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ABSTRACT

Underwater images suffer from color absorption, light scattering, and non-uniform
haze, making reliable restoration crucial for marine science and autonomous navi-
gation. We propose NemoNet, a novel encoder–decoder architecture that lever-
ages phase-guided representation learning to overcome these challenges. The
architecture incorporates Spectral–Spatial Attention (SSA) block that couples
Fourier phase-based pixel refinement with spatial attention to recover fine textures.
These details are most severely degraded in underwater conditions and are criti-
cal for perceptually convincing restoration more broadly. Phase-based attention in
skip connections ensures that they enhance useful representations instead of prop-
agating artifacts. We introduce a hybrid Un/Supervised loss framework, where
comprehensive supervised objectives are complemented by an unsupervised color
consistency loss that mitigates wavelength-dependent color shifts in underwa-
ter scenes. We further introduce a no-reference Color-Plausibility Quality Index
(CPQI) that augments Perceptual Index with a color consistency prior, which con-
ventional metrics fail to capture. Comprehensive experiments demonstrate that the
proposed approach outperforms existing state-of-the-art methods on supervised
(UIEB, LSUI, EUVP) and unsupervised (U45) underwater image datasets across
conventional and proposed metrics. The source code is available at https:
//github.com/FindingNemo26/NOT-ALL-PIXELS-SINK.git.

1 INTRODUCTION

Underwater imaging is essential for tasks such as resource exploration (Zhou et al., 2024b; Chen
et al., 2024), marine biology research (Shi et al., 2022; Cheng et al., 2023; Ludvigsen et al., 2007)
and autonomous underwater vehicle (AUV) navigation (Sun et al., 2019; Ahn et al., 2018). How-
ever, due to absorption and scattering of light, such images suffer from reduced contrast and dom-
inant blue-green color tones, thereby posing significant challenges for both human interpretation
and downstream computer vision tasks such as depth estimation and object detection (Zhou et al.,
2023; Jaffe, 2014). To address these challenges, underwater image restoration (UIR) helps fix visual
distortions by improving image quality and restoring scene visibility (Chi et al., 2019; Henderson
et al., 2013).

Traditional approaches primarily rely on hand-crafted priors and transmission map estimation for
quality restoration, but they struggle to generalize across dynamic underwater environments due to
their reliance on pre-defined models or specific assumptions (Drews et al., 2013; Li et al., 2016).
Deep learning has emerged as a powerful paradigm for underwater image restoration, offering flexi-
bility and the ability to directly model complex degradation processes from data. This has led to the
development of various successful convolutional neural networks (CNNs) (Zhao et al., 2024; Lin
et al., 2024) and adversarial networks (Liu et al., 2022; Cong et al., 2023). Most existing methods
emphasize spatial-domain processing, but these approaches often overlook long-range dependen-
cies, amplify noise, and fail to restore global color balance. To address these limitations, Khan et al.
(2025) proposed leveraging the phase component of an image, which preserves structural informa-
tion and aids in enhancing degraded underwater images. Figure 1 presents a t-SNE visualization of
the amplitude and phase components of clean and degraded underwater images. Distinct clusters
formed by the amplitude of clean and degraded images indicate that degradation significantly alters
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Figure 1: t-SNE projection of amplitude and phase components for clean and degraded underwater
images shows that amplitude features form distinct clusters, indicating strong degradation effects.
In contrast, phase features largely overlap, suggesting that structural information is preserved.

amplitude information. In contrast, the overlapping phase clusters suggest that phase remains rela-
tively unaffected. Since phase primarily encodes structural details, leveraging it is advantageous for
enhancing feature representations of degraded underwater images.

Existing no-reference metrics often show poor alignment with subjective perception. For instance,
BRISQUE (Mittal et al., 2012a) is sensitive to rotation, UCIQE (Yang & Sowmya, 2015) and UIQM
(Panetta et al., 2015) tend to favor oversaturated images, and in some cases, NIQE (Mittal et al.,
2012b) assigns nearly identical scores to images with different color shifts, reflecting its insensitivity
to color distortions. Thus, existing no-reference measures lack a reliable way to truly evaluate color
fidelity. Overall, the main contributions of our work are:

• We propose NemoNet, an encoder–decoder network with phase-guided representation
learning and a Spectral–Spatial Attention (SSA) block to recover fine textures. We in-
clude Large Kernel Attention (LKA) for medium-range context and Location-Aware At-
tention (LAA) to capture directional, long-range dependencies. At the bottleneck, the
Omni-Kernel Module handles orientation-specific structures. Optimized Phase-Based At-
tention in skip connections ensures only useful features are passed, reducing artifacts and
improving restoration quality.

