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ABSTRACT
Scaling large language models (LLMs) demands extensive data and computing resources, which are traditionally
constrained to data centers by the high-bandwidth requirements of distributed training. Low-bandwidth methods
like federated learning (FL) could enable collaborative training of larger models across weakly connected GPUs or
weakly connected clusters of GPUs if they can effectively be used for pre-training. Building robust low-bandwidth
training systems can: (a) significantly reduce communication infrastructure costs, (b) minimize the impact of
hardware failures, (c) widen the pool of usable GPUs, (d) enable collaborative training over the internet, and
(e) allow dynamic compute sourcing based on factors like electricity prices. Such advancements would lessen
the dependence on specialized data centers, making large-scale AI training more accessible, cost-effective, and
adaptable to real-time demands. To achieve this, we introduce Photon, the first complete system for federated
end-to-end LLM training, leveraging cross-silo FL for global-scale training with minimal communication
overheads. Using Photon, we train the first federated family of decoder-only LLMs from scratch. We show that:
(1) Photon can train model sizes up to 7B in a federated fashion while reaching an even better perplexity than
centralized pre-training; (2) Photon model training time decreases with available compute, achieving a similar
compute-time trade-off to centralized; and (3) Photon outperforms the wall-time of baseline distributed training
methods by 35% via communicating 64×–512× less. Our proposal is robust to data heterogeneity and converges
twice as fast as previous methods like DiLoCo. This surprising data efficiency stems from a unique approach
combining small client batch sizes with extremely high learning rates, enabled by federated averaging’s robustness
to hyperparameters. Photon thus represents the first economical system for global internet-wide LLM pre-training.

1 INTRODUCTION

Trends in developing state-of-the-art large language models
(LLMs) suggest training ever-larger models on expanding
datasets with growing compute resources (Kaplan et al.,
2020; Jiang et al., 2024). The standard approach involves
using a mix of distributed learning algorithms with high-
bandwidth communication requirements deployed in single
data center, e.g., distributed data parallelism across racks,
pipeline parallelism across servers in a rack, and tensor par-
allelism across GPUs in a server (Rasley et al., 2020; Lee
et al., 2024a; Qian et al., 2024; Dubey et al., 2024). Thus, in-
creasing model size requires extending computing facilities
to exploit high-bandwidth distributed training algorithms
(Hu et al., 2024; Yang et al., 2024).

Recently, a small but growing interest in low-bandwidth
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distributed training algorithms has developed to exploit the
worldwide distribution of computing facilities connected
through the Internet (Douillard et al., 2023; Tang et al.,
2024; Borzunov et al., 2024; Mi et al., 2020; Chang et al.,
2023; Sani et al., 2024). If successful, low-bandwidth dis-
tributed training could overcome the need to build more
extensive data centers. The federated learning (FL) ap-
proach (McMahan et al., 2017) is appealing as an additional
layer of parallelism across poorly connected nodes, such as
data centers distributed in different regions (Douillard et al.,
2023; Nous Research, 2024; He et al., 2024; Marfoq et al.,
2020) or internet-wide collaborative training. The reasons
for its appeal are three-fold: (1) FL optimizers derive from
LocalSGD (Stich, 2019), which allows more infrequent
synchronization compared to distributed data parallelism,
reducing demands on the communication infrastructure; (2)
the size of text datasets makes it challenging to replicate
across data centers (Choudhury et al., 2024), which can be
alleviated by bringing training to the data; and (3) federa-
tions scale seamlessly as participants join (Xu et al., 2024),
i.e., as the total available compute expands, without need-
ing to build additional costly infrastructure or reconfigure
existing systems.
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In this work, we present Photon, the first open-source FL
system for executing pre-training of LLMs across a dis-
tributed setting - composed of individuals privately owing a
handful of hardware accelerators - communicating through
the Internet. We show that Photon effectively navigates the
trade-off between performance and efficiency and fills the
gap for researchers and practitioners to federatedly pre-train
high-performance LLMs off the shelf. Notably, Photon
has been used for pre-training the first family of federated
decoder-only large language models from scratch, scaling
model size up to 7B. Moreover, academic and industry re-
searchers have used Photon to execute 1811 experiments
and submit six papers to international machine-learning
venues. We built Photon on the Flower framework, and
the code will be made publicly available.

The contributions of this work are the following:

1. We introduce Photon, the first open-source system for
federated LLM pre-training over the Internet, enabling
collaboration across private GPUs or distributed sub-
sets of data centers worldwide. Photon has successfully
trained the first federated family of decoder-only LLMs
from scratch, reaching lower perplexities than central-
ized training for models up to 7B parameters.

2. We show that Photon achieves up to 20% higher
throughput (samples/sec) than centralized distributed
training, requiring 64×–512× less communication.
Furthermore, Photon is significantly more robust than
standard data-parallel approaches since workers can
continue training if another participant in the federation
fails.

3. We propose a novel federated pre-training approach ex-
ploiting the robustness to hyperparameters of federated
averaging to combine small device batch sizes with
high learning rates. This allows models trained with
Photon to converge twice as fast as previous methods,
such as DiLoCo (Douillard et al., 2023).

4. By combining high throughput with our optimiza-
tion method, we demonstrate that the training time
with Photon reduces as more compute resources are
added up to a certain batch size limit. This achieves
a compute-time trade-off similar to centralized pre-
training.

Photon enables scaling pre-training infrastructure to a global
scale. Beyond allowing a potentially unprecedented number
of GPUs to train a model effectively and robustly collabora-
tively, it could be used for novel applications. For example,
distributing compute across nodes based on energy costs,
carbon emissions, a fairness policy, or the proportion of
unique private data.

2 LLM PRE-TRAINING UNDER
DECENTRALIZED SYSTEM CONDITIONS

We focus on low-bandwidth distributed settings for training
LLM. In such scenarios, the standard distributed training
method of synchronizing gradients at every batch step would
incur very high overheads. For example, the inter-worker
communication costs of using distributed data parallelism
(DDP) with Ring-AllReduce (Sergeev & Balso, 2018) would
be O(|θ| × T ) where |θ| is the model size and T is the
number of training steps. Moving to federated training
allows us to reduce the communications costs (Stich, 2019;
Kairouz et al., 2021) toO(|θ|× T

Tlocal
) by performing Tlocal

steps on a “worker” prior to synchronization.

While highly beneficial from a communication perspec-
tive, infrequent synchronization significantly alters the
optimization procedure (Stich, 2019; Ortiz et al., 2021;
Lin et al., 2020). Every gradient descent step in standard
distributed training is executed on a fully up-to-date
model. At the same time, in federated learning, participants
operate with stale parameters for Tlocal steps. This poses
challenges to reaching a similar level of data efficiency
as standard distributed training (Wang et al., 2021). In
addition to this fundamental challenge, various FL settings
can pose additional difficulties, such as hardware and data
heterogeneity (Kairouz et al., 2021).

2.1 Emerging Decentralized Scenarios

Our design space has three particular settings for which
low-bandwidth training methods are likely beneficial.

Cross Data-center: This scenario resembles standard dis-
tributed training, where multiple data centers collaborate
to train models even larger than the current SOTA. Typi-
cally, distributed training approaches cannot operate over
the low-bandwidth connection across data centers, forcing
corporations to build ever-larger facilities.

Cross-silo: Here, we assume collaboration among several
small organizations, each equipped with one to eight high-
performance accelerators. In such cases, not only is the
bandwidth across silos low, but silos may have an insuffi-
cient number of GPUs to saturate the batch-size require-
ments of even modest-sized models.

Collaboration via Commodity Hardware: In this setup,
individuals with a small number of consumer-grad GPUs
collaborate in model training. This setting presents the
above challenges in a harsher form due to strong VRAM
constraints on commodity GPUs, making it difficult even to
train a model without extreme CPU offloading.

Collaborating in such federated scenarios aims to benefit
from more computing power and data sources by achieving
the machine learning (ML) optimization objective quicker
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than what standard training can do in a single location.
Given our available resources, we focus on the standard
cross-silo setting. Thus, we assume that every participant
possesses the following minimal requirements: (a) one or
many well-connected hardware accelerators, which can be
sporadically available throughout a full training cycle; (b)
sufficient memory to train the full model with a pre-defined
small (local) batch size; (c) access to a pre-tokenized text
corpus, either stored in the same facility or streamed through
the Internet from a private data silo; and (d) a stable connec-
tion to the Internet with an average bandwidth of 2.5Gbps.

2.2 Computation Efficiency

LLM pre-training has presented many challenges to systems
and architecture designers, as it has unprecedented mem-
ory footprints (VRAM) and requires extensive computing
capabilities (FLOPs/s) (Hoffmann et al., 2022b). Most of
these are mitigated by pooling extensive hardware accelera-
tors and adopting distributed training algorithms. Standard
distributed training algorithms are based on 3D parallelism,
which applies data parallelism (DP) across racks in a data
center (Dean et al., 2012), pipeline parallelism (PP) across
servers in a rack (Narayanan et al., 2019), and tensor paral-
lelism (TP) across GPUs in a server (Narayanan et al., 2021).
The common practice is designing computing facilities to
fully exploit 3D parallelism for optimal resource utilization.

Achieving optimal resource utilization requires thoughtful
configuration of the hyperparameters and the mixture of
distributed algorithms, which becomes more challenging as
the scale increases. This tuning involves choosing the most
appropriate batch size that will result in the least expensive
gradient accumulation (ideally, none). We assume the partic-
ipants in the distributed settings discussed here thoroughly
understand their available hardware and their interplay with
the 3D parallelism of the target model size. We construct
our evaluation on settings running full batch steps matching
their resources without any gradient accumulation.

