets (80%/20%). The
proposed PRNet is trained on the training set, and the performance was reported on the testing set
by four performance metrics stated above. All experiments are repeated 10 times. Then, the mean
and the standard deviation of results are recorded. For every single training process, the best model
is regarded as the one having minimal RMSE score.

Since different datasets have different MOS ranges, the number of sectors N is decided according
to their score ranges. Since the score range is 5 for both KoNViD-1K and YouTube-UGC, N is set
as 5. And, for LIVE-VQC, it is set as 10.

4.3 PERFORMANCE COMPARISONS

Table 1: Performance Comparison of the Proposed PRNet Model on the Three UGC-VQA Datasets.
Dataset Model SRCC KRCC PLCC RMSE

KoNVID-1k

FRIQUEE (1 fr/sec) 0.7472 (±0.0263) 0.5509 (±0.0242) 0.7482 (±0.0257) 0.4252 (±0.0173)
GM-LOG (1 fr/sec) 0.6578 (±0.0324) 0.4770 (±0.0261) 0.6636 (±0.0315) 0.4818 (±0.0220)

HIGRADE (1 fr/sec) 0.7206 (±0.0302) 0.5319 (±0.0262) 0.7269 (±0.0287) 0.4391 (±0.0187)
VGG19 0.7741 (±0.0288) 0.5841 (±0.0278) 0.7845 (±0.0246) 0.3958 (±0.0173)

VIDEVAL 0.7832 (±0.0216) 0.5845 (±0.0213) 0.7803 (±0.0223) 0.4026 (±0.0173)
ResNet50 0.8018 (±0.0255) 0.6100 (±0.0247) 0.8104 (±0.0229) 0.3749 (±0.0179)
VARGA 0.8490 \ 0.8530 \

CNN+LSTM 0.8490 \ 0.8670 \
our PRNet 0.8677(±0.0146) 0.6768(±0.0177) 0.8670(±0.0075) 0.3428(±0.0011)

LIVE-VQC

FRIQUEE (1 fr/sec) 0.6579 (±0.0536) 0.4770 (±0.0438) 0.7000 (±0.0587) 12.1984 (±0.9146)
GM-LOG (1 fr/sec) 0.5881 (±0.0683) 0.4180 (±0.0527) 0.6212 (±0.0636) 13.2233 (±0.8221)

HIGRADE (1 fr/sec) 0.6103 (±0.0680) 0.4391 (±0.0549) 0.6332 (±0.0652) 13.0275 (±0.9045)
VGG19 0.6568 (±0.0536) 0.4722 (±0.0443) 0.7160 (±0.0481) 11.7835 (±0.6960)

VIDEVAL 0.7522 (±0.0390) 0.5639 (±0.0368) 0.7514 (±0.0420) 11.1004 (±0.8107)
ResNet50 0.6636 (±0.0511) 0.4786 (±0.0426) 0.7205 (±0.0434) 11.5911 (±0.7335)
VARGA 0.7050 \ 0.7180 \

CNN+LSTM 0.7000 \ 0.6910 \
our PRNet 0.7904 (±0.0223) 0.5910 (±0.0246) 0.8019 (±0.0221) 9.7399 (±0.5256)

YouTube-UGC

FRIQUEE (1 fr/sec) 0.7652 (±0.0301) 0.5688 (±0.0267) 0.7571 (±0.0324) 0.4169 (±0.0231)
GM-LOG (1 fr/sec) 0.3678 (±0.0589) 0.2517 (±0.0415) 0.3920 (±0.0549) 0.5896 (±0.0221)

HIGRADE (1 fr/sec) 0.7376 (±0.0338) 0.5478 (±0.0286) 0.7216 (±0.0334) 0.4471 (±0.0249)
VGG19 0.7025 (±0.0281) 0.5091 (±0.0238) 0.6997 (±0.0281) 0.4562 (±0.0209)

VIDEVAL 0.7787 (±0.0254) 0.5830 (±0.0232) 0.7733 (±0.0257) 0.4049 (±0.0214)
ResNet50 0.7183 (±0.0281) 0.5229 (±0.0243) 0.7097 (±0.0276) 0.4538 (±0.0212)
VARGA \ \ \ \

