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Abstract

The pace of evolution of Large Language Models (LLMs) necessitates new ap-1

proaches for rigorous and comprehensive evaluation. Traditional human annotation2

is increasingly impracticable due to the complexities and costs involved in gener-3

ating high-quality, challenging problems. In this work, we introduce CHASE, a4

framework to synthetically generate challenging problems using LLMs without5

human involvement. For a given task, our approach builds a difficult problem in a6

bottom-up manner from simpler components in a verifiable way. We implement7

CHASE to create evaluation benchmarks across three diverse domains on which8

state-of-the-art LLMs demonstrate severe vulnerabilities.9

1 Introduction10

We have witnessed the emergence of powerful Large Language Models (LLMs) (OpenAI Team et al.,11

2024) that exhibit remarkable performance over a wide range of tasks. However, the resources for12

evaluating these models have not kept pace with their rapid evolution. Contemporary LLMs have13

saturated many existing reasoning benchmarks (Chen et al., 2021, Cobbe et al., 2021). Developing14

challenging problems is both expensive and time-consuming, especially for non-expert human15

annotators. Hence, relying solely on human annotation to build evaluation benchmarks is inherently16

limited, and LLMs offer a promising alternative for generating high-quality evaluation data.17

Synthetic data generation has emerged as a powerful paradigm in recent years driven by the wide-18

spread availability of cheaper and faster LLMs that can effectively follow instructions (Wang et al.,19

2023, Xu et al., 2024). However, using synthetic data for evaluation has been relatively underex-20

plored. There are considerable advantages in using synthetic data for evaluation: it is comparatively21

inexpensive, highly scalable, and can be renewed periodically to mitigate contamination concerns.22

However, there are two main challenges: first, how can we create difficult and realistic problems?23

and second, how can we automatically verify the correctness of the generated data?24

In this work, we present the CHASE framework: CHallenging AI with Synthetic Evaluations. Our25

methodology is based on two straightforward ideas (see Figure 1). First, we create problems in a26

bottom-up manner, iteratively hiding parts of the solution within the problem’s context. Second, we27

decompose the generation process into simpler, individually verifiable sub-tasks. We implemented28

our framework to create challenging benchmarks across three diverse domains: (1) CHASE-QA,29

a document-based question answering benchmark; (2) CHASE-CODE, a repository-level code30

completion benchmark; (3) CHASE-MATH, a benchmark of grade-school level word problems.31

Experiments with 27 contemporary LLMs show that the datasets generated using CHASE are32

challenging for all models (accuracies of ∼ 40− 70%). Our results also reveal large gaps in33

performance between different LLMs that perform similarly on existing benchmarks like MMLU34

(Hendrycks et al., 2021). Lastly, we show that CHASE is scalable, allows a high degree of control35

over the difficulty of generated data, and provides a high level of correctness.36
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Figure 1: Top: Illustrating the high-level ideas behind our proposed CHASE framework. Bottom left:
Pipeline for creating an example in CHASE-QA. Bottom right: Pipeline for creating a math word
problem in CHASE-MATH. The pipeline for CHASE-CODE is illustrated in Figure 3 in Appendix.

2 The CHASE Framework and Benchmarks37

Our framework for generating synthetic data is based on two simple ideas as illustrated in Figure 1.38

1. Bottom-up problem creation. We take a bottom-up approach to synthetic data generation. We39

either generate or start with a simpler problem-solution pair, and incrementally enrich the problem40

context in ways that increase reasoning difficulty. Specifically, we obscure, divide, or distribute key41

elements of the reasoning process or solution, thereby requiring the solver to undertake multiple steps42

of inferences to arrive at the solution.43

2. Decomposition into simpler, verifiable sub-tasks. We design pipelines that break down the44

generation process into simpler sub-tasks. Each individual LLM in the pipeline performs a simpler,45

specific function in the generation process. This provides us with multiple benefits. First, it grants46

us more control over each step of the generation process. Second, and perhaps more importantly, it47

facilitates fine-grained verification. We deploy LLMs that are not part of the generation process to48

check the correctness and quality of the generated data at each possible step.49

We demonstrate the adaptability of our framework by generating challenging problems in three50

domains. CHASE-QA is a document-grounded QA task with 671 problems (Figure 2 left), requir-51

ing reasoning over long contexts (>6k tokens) as relevant information spans multiple documents.52

CHASE-CODE is a repository-level code completion benchmark with 500 problems (Figure 2 cen-53

tre), where models implement new Python functions based on specified objectives. CHASE-MATH54

comprises 500 grade-school math word problems involving basic arithmetic (Figure 2 right). Below,55

we briefly describe construction pipelines for CHASE-QA and CHASE-MATH (refer Figure 1).56