2.3 Sourcing and Moving Data

ML workloads, such as LLM pre-training, require mas-
sive training data and computational resources, naturally
distributed across several regions. To achieve reasonable
efficiency, ML infrastructures are designed to follow the
data-GPU collocation principle, i.e., data warehouses are
colocated in the same region with GPU clusters to avoid rely-
ing on the cross-region network bandwidth (usually 10 times
lower than intra-region network bandwidth). Large-scale
infrastructures face the challenge of satisfying data-GPU
collocation for exabytes of data, tens of regions with thou-
sands of GPUs. Data is also continuously produced and
removed, making the collocation task even more challeng-
ing. A worldwide scheduler, such as MAST (Choudhury

et al., 2024), optimizes the cross-regional data placement
daily, leveraging algorithms that can take up to 5 hours to
complete their task. In this context, our work tackles a set-
ting, usually referred to as training-at-home. Our Photon
takes advantage of the available computing power at clients,
where data is stored, resulting in the following benefits: (a)
it doesn’t require particular data placement optimization;
(b) it can leverage low-hanging fruit local storage optimiza-
tions, such as data pre-tokenization, (c) it is compliant with
privacy constraints as it doesn’t move data.

2.4 Cross-silo Communication

Training procedures based on 3D parallelism leverage high-
bandwidth networks supported by intra-datacenter network-
ing solutions such as RoCE and InfiniBand with the
typical link speed from 100Gbps up to 400Gbps per link.
(Sergeev & Del Balso, 2018; Gangidi et al., 2024; Li et al.,
2024). Their communication efficiency of the standard dis-
tributed training approach is heavily impacted by slow net-
work links, which makes them unsuitable for cross-region
applications we are interested in as their network bandwidth
ranges from 0.8Gbps to 40Gbps. In this work, we use dis-
tributed training algorithms based on LocalSGD, which
requires less frequent communication across workers (Lee
et al., 2020) and strongly reduces the overheads of possess-
ing slower links across workers.

3 ARCHITECTURE AND DESIGN OF
PHOTON

To enable collaborative and effective cross-silo FL pre-
training of LLMs with limited inter-data center commu-
nication, Photon follows three core principles: broad in-
clusivity of data and compute sources, minimal compute
requirements, and scalable local training pipelines. These
principles maximize client resource utilization and ensure
a robust design. We now present Photon ’s architecture,
beginning with a brief overview of its core innovations. The
main components are summarized in Figure 1.

Adaptive Local Parallelism: Photon integrates standard
distributed training techniques with federated learning, opti-
mizing training data storage, transfer, parameter communi-
cation, and aggregation. It adapts to each client’s connec-
tivity and topology, allowing automatic selection between
standard distributed training and low-bandwidth LocalSGD.

Improved Model Generalization: The federated optimiza-
tion we adopt produces robust model minima and is resilient
to hyperparameter variations due to noise injection (Lin
et al., 2020) and meta-learning effects (Nichol, 2018), en-
suring convergence across varied client participation lev-
els, data heterogeneity, and local training hyperparameters.
Since robust model minima, defined as model parameters
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Figure 1. Systematic diagram of Photon’s three principal com-
ponents - Photon aggregator, Photon LLM clients, and Pho-
ton data sources. Arrows describe interactions and message ex-
changes. The Photon aggregator can only communicate with the
Photon LLM nodes through the Photon link. The instances respon-
sible for storing the data samples, the Photon data sources, can
uniquely stream to the Photon client bound to them.

whose loss does not significantly change upon perturbation,
are known to generalize better and produce lower validation
loss (Keskar et al., 2017; Lin et al., 2020), this partially ex-
plains the outperformance that models trained with Photon
show over centralized pre-training.

Exploiting Small Batches and High Learning Rates: Pho-
ton’s robustness to hyperparameter choices enables the use
of small (hardware-determined) local batch sizes, which
promote flat minimizers of the loss that generalize bet-
ter (Keskar et al., 2017), along with high learning rates
decayed over an extended period—typically unstable with
small batches—allowing us to maintain data efficiency. For
example, if centralized training uses a decay period T with
batch size B, federated learning enables us to extend it
to T × B

Bsmall
. In our experiments, using small batch sizes

Bsmall in centralized training always resulted in model diver-
gence unless the maximal learning rate was reduced linearly
w.r.t the batch size. Full details are in Appendix C.1.

3.1 Architecture

Photon consists of the following core components.

Aggregator (Agg): Agg serves as the central server or-
chestrating the federated training process. At the start of
each round, it activates the Client Sampler to access and
select LLM-C instances according to the optimization algo-
rithm’s requirements. Agg then uses Link to relay messages
between LLM-C clients. Once results are received from
LLM-C, OuterOpt aggregates updates and applies the op-
timization to the global model, followed by checkpointing.

LLM Client (LLM-C): LLM-C is the distributed client in
Photon responsible for the local training pipeline within the
federated optimization process. Each LLM-C can connect
to Agg at any point during training. The ClientOpt trains

Client Sampler

Check point Model Server 
GPU

OuterOpt

1 Initialization

2

Round information

3
Sending

Local training4

ClientOpt5

Check point6

7
Updated 
weights

8 Aggregate

Figure 2. Information flows between LLM clients, the aggrega-
tor, and data sources. Following initialization (1), An LLM client
selected by the client sampler (2) receives model parameters from
the server (3), trains on data from a data source (4,5), checkpoints
(6), and then returns the updated parameters (7) to the aggregator
for federated optimization (8).

the model received from Agg on local data, utilizing various
distributed algorithms suited to each LLM-C’s hardware
capabilities. Model updates and training metadata are then
exchanged with Agg through Link. The training state is
regularly checkpointed for fast recovery in case of failure.

Data Sources (DS): Data Sources serve as the data storage
for Photon, meeting the federated learning requirements
regarding data location and exchange protocols. Each pri-
vate DS is linked to an individual LLM-C within the same
client’s data domain, generating a continuous data stream
that matches ClientOpt’s training throughput. This de-
coupled structure allows institutions with large data silos to
obtain paired computation through LLM-C without sharing
data globally. Additionally, public DS can be configured for
data sharing among LLM-C clients to support collaboration
or data-sharing agreements between participants.

3.2 Operation

We detail Photon’s workflow, as illustrated in Algorithm 1,
and present a workflow visualization in Figure 2.

Photon assumes collaboration among multiple independent
institutions, each with distinct data and compute silos, to
pre-train LLMs with their own LLM-C. For enhanced data
protection, the Aggregator (Agg) can be hosted by one of
the institutions or a trusted third party. At the start of train-
ing, Agg initializes the model or sources it from one of the
LLM-C ( L.2 ). After initialization, Agg coordinates round
information for client sampling ( L.3− 4 ), sends the model
to each sampled client, and collects results ( L.5− 7 ). It
then aggregates the local models to construct a new feder-
ated model ( L.8− 10 ), checkpointing the global model at
the end of each round to enhance robustness ( L.11 ).

At each round, sampled LLM-C instances initiate their local
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training pipeline by acquiring data streams from their respec-
tive private DS ( L.14 ). For enhanced evaluation, Photon
allows DS to use public data sources when configured. Each
LLM-C evaluates available hardware resources to select the
optimal execution strategy ( L.15 ), either utilizing fast in-
terconnection between GPUs ( L.16− 18 ) or applying an
additional level of federated optimization if inter-GPU con-
nectivity is limited ( L.19− 23 ). In the latter case, LLM-C
performs an extra level of local aggregation ( L.24− 25 ). A
local checkpoint is also maintained for quick recovery in
case of failure ( L.27 ). After completing the local training
pipeline, LLM-C applies post-processing (e.g., gradient clip-
ping, compression, or differential privacy noise injection)
before returning updates to Agg ( L.28 ).

Algorithm 1 Photon execution pipeline
Require: Number of rounds T , training population P

Require: Number of clients per round K, hyperparameters H

1: procedure AGGREGATOR(T , K, H , P )
2: θ0 ← InitModel(H)

3: for each round t = 1, 2, 3, . . . , T do
4: C ∼ U(P,K)

5: for k ∈ C do in parallel
6: θtk,Mt

k ← LLM CLIENT(k, θt, H)

7: ∆t
k ← θt − θtk

8: ∆t ← 1
|C|

∑
k∈C ∆t

k

9: θt+1 ← ServerOpt(θt,−∆t, t)

10: Mt+1
k ← AggMetrics(Mt

k|∀k ∈ C)
11: Checkpoint(θt+1

k )

12: return θT+1
k

13: procedure LLM CLIENT(k, θt, H)
14: Dk ← BindStream(k)

15: Ik ← GetNodes(k)

16: if HasRDMA(Ik) then
17: Bk ← CalcBatchSize(Ik)

18: θtk,Mt
k ← TrainClient(θt,Dk, Bk, H)

19: else
20: for node i ∈ I do in parallel
21: Bi

k ← CalcBatchSize(i, Ik)

22: Di
k ← PartitionStream(i,Dk)

23: θti ,Mt
i ← TrainClient(θt,Di

k, B
i
k, H)

24: θtk ← 1
|I|

∑
i∈I θ

t
i

25: Mt
k ← AggMetrics(Mt

i|∀i ∈ Ik)

26: Checkpoint(θtk,Dk)

27: θtk ← PostProcess(θtk,Mt
k)

28: return θtk,Mt
k

4 PHOTON IMPLEMENTATION

The Photon implementation is highly optimized for the
unique challenges of federated pre-training. Thus, it has
the following objectives: (a) allow for efficient, intermittent
data transfer between clients, data sources, and the aggrega-
tor; (b) effectively select the distributed training algorithm
for a given client given their local GPU topology; and (c)
exploit the federated communication topology to select the
fastest aggregation method. We now discuss how our im-
plementation, consisting of approximately 16 273 lines of
code, achieves these aims.

Link between Agg and LLM-C: To enable efficient com-
munication between Agg and LLM-C, Photon includes a
dedicated communication module, Link. This module as-
sumes a relatively fast and stable internet connection of at
least 1Gbps between Agg and LLM-C, which is appropriate
for the cross-silo federated setting. Serving as the com-
munication gateway, Link uses secure TLS encryption and
supports secure aggregation (Bonawitz et al., 2016) for en-
hanced privacy, if needed. Beyond model updates, message
payloads carry metadata, including training and evaluation
instructions, metrics, and global instructions. Link provides
an extensible post-processing pipeline by leveraging model
compression and pruning techniques. By default, Photon
uses lossless compression techniques without pruning.