CNN+LSTM \ \ \ \
our PRNet 0.8113 (±0.0356) 0.6108 (±0.0336) 0.8041 (±0.0363) 0.4150 (±0.106)

We compare our proposed PRNet with a series of state-of-the-art methods, which includes
FRIQUEE Ghadiyaram & Bovik (2017), GM-LOG Xue et al. (2014), HIGRADE Kundu
et al. (2017), VGG19 Tu et al. (2020c), ResNet50 Tu et al. (2020c), VARGA Varga (2019),
CNN+LSTM Varga & Szirányi (2019), and VIDEVAL Tu et al. (2020c). As shown in Table 1, our
PRNet with backbone Resnet50 encoders outperforms all typical methods in all aspects of evaluation
metrics. Our method achieves average 6% increase for KoNViD-1K and YouTube-UGC datasets.
For LIVE-VQC dataset, the PRNet achieves much better growth in the performance (SRCC 13%,
KRCC 12%, and PLCC 8%).
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4.4 ABLATION STUDIES

Table 2: Ablation study of the Proposed PRNet Model on the Three UGC-VQA Datasets.
Dataset Model SRCC KRCC PLCC RMSE

KoNVID-1k
ResNet50 0.8018 (±0.0255) 0.6100 (±0.0247) 0.8104 (±0.0229) 0.3749 (±0.0179)

Ours(ResNet50+PR) 0.8397(±0.01362) 0.6416(±0.0177) 0.8458(±0.0098) 0.3642(±0.0108)
ours(ResNet50+PR+DW) 0.8677(±0.0146) 0.6768(±0.0177) 0.8670(±0.0075) 0.3428(±0.0011)

LIVE-VQC
ResNet50 0.6636 (±0.0511) 0.4786 (±0.0426) 0.7205 (±0.0434) 11.5911 (±0.7335)

Ours(ResNet50+PR) 0.74151 (±0.0450) 0.5459 (±0.0376) 0.8102(±0.0595) 10.8874 (±0.1370)
ours(ResNet50+PR+DW) 0.7904 (±0.0223) 0.5910 (±0.0246) 0.8019 (±0.0221) 9.7399 (±0.5256)

YouTube-UGC
ResNet50 0.7183 (±0.0281) 0.5229 (±0.0243) 0.7097 (±0.0276) 0.4538 (±0.0212)

Ours(ResNet50+PR) 0.7871(±0.0307) 0.5852 (±0.0310) 0.7740 (±0.0369) 0.4445 (±0.0314)
ours(ResNet50+PR+DW) 0.8113 (±0.0356) 0.6108 (±0.0336) 0.8041 (±0.0363) 0.4150 (±0.106)

Table 2 shows the ablation studies in our methods, where PR represents progressive regression
module and DW represents the wide & deep module. Comparing with other methods stated in
Table 2, our methods without the DW module is already far better than them. There are significant
increases for all three datasets, such as on KoNVID-1k (SRCC 3.79%, KRCC 3.16%, PLCC 3.54%),
on LIVE-VQC (SRCC 7.79%, KRCC 6.73%, PLCC 8.97%), and on YouTube-UGC (SRCC 6.88%,
KRCC 6.32%, PLCC 6.43%). After integrating the DW module, the margins almost over all other
methods are further improved on KoNVID-1k (SRCC 2.80%, KRCC 3.52%, PLCC 2.12%), on
LIVE-VQC (SRCC 4.89%, KRCC 4.51%), and on YouTube-UGC (SRCC 2.42%, KRCC 2.56%,
PLCC 3.01%).

5 CONCLUSION

It is significant to study general purpose NR-VQA algorithm which does not have any constraints,
such as shooting skills, capture equipments, distortion type, and video streaming information. In
this paper, we propose a novel deep-learning based framework PRNet to solve this problem, which
utilizes progressive regression strategy and combines the high-level semantic feature extracted by
CNNs with traditional low-level features representing natural scene statistics. Experimental results
demonstrate that our proposed PRNet achieves the state-of-the-art performance in the current most
popular UGC video datasets (KoNViD-1K, YouTube-UGC, and LIVE-VQC). We hope this work
provide a new insight of perceptual quality assessment on the challenging NR-VQA problem.
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