Details for all construction pipelines are provided in Appendix E.57

Constructing CHASE-QA. We first generate diverse realistic scenarios where a user persona58

seeks information from a collection of documents. For example, a ‘grad student in NYC’ search-59

ing ‘laws on renting and subletting’. We prompt the generator G to produce scenarios as tuples60

(persona, collection_name), bootstrapping with 5 annotated examples and then iteratively ex-61

panding with its own outputs. Given a scenario, we then prompt G to create a realistic information-62

seeking question and its answer. For instance, a ‘grad student’ might ask, ‘what is the procedure63

for refusing increase in rent?’, with the answer spread across multiple government documents. G64

must produce answers composed of multiple points, along with an outline of documents (title and65

abstract) where each point is assigned. To increase difficulty, for each QA pair, G also generates66
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Nissa hires 60 seasonal workers to play 
elves in her department store's Santa 
village. A third of the elves quit after 
receiving a better offer from elsewhere, 
then 10 of the remaining elves quit to 
spend holidays at home.  After forming 
groups of 5 with the remaining elves, Nissa 
decides to host a special festival for the 
elves. For this celebration, she wants to 
create 4 times as many festive banners as 
the number of groups she formed. 

Nissa hires 60 elves. A third quit, so there 
were 60 - 60 / 3 = 40 elves remaining. 10 
more quit, so we have 40-10 = 30 elves 
left. Nissa formed 30 / 5 = 6 groups of 
elves. So she creates 6 * 4 = 24 banners.

Context

Question

Answer

How many festive banners will Nissa create 
for the festival?

CHASE-Math

def process_data(df, target_column, price_col, date_col, 
window_size, freq_dict):

    if target_column not in df.columns:

        raise ValueError(“target column not found”)

    

    # Step 1: Handle outliers

    df, total_outliers = handle_outliers(df, target_column)



    ...

    

    return df, total_outliers

Parameters�
� df: pandas.DataFrame # data to 
proces�

� ...

Objectives�
� Normalize the `price_col` by applying a 
z-score normalization ..�

� ...

Return values�
� total_outliers: int # count of outliers 
identified before imputatio�

� ...

def read_json(...):

    ...



def get_block_lists(...):

    ...







def handle_outliers(...):

    ....

def process_data(df, target_column, price_col, date_col, 
window_size, freq_dict):

    if target_column not in df.columns:

        raise ValueError(“target column not found”)

    

    # Step 1: Handle outliers

    df, total_outliers = handle_outliers(df, target_column)



    ...

    

    return df, total_outliers

Implement a function with:

Parameters�
� df: pandas.DataFrame # data to 
proces�

� ...

Objectives�
� Normalize the `price_col` by 
applying a z-score normalization ..�

� ...

Return values�
� total_outliers: int # count of outliers 
identified before imputatio�

� ...

def read_json(...):

    ...



def get_block_lists(...):

    ...







def handle_outliers(...):

    ....

CHASE-Code

Repository Context Problem Statement

Answer Code

Parameters�
� df: pandas.DataFrame # data to 
proces�

� ...

Objectives�
� Normalize the `price_col` by applying a 
z-score normalization ..�

� ...

Return values�
� total_outliers: int # count of outliers 
identified before imputatio�

� ...

� Notify landlord within 1 month of notice of rent 
increase�

� Maintain written communication records�
� If the rent increase is more than 10%, you 

can file a case in housing court.

What is the procedure for refusing increase in rent 
in New York City?

[Document 1] ... ongoing housing crisis has led 
the prices to skyrocket. 1 bedroom appartments 
in Manhattan can cost upwards of $5 million...






[Document 2] ... 
...






[Document k] ... increase rent of the sublease 
by taking permission from the landlord...

file a case in housing court if 
the rent increase is more than 10%

CHASE-QA

Documents

Answer

Question

Figure 2: Examples of problems from all three benchmarks created using CHASE.

distracting QA pairs with answers of a similar type but irrelevant to the original question (e.g., ‘how67

do I increase the rent for an apartment I am subletting?’). To ensure correctness, we prompt the68

verifier V to check that none of the distractors are actually relevant (Figure 1 bottom left). Finally,69

for each QA and distracting QA pair, G generates long documents that include the assigned answer70

points plus irrelevant details. These documents collectively form the context. We verify correctness71

with V to ensure: (1) no extra relevant information appears beyond ground-truth answers, and (2) all72

answer points are fully covered.73

Constructing CHASE-MATH. We start by sampling seed math word problems (MWPs) from74

existing datasets. A seed MWP s = (p, a) has problem p and answer a. We prompt generator G to75

split p into context c (given information) and question q (unknown to find). Given the initial seed76