• We introduce a Hybrid Un/Supervised Loss for underwater image restoration. It combines
conventional supervised objectives with an unsupervised color consistency loss. The un-
supervised component specifically addresses color distortions caused by water absorption.
This approach ensures more accurate and visually plausible color correction in underwater
scenes.

• We present a no-reference Color-Plausibility Quality Index (CPQI), which complements
Perceptual Index (PI) (Blau et al., 2018) metric by incorporating a LAB-space color con-
sistency prior, providing a more reliable assessment of quality by capturing both structural
detail and color consistency.

2 RELATED WORK

2.1 UNDERWATER IMAGE ENHANCEMENT

Early underwater image restoration (UIR) approaches relied on physical priors, such as the dark
channel prior and Rayleigh scattering assumptions, to estimate transmission and ambient light
(Berman et al., 2020; Ghani & Isa, 2015; Li et al., 2017a). While effective at correcting global
color casts, these methods often fail to recover fine details and struggle in complex underwater
conditions.
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To overcome these limitations, data-driven methods have emerged in two main directions:
parameter-guided and end-to-end learning. Parameter-guided CNNs estimate transmission or scat-
tering parameters using physical priors (Kar et al., 2021; Gogireddy & Gogireddy, 2024), but their
performance is limited by parameter accuracy. End-to-end frameworks directly map degraded inputs
to restored images, improving structural and perceptual quality. Early examples include WaterGAN
(Li et al., 2017b), which synthesizes underwater images for unsupervised training, and CycleGAN-
based variants (Park et al., 2019; Yan et al., 2023) for unpaired domain adaptation. UWCNN (Li
et al., 2020) and WaterNet (Li et al., 2019) further enhanced robustness through diverse water-type
modeling and gated fusion strategies, respectively. More recent adversarial and hybrid models, such
as perceptual-oriented GANs (Gonzalez-Sabbagh et al., 2024; Islam et al., 2020b; Cong et al., 2023)
and Ucolor (Li et al., 2021), combine physical priors with network learning to restore severely de-
graded regions. Frequency-domain techniques, e.g., wavelet corrections (Jamadandi & Mudenagudi,
2019) and multi-color feature fusion (Li et al., 2021), improve high-frequency detail recovery. Re-
cently, Transformers have been explored to capture long-range dependencies beyond CNN receptive
fields. Models such as U-Transformer (Peng et al., 2023a), URSCT (Ren et al., 2022), and related
variants (Mu et al., 2023; Liu et al., 2022) leverage global attention for superior restoration. De-
spite strong performance, their high computational cost poses challenges for real-time applications,
motivating lightweight architectures that retain global contextual reasoning.

2.2 ATTENTION MECHANISMS IN IMAGE ENHANCEMENT

Attention-based methods have become increasingly important in underwater image enhancement,
enabling models to focus on degraded regions while suppressing noise. Works such as SGUIE-Net
(Qi et al., 2022) used semantic region-aware attention across multiple scales to distinguish degra-
dation by object type, improving robustness under varied conditions. Building on this, Walia et al.
(2025) incorporated CBAM (Woo et al., 2018), which extends attention to the spatial domain, allow-
ing finer localization of degraded regions. Similarily, RAUNE-Net (Peng et al., 2023b) integrates
attention modules in the down-sampling path along with residual learning to capture high-level fea-
tures, yielding better visual fidelity and generalization. Meanwhile, PhaseFormer (Khan et al., 2025)
further introduces phase-aware attention to better preserve structural cues in underwater conditions.
These approaches highlight the growing role of specialized attention in underwater image enhance-
ment.

2.3 UNDERWATER IMAGE QUALITY ASSESSMENT

No-reference image quality assessment (NR-IQA) is essential for evaluating underwater image en-
hancement, yet conventional natural-scene metrics fail to capture underwater distortions. To address
this gap, a series of underwater-specific image quality assessment (UIQA) metrics have been pro-
posed. Representative examples include UCIQE (Yang & Sowmya, 2015), which linearly combines
chroma, saturation, and contrast statistics, and UIQM (Panetta et al., 2015), which models quality
from a human-visual-system perspective by integrating color, contrast, and sharpness cues. Zheng
et al. (2022) proposed the Underwater Image Fidelity (UIF) metric, which assesses image natural-
ness, sharpness, and structural quality using the CIELab color space. Similarily, Yang et al. (2021)
developed the frequency-domain UIQA metric (FDUM), which analyzes color, contrast, and sharp-
ness in the frequency domain and leverages the dark channel prior (DCP) (Lee et al., 2016) for
improved quality evaluation. However, these methods often favor oversaturated images or fail to
capture subtle color shifts, limiting their alignment with human perception and highlighting the
need for more reliable underwater image quality assessment techniques.

