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Abstract

The development of high-capacity anodes remains a central challenge for advancing
lithium-ion battery (LIB) technology. Silicon (Si) offers an exceptional theoretical
capacity but suffers from severe volume expansion, structural degradation, and
limited Li-ion mobility after cycling. Here, we present an AI-driven framework for
the analysis, generation, and optimization of silicon-based anode materials with
enhanced Li-ion transport and controlled volume variation during lithiation and
delithiation. Our approach integrates large-scale materials databases with state-
of-the-art machine learning to: (i) analyze Li-ion migration pathways in known
compounds, (ii) generate lithiation states from charged configurations, and (iii)
design novel Si-based materials with enlarged Li-ion migration channels while
tracking their volume changes across lithiation levels. By combining graph-based
generative models with efficient property predictors, we accelerate the discovery
of candidate anodes through database-guided screening. The results highlight
the potential of AI to identify next-generation silicon-based anode materials with
improved stability and performance, providing valuable guidance for experimental
development.

1 Introduction

1.1 Li-ion batteries, Si anode, pros and cons

Lithium-ion batteries (LIBs) are the dominant rechargeable power source for modern electric vehicles
and portable electronics due to their high energy density and long cycle life Tarascon and Armand
[2001]. In current LIB technology, the anode is typically a graphitic carbon material (LiC6), which is
favored for its stable intercalation chemistry and good cyclability. However, graphite’s theoretical
specific capacity is only about 372mAhg−1 Tarascon and Armand [2001], and even alternative
commercial anodes like spinel lithium titanate (Li4Ti5O12, LTO) offer just ∼175mAhg−1 Zaghib
et al. [2010]. These capacity limitations of present anode materials impose a fundamental cap on the
energy density of LIBs, motivating extensive research into higher-capacity replacements Armand and
Tarascon [2008].

Among the various proposed next-generation anodes, silicon (Si) has emerged as a particularly
promising candidate. Silicon can alloy with lithium to form phases such as Li15Si4, endowing it with
an exceptionally high theoretical capacity of approximately 3500–3600mAhg−1 (nearly an order
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of magnitude greater than graphite) Larcher and Tarascon [2015], Mi et al. [2013]. In addition, Si
is an abundant and low-cost element (the second most plentiful in the Earth’s crust, accounting for
about 25% of its mass) Mi et al. [2013], Toki and Obrovac [2024]. Combined with a relatively low
average lithiation potential (0.4V vs Li/Li+) Larcher and Tarascon [2015], these attributes mean that
Si anodes could dramatically increase the energy density of LIB cells. Indeed, the incorporation of
silicon is widely seen as a key pathway towards next-generation high-energy batteries Larcher and
Tarascon [2015], Toki and Obrovac [2024].

Despite its attractive advantages, silicon anode technology still faces critical challenges that have
hindered its large-scale commercialization. The most severe issue is the dramatic volume expansion
of silicon during lithiation: fully lithiated Si can swell by 2̃80–300%, generating intense mechanical
stress Obrovac and Christensen [2004]. This repeated expansion and contraction pulverize Si particles
and break electrical contact within the electrode, leading to rapid capacity fading. In addition, the large
volume swings destabilize the solid electrolyte interphase (SEI); continual cracking and reformation
of the SEI consume both cyclable lithium and electrolyte, resulting in low coulombic efficiency and
short cycle life Toki and Obrovac [2024]. Silicon’s intrinsically low electrical conductivity further
limits rate capability compared to graphite unless properly engineered Larcher and Tarascon [2015].
A wide range of strategies have been explored to mitigate these issues, including nanostructured Si
architectures (nanoparticles, nanowires, porous Si) that accommodate strain, Si–carbon composites
that enhance conductivity and buffer volume changes, and advanced binders and electrolyte additives
that stabilize the SEI Zuo et al. [2017], Toki and Obrovac [2024]. While these approaches have
delivered notable improvements in laboratory cells, achieving Si-based anodes that simultaneously
provide high capacity and long-term stability remains elusive. This persistent challenge highlights the
urgent need for innovative materials, architectures, and interdisciplinary approaches to fully unlock
the potential of silicon anodes in next-generation LIBs.