MWP, s0 = (p0, a0), G produces s1 = (p1, a1) where the new context c1 implicitly assumes a0 as77

known, and generates a new question q1 whose answer a1 is obtained by an arithmetic operation over78

a0. Merging s0 with s1 yields a higher-depth MWP s = (p, a) with context c = c0 · c1, question79

q = q1, and answer a = a1 (Figure 1, bottom right). We repeat this process: each si becomes the80

seed for si+1. After j successful iterations (depth j+1), the final problem has c = c0 · c1 · · · cj ,81

question qj , and answer a = aj . Because each si is low-depth and comparable to seed data, we verify82

correctness using a non-identical ensemble of verifiers {V1, . . . ,Vn} that perform well on the seed83

set. Each Vk is prompted with (ci, qi); if any prediction differs from ai, we discard si and restart84

from si−1.85

3 Experiments86

Implementation Details. The exact details associated with generating each benchmark are provided87

in Appendix F. The prompts are provided in Appendix J. For evaluation of CHASE-CODE, we88

measure the pass@1 execution accuracy. For CHASE-MATH, we measure the exact match accuracy89

against the ground-truth numerical answer. Since, the ground-truth answers for CHASE-QA are90

verbose text, we deploy an LLM-as-a-judge to automatically assess the correctness of predictions.91

We use GPT-4o as the judge and measure the accuracy as the percentage of predictions judged to92

be correct. We evaluated a total of 27 different LLMs, including reasoning models. Other details93

of implementation, such as details of LLMs and human evaluation of LLM judge are provided in94

Appendix F.95

Results and Discussion. The performance of all LLMs on CHASE benchmarks can be seen in96

Table 1. Even the state-of-the-art reasoning models achieve performance only in the range of 50-70%,97

which attests to the difficulty of the benchmark. To verify correctness, we manually reviewed 20098

random examples from each of the 3 benchmarks. We detected errors in 7%, 5%, and 8% of the99

examples in CHASE-QA, CHASE-CODE, and CHASE-MATH respectively. These error rates are100

similar to those observed for other human and synthetic benchmarks (Chong et al., 2022, Li et al.,101
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Table 1: The performance of various LLMs on all 3 domains of the CHASE benchmark. We
measure the accuracy of the predictions for CHASE-QA and CHASE-MATH, and pass@1 for
CHASE-CODE. Numbers in bold indicate best performance on domain while underline indicates
best-in-class performance. Full model names for the identifiers used here are provided in Table 2.

(a) General LLMs.

MODELS QA CODE MATH

Gemini-1.5-Pro 63.2 38.2 65.4

GPT-4o 55.3 24.6 59.8

Claude-3.5-Sonnet 36.1 22.4 64.2

DeepSeek-V3 33.8 36.6 58.6

Gemini-1.5-Flash 55.1 28.6 56.6

GPT-4o-mini 50.2 18.8 48.4

Claude-3-Haiku 32.6 21.8 44.2

Llama-3.1-70B 41.3 15.6 53.4

Qwen2.5-32B 43.9 25 61.2

Llama-3.1-8B 25.2 2.0 32.2

Qwen2.5-7B 22.2 2.2 42.8

(b) Reasoning Models.

MODELS QA CODE MATH

o4-mini 66.5 38.0 69.6

Gemini-2.5-FP 64.9 40.8 56.8

DeepSeek-R1 45.2 36.6 55.0

R1-Llama-70B 50.7 30.4 53.6

R1-Qwen-32B 50.1 32.6 59.4

OThinker-32B 49.2 33.8 53.4

s1-32B 48.1 6.2 45.2

LIMO-32B 53.6 8.4 46.0

R1-Llama-8B 34.3 5.2 26.4

R1-Qwen-7B 18.5 1.4 35.2

R1-Qwen-1.5B 7.2 0.0 17.6

2025). Finally, we observed that all 3 CHASE benchmarks exhibit high diversity, with a detailed102

qualitative and quantitative discussion provided in Appendix G.5.103

We note several interesting insights. We see that the Gemini models perform significantly better104

than other models, especially on long-context reasoning tasks. Surprisingly, we also observe that105

DeepSeek-R1, which is specialized for reasoning performs similar to its non-reasoning base model106

DeepSeek-V3 on CHASE-CODE and CHASE-MATH. Another interesting result is that while many107

models have saturated reasoning benchmarks like AIME-2024 (MAA, 2024) and GSM8k (as seen108

in Table 10), they still struggle on our simple math word problems dataset. Indeed, on all CHASE109

benchmarks, we see huge variations in performance between the models. These results highlight our110

framework’s potential for differentiating between state-of-the-art LLMs that all perform similarly111

on standard benchmarks like MMLU (Hendrycks et al., 2021), GSM8k (Cobbe et al., 2021), or112