3 METHOD

Figure 2 illustrates NemoNet, a U-shaped encoder–decoder designed for underwater image restora-
tion. The network integrates spatial and phase information across scales using Spectral-Spatial At-
tention (SSA) to balance global color correction with local detail recovery. It employs large-kernel
attention for medium-range patterns, location-aware attention for positional context, and at the bot-
tleneck, the Omni-Kernel Module to recover structures and long-range context. The Optimized
Phase-Based Attention Module further refines features by using phase priors to suppress degraded

3
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Figure 2: Overview of our proposed NemoNet architecture for UIE. The model takes a degraded
underwater image as input and restores it with enhanced visual quality. NemoNet comprises of
Spectral-Spatial Block, Large Kernel Attention Module, Location Aware Attention module, Omni-
Kernel Module, Optimized Phase Attention Block, and Hybrid Un/Supervised Loss.

signals while emphasizing meaningful structures. Training adopts a Hybrid Un/Supervised loss
enabling NemoNet to generate natural, color-corrected images.

3.1 OMNI-KERNEL MODULE

At the bottleneck, feature maps from the encoder are reduced to one-fourth of the input resolu-
tion. Capturing long-range dependencies is crucial to model relationships between distant regions
with similar structures or color degradations. Guo et al. (2025) demonstrated that combining mul-
tiple depth-wise convolutions with different kernel shapes in parallel can efficiently capture global
contextual features. Building on the strategies proposed in (Cui et al., 2024; Lau et al., 2024), we
adopt and extend these approaches in our design. The overall structure of the Omni-Kernel Module
(OKM) is illustrated in Figure 2. The Omni-Kernel Module (OKM) applies multiple depth-wise
convolutions in parallel with different kernel shapes:

FOKM = Convdw31×1(F ) + Convdw1×31(F ) + Convdw31×31(F ) + Convdw1×1(F ), (1)

capturing both anisotropic and isotropic features. The outputs are summed and passed through a
1×1 convolution to model inter-channel relationships. This design efficiently combines local and
long-range context, expanding the receptive field without heavy computation.

3.2 LARGE KERNEL AND LOCATION AWARE ATTENTION

The Spectral-Spatial Attention (SSA) module preserves fine textures and structural details but strug-
gles to connect local features with global context. To address this, we adopt Large Kernel Attention
(LKA) Module as proposed in (Li et al., 2024; Lau et al., 2024; Guo et al., 2023), which cap-
tures medium-range spatial dependencies using a sequence of a 5 × 5 depth-wise convolution, a 7
× 7 dilated convolution, and a 1 × 1 pointwise convolution. This approximates a 19 × 19 receptive
field efficiently, producing attention maps that highlight important medium-scale features. However,
LKA lacks explicit positional encoding, limiting its ability to model direction-specific long-range
dependencies. To overcome this, we employ Location-Aware Attention (LAA). LAA encodes axis-
specific relationships by applying vertical average pooling and horizontal max pooling, followed by
a 1 × 1 convolution and GELU activation. A learnable Mix module balances vertical and horizon-
tal contributions, and 3 × 3 convolutions restore channel dimensions and refine local interactions.
The fused directional features generate location-sensitive attention maps via matrix multiplication
and sigmoid activation, highlighting degraded or important regions while preserving fine details.
The overall attention pipeline, integrating LKA and LAA, is illustrated in Figure 3. By combining
LKA for medium-range context with LAA for directional positional encoding, our attention mech-
anism captures both medium-scale dependencies and axis-specific long-range cues, enabling robust
modeling of underwater degradations and improving restoration quality.
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Figure 3: The proposed Spectral–Spatial Attention (SSA) block fuses phase-guided pixel refinement
with channel-wise modulation to preserve structural and spectral details. The Large Kernel Attention
(LKA) captures medium-range spatial dependencies, while the Location-Aware Attention (LAA)
models axis-specific long-range cues, together enhancing context and structure for underwater image
restoration.