1.2 Material Databases

The Materials Genome Initiative (MGI), launched in 2011, aims to accelerate materials discov-
ery through the integration of high-throughput computation, experimental tools, and digital data
infrastructure National Science and Technology Council [2011]. In response, several large-scale
inorganic materials databases have emerged, forming the foundation for AI-assisted materials design,
particularly in lithium-ion battery (LIB) research. This section reviews key resources—including
the Materials Project, OQMD, NOMAD, SPSE, COD, and GNoME—emphasizing their data types,
reliability, and relevance to Si-based anode discovery.

The Materials Project (MP) Jain et al. [2013] and Open Quantum Materials Database (OQMD)
Saal et al. [2013], Kirklin et al. [2015] are two of the most established repositories. Both perform
standardized DFT calculations (typically with VASP) to determine structural, electronic, and thermo-
dynamic properties for thousands of compounds. MP offers curated, consistent data such as formation
energies, relaxed structures, and band gaps, while OQMD complements it by systematically gener-
ating hypothetical compounds through prototype substitutions, expanding chemical coverage and
enabling phase stability analyses.

These datasets have been extensively used to study Li–Si compounds and to train or validate ML
models predicting material stability and electrochemical performance. The NOMAD (Novel Materials
Discovery) repository Draxl and Scheffler [2019], by contrast, aggregates raw computational data
from diverse sources and codes. Its heterogeneity poses challenges for curation but provides an
unparalleled scale and diversity beneficial for transfer learning and testing model robustness.

The Screening Platform for Solid Electrolytes (SPSE) He et al. [2020] focuses on lithium-ion
transport properties—data rarely available in general-purpose databases—while the Crystallography
Open Database (COD) Gražulis et al. [2012] supplies experimentally determined crystal structures
useful for model validation or DFT input generation. Finally, GNoME Merchant et al. [2023],
developed by Google DeepMind, exemplifies AI-driven materials discovery: through an active-
learning loop, it generated over two million crystal structures, hundreds of thousands of which are
predicted to be stable, including many new Li–Si compounds.

Together, these databases constitute a rich ecosystem for data-driven materials discovery. MP and
OQMD provide curated DFT data for model training; NOMAD offers massive, heterogeneous
datasets; SPSE and COD address specialized data gaps; and GNoME showcases the potential of
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AI-guided materials generation—collectively empowering machine learning approaches to accelerate
next-generation silicon anode design.

1.3 Artificial Intelligence in Materials Science

The integration of artificial intelligence (AI) with materials science has opened new avenues for
accelerating the design, discovery, and deployment of advanced materials Butler et al. [2018],
Lookman et al. [2019], Schmidt et al. [2019]. Machine learning (ML) models can extract complex
structure–property relationships from high-dimensional data, while generative approaches can propose
entirely new compounds with targeted properties. These techniques are now playing a key role in
reducing the time and cost associated with traditional trial-and-error experimental workflows.

Property Prediction via Supervised Learning Supervised learning models, including random
forests, kernel ridge regression, and neural networks, are widely used to predict materials properties
such as formation energies Ward et al. [2016], band gaps Jha et al. [2018], elastic moduli De Jong
et al. [2016], and ionic conductivity Sendek et al. [2018]. These models are typically trained on
large datasets from first-principles calculations (e.g., Materials Project, OQMD) and rely on either
hand-crafted descriptors (e.g., composition, structure) or learned features. Graph neural networks
such as CGCNN Xie and Grossman [2018], MEGNet Chen et al. [2019], and M3GNet Chen and Ong
[2022] have become state-of-the-art for structure-based prediction of material properties, including
band gaps, formation energies, and elastic constants.

Machine Learning Interatomic Potentials and Structural Relaxation Machine-learned inter-
atomic potentials (ML-IPs) allow for fast, accurate simulations of atomic-scale interactions, enabling
structural relaxation and molecular dynamics at near-DFT accuracy but much lower cost. Recent
models such as NequIP Batzner et al. [2022] and M3GNet Chen and Ong [2022] exploit equivariant
architectures and large-scale datasets to deliver transferable and data-efficient interatomic poten-
tials. These ML-IPs are increasingly used in high-throughput screening, structural refinement, and
molecular simulations.