Data Streaming for DS: Data is naturally distributed in
cross-silo settings; therefore, our DS implementation breaks
from the traditional one-to-one mapping between compute
and data resources. Treating data as streams from one or
multiple DS elements, Photon enables mixing arbitrary data
streams with precise control over sampling across such
streams. This decoupling allows data providers to oper-
ate independently of compute providers, broadening our
federation. Moreover, this design reduces core network uti-
lization if a DS can communicate with an LLM-C over a
separate network. To optimize data streaming, Photon DS
employs caching alongside optional data pre-tokenization
and compression. These optimizations heuristically min-
imize storage overhead during the transfer from data pro-
ducers to data consumers, reduce compute demands on data
consumers, and maintain the throughput required by each
LLM-C.

Optimal Training Strategy Selection for LLM-C: To
accommodate the heterogeneous nature of the hardware,
Photon ’s LLM-C can support a wide range of configu-
rations, provided the model fits within the available total
VRAM with a batch size of at least one sample. An LLM-C
hardware setup can include a single GPU, multiple GPUs
within a server node, or multiple servers connected by high-
bandwidth interconnects. Photon aims to maximize through-
put for each LLM-C by selecting an optimal training strategy
through a heuristic-based approach that is summarized as
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follows:

1. If a model and sufficient batch size fit within a single
GPU, enabling the client to keep pace with the feder-
ation, LLM-C assigns a dedicated GPU to each client.

2. For nodes with multiple GPUs, LLM-C uses either
DDP or FSDP, depending on whether a model with
a viable batch size fits within a single GPU.

3. When clients have a cluster of GPU-equipped ma-
chines, LLM-C selects a strategy based on the cluster
interconnection speed. High-bandwidth interconnects
lead to DDP or FSDP, similar to the previous variant.
In contrast, lower bandwidth may necessitate construct-
ing sub-federations with further data sub-partitioning,
with each partition trained independently.

In each case, the strategy ensures optimal compute utiliza-
tion within the LLM-C topology. All LLM-C training strate-
gies are transparent to Agg, enhancing the federation’s scal-
ability and extensibility. Our experiments primarily use
common cross-silo settings, such as allocating one GPU per
client, reflecting typical institutional bandwidth constraints
between servers. However, as demonstrated later, Photon is
flexible and supports better-interconnected topologies.

Topology Between Clients: For Photon to efficiently pre-
train an LLM in a federated setting, parameter aggregation
must be effectively managed within current communication
constraints. In general, a model with size M = |θ| trained
across N workers can be aggregated in three variants, each
with other distinct use cases, advantages, and limitations:

1. A parameter server (PS) receives all updates from par-
ticipating workers. This variant is ideal for relatively
small N , as the data received by the server scales in
O(NM). It handles worker dropouts well by provid-
ing a partial update derived from surviving workers
and is the only viable option when privacy restrictions
prohibit peer-to-peer communication.

2. Workers communicate directly via AllReduce (AR). In
this setup, each worker sends its model to all peers and
receives models from all others, resulting in O(N2M)
data transmission per worker. Like PS, AllReduce
tolerates dropouts well, enabling partial updates from
remaining workers; however, privacy limitations may
restrict peer-to-peer communication.

3. Workers use Ring-AllReduce (RAR), communicating
over a ring topology for efficient aggregation. This
bandwidth-optimal method requires each worker to
send/receive O(M) data, with the bottleneck being the
slowest link in the ring. RAR does not tolerate dropouts
and has similar privacy considerations to AllReduce.

Each method has its constraints, and Photon adapts to select
the most efficient option for each scenario.

England
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Figure 3. The locations and bandwidth of participating clients
in the Federation, with multiple nodes equipped with H100s
at each site. More details are available in Table 1. Bandwidth
between regions varies significantly, impacting the efficiency of
Photon’s aggregation procedures. The map shows the RAR topol-
ogy (gray dashed line) and the PS topology (black solide line).
The slowest link in the RAR topology, between Maharashtra and
Quebec, acts as a bottleneck. In the PS topology, the connection
speed to England limits each update’s communication.

Table 1. Computational resources of different regions. For each
region, “num. of clients x num. of GPUs held by each client” is
shown, e.g., 1 x 8 H100. Photon enabled this globally distributed
setup, overcoming challenges of low average bandwidth.

Size Agg England Utah Texas Quebec Maharashtra

7B England - 1 x 8 H100 1 x 8 H100 1 x 8 H100 1 x 8 H100
3B England - 1 x 4 H100 1 x 4 H100 1 x 4 H100 1 x 4 H100
1B England 1 x 2 H100 2 x 2 H100 2 x 2 H100 2 x 4 H100 1 x 4 H100

125M England 2 x 1 H100 2 x 1 H100 2 x 1 H100 2 x 1 H100 2 x 1 H100

5 EVALUATION

This section demonstrates the effectiveness of Photon in
training large language models (LLMs) from scratch in fed-
erated settings, compared to models trained using standard
centralized methods and prior low-bandwidth distributed ap-
proaches. We evaluate models based on final performance,
compute efficiency, and communication scalability.

5.1 Experimental Setup

Our experiments employ a cross-silo FL setup where clients
are equipped with one or more high-end GPUs, such as
Nvidia H100s, and are interconnected via the Internet. The
computational resources used on each client vary based on
model size: million-parameter models are trained using a
single GPU, whereas billion-scale models may require up
to 8 GPUs per client. We present the five locations used
during training for our distributed setup in Fig. 3, with
details on the number of clients and GPUs available per
client provided in Table 1.

The client’s local batch size is determined by its VRAM,
model size, and optimal throughput, leveraging heuristics
similar to those proposed by the Microsoft DeepSpeed
AutoTuner (Microsoft DeepSpeed Team, 2024b;a). For
instance, clients training a 125M parameter model use
1 Nvidia H100, processing a hardware-determined local
batch size Bl = 32, without gradient accumulation or
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activation checkpointing, to maximize throughput. Given
the assumption of homogeneous client resources, all
clients independently employ the same local throughput
optimization strategies. Experiments are conducted using
PyTorch (v2.4.0) with mixed precision context bfloat16
(BF16). The model architecture is based on the MPT
(Mosaic Pre-Trained) family of decoder-only transformers
(MosaicML NLP Team, 2023), with the MPT centralized
training recipe used as a baseline configuration.

Datasets and Training Recipe. We model data distribu-
tion across clients by randomly partitioning the C4 (Raffel
et al., 2020) dataset uniformly into 64 equally sized shards.
N clients, hence, refer to a subset of N shards from these
64 shards. The local training step for clients uses AdamW
(Loshchilov & Hutter, 2019) as the optimizer, with a cosine
learning rate schedule and an initial linear warm-up phase.
We report all hyperparameters in Appendix A. The learning
rate schedule varies by model size and is adjusted to match
the batch size and total token count seen in centralized train-
ing. We experiment with different numbers of local steps
per round, specifically {62, 128, 512}, which defines the
amount of local work done by clients. Model performance
is evaluated using perplexity on the full C4 validation set.

To explore the robustness of Photon to data heterogene-
ity, we also explore a setting where clients hold data from
a variety of text sources representing diverse categories.
Specifically, we use The Pile (Gao et al., 2020) dataset,
which includes text sources from ArXiv (academic), C4
and Wikipedia (internet), and Project Gutenberg
(prose) to capture a range of language styles while providing
sufficient data for scaling. For our experiments with full
participation, we explore three configurations: four clients
(one text source per client), eight clients (two text sources
split into two clients), and sixteen clients (four text sources
split into four clients). For partial participation, we adopt
the sixteen-client configuration, sampling 25%, 50%, and
100% of clients per round, with evaluation on C4.

5.2 Photon trains Billion-sized LLMs

Using Photon, we train models up to 7B parameters from
scratch in federations of 16 to 4 clients, using full participa-
tion every round and prove they outperform their centralized
counterparts. While previous results suggest that federated
optimization is generally inferior to standard SGD in terms
of loss (Wang et al., 2021) and that LLM pre-training may
be less sample-efficient (Douillard et al., 2023; Sani et al.,
2024), we find it to be quite competitive in terms of wall-
clock time and, comparable if not slightly superior in terms
of loss. As shown in Fig. 4 and Table 2, the 3B and 7B
models achieve 13.8% to 16.9% lower perplexity than mod-
els trained using centralized training. As shown in Table 3,
such models can perform similarly in terms of perplexity
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Figure 4. Comparison of perplexity convergence (lower is bet-
ter) for Photon and centralized training with 3B (left) and 7B
(right) models. The federated global model was evaluated on
the C4 test set, with averaged train perplexities across clients and
centralized train/test perplexities presented for both models. These
large federated models show lower perplexity than centralized
models and remain stable during aggregation, with minimal per-
plexity spikes after early rounds.

Table 2. Our results show federated models to be comparable
to centralized and potentially superior as they obtain lower
perplexity (PP) given the same computational resources. Their
perplexity gains grow with model size.

Size Fed PP Cent PP Gain (%)

1.3B 20.1 23.2 13.4%
3B 15.7 18.2 13.7%
7B 13.8 16.6 16.9%

after sufficient training. For instance, when utilizing iden-
tical computational resources with a 10 Gbps connection
and Ring-AllReduce, Table 3 demonstrates that federated
optimization for the 7B model to reach the same perplexity
requires only 95.6 total hours whereas centralized meth-
ods require over 147 hours. Despite the compute time of
the 7B model being almost 2× higher, the 500× commu-
nication reduction of Photon can bring an overall reduc-
tion in wall time. Higher-bandwidth connections such as
InfiniBand would bring the total time closer to the com-
pute time. Moving beyond perplexity, we also show that the
models produced by Photon are effective for downstream
tasks in Appendix D.3.

We observe that the perplexity gap between federated and
centralized models widens at larger scales; smaller models
converge to similar performance levels across methods. Ad-
ditionally, as model size grows, training stability improves,
as we observe perplexity spikes decreasing in magnitude
compared to smaller models. Our observed performance im-
provements stem from the noise-injecting (Lin et al., 2020)
and meta-learning (Nichol, 2018) of our federated optimiza-
tion. As we will later see, federated optimization supports
high learning rates with small batch sizes, enhancing gener-
alization via noise injection (Keskar et al., 2017).
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Table 3. We report system metrics for the billion-scale models
trained with Photon and their centralized baselines, including
total wall time with compute and communication time breakdowns.
We provide GPU efficiency metrics such as average GPU utiliza-
tion and Model FLOPs Utilization (MFU) during local compu-
tation.While federated optimization may increase compute time,
Photon ’s federated approach shortens overall training time by
reducing communication steps, assuming consistent setups: the
number of federated clients matches data-parallel workers, aggre-
gation uses Ring-AllReduce with a fixed 10Gbps bandwidth for
the slowest link, and both clients and workers maintain the same
mini-batch throughput.