3.3 SPECTRAL-SPATIAL ATTENTION MODULE

Prior studies show that the phase of an image contains the most relevant information (Hansen &
Hess, 2007; Oppenheim et al., 1979; Xu et al., 2021), often sufficient for complete image recon-
struction. The Spectral-Spatial Attention (SSA) block leverages both spatial and phase information
to refine features. As shown in Figure 3, it consists of two sequential components: Phase-Based
Pixel Refinement (PBPR) and Spatial-Domain Channel Attention (SDCA).

In PBPR, input features X ∈ RH×W×C are split into two streams. The first stream is processed
with a 1 × 1 convolution and a Fourier-based phase extraction to obtain a phase-only feature map
Fphase. The second stream retains spatial-domain features, which are then combined with the phase
features via learnable coefficients α and β:

Y = α⊙ Fphase + β ⊙X. (2)

The SDCA block applies channel-wise attention to Y . Features are normalized, globally pooled, and
passed through a 1×1 convolution and sigmoid to produce attention weights S, which modulate the
features:

Fattn = S ⊙ Y. (3)
Residual connections and a feed-forward network further refine the output:

FOut = Fattn +X + FFN(LayerNorm(Fattn +X)). (4)

Overall, SSA combines phase-based pixel attention with spatial-domain channel attention, capturing
fine local details and complementing coarser processing in other modules.

3.4 OPTIMIZED PHASE BASED ATTENTION

Encoder-decoder networks use skip connections between the encoder and decoder to reduce van-
ishing gradients and information loss during continuous upsampling and downsampling. However,
these connections can also pass redundant or degraded features. Prior works address this via residual
enhancement blocks (Zhou et al., 2024a) or channel-wise multi-scale transformer attention (Peng
et al., 2023a). However, these attention blocks may forward degraded features because they are
processed in spatial domain. Khan et al. (2025) proposed Optimized Phase Based Attention that
builds upon Wang et al. (2020) which only involves a handful of parameters while bringing clear
performance gain. To address the limitations of conventional skip connections, we integrate the
Optimized Phase Attention Block (OPAB) into our network. The workflow of OPAB, including

5
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phase extraction and attention weighting, is illustrated in Figure 2. Unlike direct feature forward-
ing, OPAB focuses on phase information, which is more robust to scattering and color distortion
than amplitude. Given encoder features Ui, a Phase Extraction Module (PEM) first extracts phase
cues, followed by global average pooling (GAP) to aggregate spatial information. Cross-channel
dependencies are then modeled using a learnable 1D convolution with an adaptive kernel size:

k =

∣∣∣∣ log2(C ′)

γ
+

b

γ

∣∣∣∣
odd

(5)

where C ′ = 2i−1C is the channel dimension, and |t|odd indicates the nearest odd number of t. This
adaptive strategy mitigates the over-smoothing or under-smoothing that occurs with fixed kernels,
allowing the network to dynamically adjust receptive fields according to feature dimensionality. The
resulting attention weights are applied to the phase features to yield phase-aware attentive maps:

Zi = Ui ⊗ σ
(
ωk

(
GAP(PEM(Ui))

))
, (6)

where ωk is the 1D convolution operator with kernel size k, σ(·) denotes the sigmoid activation,
and ⊗ represents channel-wise multiplication. By emphasizing structurally reliable phase cues and
suppressing degraded information, OPAB ensures that skip connections deliver robust, informative
features to the decoder. This lightweight mechanism enhances restoration quality without the com-
putational cost of spatial-domain transformer blocks.

3.5 HYBRID UN/SUPERVISED LOSS (HUSL)

To optimize training, we propose a Hybrid Un/Supervised Loss (HUSL) that integrates comple-
mentary objectives through a weighted summation. The supervised loss combines Charbonnier loss
(LC) (Bruhn et al., 2005), Perceptual loss (LP ) (Johnson et al., 2016), Gradient loss (LG) (Ribeiro &
Elsayed, 1995), and Multi-Scale SSIM (MS-SSIM) loss (LM ) (Wang et al., 2003) which addresses
structural fidelity, perceptual quality, edge preservation, and multi-scale similarity, respectively. An
unsupervised Color Constancy loss (LCC) is further incorporated to mitigate underwater color dis-
tortions. The final objective is

LTotal = LSupervised + LUnsupervised, (7)

LSupervised = Ω1 ∗ LC +Ω2 ∗ LP +Ω3 ∗ LG +Ω4 ∗ LM (8)

LUnsupervised = Ω5 ∗ LCC (9)

The weights Ω1 = 0.2741, Ω2 = 0.1680, Ω3 = 0.2222, Ω4 = 0.3357, and Ω5 = 0.1500 are
empirically determined. This formulation provides a flexible and effective loss for robust underwater
image restoration.