Generative Models and Inverse Design Generative models like variational autoencoders (VAEs)
Noh et al. [2020], generative adversarial networks (GANs) Kim et al. [2020], and diffusion models
Xie et al. [2022] are being applied to create novel crystal structures and compositions. These models
can be conditioned on desired target properties, enabling inverse design of materials. Recent work
has demonstrated the generation of stable and synthesizable structures with targeted physical or
electronic properties.

Active Learning and Reinforcement Learning Active learning has emerged as a key strategy
in closed-loop discovery, where models identify the most informative experiments or simulations
to perform next Lookman et al. [2019]. Reinforcement learning (RL) has also been explored for
materials optimization and inverse design Karpov et al. [2020]. These approaches reduce the cost of
exploration in vast materials spaces, enabling data-efficient discovery cycles.

Applications to Battery Materials AI methods have been successfully applied to various aspects
of battery materials research, including cathode and anode discovery Sendek et al. [2018], Kirklin
et al. [2013]. In particular, graph-based models and generative approaches have been used to
predict and generate promising lithium-ion battery (LIB) anode materials beyond graphite, including
silicon-based and alloy-type candidates.

2 Methodology

Our methodology addresses the challenge of designing silicon-based anodes for lithium-ion batteries
(LIBs) that retain high capacity while maintaining structural integrity during charge/discharge cycles.
We propose a three-stage approach that prioritizes high capacity Si-based alloys exhibiting minimal
volume change upon lithiation:

1. Database mining: Identify candidate Si-alloy anodes in which Li-ion channel sizes remain
relatively unchanged across different lithiation degrees.
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Figure 1: Overview of the proposed methodology. We address degradation in Si anodes due to volume
changes by (1) mining Si-alloy compounds from databases, (2) relaxing hypothetical discharged states
with CHGNet to evaluate ion channel stability, and (3) generating new stable anodes via generative
AI models.

2. Structural relaxation: Relax discharged states using machine-learning interatomic poten-
tials to efficiently evaluate stability and ion transport, and calculate the ion channel size for
each lithiation degree ?.

3. Generative AI design: Propose novel, stable Si-based anode materials with optimized
Li-ion migration pathways and controlled volume variation.

The overall workflow is summarized in Figure 1.

2.1 Problem: Volume Change in Si Anodes

Silicon undergoes large volumetric expansion (∼300%) during lithiation, which leads to pulverization
of the anode, unstable SEI formation, and capacity fading. We aim to identify or generate Si-
based anodes with high capacity and minimal variation in lithium-ion migration channels across
charge/discharge cycles. Two main objectives guide our search: (1) high gravimetric capacity (above
1500 mAh/g), and (2) stable ion migration paths (constant Rt) over the full lithiation range.

2.2 Stage 1: Database Mining of Si-X Alloys

We compiled and harmonized data from multiple materials databases—including the Materials Project
(MP), GNoME, OQMD, COD, SPSE, and the Marques–Halle Perovskite Dataset 166 (MHP)—to
construct a unified dataset. We filtered for charged LixSiyXz compounds (where X = metallic or
metalloid element) with computed capacities above 1500 mAh/g.

The initial screening yielded 5,992 prospective silicon anode candidates. Yet, existing databases report
only charge states, lacking information on structural evolution during delithiation. This is a critical
gap, as silicon—despite its high theoretical capacity ( 3,579 mAh/g) for Li15Si4)—suffers from
severe volume changes ( 300%) upon cycling, leading to particle fracture, unstable SEI formation,
and rapid capacity fading.

Our analysis shows that variations in lithium-ion migration channel dimensions across
charge–discharge cycles are a key structural descriptor directly linked to volumetric instability.
Unlike conventional mitigation strategies such as coatings, nanostructuring, or binders, this lattice-
level descriptor captures the intrinsic resilience of silicon alloys. To bridge this gap, we systematically
quantified Li+ migration channel sizes in all candidate alloys while assessing their specific capac-
ity. Only those with invariant channel dimensions across lithiation–delithiation can be considered
structurally resilient, capable of suppressing expansion and degradation.

This descriptor-driven approach identifies a subset of robust silicon alloys that couple high energy
density with improved durability. More broadly, it establishes lattice invariance of migration channels
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as a predictive design principle for alloy-type anodes, advancing the rational development of practical
silicon-based electrodes for LIBs.