Model Wall Compute Comm. Local Util. Local MFU
Time [h] Time [h] Time [h] GPU [%] per device

Cen-1.3B 26.7 (1×) 6.5 (1×) 20.2 (1×) 74 0.8027
Fed-1.3B 18.02 (0.67×) 18.0 (2.8×) 0.02 (0.001×) 83 1.1245

Cen-3B 56.6 (1×) 16.1 (1×) 40.48 (1×) 81 0.165
Fed-3B 25.2 (0.45×) 25.1 (1.6×) 0.05 (0.001×) 78 0.240

Cen-7B 147.9 (1×) 50.7 (1×) 97.2 (1×) 88 0.335
Fed-7B 95.6 (0.65×) 95.5 (1.9×) 0.1 (0.001×) 90 0.224

5.3 Photon Model Performance Scales with Federation
Size

Previous works (Charles et al., 2021; Douillard et al., 2023)
raised concerns about the wall time benefits of increasing
the federated population size. Using Photon, we show that
client contributions to the global model convergence depend
on the amount of local work, based on the following hyper-
parameters: the number of local training steps per round and
the global batch size Bg = NBl ∈ {32, 64, 128, 256, 512},
where N ∈ {1, 2, 4, 8, 16} is the number of clients per
round, and Bl = 32 is the local batch size.

As illustrated in Figure 5, more frequent communication
(smaller local steps per round) leads to greater wall time
reductions with larger Bg. The trends are smoother for a
higher target perplexity of 42 than at a lower target perplex-
ity. On the other hand, at a target perplexity of 35, the gains
in wall time drop as Bg increases, especially at 128 steps per
round. This phenomenon is also observed in McCandlish
et al. (2018), where increasing the batch size in the central-
ized setting led to diminishing returns in wall time. For more
details, see Appendix C.1. Hence, depending on the target
perplexity and local steps per round, a compute-optimal
regime exists where the global batch size Bg must be care-
fully tuned to maximize the number of available clients.

Comparison with State-of-the-Art. Through utilizing
the aforementioned compute-optimal regime, Photon sig-
nificantly outperforms previous state-of-the-art LLM dis-
tributed pre-training framework, DiLoCo (Douillard et al.,
2023). In Table 4, we train a model with 125M parameters,
varying the number of clients N ∈ {2, 4, 8}, and using a lo-
cal batch size Bl = 32. We show that, within an appropriate
global batch size Bg regime, DiLoCo yields limited returns
as the number of clients per round increases and requires
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Figure 5. The tradeoff between time and compute resources
(the larger batch size, the more resources) spent to train a
model by Photon to target perplexities (top 42 and bottom
35). We measure the impact of the global batch size Bg = NBl,
where N ∈ {1, 2, 4, 8, 16} (number of clients per round) and
Bl = 32 (local batch size), on the wall time needed to reach two
target perplexities: 42 (top, near the centralized baseline) and 35
(bottom, near optimum). Fewer local steps per round (64) show
clear benefits from increasing Bg for both perplexity targets, but
with more local work (128 and 512 steps), the returns on reduced
wall time diminish.

roughly 2× more time to reach the same perplexity for both
target values, 42 and 35. We observe similar trends across
different Bg settings used in DiLoCo.

In Douillard et al. (2023), the authors adopted a much higher
compute regime.DiLoCo trains a smaller model (75M pa-
rameter) with Bl = 512, N = 8, and Bg = 4096 for
88 000 steps, which corresponds to 46B tokens per worker
and 369B tokens in total, far beyond the compute-optimal
1.5B estimated by Hoffmann et al. (2022a)1. In contrast,
for the larger 125M model, Photon automatically tunes
the local batch size Bl = 32 to suit the hardware capabili-
ties and achieve 9000 cumulative training steps per client
when using four clients per round, reaching 2.32B token
processed in total, close to the compute-optimal 2.5B tokens
estimated by Hoffmann et al. (2022a).

5.4 Photon’s Comms. Efficiency and Scalability

Communication is an overhead in FL, often scaling poorly
as the number of clients grows. In this section, we evaluate
the communication scalability of Photon, considering its
nontrivial relationship with the faster convergence speed

1The original work is not explicit if 512 is global or local.
Substituting Bl = 512

8
gives similar conclusions, with 5.75B

tokens per worker and 46B in total, far beyond the optimal 1.5B.
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Figure 6. Perplexity convergence comparison between Photon
and DiLoCo. We tuned DiLoCo’s recommended server optimizer
(OuterOpt), SGDwith Nesterov momentum, using learning rates
ηs ∈ {0.1, 0.3, 0.5, 0.7}, while keeping the momentum coeffi-
cient fixed at 0.9. A 125M-parameter model was trained with a
global batch size Bg = 128 and N = 4 clients per round. Higher
ηs values accelerated training but hindered achieving the desired
perplexity due to early divergent activations. Consequently, we set
ηs = 0.1 in later experiments to reach lower perplexities.

Table 4. Photon consistently reaches a satisfactory perplexity
twice as fast as DiLoCo (η = 0.1) across three client counts. We
evaluated the impact of the global batch size Bg = NBl, where
N ∈ {2, 4, 8} (clients per round) and Bl = 32 (local batch size),
on the wall time required to reach target perplexities of 42 (near
the centralized baseline) and 35 (near optimal). Results show the
wall time gap between Photon and DiLoCo when tuning the server
learning rate ηs = 0.1 to meet the target perplexities.

N Method Wall Time [s]
PPL = 42 PPL = 35

2
DiLoCo (ηs = 0.1) 10528.8 (1×) 19516.8 (1×)
Photon 5392.8 (0.51×) 10015.2 (0.51×)

4
DiLoCo (ηs = 0.1) 10545.2 (1×) 19032.8 (1×)
Photon 5144.0 (0.49×) 9516.4 (0.5×)

8
DiLoCo (ηs = 0.1) 9523.8 (1×) 20334.6 (1×)
Photon 5148.0 (0.54×) 9523.8 (0.47×)

brought by using more clients per round (Fig. 5). Thus, we
examine three aggregation implementations for Photon: pa-
rameter server (PS), AllReduce (AR), and Ring-AllReduce
(RAR). These approaches are detailed in Section 4.

Increasing the number of clients per round speeds up con-
vergence, reducing the required communication steps. Thus,
we evaluate communication scalability by varying the num-
ber of clients per round, N ∈ {2, 4, 8, 16} (excluding
N = 1, as no communication occurs). Since the number
of pseudo-gradients communicated and aggregated scales
linearly with the number of clients and model size, we use
the most communication-efficient setup in our experiments.
Specifically, clients perform 512 local steps per round, train-
ing a 125M parameter model targeting a perplexity of 35.

Figure 7 shows that communication overhead increases with
N , especially under the PS implementation due to its lim-
ited scalability. However, using more clients accelerates
convergence, reducing the required communication steps
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Figure 7. Wall time comparison among different topologies. We
report total wall time divided into local compute (LC) and com-
munication time. Communication time is evaluated for three ag-
gregation methods: parameter server (PS) for privacy-constrained
settings, AllReduce (AR) for better scalability, and Ring-AllReduce
(RAR), the most scalable but limited by the slowest link. As ex-
pected, communication costs rise with more clients. However,
efficient implementations like RAR maintain the wall time re-
duction from scaling compute resources. The top indicates the
percentage of time spent on communication for each method.

and mitigating the costlier communication. Except at the
largest cohort size (16 clients), the less scalable implemen-
tations (PS and AR) account for a minor portion of wall
time relative to the local computation (LC) time at clients.
Figure 7 highlights RAR as the most scalable option when
minimizing communication time is crucial.

5.5 Photon’s Robustness to Data Heterogeneity

In typical federated learning scenarios, clients possess het-
erogeneous data distributions, raising concerns about the
robustness of federated optimization. Non-coherent pseudo-
gradient updates across clients can impact model conver-
gence by slowing it down or reducing performance. This
challenge is compounded by privacy restrictions that prevent
observing client data distributions directly.

We assess Photon’s robustness to data heterogeneity by
training on different data sources from The Pile dataset,
distributed across clients as described in Section 5.1. The
most challenging scenario involves partial participation of
the client population, where the global federated model is
only intermittently exposed to diverse data distributions.
Figure 8 (top) shows that higher client sampling ratios im-
prove convergence speed, final performance, and conver-
gence smoothness under partial participation, demonstrating
Photon’s robustness to heterogeneous data.

Under full participation, Figure 8 (bottom) indicates that
larger client cohorts reduce wall-clock training time, though
less effectively than with IID data due to conflicting gradi-
ents from diverse sources (Charles et al., 2021). Aggregation
methods designed for heterogeneous data, as in (Yadav et al.,
2023), could further enhance convergence in such cases.
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Figure 8. We assess Photon’s robustness to data heterogeneity
by training with (top) and without (bottom) partial participa-
tion. Federation of clients using data from The Pile dataset, as
described in Section 5.1. Results from homogeneous data distribu-
tion (IID) experiments for reference. While partial participation
causes larger fluctuations across rounds, full participation behaves
similarly to the IID case. In all settings, increasing the number of
clients per round accelerates achieving the target perplexity, with
the effect more pronounced under partial participation.

6 OPPORTUNITIES AND LIMITATIONS

Our proposed Photon introduces both algorithmic and sys-
tem optimization techniques to achieve state-of-the-art LLM
pre-training across distributed heterogeneous data. In this
section, we reiterate some of our work’s limitations and
expand on some of our research’s potential opportunities
and applications.

Federated Hyperparameter Tuning. In Section 5.3, we
emphasize the importance of selecting the global batch
size to maximize computational resources and performance.
A natural extension of our work would be to investigate
other critical hyperparameters, such as the learning rate,
learning rate scheduler, and their interaction with batch
size. Photon ’s significant reduction in pre-training costs
for LLMs makes it feasible to leverage existing federated
hyperparameter optimization algorithms (Zhou et al., 2023;
Khodak et al., 2021) to explore optimal global or per-client
hyperparameters.