4 UNDERWATER IMAGE QUALITY ASSESSMENT

Existing unsupervised image quality assessment methods struggle to capture the diverse degrada-
tions present in underwater imagery. For instance, UCIQE and UICM often overemphasize satura-
tion, leading to inflated scores for visually unrealistic outputs. NIQE, while widely used, is prone to
introducing color shift artifacts that are inconsistent with human perception. Similarly, UISM tends
to amplify noise when estimating sharpness, while BRISQUE exhibits sensitivity to image orienta-
tion, reducing its robustness for underwater scenarios. These shortcomings highlight the need for
a metric that jointly considers perceptual fidelity and color plausibility, ensuring a more reliable
evaluation of underwater image quality.

4.1 COLOR-PLAUSIBILITY QUALITY INDEX (CPQI)

To address the unique challenges of underwater image quality assessment, we introduce Color-
Plausibility Quality Index (CPQI) that jointly accounts for perceptual realism and color fidelity.
Our method builds upon the Perceptual Index (PI), and augments it with a Color Plausibility (CP).

6
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The final quality score is obtained through a weighted combination of the perceptual and color
plausibility components, defined as:

Qours = PI + λ · CP, (10)

where λ controls the contribution of the color plausibility term.

The Perceptual Index (PI) is an unsupervised metric reflecting human perception of image natu-
ralness. It combines the Ma-score, which predicts aesthetic quality, and NIQE, which measures
deviations from natural scene statistics:

PI =
1

2

(
(10− Ma) + NIQE

)
. (11)

Lower PI indicates better perceptual quality.

Our Color Plausibility (CP) term explicitly evaluates chromatic naturalness in underwater images.
It is computed in the LAB color space, which separates luminance from chromatic components,
making it well-suited to quantify color realism. Let a and b denote the chromatic channels. CP is
defined as:

CP(I) =
√
µ2
a + µ2

b +
∣∣σa − σb

∣∣, (12)

The first term,
√
µ2
a + µ2

b , measures the deviation of mean chromaticity from neutral, penalizing
global color shifts such as excessive blue or green tones, making it particularly robust for underwater
images. The second term, |σa − σb|, quantifies imbalance between chromatic channel variances,
penalizing unnatural color distributions that frequently occur in restored underwater images. By
combining these two measures, CP provides a robust assessment of color realism.

Table 1: CPQI demonstrates the best over-
all performance in terms of SRCC and KRCC
among the compared IQA metrics, while
achieving competitive PLCC and RMSE values.

Method SRCC ↑ PLCC ↑ KRCC ↑ RMSE ↓

NIQE (Mittal et al., 2012b) 0.049 0.138 0.034 2.026
BRISQUE (Mittal et al., 2012a) 0.147 0.157 0.099 2.012
UCIQE (Yang & Sowmya, 2015) 0.156 0.122 0.107 1.998
UIQM (Panetta et al., 2015) 0.064 0.075 0.044 2.031
ILNIQE (Zhang et al., 2015) 0.149 0.187 0.100 2.037
PIQE (Venkatanath et al., 2015) 0.024 0.041 0.017 2.053
NRQM (Ma et al., 2017) 0.036 0.038 0.024 2.035
WaDIQaM (Bosse et al., 2017) 0.021 0.042 0.013 2.036
DBCNN (Zhang et al., 2018) 0.037 0.073 0.024 2.034
MUSIQ (Ke et al., 2021) 0.105 0.105 0.070 2.027
LIQE (Zhang et al., 2023) 0.161 0.109 0.105 2.025
CNNIQA (Kang et al., 2014) 0.069 0.076 0.046 2.029
NIMA (Talebi & Milanfar, 2018) 0.033 0.060 0.022 2.032
HyperIQA Su et al. (2020) 0.087 0.098 0.055 2.030
CPQI 0.172 0.124 0.113 2.024

Figure 4: Comparison of un-
derwater image quality metrics
(UCIQE / CPQI) against MOS:
Top-left (0.50/10.50/4.26), Top-
right (0.57/17.91/0.88), Bottom-
left (0.62/15.22/6.65), Bottom-right
(0.62/18.95/1.42). Images appear
perceptually low-quality or oversatu-
rated. CPQI aligns better with MOS,
with lower values indicating higher
perceived quality.