2.3 Stage 2: Generation and Relaxation of Discharged States

To overcome the lack of discharged-state structures, we generated a set of hypothetical discharged
structures for each high-capacity candidate identified in Stage 1. For each charged anode, 30
discharged configurations were created by probabilistically removing Li atoms.

The generated discharged structures were relaxed using CHGNet, a recent graph neural network-based
surrogate model for structural relaxation Deng et al. [2023]. CHGNet allows fast and approximate
relaxation of large batches of crystal structures, providing an efficient alternative to expensive DFT
calculations. Its efficiency against Si-Li-X materials can be studied through the published Matbench
Discovery results, showing a MAE for predicted energy of 0.4117 against DFT and a RMSD (Root
Mean Squared Displacement) of atomic positions of just over 0.01.Riebesell et al. [2023]

For each relaxed discharged structure, we recomputed the capacity and extracted the channel radius
(Rt) for lithium-ion migration using the CAVD package He et al. [2020]. We retained only those can-
didate materials where Rt remains nearly constant between charged and discharged states, indicating
robustness of ion transport paths across cycles.

2.4 Stage 3: Generative Design of New Si-Based Anodes

To explore materials beyond the existing database entries, we developed a generative AI model for
conditional design of new Si-based anode materials.

The model takes as input the desired characteristics:

• Presence of silicon in the composition

• Target gravimetric capacity (e.g., >1500 mAh/g)

• Target channel radius Rt (and optionally, minimal variation across cycling)

We trained a conditional variational autoencoder (CVAE) model using crystal graph embeddings of
existing anodes and their associated properties. The latent space was then sampled and decoded to
generate novel crystal structures that meet the target constraints.

Generated candidates were evaluated using the same screening criteria from Stages 1 and 2: capacity
and robustness of ion channels during cycling. High-performing candidates are further considered for
DFT validation and experimental synthesis.

3 Results and Discussion

3.1 Li+ Migration Channels in Si and Si–X Anodes

Silicon anodes suffer from severe mechanical degradation due to large volume changes during
lithiation and delithiation, which disrupt continuous Li+ diffusion channels and cause rapid capacity
fade Ashuri et al. [2016], Li et al. [2020]. In particular, pure crystalline silicon expands by over
300% upon full lithiation, leading to fracture, particle pulverization, and unstable solid-electrolyte
interphase (SEI) formation Ashuri et al. [2016].

In this context, Figure 2 quantifies this volume variation as a function of the size change of Li+
migration channels in pure Si during charge/discharge cycles. The slope of the channel radius
with respect to state of charge is 0.85 ± 0.23 Å/100%, indicating substantial structural evolution
in the diffusion pathways as Li is inserted and removed. This variation suggests that Si loses its
percolating ion transport networks during delithiation, contributing to mechanical failure and capacity
degradation.

To address this limitation, in the next section we explore Si–X alloys with the goal of identifying
compositions that retain stable the volume of Li+ migration channels throughout cycling.
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Figure 2: Evolution of Li+ ion channel radius during delithiation of a pure Si anode. Each point
corresponds to a database structure with decreasing Li content, and the red line shows a linear
regression fit. The slope of 0.85± 0.23 indicates strong variation in channel geometry across charge
states. The correlation between channel radius and Li content is strong, with Pearson r = 0.634
(p = 2.9 × 10−10) and Spearman ρ = 0.764 (p = 6.7 × 10−16), highlighting a robust monotonic
relationship.