HumanEval (Chen et al., 2021). We provide examples of errors made by Gemini-1.5-Pro and o4-mini113

on the CHASE benchmarks and analyze them in Appendix I.114

Additional analyses. We compare CHASE with a direct-generation baseline in Appendix G.2.115

We see that the baseline yields high error rates and fails to challenge strong LLMs (Table 5).116

We also observed that CHASE scales nearly linearly with budget (Appendix G.3; Figure 4) and117

enables a tunable cost-size-accuracy trade-off via rejection sampling. Lastly, we show that we can118

programmatically control the difficulty (Appendix G.4; Figure 5) of the generated problems.119

4 Conclusion120

In this work, we presented CHASE, a framework for generating challenging evaluation problems.121

It (i) efficiently generates hundreds of examples; (ii) can be periodically regenerated to mitigate122

contamination; (iii) enables evaluation of hard-to-judge skills (e.g., long-context reasoning); and123

(iv) ensures correctness via extensive verification. We instantiate CHASE in document-based QA,124

repository-level code completion, and math reasoning, and show that even state-of-the-art LLMs125

struggle on these tasks. Limitations and clarifications are provided in Appendices B and C.126
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A Roadmap403

The appendix is organized as follows.404

• In Section B, we discuss some concrete limitations of our work.405

• In Section C, we clarify some common concerns regarding our work.406

• In Section D, we discuss the broader impacts of our work.407

• In Section E, we discuss the construction pipelines in detail.408

• In Section F, we provide the implementation details for our experiments.409

• In Section G, we discuss some additional experimental results.410

• In Section H, we discuss some related works.411

• In Section I, we analyze errors made by LLMs while generating and solving CHASE412

benchmarks.413

• In Section J, we provide the exact prompts used in this work.414

B Limitations415

Size of benchmarks. The datasets we generated are comparatively smaller in size. Our framework416

necessitates querying the generator and especially the verifier many times for crafting each example.417

While this increases the quality and correctness of the data, it significantly increases the cost of418

generation. Moreover, a large portion of the intermediate generations in our pipeline are discarded419

because of extensive verification, which significantly reduces the yield. Our focus in this work is to420

present the CHASE framework and we believe our experiments, albeit on smaller-sized datasets,421

convincingly show its utility in generating challenging problems for evaluation. Small benchmarks, if422

generated with a high bar for quality and correctness, can still be very impactful as evidenced by past423

works like HumanEval (Chen et al., 2021).424

Presence of Errors. Some of the examples we generated using CHASE, while being semantically425

correct, use unnatural or difficult-to-parse language. This is a general trait of text generated from426

contemporary LLMs, and our framework is unfortunately susceptible to it. Moreover, as noted in427

Section 3, a small percentage of correctness errors may exist in the CHASE-generated benchmarks.428

Examples of such errors in generation are discussed in Appendix I. We believe that errors at this429

scale are acceptable considering the other advantages of the framework and can be factored into the430

evaluation in future studies.431

Adaptability. While we have shown how we implemented CHASE on three different domains, it432

is not trivial to adapt the framework to other tasks. Although the high level ideas behind CHASE433

are easy enough to follow, it takes multiple trials and errors to design a working pipeline for any434

given task. However, we are optimistic that advances in LLMs’ abilities to more precisely follow435

instructions will make such pipelines easier to construct in the future.436

C Clarifications437

Does LLM-verification create a circular dependency, where LLMs validate the work of other LLMs,438

potentially propagating the same limitations?439

One of the key features of CHASE is that the generation and verification tasks are very different. We440

use LLMs to only verify simple sub-steps in a multi-stage pipeline. Consider, for e.g., the task of441

verifying whether a particular document contains a specific point of information for CHASE-QA.442

This verification task is much more simple and straightforward than the generation tasks of generating443

the questions, answers, or documents. We also carried out human verification of these individual444

verification sub-tasks as discussed in Appendix G.8.445

How does CHASE differ from works that artificially increase benchmark difficulty using simple446

perturbations?447
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Unlike benchmarks that rely on simple perturbations to expose model weaknesses (Nezhurina et al.,448

2025, Xie et al., 2024, Zhou et al., 2025), CHASE aims to evaluate LLMs in realistic scenarios449

that require a higher level of reasoning. Our goal is not to construct adversarial edge cases, but450

to develop scalable evaluation pipelines for tasks that naturally arise in practical settings, such as451

information-seeking QA and repository-level code synthesis. Even in math reasoning, CHASE452

presents rich, scenario-based problems written in ambiguous, naturalistic language, reflecting the453

challenges of real-world comprehension. While some of our findings (e.g., LLMs still struggle at454

higher-depth math word problems) may echo those of perturbation-based studies, our methodology is455

fundamentally different in motivation, construction, and scope.456

What is the value of CHASE-Code when we can automatically create benchmarks such as SWE-Bench457