4.2 EXPERIMENTS

Datasets.We evaluate our method on the SAUD2.0 dataset, which contains 200 raw and 2,400 en-
hanced underwater images captured in real-world scenarios. Subjective quality scores are provided
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as mean opinion scores (MOS) obtained via the single-stimulus absolute category rating (SS-ACR)
protocol.
Implementation Details.To ensure unbiased evaluation, we adopt a random 75–25 train–test split,
using 75% of the images to fit the non-linear mapping function and the remaining 25% exclusively
for testing. Since objective predictions do not directly align with MOS, we apply a four-parameter
cubic polynomial regression to map predicted scores to subjective assessments.
Evaluation Metrics.We quantify the agreement between predicted and subjective scores using stan-
dard correlation metrics: Pearson linear correlation coefficient (PLCC), Spearman rank correla-
tion coefficient (SRCC), Kendall rank correlation coefficient (KRCC), and root mean square error
(RMSE). Results are summarized in Table 1. Our proposed metric achieves the highest SRCC and
KRCC while maintaining competitive PLCC and RMSE.

5 EXPERIMENTS

5.1 DATASETS

For training, we use both synthetic and real-world datasets. Synthetic datasets include UIEB (Li
et al., 2019), though models trained on them often struggle with real scenes. To mitigate this, we
also use real-world datasets LSUI (Peng et al., 2023a) and EUVP (Islam et al., 2020b), sampling 800
images from UIEB, and 2000 each from EUVP and LSUI for training. This combination enables
the model to generalize better across diverse underwater scenarios.

For evaluation, we assembled paired test sets consisting of 90 UIEB images, 200 EUVP samples,
and 200 LSUI samples, with no overlap with the training split. To further assess cross-domain gener-
alization, we also included 200 unpaired samples from the SUIM dataset (Islam et al., 2020a). This
comprehensive test collection allows us to rigorously examine both performance and generalization
under diverse underwater imaging conditions.

5.2 IMPLEMENTATION DETAILS

The implementation of the proposed network was carried out using PyTorch and all experiments
were conducted on NVIDIA Tesla T4x2 GPU. Training was performed with a batch size of 8, using
an initial learning rate of 2 × 10−4, which was gradually decayed to a minimum of 1 × 10−6. We
employed the AdamW optimizer in combination with a Cosine Annealing learning rate scheduler.
The models were trained for 500 epochs, with input images resized to 256 × 256 pixels. To im-
prove robustness, standard data augmentation techniques like including random cropping, flipping,
rotation, transposition, and scaling were applied.

Table 2: Quantitative comparison of underwater image restoration methods on the UIEB dataset.

Method PSNR ↑ SSIM ↑ MS-SSIM ↑ LPIPS ↓ GMSD ↓ BRISQUE ↓ CIEDE2000 ↓ VIF ↑ CPQI ↓

TACL (Liu et al., 2022) 22.33 0.841 0.940 0.137 0.0528 15.58 8.81 0.545 12.545
PUIE-Net (Fu et al., 2022b) 21.97 0.883 0.953 0.108 0.0395 21.86 9.86 0.720 11.144
UsUIR (Fu et al., 2022a) 20.65 0.864 0.936 0.137 0.0510 29.91 11.55 0.638 11.772
Phaseformer (Khan et al., 2025) 22.44 0.867 0.950 0.131 0.0429 26.40 7.90 0.634 12.478
Spectroformer (Khan et al., 2024) 24.02 0.881 0.947 0.147 0.0411 35.59 5.51 0.610 12.629
UShape (Peng et al., 2023a) 19.46 0.645 0.841 0.376 0.1293 55.06 10.83 0.303 12.831
SyreaNet (Wen et al., 2023) 16.61 0.814 0.913 0.184 0.0638 19.50 15.64 0.549 13.170
UDNet (Saleh et al., 2025) 19.16 0.819 0.910 0.160 0.0629 22.53 12.77 0.758 11.003
CCLNet (Liu et al., 2024) 20.78 0.875 0.940 0.130 0.0443 21.92 10.90 0.588 12.611
CEVAE (Martinel & Pucci, 2025) 19.06 0.637 0.856 0.434 0.1251 60.87 11.81 0.354 11.699
NemoNet 24.23 0.914 0.956 0.073 0.0350 15.41 8.00 0.735 10.380