3.2 High-Throughput Screening: Capacity vs. Channel Size

To identify inherently stable Si-based anodes, we performed a high-throughput search of known
crystalline compounds containing Si in fully lithiated form (the charged anode candidates). We
aggregated ∼6000 such structures from multiple materials databases (e.g. Materials Project, OQMD,
COD), each providing a theoretical specific capacity based on its Li content. For each candidate,
we also computed the radius of the largest continuous Li+ migration channel in the charged-state
structure using geometric analysis. Figure 3 plots the screened compounds in terms of gravimetric
capacity (mAh g−1) vs. the logarithm of the Li-channel radius (log(Å)). Many Li–Si–X compounds
lie in a regime of either high capacity with narrow channels or vice versa. Notably, only a small
subset of about 60 candidates exhibit capacities beyond 1500 mAh g−1 (far exceeding graphite) while
also having moderately large channels (∼1.5–2.5 Å). These high-capacity points tend to correspond
to Si-alloy frameworks or intermetallic phases that incorporate Li at high stoichiometry. No obvious
linear correlation emerges between capacity and channel size across all data – i.e., increasing Li
content (capacity) does not guarantee open channels. Nonetheless, the spread of points in Figure 3
helped pinpoint promising outliers: a few compositions combine relatively spacious Li channels with
excellent capacity. We hypothesized that these rare candidates might better tolerate lithiation strain
by providing free volume for Li-ion transport. However, a key question remained: do the attractive
channels observed in the charged (lithiated) structures persist once the Li is removed? Since database
structures are typically reported in their lithiated form only, we next investigated how these materials
behave upon delithiation.

3.3 AI-Relaxed Discharged Structures and Channel Stability

To assess the structural resilience of promising Si–X anode candidates, we investigated how their
Li+ ion migration channels sizes evolve across charge/discharge cycles. Starting from the fully
lithiated structures found in databases (i.e., charged state), we simulated several partially-discharged
states by randomly removing Li atoms and structurally relaxing each resulting configuration using
CHGNet Deng et al. [2023], a machine-learning interatomic potential that captures charge effects
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Figure 3: High-throughput screening of ∼6000 fully lithiated Si-containing compounds collected from
multiple databases (Materials Project, OQMD, COD). Each point represents a candidate structure
plotted by its theoretical gravimetric capacity (mAh g−1) versus the radius of its largest continuous
Li+ migration channel (log Å, from geometric analysis).

and lattice dynamics at low cost. The authors acknowledge that more sophisticated approaches exist
to model a realistic delithiation cycle; however, even with this simplified strategy, we successfully
identified known alloy phases exhibiting lower variation in channel size. For each candidate, 30
distinct Li-vacancy configurations were generated to probe the variability in ion channel geometry
under different de-lithiation paths.

Figure 4 shows two examples of silicon-based anodes with minimal variation in ion channel diam-
eter during delithiation: Si7Ge1 and Zn1Si8, both of which have been previously experimentally
studied in the literature as promising LIB silicon alloy anodes. Their slopes—0.44 and 0.39 re-
spectively—are significantly lower than that of pure Si (0.85, see Figure 2), indicating that their
frameworks accommodate Li extraction with limited tunnel collapse.

While these known materials validate our screening approach, our method also identified several
novel Si–X compounds with similarly low slopes and stable channel behavior. These have not yet
been reported in the literature, and due to their potential commercial value, we refrain from disclosing
them in this manuscript. Still, the general insight holds: a small subset of Si–X alloys preserve open
Li+ migration pathways across cycling, likely due to supportive sublattice architectures or alloying
elements that reinforce the Si framework. These structures are strong candidates for anodes with
enhanced cycling stability.

3.4 Conditional Generative Design of Novel Si-Based alloy Anodes

Given the limited number of known materials that inherently satisfy both high capacity and stable-
channel criteria, we turned to generative machine learning to explore new Si-based alloy anode
compositions. Using a modified version of the conditional crystal generation model developed
by Ye et al. [2024], with a stronger emphasis on controlling the presence or absence of specific
elements in the generated crystals, we trained on the distribution of Li–Si–X structures and then
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Figure 4: Evolution of Li+ ion channel diameter during delithiation of two Si–X anodes: Si7Ge1
(left) and Zn1Si8 (right). Each point represents a CHGNet-relaxed structure with a different random
Li-vacancy configuration. The fitted slopes (< 0.45) indicate much smaller channel variation than in
pure Si (see Figure 2). These two examples, well documented in the literature, serve as validation of
our method; other low-slope alloys found are withheld for IP reasons.