Addressing Data Heterogeneity. Our experiments in Sec-
tion 5.5 demonstrate Photon’s robustness in handling data
heterogeneity. However, further exploration of alternative
aggregation strategies, loss functions, and client selection
methods could enhance performance under such conditions.
Techniques include minimizing the Euclidean distance or
maximizing agreement between global and local models (Li
et al., 2020b; 2021), reducing local model divergence from

the global model (Acar et al., 2021; Karimireddy et al.,
2020), and measuring client contributions (Wang et al.,
2019; 2020), with client selection based on their value to the
global model (Cho et al., 2020; Huang et al., 2021). Most
of these methods can be directly integrated into Photon.

Continual Pre-training & Personalization. A key advan-
tage of using Photon for pre-training LLMs is improved
model convergence and performance, offering a stronger
initialization for continual pre-training or personalization.
This aligns with findings from previous studies (Nguyen
et al., 2023; Chen et al., 2023), which highlight the impor-
tance of starting with a strong pre-trained model to stabilize
federated training and enhance global model performance.
A robust pre-trained model also benefits LLM personaliza-
tion by enabling further fine-tuning or per-client learning
strategies (Lee et al., 2023).

Cross-device Federated Scenarios. In this work, we
demonstrate how Photon effectively addresses the chal-
lenges of cross-silo FL. Another common context is cross-
device FL, where clients are often lower-compute devices
like mobile phones and IoT devices. To handle the diverse
system heterogeneity in these scenarios, Photon can be ex-
tended with existing methods proven successful in cross-
device FL, such as parameter-efficient fine-tuning (Sun et al.,
2022; Zhang et al., 2023), quantization (Yoon et al., 2022),
low-rank decomposition (Yao et al., 2021), pruning (Caldas
et al., 2018; Jiang et al., 2022), and early exits (Lee et al.,
2024b; Kim et al., 2023; Ilhan et al., 2023).

7 RELATED WORK

Recent advances in large-scale FL and distributed deep
learning focus on improving scalability, efficiency, and pri-
vacy while addressing challenges like device heterogeneity
and system constraints. Early efforts, such as (Bonawitz
et al., 2019), emphasize system design in FL for mobile
devices, addressing resource limitations and connectivity in
applications like Google’s Gboard. Asynchronous FL sys-
tems like PAPAYA (Huba et al., 2022) improve scalability
by allowing clients to update models independently, boost-
ing convergence speed and reducing communication over-
head. Platforms like FLINT (Wang et al., 2023a) simulate
real-world FL constraints, benefiting large-scale applica-
tions like LinkedIn. In distributed deep learning, PyTorch’s
Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023) and
Distributed Data Parallel (DDP) (Li et al., 2020a) are cru-
cial for scalable training, while frameworks like Horovod
(Sergeev & Balso, 2018) use Ring-AllReduce to simplify
distributed learning. Tools like Dataset Grouper (Charles
et al., 2023) help create large-scale datasets, and systems
like MAST (Choudhury et al., 2024) optimize workload
placement across data centers. ZeRO (Wang et al., 2023b;
Ren et al., 2021; Rajbhandari et al., 2020) and PETALS
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(Borzunov et al., 2023a;b) extend scalability, enabling train-
ing and inference for models with trillions of parameters
and decentralized deployment, respectively, providing ro-
bust solutions for large-scale ML.

In federated or collaborative LLM training, most efforts
have focused on fine-tuning (Kuang et al., 2024; Ye et al.,
2024) or inference (Borzunov et al., 2023a;b), with pre-
training only recently gaining attention (Douillard et al.,
2023; Sani et al., 2024; Nous Research, 2024; Iacob et al.,
2025; Cheng & Glasgow, 2025). Previously, federated learn-
ing primarily centered on cross-device settings, which are
unsuited to pre-training’s substantial hardware demands.
Douillard et al. (2023), discussed in the main work, achieves
notable communication reductions in a high-compute train-
ing regime. Sani et al. (2024) introduces a library for LLM
pre-training and provides initial results on large models.
Nous Research (2024) offers early findings on a peer-to-
peer AllReduce approach to Federated Learning.

8 CONCLUSION

This work introduces Photon, the first federated system
for decentralized end-to-end LLM pre-training in low-
bandwidth, globally distributed settings. Photon enables
collaborative training of models up to 7B parameters, out-
performing centralized training in perplexity. By pooling
client resources, Photon accelerates training as compute
scales, and in low-bandwidth conditions, it surpasses stan-
dard distributed training by increasing throughput and reduc-
ing communication costs. This is achieved through adaptive
local parallelism, which dynamically switches between dis-
tributed algorithms and low-bandwidth Local SGD based
on client connectivity. With small local batch sizes and
high learning rates, Photon supports an aggressive training
strategy, making it the first cost-effective solution to scale
LLM pre-training beyond data centers.
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Appendix

In this appendix, we provide the details omitted in the main
paper and more analyses and discussions.

• Appendix A: Hyperparameters we used for various ex-
periments in our paper, including architectural details
and both centralized and federated hyperparameters.

• Appendix B: Implementation details, which include i)
full algorithms (pseudo-codes) of the proposed meth-
ods (Appendix E); ii) implementation of wall time in
the paper (subsection B.1).

• Appendix C: Additional discussions that are helpful
for the readers to better understand the background,
including federated optimization of LLM pre-training
(subsection C.1).

• Appendix D: Additional evaluations of the systems,
e.g., the downstream evaluations.

• Appendix E: Full algorithms for Distributed Data Par-
allelism (DDP) and cross-silo federated learning.

A HYPER-PARAMETERS

As shown in Table 5, we trained models ranging in size from
125 million parameters to 7 billion for the causal language
modeling task. We used the tokenizer presented in (Black
et al., 2022) with a vocabulary size of 50 368. The local
optimizer the clients use in our experiments is AdamW
(Loshchilov & Hutter, 2019), while the server optimizer is
FedMom (Huo et al., 2020). For all of our non-DiLoCo
experiments, we default to FedAvg with server learning rate
1.0 and server momentum 0.0. The hyperparameters we
used are reported in Table 6. We chose to train decoder-
only models, although our system could train any LLM
architecture because they have become the de-facto standard
in language modeling and text generation owed to their
sample efficiency.

We also note that the billion-scale experiments assume inter-
mittent client availability, reflecting real-world scenarios in
which participants may occasionally allocate free computing
resources to federated pre-training. To accommodate this,
we employ a stateless local optimization procedure, and
resetting optimizer states each round. This enables Photon
to operate seamlessly in sparse-compute scenarios, unlike
standard distributed data parallelism (DDP), which requires
fully dedicated and synchronized GPU workers. Stateless
local optimization also eliminates the communication costs
of synchronizing optimizer states, making it easier to ensure
that federated pre-training remains compute-bound.

Table 5. Architecture details and local training parameters for our
125M, 350M, 1.3B, 3B, and 7B models. We report the number of
transformer blocks, hidden model dimension d, number of atten-
tion heads, the linear layer expansion ratio, and Adam’s parameters
(β1 and β2). We also report the vocabulary size of the tokenizer
we used (Black et al., 2022) and the sequence length l.
Model #Blocks d #Heads Exp. Ratio (β1, β2) |Vocab| lSize

75M 3 896 16 4 (0.9, 0.95) 50 368 1024
125M 12 768 12 4 (0.9, 0.95) 50 368 2048
350M 24 1024 16 4 (0.9, 0.95) 50 368 2048
1.3B 24 2048 16 4 (0.9, 0.95) 50 368 2048

3B 32 2560 20 4 (0.9, 0.95) 50 368 2048
7B 32 4096 32 4 (0.9, 0.95) 50 368 2048

Table 6. Hyperparameters used in our experiments. The federated
learning rate ηs and momentum µs (Huo et al., 2020) are applied
by the Photon Agg. SC are the parameters of the learning rate
scheduler synchronized across sequential steps. α is the factor
to be applied to the maximum learning rate ηmax to obtain the
minimum learning rate for the cosine scheduler, i.e., ηmin =
α× ηmax. T is the duration, in steps, of the cosine scheduler for
fed/cent variants. We also report the batch size used in the local
training by the Photon clients and the centralized batch size.
Model

ηs µs α ηmax T T cent
Batch Batch

Size Size Size
Cent

125M {0.0, 0.1, 0.3, 0.5, 0.7, 1.0} {0.9, 0.0} 10−1 6.0× 10−4 40 960 5120 32 256
1.3B 1.0 0.0 10−1 2× 10−4 24 800 24 800 512 512
3B 1.0 0.0 10−1 1.6× 10−4 51 500 51 500 512 512
7B 1.0 0.0 10−1 1.2× 10−4 63 900 63 900 1024 1024

B IMPLEMENTATION DETAILS

B.1 Modeling Wall Time

We implement a comprehensive wall time model to analyze
the temporal efficiency of our federated learning system
across different communication architectures. The wall
time calculations account for both computation and com-
munication costs, considering factors such as local training
time, model broadcast time, gradient collection time, and
aggregation overhead.

Local Training Time The local training time (TL) for
each client is determined by the number of local training
steps and the client’s computational throughput:

TL =
τ

ν
, (1)

where τ represents the number of local training steps and
ν is the local throughput measured in batches per second.
Notably, TL doesn’t scale with the number of clients per
round K as we assume the ideal case where they all execute
the same local training recipe in parallel on equipollent hard-
ware. In our experiments, τ represents a hyperparameter
that we vary to observe its influence on the final perfor-
mance. During deployment, τ is one of the most important
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Table 7. Hyperparameters for our federated experiments. P repre-
sents the total number of clients per federations, K the number of
clients sampled per round, D the dataset, τ the number of steps
per round.
Model

P K D τSize

125M {1, 2, 4, 8, 16} {1, 2, 4, 8, 16} C4 (Raffel et al., 2020), The Pile (Gao et al., 2020) 64, 128, 512
1.3B 8 8 C4 (Raffel et al., 2020) 500

3B 4 4 C4 (Raffel et al., 2020) 500
7B 4 4 C4 (Raffel et al., 2020) 500

hyperparameters to tune to achieve a pre-defined objective,
i.e., target perplexity value at some target wall time. The
value of ν depends on the computing resources available and
the distributed strategy that Photon adopts at local clients.
Throughout our evaluation of the 125M parameter model,
we used an empirical value of ν = 2 batches per second for
both centralized and federated models. For the 1B model,
we used an empirical ν value of 0.147 for federated mod-
els and 0.839 for centralized models. For the 3B model,
we used ν = 0.144 and 0.395 respectively, and for the 7B
model, we used ν = 0.032 and ν = 0.12.