5.3 ANALYSIS ON SYNTHETIC DATASETS

We perform a quantitative evaluation of the proposed approach against state-of-the-art (SOTA) meth-
ods. The results on the UIEB datasets are presented in Table 2, while qualitative comparisons are
illustrated in Figure 4. The performance of our method is competitive with existing techniques.
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5.4 ANALYSIS ON REAL-WORLD DATASETS

To evaluate the practicality of the proposed approach in real-world conditions, we present results
obtained from the LSUI and EUVP datasets. The quantitative assessment employs standard met-
rics, with detailed scores provided in Table 3 and 4, respectively. These results demonstrate that
our method achieves notable improvements in both color balance and scene visibility. Moreover,
we further validate the generalization ability of our approach on the unsupervised U45 dataset as
presented in Table 5.

In addition, qualitative comparisons on these datasets are presented in Figure 5.

Table 3: Quantitative comparison of underwater image restoration methods on the LSUI dataset.

Method PSNR ↑ SSIM ↑ MS-SSIM ↑ LPIPS ↓ GMSD ↓ BRISQUE ↓ CIEDE2000 ↓ VIF ↑ CPQI ↓

TACL (Liu et al., 2022) 20.402 0.780 0.924 0.189 0.059 21.401 11.892 0.391 11.189
PUIE-Net (Fu et al., 2022b) 20.744 0.827 0.942 0.193 0.041 28.234 11.902 0.521 9.914
UsUIR (Fu et al., 2022a) 19.237 0.783 0.924 0.235 0.052 30.222 14.132 0.422 8.073
Phaseformer (Khan et al., 2025) 20.393 0.791 0.935 0.142 0.045 21.969 11.335 0.489 12.557
Spectroformer (Khan et al., 2024) 20.421 0.801 0.931 0.222 0.049 29.656 12.142 0.447 13.637
UShape (Peng et al., 2023a) 24.369 0.792 0.940 0.257 0.056 38.824 7.373 0.391 12.023
SyreaNet (Wen et al., 2023) 17.891 0.785 0.913 0.275 0.066 31.927 14.069 0.385 11.347
UDNet (Saleh et al., 2025) 19.572 0.796 0.931 0.227 0.044 29.913 13.330 0.543 10.195
CCLNet (Liu et al., 2024) 18.914 0.783 0.886 0.252 0.060 31.114 13.857 0.394 10.822
CEVAE (Martinel & Pucci, 2025) 26.812 0.809 0.953 0.230 0.046 39.464 4.877 0.414 11.811
NemoNet 28.519 0.923 0.980 0.057 0.017 20.670 4.830 0.652 7.009

(a) Input (b) PUIE-Net (c) CCL-Net (d) Phase (e) UShape (f) Spectro (g) NemoNet (h) GT

Figure 5: Visual comparison showing that images restored by NemoNet closely align with the
ground truth, demonstrating effective color correction and detail preservation

5.5 COMPUTATIONAL COMPLEXITY ANALYSIS

We further evaluate the computational complexity of our method against existing state-of-the-art ap-
proaches, considering the number of trainable parameters and floating-point operations (FLOPs). As
summarized in Table 6, the results show that our method achieves significantly lower computational
complexity compared to current state-of-the-art techniques for underwater image restoration.

6 ABLATION STUDIES

We perform ablation studies to assess the contribution of each component in NemoNet. Table 7
shows results averaged across the UIEB, EUVP, and LSUI datasets.
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Table 4: Quantitative comparison of underwater image restoration methods on the EUVP dataset.