directed the generator toward candidates with specified target properties. In our case, we conditioned
on (i) the inclusion of Si and Li as constituents, (ii) a capacity above 1500 mAh g−1, and (iii) a
large Li-channel radius that remains approximately constant upon (de)lithiation. The generative
model learned a continuous latent representation of crystal structures and was able to sample novel
compositions that meet these conditions, akin to recent advances in property-driven materials design
Xie et al. [2022], Pakornchote et al. [2024]. Figure 5 showcases examples of AI-generated Si-based
alloy anodes, as well as an overview of the property-based generation accuracy of the model. The
model often reproduces structural motifs favorable for Li diffusion: for instance, several generated
structures feature interconnected cages or tunnels that persist after removal of Li. In one example,
the algorithm suggested a Si–Cu binary alloy forming a porous clathrate-like lattice – a material
not present in our original database. This hypothetical anode achieves an estimated capacity of
∼1700 mAh g−1 with a continuous channel of ∼2.1 Å that remains open post-delithiation, according
to our CHGNet relaxations. Another generated candidate is a ternary Li–Si–Sn compound in which
Sn atoms occupy positions that stabilize a 3D network of Si polyhedra, yielding minimal volume
change during cycling. These qualitative patterns align with our earlier observations: the best designs
incorporate a supportive matrix (metal or other element) that holds open the Li diffusion channels.
All AI-generated structures were verified for stability before further consideration. To achieve this,
each structure underwent CHGNet relaxation following the procedure described in Section 2.3. The
mean variation in energy per atom was found to be below 4%. While experimental synthesis and
testing of these predictions are ongoing, the ability to tailor new anode materials via conditional
generation is a powerful outcome. It demonstrates that machine learning can not only screen existing
materials but also inversely design novel compounds that optimize multiple criteria simultaneously
Xie et al. [2022], Pakornchote et al. [2024]. Ultimately, such AI-designed Si-based alloy anodes
– with their combination of high capacity and robust Li+ channel architectures – hold promise for
breaking the trade-off between energy density and cycle life in next-generation Li-ion batteries.

4 Conclusion

In this work, we present an AI-driven framework for the discovery, evaluation, and design of high-
performance silicon-based alloy anode materials for lithium-ion batteries. To address the critical
challenge of structural degradation during cycling, we identify and evaluate a physically meaningful
descriptor closely linked to the volume changes occurring during lithiation and delithiation. Building
on this insight, we propose a three-stage methodology that integrates materials database mining,
surrogate-assisted structural relaxation, and conditional generative modeling.
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Figure 5: A) Visualization of two novel Si-based alloy anode structures generated by the conditional
AI model. The model proposes varying geometries, element counts, and atom numbers without
restriction. B) Results from generative processes using ion channel size as the target property. The
model received only the target value, and the resulting structures were computationally analyzed to de-
termine their actual channel sizes. Larger channel sizes—less common in the training dataset—proved
more challenging, leading to a wider distribution while still keeping the median value close to the
target.

Our high-throughput screening of known Si–X compounds revealed that while many exhibit high
theoretical capacity, only a small fraction retain stable constant size of the Li+ migration channels
after delithiation. Using CHGNet, a pretrained machine learning interatomic potential, we relaxed
hypothetical discharged states and identified robust anode candidates capable of preserving channel
geometry, keeping the channel size constant, across cycles.

To expand beyond known chemistries, we implemented a generative model conditioned on desired
elements, capacity and channel size properties. The model successfully generated new crystal struc-
tures with high capacity and structural resilience, several of which represent previously unexplored
compositions with favorable Li-ion transport pathways.

These results demonstrate the potential of AI not only to accelerate the screening of existing materials,
but also to generate novel candidates with tailored performance attributes. The integration of database
knowledge, fast relaxation tools, and inverse design techniques provides a scalable path toward
the discovery of next-generation battery materials. Future work will involve DFT validation and
experimental synthesis of top candidates, as well as extension of this framework to other components
of electrochemical energy systems.
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Saulius Gražulis, Artūras Daškevič, Andrius Merkys, Daniel Chateigner, Luca Lutterotti, Miguel
Quiros, Natalia R. Serebryanaya, Peter Moeck, Robert T. Downs, and Armel Le Bail. Crystallogra-
phy open database (cod): an open-access collection of crystal structures and platform for world-
wide collaboration. Nucleic Acids Research, 40(D1):D420–D427, 2012. doi: 10.1093/nar/gkr900.

Bing He, Shuting Chi, Anjiang Ye, Penghui Mi, Liwen Zhang, Bowei Pu, Zheyi Zou, Yunbing Ran,
Qian Zhao, Da Wang, Wenqing Zhang, Jingtai Zhao, Stefan Adams, Maxim Avdeev, and Siqi Shi.
High-throughput screening platform for solid electrolytes combining hierarchical ion-transport
prediction algorithms. Scientific Data, 7(1):151, 2020. doi: 10.1038/s41597-020-0474-y.