Communication Time The communication overhead
varies based on the chosen architecture. We implement
a bandwidth scaling factor for systems with more than θ
channels (default: 100) to account for network congestion.

For Parameter Server (PS) architecture, the total communi-
cation time (TP

C ) is:

TPS
C =


KS
B if K ≤ θ;

KS
B if K > θ,

(2)

where:

• K is the number of clients per round;

• S is the model size in megabytes;

• B is the server bandwidth in MBps.

For AllReduce (AR) architecture, the communication time
(TAR

C ) is:

TAR
C =

(K − 1)S

B
, (3)

For Ring AllReduce (RAR), we optimize the communica-
tion pattern, resulting in:

TRAR
C =

2S(K − 1)

KB
. (4)

We admit that accounting for congestion and real-world mea-
surements could further improve these models. However,
we find them to provide sufficiently accurate results.

Total Wall Time The total wall time for one round (Tr)
combines local computation and communication costs:

Tα
r = TL + Tα

C , (5)

where α ∈ {PS,AR,RAR} represents the chosen archi-
tecture.

The total wall time for the entire training process (T ) is:

Tα = RTα
r , (6)

where R is the total number of federated learning rounds.

The aggregation time Tagg is calculated by:

Tagg =
KS

ζ
, (7)

where ζ is the server computational capacity. The default
value of ζ is 5TFLOPS per second. For simplicity, the
aggregation time at the server is currently considered negli-
gible compared to communication costs, as shown in Equa-
tion 6. Still, the model allows for future extensions to in-
clude server-side computational overhead in cases where
its computational capabilities are highly constrained. Our
implementation accounts for exceptional cases as well, such
as single-client scenarios without communication.

B.2 Performance impact of the Link component

The Link component provides the crucial connection be-
tween the aggregator (Agg) and client (LLM-C). The band-
width available to the link of each LLM-C dictates how
quickly the model parameters can be exchanged for aggre-
gation. As discussed in Appendix B.1, in standard Dis-
tributed Data Parallel (DDP) training, gradients have to be
synchronized before every gradient descent step. The most
efficient implementations use the Ring-AllReduce algorithm
to synchronize gradients while having workers communi-
cate in a peer-to-peer fashion using RDMA network, such
as InfiniBand and RoCE. When using the same aggre-
gation/synchronization algorithm, e.g., Ring-AllReduce, for
both DDP and Photon, the Link bandwidth determines the
gap in communication time between the two methodologies.
Using the methodology presented in Appendix B.1 and as-
suming a given aggregation algorithm, one can estimate the
communication time for a given model size and bandwidth.
Factoring in that Photon communicates less frequently by a
constant factor τ (e.g., 500×), the minimal Link bandwidth
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BPhoton required for Photon to match DDP’s communica-
tion time at bandwidth BDDP follows from:

BPhoton ≥
BDDP

τ
.

This ignores the optimization aspects of model training,
which may increase the compute time of Photon, which is
why it represents a mere minimum bandwidth. If the above
inequality does not hold, it is necessary to either increase
the available bandwidth or to make the communication of
Photon more infrequent, which may impact the machine
learning performance.

B.3 Overlapping communication and cleaning up

When partial participation is involved in the federated set-
ting, clients may sporadically become available or drop out
of the federation at any time. When they disconnect after
they finish executing their local work for a specific federated
round, the Photon LLM Client can offload the communi-
cation process and simultaneously clean up the memory
allocated by the training pipeline to allow for the prompt
return to idle state. This routine quickly makes computing
resources available for another workload, which is particu-
larly important when using shared computing facilities.

B.4 Advanced sharing for reducing memory footprint

Every Photon LLM Client comprises a multiprocessing
stack managed by a leader process that coordinates subor-
dinate processes handling the hardware accelerators. Such
a leader process is also in charge of the communication
endpoint, so it receives and sends model parameters as the
algorithm requires. To minimize the RAM footprint up to
8×, the model parameters exchanged are stored in shared
memory, accessible by all subordinate processes.

C EXTENDED DISCUSSION

C.1 Federated Optimization of LLM Pre-training

Federated optimization differs significantly from standard
data-parallel training due to infrequent synchronization,
which affects the multitude of assumptions upon which
centralized pre-training of LLMs is built. In a centralized
context, previous works have shown the following: (a) the
number of parameters |θ| and the number of tokens T seen
by the model should be scaled roughly equally (Hoffmann
et al., 2022a) for compute-optimal training; (b) the batch
size B should be chosen based on the available hardware
resources, with larger batch sizes providing benefits until a
critical batch sizeBcrit, is reached (McCandlish et al., 2018);
(c) the learning rate should be scheduled using cosine decay
with a period equal to the total number of optimization-
steps/batches T/B. All of these components need to be

modified for effective federated optimization.

From a theoretical perspective, infrequent parameter aver-
aging methods such as Local SGD (Lin et al., 2020) or
FedAvg (McMahan et al., 2017) are expected to provide
an effect similar to scaling the batch size in a centralized
setting (Lee et al., 2020) when scaling the number of clients
per round, however, given the many moving parts of the
centralized recipe obtaining such improvements requires
successfully adapting it to a federated context. We need to
distinguish between the batch size of a given client Bc and
the effective batch size of a given round Beff =

∑
c∈Cr

Bc,
which depends on the batch size of all sampled clients.
While smaller batch sizes are known to provide generaliza-
tion benefits (Keskar et al., 2017), for the sake of efficiency,
using the largest batch size that can fit inside a given accel-
erator is preferable. Thus, we assume that each client uses a
fixed Bc determined by their hardware and that, for the sake
of simplicity, all clients have access to the same hardware

Bi = Bj ,∀i, j ∈ C × C.

In cases where clients have sufficiently powerful hardware,
we assume that they use a batch size Bc = Bcrit to avoid
wasting compute. With this simplifying assumption, the
compute-time trade-off in federated optimization depends
only on the number of clients sampled in a given round
|Cr| and the number of local iterations Tc performed on
each client, both assumed constant. In the case of Tc = 1,
this coincides, when assuming full participation, with the
centralized setting, allowing the critical batch size Bcrit to
be determined using the gradient noise scale as done in the
work of McCandlish et al. (2018). We perform numerous
experiments to understand how the number of local steps Tc

changes the Pareto-frontier of the compute-time trade-off.

Assuming that the findings of Hoffmann et al. (2022a) hold
in a federated context, the compute-optimal number of total
steps, T = R × Tc, that should be performed depends on
the number of tokens appropriate for the given model size,
roughly 20× |θ| according to the work of Hoffmann et al.
(2022a), and on the effective batch size as follows:

R× Tc =
20× |θ|
Beff

, (8)

with the large caveat that this compute-optimal point was
chosen, assuming that training would be conducted using
the centralized critical batch size. However, accounting
for this in the learning rate schedule is not trivial for two
reasons. First, the averaging-based aggregation procedure
will limit the impact of any individual update. This is true
both from a simple mathematical perspective, the norm of
the average update being less than the average of the up-
date norms, and because client updates in federated learning
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have been shown to produce near-orthogonal updates which
tend to result in small pseudo-gradient norms (Charles et al.,
2021). Second, clients take several optimization steps using
their hardware-determined batch size before aggregation,
with smaller batch sizes being known to require smaller
learning rates (McCandlish et al., 2018) in centralized set-
tings. Since we expect the client hardware batch size to be
generally smaller than Bcrit, they are likely to fall in the
regime of small-batch training. Thus, in our work, we pro-
pose decaying the learning rate following a cosine scheduler
appropriate for the hardware batch size Bc, using Eq. (8) to
obtain the period by replacing Beff with Bc. Having fixed
this period, we only have to tune one hyperparameter in
the form of the maximum learning rate ηmax with the min-
imum learning rate being computed as ηmin = ηmax

10 . In
contrast, we find that neither square root nor linear learning
rate scaling (Granziol et al., 2022a;b) sufficiently stabilize
centralized training across varying batch sizes.

The momenta stabilize the local optimization direction
for a given local momentum-based optimizer, such as
AdamW (Loshchilov & Hutter, 2019). Since they are gen-
erally implemented using exponential decay, the impact of
any individual gradient step is reduced. In the case of fed-
erated optimization, this poses a challenge as we aim to
update the momentum vectors to reflect the information re-
ceived during the aggregation step. Directly communicating
and averaging the momenta of all clients would increase
the communication costs by the number of momenta of the
optimizer relative to transmitting only the parameters, e.g.,
it would be three times higher for AdamW. To avoid such
increases in communication costs, we keep the momenta
local and rely on only the parameter update to regularize
training.

C.2 Recent Advances in Federated Optimization

Recent works such as Cheng & Glasgow (2025) and Ia-
cob et al. (2025) have shown that federated optimization
algorithms can be competitive with standard Distributed
Data-Parallel methods in specific circumstances.

Cheng & Glasgow (2025) prove the convergence of a Lo-
cal AdamW variant that averages both model parameters
and optimizer states every round. They further show that,
depending on the task and data distribution, local-update op-
timizers can converge faster than standard minibatch SGD,
particularly under IID data across workers/clients (where
update variance is low).

Iacob et al. (2025) demonstrate the effectiveness of fed-
erated optimization even when data heterogeneity is high.
They observe that the noise introduced by averaging model
updates from diverse data distributions can yield a more
robust set of parameters for the transformer body, poten-
tially improving generalization or adaptation to new data

distributions.