Method PSNR ↑ SSIM ↑ MS-SSIM ↑ LPIPS ↓ GMSD ↓ BRISQUE ↓ CIEDE2000 ↓ VIF ↑ CPQI ↓

TACL (Liu et al., 2022) 19.172 0.753 0.917 0.210 0.0629 27.471 13.623 0.352 9.997
PUIE-Net (Fu et al., 2022b) 20.011 0.786 0.929 0.212 0.0517 26.832 12.332 0.416 9.397
UsUIR (Fu et al., 2022a) 18.310 0.749 0.914 0.250 0.0594 27.865 15.721 0.387 9.183
Phaseformer (Khan et al., 2025) 19.536 0.749 0.928 0.176 0.0494 24.532 12.536 0.377 11.429
Spectroformer (Khan et al., 2024) 19.682 0.780 0.923 0.236 0.0543 25.677 13.091 0.394 12.743
UShape (Peng et al., 2023a) 22.551 0.822 0.947 0.204 0.0462 28.482 10.015 0.416 11.023
SyreaNet (Wen et al., 2023) 18.755 0.774 0.912 0.253 0.0722 26.603 13.872 0.356 11.183
UDNet (Saleh et al., 2025) 19.642 0.768 0.926 0.231 0.0486 26.880 13.961 0.440 9.510
CCLNet (Liu et al., 2024) 18.707 0.762 0.887 0.250 0.0665 28.301 14.850 0.372 9.435
CEVAE (Martinel & Pucci, 2025) 23.781 0.803 0.953 0.190 0.0406 27.562 8.323 0.391 10.829
NemoNet 27.591 0.908 0.973 0.098 0.0213 24.351 5.722 0.554 7.235

Table 5: Quantitative comparison of underwater
image restoration methods on the unsupervised
U45 dataset.

Method BRISQUE ↓ CPQI ↓

Phaseformer (Khan et al., 2025) 38.341 13.074
UDNet (Saleh et al., 2025) 8.543 10.554
Spectroformer (Khan et al., 2024) 19.521 14.368
UShape (Peng et al., 2023a) 13.402 13.524
SyreaNet (Wen et al., 2023) 8.729 9.603
CCLNet (Liu et al., 2024) 8.830 10.814
TACL (Liu et al., 2022) 10.826 12.447
PUIE-Net (Fu et al., 2022b) 8.673 13.103
UsUIR (Fu et al., 2022a) 7.466 8.630
CEVAE (Martinel & Pucci, 2025) 19.511 11.082
NemoNet 7.274 10.981

Table 6: Comparison of model complexity
and computational cost for underwater image
restoration methods.

Method #Param (×106) FLOPs (×106)

WaterNet (Li et al., 2019) 24.8 193.7
U-shape (Peng et al., 2023a) 65.6 66.2
UIECL (Li et al., 2022) 13.3 31.0
TACL (Liu et al., 2022) 11.3 56.8
UGAN (Fabbri et al., 2018) 57.1 18.3
Ucolor (Li et al., 2021) 157.4 443.9
SGUIE-Net (Qi et al., 2022) 18.5 123.5
Ours 2.615 14.1

Table 7: Each row shows the effect of adding or removing specific components, highlighting the
contribution of the color loss and other modules to overall restoration performance.

Method PSNR ↑ SSIM ↑ MS-SSIM ↑ LPIPS ↓ GMSD ↓ BRISQUE ↓ CIEDE2000 ↓ VIF ↑ CPQI ↓

SSA 23.568 0.883 0.956 0.113 0.0311 5.623 8.659 0.621 15.297
SSA+LKA 24.964 0.899 0.964 0.090 0.0269 5.626 7.586 0.630 14.085
SSA+LAA 24.910 0.907 0.960 0.102 0.0300 5.611 8.164 0.621 14.421
SSA+OKM 24.257 0.889 0.960 0.101 0.0292 5.529 7.782 0.603 13.218
SSA+LKA+OKM 25.610 0.905 0.967 0.084 0.0261 5.675 6.952 0.632 13.599
SSA+LAA+OKM 25.081 0.898 0.963 0.093 0.0275 5.598 7.265 0.622 15.382
SSA+LKA+LAA+OKM 25.904 0.902 0.966 0.086 0.0262 5.682 7.016 0.639 12.072
NemoNet (without color loss) 26.321 0.912 0.969 0.078 0.0249 5.757 6.526 0.636 12.468
NemoNet 26.777 0.915 0.970 0.076 0.0244 5.837 6.185 0.647 11.651

The results show steady improvements at each step, with a significant gain observed after introducing
the color loss, which helps the model handle underwater color distortions more effectively.

7 CONCLUSION

This paper introduces NemoNet, a phase-guided encoder–decoder for underwater image restoration.
By combining Spectral–Spatial Attention with phase-based skip connections, NemoNet recovers
fine textures while suppressing artifacts. A hybrid Un/Supervised loss with color consistency and
the proposed CPQI metric further enhance restoration quality. Extensive experiments show that
NemoNet surpasses state-of-the-art methods and offers strong potential for applications in underwa-
ter vision and navigation.
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