(Jimenez et al., 2024) using real-world GitHub repositories.458

CHASE-CODE is not intended to replace or compete with benchmarks like SWE-Bench, but rather459

to complement them. SWE-Bench targets a fundamentally different task: code editing and bug460

fixing, where models are expected to generate patches for existing issues in real repositories. In461

contrast, CHASE-CODE focuses on generating new functionality based on its precise description.462

Such problems may be present in SWE-Bench, but they are a clear minority. Moreover, a key463

advantage of CHASE-CODE is its controllability. Users can specify parameters such as the target464

domain (e.g., algorithms, data pre-processing), function difficulty, or repository length. This level465

of customization is not feasible with current real-world benchmarks like SWE-Bench, which rely466

on naturally occurring issues in a small number of curated repositories. Finally, benchmarks like467

SWE-Bench are bottlenecked by the availability of high-quality repositories with extensive testing468

infrastructure. In contrast, CHASE-CODE’s pipeline enables automated test generation, thereby469

improving its scalability.470

D Broader Impact Statement471

Our work presents a novel framework that leverages Large Language Models (LLMs) to synthetically472

generate challenging evaluation benchmarks. As LLMs continue to advance, rigorously assessing473

their capabilities only based on human-annotation has become increasingly difficult. Our approach has474

the potential to drive significant progress in the field of evaluation, addressing one of the most critical475

challenges in machine learning by providing a scalable, transparent, and cost-effective mechanism476

for benchmarking new models over time.477

From an ethical standpoint, our framework helps mitigate the risks of over-reliance on static bench-478

marks, which can become obsolete or compromised through test data contamination. By enabling the479

periodic renewal of evaluation datasets, our method promotes a more robust and adaptive assessment480

of LLMs. However, since synthetic benchmarks are themselves generated by LLMs, they may481

encode biases, fail to capture certain real-world complexities, or reinforce existing limitations in482

model-generated data. Ensuring that these benchmarks remain diverse, representative, and aligned483

with human values is an essential direction for future research.484

On a broader societal level, improved evaluation methods contribute to the responsible development485

of AI systems by enabling better monitoring of model performance, safety, and fairness. However,486

the automation of evaluation also raises questions about the role of human oversight and the potential487

risks of relying on AI-generated assessments. Future work should seek to investigate such questions488

towards ensuring rigorous, unbiased, and socially beneficial evaluations of AI systems.489

E Construction Pipelines490

In this section, we discuss in detail our implementation of the CHASE framework for all three491

domains. Our pipelines use two different LLMs: the generator G and verifier V.492

E.1 Constructing CHASE-QA493

We generate CHASE-QA completely from scratch without relying on existing contexts or any seed494

examples from previous datasets. Following the CHASE framework, we create each example in a495

bottom-up manner by first generating the question-answer pair, and then generating the corresponding496
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documents. Our pipeline for creating CHASE-QA is illustrated in Figure 1 bottom left. We describe497

it in detail below. The prompts are provided in Appendix J.1.498

Generating diverse scenarios. We generate a set of diverse realistic scenarios in which a user499

persona seeks to find some information from a collection of documents. For example, a ‘grad student500

in NYC’ searching the ‘laws on renting and subletting’. We prompt G to generate scenarios in the501

form of a tuple (persona, collection_name) by bootstrapping it with 5 annotated scenarios, and502

later prompting it with its own generated scenarios.503

Generating question-answer (QA) pairs. We design programmatic prompts with a given scenario504

as the variable to prompt G to generate a realistic information-seeking question that the persona505

might want to know about from collection_name set of documents. For example, a ‘grad student’506

might pose the question, ‘what is the procedure for refusing increase in rent?’, whose answer can507

be found spread across multiple documents on the government’s laws on renting. Additionally, G508

must generate the corresponding answer. We prompt G to generate questions and answers where the509

answers are a composition of multiple points or ideas. Lastly, G must generate the outline of the510

documents (only title and abstract) which will contain the answer. The idea is that it must separate511

out the answer points and assign them to these different documents.512

Generating distracting information. To make the task more challenging, for each QA pair, we513

prompt G to generate distracting QA pairs where the answer is of a similar type as the ground-truth514

answer. An example of a distracting question for our running example with the grad student is, ‘how515

do I increase the rent for an apartment I am subletting?’. The corresponding answers to such questions516