D ADDITIONAL EVALUATION
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Figure 9. We report the split of the total wall time in two parts: the
local compute time (LC) the clients endure to achieve the desired
perplexity value and the communication time. The communica-
tion time is reported for three different aggregation implementa-
tions: parameter server (PS), which is necessary when privacy
constraints are present; AllReduce (AR), more scalable than PS;
Ring-AllReduce (RAR), the most scalable approach bounded by
the slowest link across the ring topology. As we expected, commu-
nication represents a more important cost as the number of clients
increases. Still, when implemented efficiently (RAR), the wall
time benefits of scaling the computing resources are maintained.
At the top of each bar, we report the percentage of time spent com-
municating for the respective experiments and implementation.

D.1 Communication Efficiency and Scalability

We present additional results on the communication effi-
ciency and scalability of Photon when using 64 local steps
per round( Fig. 9) and 128 local steps per round( Fig. 10).
While using 128 steps results in a slightly increased total
computational load due to minor reductions in convergence
speed, reducing communication frequency by half signifi-
cantly lowers the communication burden, particularly with
higher numbers of clients per round. This trend is especially
pronounced in communication-inefficient PS implementa-
tions and also applies to the faster RAR and AR methods.

D.2 Photon Robustness to Node Failures

In centralized data center training, strong synchronization
and a fixed communication topology mean that a single hard-
ware failure can halt training, requiring a complete restart
from a past checkpoint. Such hardware failures, even limited
to one accelerator, are common and account for 98% of train-
ing restarts (Dubey et al., 2024). In contrast, our federated
approach offers a more robust and communication-efficient
alternative to distributed data parallelism (DDP). Photon
only needs one pseudo-gradient update to progress a fed-
erated round while asynchronously restarting edge compo-
nents (LLM Clients), unlike centralized systems that require
a full restart to reinitialize the distributed process group (Li
et al., 2020a). Thus, Photon is completely robust to any fail-
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Figure 10. We report the split of the total wall time in two parts: the
local compute time (LC) the clients endure to achieve the desired
perplexity value and the communication time. The communica-
tion time is reported for three different aggregation implementa-
tions: parameter server (PS), which is necessary when privacy
constraints are present; AllReduce (AR), more scalable than PS;
Ring-AllReduce (RAR), the most scalable approach bounded by
the slowest link across the ring topology. As we expected, commu-
nication represents a more important cost as the number of clients
increases. Still, when implemented efficiently (RAR), the wall
time benefits of scaling the computing resources are maintained.
At the top of each bar, we report the percentage of time spent com-
municating for the respective experiments and implementation.

ure affecting less than 100% of the system. The decoupling
between LLM Clients and the data source, along with the
Aggregator’s ability to seamlessly add new Clients, allows
Photon to maintain the same process group even as Clients
are added or removed.

To test the robustness of Photon against node failures, we
run a series of experiments simulating various node dropout
ratios. We configured the federated pre-training of a 125M
parameters model as if we were not expecting any failure
between our clients: 8 clients per round, 32 samples in
each local batch, 32 local steps per round, and a target num-
ber of total tokens to train on equal to ∼ 2.5 × 109 (5120
sequential steps and 160 federated rounds at full client par-
ticipation), i.e., 20 token per parameter considering that we
used a model with 125M parameters. The other training
hyperparameters were the same as the main paper experi-
ments referring to the 125M parameter models unless stated
otherwise.

This setting corresponds to the centralized environment
where at least a GPU in any node fails every 32 training
steps, for a total of Nfailures = 5120

32 = 160, i.e., a rate of
3.125% failures per step. Notably, for the standard central-
ized approach, different numbers of GPUs or nodes failing
may have the same impact on the training procedure as the
entire process group often needs to be restarted.

We model IID data distribution across clients by ran-
domly partitioning the C4 (Raffel et al., 2020) dataset
uniformly into 8 equally sized shards. For nonIID ex-
periments, unlike the main work, which uses the well-
known C4 dataset, we adopt the newer state-of-the-art data
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Figure 11. The robustness of Photon for IID data distributions
across clients. We show the training perplexity against (top) the
number of tokens trained and (bottom) the number of federated
rounds for different dropout ratios r ∈ {0, 0.125, 0.5, 0.875} cor-
responding to {0, 1, 4, 7} clients dropping out at every federated
round respectively. With the highest value of r, the training pro-
cedure fails to converge as there is not sufficient training data per
round to leverage the hyperparameter setting. For all other values
of r, the federated training succeeds, potentially reaching a final
better perplexity with the same number of total tokens. However,
values of r > 0 result in longer training executions as the number
of federated rounds to reach the target number of total tokens in-
creases proportionally to the number of clients dropping out.

mixture used by SmolLM-V2 (Allal et al., 2025), specifi-
cally we randomly partition each of the following datasets
into 16 IID shards: (1) FineWeb-EDU (Penedo et al.,
2024), a high-quality general language dataset sourced
from Common Crawl, (2) Cosmopedia V2 (Ben Al-
lal et al., 2024), a synthetic dataset generated by
the Mixtral-8x7B-Instruct-v0.1 model, (3)
Python-EDU, a high-quality subset of The Stack
V2 (Lozhkov et al., 2024) code dataset, (4) FineMath
4+ (Allal et al., 2025), a high-quality math subset
of Common Crawl, (5) Infi-WebMath 4+, a high-
quality variant Infi-WebMath (Han et al., 2024) released
by Allal et al. (2025). Following the recipe of Allal et al.
(2025), we then compose shards to construct clients whose
data is comprised of: 70% FineWeb-EDU data, 10%
Cosmopedia V2, 10% Python-EDU, 5% FineMath
4+, and 5% Infi-WebMath 4+.

The relevant comparisons we show in this evaluation relate
to how the convergence, in terms of local training perplex-
ity, is impacted by the absence of updates due to clients
dropping out. Figures 11 and 12 show that only extreme
and unrealistic dropout ratios (r = 0.875) can completely
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Figure 12. The robustness of Photon for non-IID data distributions
across clients. We show the training perplexity against (top) the
number of tokens trained and (bottom) the number of federated
rounds for different dropout ratios r ∈ {0, 0.125, 0.5, 0.875} cor-
responding to {0, 1, 4, 7} clients dropping out at every federated
round respectively. With the highest value of r, the training pro-
cedure fails to converge as there is not sufficient training data per
round to leverage the hyperparameter setting. For all other values
of r, the federated training succeeds, potentially reaching a final
better perplexity with the same number of total tokens. However,
values of r > 0 result in longer training executions as the number
of federated rounds to reach the target number of total tokens in-
creases proportionally to the number of clients dropping out.

disrupt the training independently on the heterogeneity of
the data distributions. Notably, for the other values of r and
for both IID and non-IID data, more dropouts correspond to
better final perplexity when effectively training on the same
number of total tokens, i.e., executing far more federated
rounds (taking more time). When comparing the final per-
plexity at different values of r with the number of federated
rounds, which are directly proportional to the real wall time,
more clients dropping out result in longer training times to
achieve the target number of total tokens, as expected.

The takeaways of this evaluation are: (1) federated train-
ing converges for all dropout ratios r < 0.875, making it
suitable for highly unreliable hardware configurations, (2)
since nodes train in isolation, a node failure does not re-
quire interrupting the entire federated round, rather it only
reduces the number of pseudo-gradients used for an update,
(3) to compensate for such failures, it is sufficient to extend
training until the target number of tokens is reached, and (4)
configurations with higher dropout ratios correspond to a
reduction in the effective batch size of the training, which
may improve the final performance at the cost of longer
training times.

Table 8. In-context learning comparison between Photon models.
Our biggest model wins 3 out of 3 comparisons in this group.

Name ARC-Challenge
(Clark et al., 2018)

BigBench
QA Wikidata

(Srivastava et al., 2023)

HellaSwag
(Zellers et al., 2019)

Photon-7B 0.265 0.447 0.524
Photon-3B 0.247 0.360 0.455
Photon-1B 0.243 0.215 0.349

Table 9. In-context learning comparison between Photon models.
Our biggest model wins 3 out of 3 comparisons in this group.

Name PIQA
(Bisk et al., 2020)

Winogrande
(Sakaguchi et al., 2020)

ARC-Easy
(Clark et al., 2018)

Photon-7B 0.729 0.522 0.508
Photon-3B 0.705 0.512 0.461
Photon-1B 0.676 0.516 0.390

D.3 Downstream evaluation of Photon’s models

To evaluate the downstream task performance of our mod-
els, we test across a series of in-context learning bench-
marks. Our results, shown in Tables 8 to 11, demonstrate
that the downstream performance of models trained with
Photon scales as expected with model size, with our largest
model winning 10 out of 14 comparisons. This proves the
downstream utility of Photon models even when using a
pre-training dataset not optimized for downstream perfor-
mance. We expect that as we increase the model size and
incorporate a broader and more qualitative data mixture,
the downstream performance of Photon models will keep
improving.

Table 10. In-context learning comparison between Photon models.
Our biggest model wins 2 out of 3 comparisons in this group.