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William D. Richards, Stephen Dacek,
Shreyas Cholia, Daniel Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson. Commen-
tary: The materials project: A materials genome approach to accelerating materials innovation.
APL Materials, 1(1):011002, 2013. doi: 10.1063/1.4812323.

Dipendra Jha, Logan Ward, Abhinav Paul, Wei-keng Liao, Alok Choudhary, Chris Wolverton,
and Ankit Agrawal. Elemnet: Deep learning the chemistry of materials from only elemental
composition. Scientific Reports, 8:17593, 2018. doi: 10.1038/s41598-018-35934-y.

Pavel Karpov, Evgeny V Podryabinkin, and Alexander V Shapeev. A reinforcement learning approach
to the inverse problem of design of inorganic crystals. npj Computational Materials, 6:119, 2020.
doi: 10.1038/s41524-020-00394-2.

Sungwon Kim, Juhwan Noh, Geun Ho Gu, Alán Aspuru-Guzik, and Yousung Jung. Generative
adversarial networks for crystal structure prediction. ACS Central Science, 6(8):1412–1420, 2020.
doi: 10.1021/acscentsci.0c00268.

Scott Kirklin, Bryce Meredig, and Chris Wolverton. High-throughput computational screening
of new li-ion battery anode materials. Advanced Energy Materials, 3(2):252–262, 2013. doi:
10.1002/aenm.201200593.

10



Scott Kirklin, James E. Saal, Bryce Meredig, Alexa Thompson, Jeff W. Doak, Muratahan Aykol,
Stephan Rühl, and Chris Wolverton. The open quantum materials database (oqmd): assessing
the accuracy of dft formation energies. npj Computational Materials, 1:15010, 2015. doi:
10.1038/npjcompumats.2015.10.

Dominique Larcher and Jean-Marie Tarascon. Towards greener and more sustainable batteries for
electrical energy storage. Nature Chemistry, 7:19–29, 2015. doi: 10.1038/nchem.2085.

Hongyi Li, Takitaro Yamaguchi, Shingo Matsumoto, Hiroaki Hoshikawa, Toshiaki Kumagai, Nori-
hiko L. Okamoto, and Tetsu Ichitsubo. Circumventing huge volume strain in alloy anodes of
lithium batteries. Nature Communications, 11:1584, 2020. doi: 10.1038/s41467-020-15452-0.

Turab Lookman, Prasanna V. Balachandran, Dezhen Xue, and Ruihao Yuan. Active learning in
materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj
Computational Materials, 5:21, 2019. doi: 10.1038/s41524-019-0153-8.

Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Ekin D. Cubuk, et al.
Scaling deep learning for materials discovery. Nature, 624:80–85, 2023. doi: 10.1038/
s41586-023-06735-9.

Yanfei Mi, Jiajie Liang, Xiaolong Zhou, Linlin Hou, Aiguo Pan, Zehui Jiang, Miaomiao Xu, and
Gaoshao Cao. Recent advances in silicon-based anode materials for lithium-ion batteries. Materials
Chemistry Frontiers, 1(8):1691–1708, 2013. doi: 10.1039/C7QM00156K.

National Science and Technology Council. Materials genome initiative for global competitiveness.
Technical report, Executive Office of the President, Washington, DC, 2011.

Junwoong Noh, Seongok Kim, Junghwan Yoon, Hyesu Lyu, Young Kim, Seunghwa Seo, and Jinwoo
Kim. Inverse design of solid-state materials via a continuous representation. Matter, 2(4):865–877,
2020. doi: 10.1016/j.matt.2020.01.027.

Mark N. Obrovac and Linda Christensen. Structural changes in silicon anodes during lithium
insertion/extraction. Electrochemical and Solid-State Letters, 7(5):A93–A96, 2004. doi: 10.1149/
1.1649993.

Teerachote Pakornchote, Natthaphon Choomphon-anomakhun, Sorrjit Arrerut, Chayanon Atthapak,
Sakarn Khamkaeo, and Thiti Bovornratanaraks. Diffusion probabilistic models enhance variational
autoencoder for crystal structure generative modeling. Scientific Reports, 14:1275, 2024. doi:
10.1038/s41598-024-51400-4.