will be of a similar flavour to the ground-truth answer, but ultimately distracting for answering the517

question. This will make the generated data challenging since it will confuse the model when all this518

similar type of information is spread across multiple documents. It is, however, important to verify519

that none of this generated distracting information is actually relevant for the question (otherwise it520

will make our ground-truth answer incomplete). We individually prompt V with the original question521

and each of the supposed distracting information points to check if any part of them is relevant for522

answering the question (see Figure 1 bottom left for an example of a distracting point discarded by V523

because it was relevant for the original question).524

Generating documents. For each example, we have generated a QA pair, along with some similar525

but distracting QA pairs. For each of these QA pairs, we separately prompt G to generate long526

documents where the documents must discuss the corresponding answer points assigned to it, along527

with many other irrelevant points. Together, all these documents form up the context for that example.528

We verify two things to ensure the correctness of the task: (1) none of the documents should contain529

any extra information related to the question, apart from the ground-truth answer points, and (2) all530

of the ground-truth answer points must be discussed in the documents. We do this by rigorously531

prompting V with individual documents and ground-truth answer points.532

E.2 Constructing CHASE-MATH533

We sample math word problems (MWP) from existing datasets as seed examples to build our534

benchmark. Following CHASE, we bottom-up build a complex problem by iteratively increasing the535

reasoning depth of the problem. Our pipeline used for creating CHASE-MATH can be seen in Figure536

1 bottom right. We describe it in more detail below. The prompts are provided in Appendix J.3.537

Breaking down seed MWP. A seed MWP s is characterised by the tuple s = (p, a) where p is the538

problem, and a is the answer. We prompt G to break down p into two parts: the context c, which539

provides all the information, and the question q, which asks about some unknown quantity.540

Create continuation of MWP. We prompt G with an initial seed MWP s0 = (p0, a0) to build a new541

problem which is a continuation of the previous problem. More precisely, G should output a new542

problem s1 = (p1, a1), where the context of p1, i.e., c1 assumes a0 as given information (without543

explicitly stating it). For example, in Figure 1 bottom right, the model assumes Jack has 4 pens as544

given information, and creates a new continuation context, Jill has thrice as many pens as Jack has545

now. The model also generates a new question q1, how many pens does Jill have? whose answer546

a1 = 12 is obtained by performing an arithmetic operation (here, multiplication by 3) over a0 = 4.547

Combining seed MWP with its continuation. By combining the seed problem with its continuation,548

we get a new MWP s = (p, a) with a higher reasoning depth, where the context c of the combined549
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problem p is a concatenation of the contexts of the seed problem and the continuation c = c0 · c1. The550

question for the combined problem will be the one generated by the model, i.e., q1, and the answer551

a = a1. We refer to Figure 1 bottom right for illustration.552

Iteratively increase reasoning depth. We increase the reasoning depth of a given seed MWP by553

creating new continuations in an iterative manner. Each new continuation si formed after the ith554

iteration becomes the seed problem for the (i+ 1)th iteration. The final problem after j successful555

iterations, i.e., with a reasoning depth of j + 1, is given by context c = c0 · c1 . . . cj , question qj , and556

answer a = aj .557

Since each new problem created by G has a low reasoning depth of the same difficulty as the problems558

in the seed datasets, we verify their correctness using a non-identical ensemble of verifier models559

{V1,V2, . . . ,Vn}, each of which performs well on the seed dataset. We prompt each Vk with the560

generated context ci and question qi and check whether the prediction is the same as the generated561

answer ai. If this fails for any verifier, we discard si and begin again with si−1 as the seed MWP562

(see Figure 1 bottom right).563

E.3 Constructing CHASE-CODE564

We generate CHASE-CODE completely from scratch without relying on existing contexts or any565

seed examples from previous datasets. Our pipeline for creating CHASE-CODE is shown in Figure 3566

in the Appendix. We describe it in detail below. The prompts are provided in Appendix J.2.567

Generating Python functions. We begin by first generating a set of diverse and realistic Python568

functions. We prompt G to generate Python functions for a particular domain by bootstrapping it569

with 3 annotated functions in that domain, and later prompting it with its own generated functions.570

These generated functions will act as the helper functions in the repository context which may or571

may not be called in the answer code function. Given each generated helper function, we prompt572

V to generate a Python code which initializes sample inputs for the function and then calls it using573

them. We then execute this code to verify whether the generated helper function executes correctly.574