Name BoolQ
(Clark et al., 2019)

Openbook QA
(Mihaylov et al., 2018)

Winograd
(Lo et al., 2023)

Photon-7B 0.530 0.358 0.681
Photon-3B 0.591 0.316 0.656
Photon-1B 0.612 0.274 0.604

Table 11. In-context learning comparison between Photon models.
Our biggest model wins 3 out of 4 comparisons in this group.
Name LAMBADA (OpenAI)

(Paperno et al., 2016)
Bigbench Strategy QA
(Srivastava et al., 2023)

COPA
(Roemmele et al., 2011)

MMLU
(Hendrycks et al., 2021)

Photon-7B 0.457 0.466 0.710 0.263
Photon-3B 0.381 0.464 0.620 0.252
Photon-1B 0.298 0.470 0.630 0.248
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E FULL ALGORITHMS

Algorithm 2 Distributed Data Parallel (DDP) Training Algorithm
Require: N : Number of devices (workers), fθ: Model with parameters θ,T : Number of epochs
Require: D: Dataset partitioned across devices Di where i ∈ {1, 2, . . . , N}
Require: RingAllReduce: All-reduce operation to aggregate across devices on a ring
Require: Opt: Optimizer for updating θ with gradients

1: Initialize: Randomly initialize model parameters θ0 on each device
2: for t = 1 to T do
3: Step 1: Parallel Local Training
4: for each device i ∈ {1, 2, . . . , N} in parallel do
5: Compute local mini-batch loss Li(θt−1,Di)
6: Compute local gradients∇θt−1

Li(θt−1)

7: Step 2: Distributed RingAllReduce Gradient Aggregation
8: ∇θt−1L = 1

N

∑N
i=1∇θt−1Li

9: Each device now possesses the global gradient∇θt−1L
10: Step 3: Parallel Model Update
11: for each device i ∈ {1, 2, . . . , N} in parallel do
12: θt = Opt(θt−1,∇θt−1

L)
13: Output: Trained model parameters θT

Algorithm 3 Cross-silo Federated Learning (FL) Algorithm
Require: N : Number of clients, fθ: Model with parameters θ
Require: T : Number of federated rounds, K: Number of local steps
Require: {Di}: Federated dataset, i.e., a set of private Di, i ∈ {1, . . . , N}
Require: ClientOpt: local client optimizer, ServerOpt: server optimizer

1: Initialize: Randomly initialize global model parameters θ0 on the server
2: for t = 1 to T do
3: Step 1: Broadcast model parameters
4: Server sends θt to all N clients
5: Step 2: Parallel Local Training
6: for each client i ∈ {1, 2, . . . , N} in parallel do
7: ωi,0 ← θt−1

8: for each local iteration k ∈ {1, 2, . . . ,K} do
9: Compute local mini-batch loss Li(ωi,k−1,Di)

10: Compute local gradients∇ωi,k−1
Li(ωi,k−1)

11: ωi,k ← ClientOpt(ωi,k−1,∇ωi,k−1
Li(ωi,k−1))

12: ∆θt−1,i ← ωi,K − θt−1

13: Step 3: Global Model Update (on the server)
14: θt = ServerOpt(θt−1, {∆θt−1,i})
15: Output: Trained model parameters θT
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F ARTIFACT APPENDIX

F.1 Abstract

This Artifact Appendix provides the instructions, scripts,
and configurations necessary to run the experiments of
our paper on federated large language model (LLM) pre-
training using the Photon system. We focus on the script,
scripts/fed 125m example.sh, that orchestrates
the entire process: downloading dependencies, launch-
ing the federated server, spinning up clients, and train-
ing a 125M-parameter model end to end. However, we
recommend following carefully the README.md file and
the provided example scripts for a more detailed under-
standing of the setup and execution. By running the
scripts/fed 125m example.sh script, users can
witness how Photon handles Hydra-based configuration res-
olution, aggregator (server) bootstrapping, and client partic-
ipation.

F.2 Artifact check-list (meta-information)
• Algorithm: LocalSGD-based federated optimization with

integrated distributed data-parallel (DDP) or fully sharded
data parallel (FSDP) when applicable.

• Program: Python scripts employing PyTorch, integrated
with Flower (for federated coordination) and Ray for model
updates communication.

• Compilation: No explicit compilation. A Python-based
environment setup is mandatory.

• Transformations: Data tokenization, normalization, op-
tional data pre-processing (compression), and partitioning in
client shards.

• Binary: No direct binaries; entire artifact is Python-based.

• Data set: A small subset of C4 is included for demonstration.
For larger training, full C4 or The Pile can be substituted
(scripts not included here).

• Run-time environment: Linux system (Ubuntu 22.04 rec-
ommended), Python 3.11, CUDA(12.4)-enabled PyTorch
2.1.5, plus Hydra for configuration resolution.

• Hardware: At least one NVIDIA GPU (NVIDIA A40,
RTX2080Ti, V100, A100, H100, etc.), stable network links
(1–10Gbps) if multiple machines are used.

• Run-time state: Users can run everything on a single ma-
chine with multiple GPUs, or distribute across multiple
nodes.

• Execution: A single script
scripts/fed 125m example.sh that performs
the entire flow (setup, server launch, client launches, local
training).

• Metrics: Primary metric is validation perplexity, with sec-
ondary metrics including GPU utilization, throughput, and
communication overhead. Wandb logging is supported but
requires custom configuration for which guidelines are pro-
vided in the code docstrings.

• Output: Model checkpoints, logs of training progress, final
perplexity.

• Experiments: Demonstration of the federated pre-training
and centralized training of a 125M-parameter decoder-only
LLM, which can be scaled up if desired.

• Disk space required: Approximately 5/15GB for the small
subset of C4 plus checkpoints. (Larger experiments may
require 300/1000GB).

• Time needed to prepare workflow: Approximately 1 hour
for environment setup, 30/60 minutes to download and pre-
process the small dataset.

• Time needed to complete experiments: A few hours for
the 125M demonstration. Larger-scale runs can take days.

• Publicly available: Yes, code repository is licensed (Apache-
2.0 license) and will be made public.

• Code licenses (if publicly available): Apache License 2.0.

• Data licenses (if publicly available): C4 is under the ODC-
BY license.

• Workflow framework used: Flower + Ray + PyTorch +
Hydra, plus a single orchestrating shell script.

• Archived: DOI on Zenodo.

• Public permalink: Flower Labs Research.

F.3 Description

F.3.1 How delivered

The artifact is provided in a zipped repository containing:

• README.md: A quick overview and key instructions.

• scripts/system setup.sh: Installs base de-
pendencies, sets up the environment.

• scripts/convert c4 dataset.sh: Acquires
a small version of C4 for demonstration. Prepare the
dataset for training.

• scripts/fed 125m example.sh:
The single script that launches everything for a 125M-
parameter model. It internally invokes Hydra-based
configs for server and clients, then orchestrates the run.

• scripts/cen 125m example.sh:
The single script that launches centralized training of
a 125M-parameter model. It internally invokes Hydra-
based configs. It is prepared to operate on a single
machine setup launching a parallelized training on the
available GPUs.

• configs/: YAML files specifying hyperparameters
(learning rate, batch size, etc.), aggregator properties,
and Hydra overrides.

https://doi.org/10.5281/zenodo.15187915
http://flower.ai/research
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F.3.2 Hardware dependencies

• GPU:

– For the 125M example, a single GPU with
≥12GB memory is sufficient, even though a larger
memory (≥40GB) is recommended.

– For multi-node, each node should have a CUDA-
capable GPU and at least 1–10Gbps network con-
nectivity.

F.3.3 Software dependencies

• OS: Linux (Ubuntu 22.04+).

• Python: 3.11 or higher.

• CUDA/CuDNN: Version 12.4 is recommended, be-
ing compatible with PyTorch 2.1.5 and your specific
GPU driver. These can be installed automatically via
scripts/system setup.sh

• Package managers: Poetry is supported for depen-
dency management.

• Libraries: PyTorch 2.1.5, Flower (custom ver-
sion), Ray, Hydra, and standard Python utili-
ties (NumPy, Pandas, etc.). Installed automati-
cally via the scripts/system setup.sh and
scripts/install env.sh scripts.

F.3.4 Data sets

• A small subset of C4 is included for demonstration.

• It is fetched, unpacked locally, and tokenized by
scripts/convert c4 dataset.sh.

Users can later replace this with the full C4 or other corpora
by adjusting parts of the code and configuration files.

F.4 Installation and Usage

Refer to the README.md file for a more detailed guide.
Below is a quick start guide to run the federated pre-training
of a 125M-parameter model.

System prep and environment:

1. Download the code: The code is maintained and made
available through the Flower Labs Research webpage.

2. Run the setup script: Once the repository has been
obtained, run the setup script to install the necessary
dependencies and prepare the environment.

cd <path>/<to>/<photon>
cd scripts
. system_setup.sh

This can install build tools, CUDA drivers (Ubuntu-
based).

3. Install dependencies:

cd scripts
. install_env.sh

Download, prepare/convert dataset with the provided
script.

bash scripts/convert_c4_dataset.sh

Run the single script for federate pre-training of the
125M model:

bash scripts/fed_125m_example.sh

This command executes the following steps internally:

• Hydra configs interpretation: Hydra interprets
the configs and dumps them to a file that
is read by the other processes. The file
photon/hydra resolver.py is used.

• Launch Flower Superlink: The command used is
poetry run flower-superlink.

• Launch Flower ServerApp: The command
used is poetry run flower-server-app
photon.server app:app.

• Launch Flower ClientApps: The command
used is poetry run flower-client-app
photon.client app:app

• Federated rounds: The aggregator orchestrates lo-
cal training (LocalSGD) across clients, synchronizes
updates after each round.

• Checkpoints and logs: Intermediate global check-
points and logs are saved in checkpoints/ and
runs/ respectively.

• Completion: The script logs periodically several met-
rics, e.g., perplexity and throughput.

F.5 Evaluation and expected result

Targets of interest:

• Validation perplexity: For the 125M demo, you
should observe perplexity dropping towards the low
40s or upper 30s after sufficient rounds, depending on
configuration.

https://flower.ai/research
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• Runtime logs: Both aggregator and client logs are
found under runs/, indicating the number of to-
kens processed, average GPU utilization, and steps
per round.

• Checkpoints: Partial and final checkpoints are saved
in the
checkpoints/ folder.

F.6 Experiment customization

• Config override: Edit
scripts/fed 125m example.sh or pass Hydra
overrides to change client count or hyperparameters.

• Hardware scaling: By default, the script spawns
multiple clients on a single node. For multi-node,
adapt the aggregator IP and client addresses in
scripts/fed 125m example.sh.

• Batch sizes / epochs: Controlled by Hydra configs in
the
configs/ folder.

• Dataset: Replace the small C4 path with your own
local data for more extended training.

F.7 Notes

• Partial or intermittent clients: If a client crashes or is
not reachable, the aggregator continues with remaining
clients in subsequent rounds.

• Performance considerations: For minimal overhead,
ensure a stable GPU environment. Larger-scale runs
(1.3B+) require more disk space, memory, and multi-
GPU setups.

F.8 Methodology

We adhere to artifact evaluation guidelines:

• Single-blind AE with emphasis on reproducibility and
clarity.

• Clear build (ffrom the scripts
scripts/system setup.sh and
scripts/install env.sh), run (using the
script
scripts/fed 125m example.sh), and analysis
(logs, final checkpoint) phases.

• ACM Artifact Badging best practices: code will be
made public, well-documented, and tested on a stan-
dard environment.

https://www.acm.org/publications/policies/artifact-review-badging