Janosh Riebesell, Rhys E. A. Goodall, Philipp Benner, Yuan Chiang, Bowen Deng, Mark Asta,
Gerbrand Ceder, Alpha A. Lee, Anubhav Jain, and Kristin A. Persson. Matbench discovery — a
framework to evaluate machine learning crystal stability predictions. arXiv, August 2023. doi:
10.1038/s42256-025-01055-1.

James E. Saal, Scott Kirklin, Muratahan Aykol, Bryce Meredig, and Chris Wolverton. Materials
design and discovery with high-throughput density functional theory: The open quantum materials
database (oqmd). JOM, 65(11):1501–1509, 2013. doi: 10.1007/s11837-013-0755-4.

Jonathan Schmidt, Miguel R. G. Marques, Silvana Botti, and Malte Marques. Recent advances and
applications of machine learning in solid-state materials science. npj Computational Materials, 5:
83, 2019. doi: 10.1038/s41524-019-0221-0.

Austin D. Sendek, Qianxun Yang, Ekin D. Cubuk, Ksenia-Amina N. Duerloo, Yi Cui, and Evan J.
Reed. Machine learning-assisted discovery of solid li-ion conducting materials. Chem. Mater., 30
(15):5755–5762, 2018. doi: 10.1021/acs.chemmater.8b01963.

Jean-Marie Tarascon and Michel Armand. Issues and challenges facing rechargeable lithium batteries.
Nature, 414:359–367, 2001. doi: 10.1038/35104644.

Susumu Toki and Mark N. Obrovac. Design strategies for high-performance silicon anodes in lithium-
ion batteries. Advanced Energy Materials, 14(4):2302056, 2024. doi: 10.1002/aenm.202302056.

11



Logan Ward, Ankit Agrawal, Alok Choudhary, and Chris Wolverton. A general-purpose machine
learning framework for predicting properties of inorganic materials. npj Computational Materials,
2:16028, 2016. doi: 10.1038/npjcompumats.2016.28.

Tian Xie and Jeffrey C. Grossman. Crystal graph convolutional neural networks for an accurate
and interpretable prediction of material properties. Phys. Rev. Lett., 120:145301, 2018. doi:
10.1103/PhysRevLett.120.145301.

Tian Xie, Xiang Fu, Octavian Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal diffusion
variational autoencoder for periodic material generation. In International Conference on Learning
Representations (ICLR), 2022.

Cai-Yuan Ye, Hong-Ming Weng, and Quan-Sheng Wu. Con-cdvae: A method for the conditional
generation of crystal structures. Computational Materials Today, 1:100003, May 2024. ISSN
2950-4635. doi: 10.1016/j.commt.2024.100003. URL http://dx.doi.org/10.1016/j.commt.
2024.100003.

Karim Zaghib, Alain Mauger, and Claude M. Julien. Advanced electrode materials for lithium-ion
batteries. Journal of Power Sources, 196(8):3949–3954, 2010. doi: 10.1016/j.jpowsour.2010.11.
118.

Xuejiao Zuo, Jia Zhu, Peter Müller-Buschbaum, and Yingsheng Cheng. Silicon based lithium-
ion battery anodes: A chronicle perspective review. Nano Energy, 31:113–143, 2017. doi:
10.1016/j.nanoen.2016.11.013.

12

http://dx.doi.org/10.1016/j.commt.2024.100003
http://dx.doi.org/10.1016/j.commt.2024.100003

	Introduction
	Li-ion batteries, Si anode, pros and cons
	Material Databases
	Artificial Intelligence in Materials Science

	Methodology
	Problem: Volume Change in Si Anodes
	Stage 1: Database Mining of Si-X Alloys
	Stage 2: Generation and Relaxation of Discharged States
	Stage 3: Generative Design of New Si-Based Anodes

	Results and Discussion
	Li+ Migration Channels in Si and Si–X Anodes
	High-Throughput Screening: Capacity vs. Channel Size
	AI-Relaxed Discharged Structures and Channel Stability
	Conditional Generative Design of Novel Si-Based alloy Anodes

	Conclusion