Generating problem statement and answer code. To create a single example, we randomly sample575

n of the previously generated helper functions, and prompt G to create a complex function that576

calls at least k of these provided helper functions (hereafter called relevant helper functions) apart577

from implementing additional logic. This complex function is our answer code. Additionally G578

must elaborate in natural language what objectives the complex function achieves, which forms our579

problem statement. Similar to the case of helper functions, we prompt V to generate test code to580

check if the generated answer code executes correctly. To verify whether the problem statement581

sufficiently specifies the answer code, we prompt V with the problem statement and corresponding582

relevant helper functions and check whether the output is semantically equivalent to the answer code583

(using the test code obtained in the next step).584

Generating test code. To enable automatic execution-based testing, we prompt G with the generated585

answer function to implement a test code for it in Python. The test code must independently implement586

the logic of the answer code without access to the corresponding helper functions. It must then587

initialize the parameters of the answer function with sample values, and compare the output with588

its own implementation. We execute the generated test code to check if the answer code passes.589

We discard all examples for which (1) the test code does not execute properly, or (2) the test code590

executes but the answer code fails the test.591

Building code repository. For each example, we build a unique repository of Python files. The592

repository consists of the relevant helper functions spread across different files, along with m593

randomly sampled irrelevant Python functions from our previously generated set. The core difficulty594

of this task arises from understanding the entire long context of code functions, and identifying which595

ones are relevant for the provided problem statement.596

F Implementation Details597

Generating CHASE-QA. We use GPT-4o (OpenAI Team et al., 2024) as the generator G, and GPT-598

4o-mini as the verifier V. We first sampled 500 unique scenarios. For each scenario, we generate599

2 QA pairs. For each of the resulting 1000 unique QA pairs, we obtain distracting information600
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by generating 4 similar QA pairs. We then generate the corresponding documents containing the601

ground-truth answer as well as distracting information for each of the 1000 examples. To increase602

the complexity of the resulting benchmark, we carry out a form of rejection sampling. We evaluate603

GPT-4o-mini twice on the task, and randomly discard half of the problems on which it was correct604

both times. This yielded the final benchmark of 671 examples.605

Generating CHASE-CODE. We use GPT-4o-mini (OpenAI Team et al., 2024) as the generator G,606

and Gemini-1.5-Flash as the verifier V. We made this choice because generating even a small amount607

of challenging code problems required a large number of iterations, since a lot of the model-generated608

code at various stages would fail to execute or be semantically incorrect. For each domain, we first609

sampled 500 different helper functions that execute without errors. Then we prompt the model with610

n = 10 random helper functions to generate a problem statement and corresponding answer code that611

calls at least k = 4 helper functions. We do this to create 1000 different examples for each domain.612

Next, we generate up to 10 test codes for each example and keep only those examples for which a613

generated test code successfully passed for the corresponding answer code. We also carry out the614

verification of correctness of problem statement as describe before. This way, we end up with 290615

examples for the algorithms domain and 300 examples for the data pre-processing domain. We again616

use GPT-4o-mini for rejection samping and randomly discard around half of the problems on which it617

was correct. This way, we end up with a total of 500 examples in the benchmark, with 250 examples618

for each domain. For each example, we randomly sample m = 100 irrelevant helper functions and619

distribute them into 10 Python files to constitute the repository context.620

Generating CHASE-MATH. We use GPT-4o-mini (OpenAI Team et al., 2024) as the generator G,621

and an ensemble of Gemini-1.5-Flash and Llama-3.1-70B as the verifier V. In practice, we observed622

that many of the model generated problems would fail at various stages of verification, so it is faster623

and cheaper to query the smaller models. We start with 2.3k seed problems taken from the test sets of624

GSM8k (Cobbe et al., 2021) and SVAMP (Patel et al., 2021). We set the maximum and minimum625

reasoning depth at 5 and 2 respectively. For each problem, we iterate 15 times to generate a problem626

continuation. Note that many of these iterations fail to produce a correct continuation of the problem,627

in which case we discard that generation and retry from that point in the subsequent iteration. We628

carry out this process 3 times. In this manner, we generated around 1500 problems. We then carry629

out rejection sampling and roughly discarded 75% of the problems that GPT-4o-mini could solve. In630

the end, we end up with a total of 500 challenging MWPs.631

Task parameters. For CHASE-QA and CHASE-CODE, we prompt models with the instruction for632

the task, along with the corresponding long-context and question. The prompt formats are provided633

in Figure 24 and 33 respectively in Appendix J. For CHASE-MATH, we prompt models with 8-shot634

chain-of-thought (Wei et al., 2022) as shown in Figure 36 in Appendix J.3. We decode for a maximum635

of 1024 tokens with a temperature of 0.5.636

Evaluation. The ground-truth answers for CHASE-QA are verbose text, organized in bullet points.637

While this simulates real-world complexity, it also makes evaluation difficult. Since it is intractable638

to employ expert humans for evaluation, we deploy an LLM-as-a-judge to automatically assess the639

correctness of predictions. A prediction is considered to be correct if and only if it is (1) complete,640

i.e., it includes all the points mentioned in the ground-truth answer, and (2) relevant, i.e., it provides641

information only pertaining to the current question. We use GPT-4o as the judge and measure the642

accuracy as the percentage of predictions judged to be correct. The prompt format used for evaluation643

is provided in Figure 25 in Appendix J.1. To assess the validity of the GPT-4o judge, we carry644

out human evaluation as discussed below which shows an almost-perfect agreement between the645

judge and humans. For CHASE-CODE, we measure the pass@1 execution accuracy, i.e., whether646

the model generated code correctly passes when we execute the corresponding test code in the647

first attempt. For CHASE-MATH, we measure the exact match accuracy against the ground-truth648

numerical answer.649

Models. We experimented with 27 different LLMs. These include general LLMs: Gemini-1.5-Pro650

and Flash (Gemini Team et al., 2024), GPT-4o and GPT-4o-mini (OpenAI Team et al., 2024), Claude-651

3.5-Sonnet Anthropic (2024b), Claude-3-Haiku (Anthropic, 2024a), DeepSeek-V3 (DeepSeek-AI652

et al., 2025b), Llama-3.1 8B and 70B (Llama Team et al., 2024), Mistral Small and Large 2 (Mistral,653

2024), Qwen2.5 7B and 32B (Team, 2024a, Yang et al., 2024), Cohere Command R+ (Cohere, 2024),654

DBRX-Instruct (Team, 2024b), and Phi-3.5-MoE (Abdin et al., 2024); and reasoning LLMs: o4-mini655

(OpenAI, 2025), Gemini-2.5-Flash-Preview (DeepMind, 2025), DeepSeek-R1 (DeepSeek-AI et al.,656
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Constructing CHASE-Code

Implement a function with:

Parameters:

...

Objectives:

...

Return Values:

...

Problem Statement

def process_data(...):



    ... = read_json()

    

    return ...

Answer

import pandas as pd

from file import 
process_data



samples = {

    ...

}

...

true_op = ...



...



pred_op = process_data()

assert 
true_op.equals(pred_op)

Test Code
LLM

Generator

def read_json(...):

    ...

def handle_op(...):

    ...

def remove_na(...):

    ...

Helper Functions

Helper 
Functions 
Generation

1

LLM
Generator

LLM
Generator

Generate 
Problem

2

def read_json(...):

    ...

def handle_op(...):

    ...

def remove_na(...):

    ...

Helper Functions

def read_json(...):

    ...

def remove_na(...):

    ...

io_process.py

filters.py
LLM
Verifier

Filtered Helper 
Functions

Filtered Helper 
Functions

LLM
Verifier

LLM
Verifier

Generate 
Test Code

3

Build Repository4

Figure 3: Pipeline for creating an example in CHASE-CODE.

2025a), R1-Distill-Llama-70B, R1-Distill-Qwen-32B, R1-Distill-Llama-8B, R1-Distill-Qwen-7B,657

R1-Distill-Qwen-1.5B, OpenThinker2-32B (Team, 2025), s1.1-32B (Muennighoff et al., 2025), and658

LIMO-32 (Ye et al., 2025).659

Our code is implemented in PyTorch (Paszke et al., 2019) and makes use of the HuggingFace660

Transformers library (Wolf et al., 2020) and the vLLM library (Kwon et al., 2023) for running661

efficient inference locally on LLMs. All experiments with open models were done on our cluster with662

8 NVIDIA A6000 GPUs with 48 GB memory. Experiments using GPT-4o and GPT-4o-mini were663

carried out using the OpenAI API.1. Experiments using Gemini-1.5-Pro and Gemini-1.5-Flash were664

carried out using the Google AI Studio.2 Experiments with Claude-3.5-Sonnet and Claude-3-Haiku665

were carried out using Anthropic’s API.3 Experiments with DeepSeek-V3 and DeepSeek-R1 were666

carried out using Together API.4 We provide the exact identifier and version for each LLM we667

experimented with in Table 2.668

Human verification of LLM judgements. For CHASE-QA, we measure the correlation of669

the GPT-4o evaluator’s judgement and 3 human annotators. We carry out human verification on670

Amazon Mechanical Turk. We first randomly sampled 10 of the predictions made by Gemini-1.5-Pro671

on CHASE-QA and manually evaluated them. We then publish them as a batch of 10 Human672

Intelligence Tasks (HITs) to serve as a qualification task to identify workers who will do the task673

properly. Note that each model prediction that needs to be judged is a HIT. Once we identified 3674

workers that did perfectly on our qualification task, we published a batch of 100 randomly sampled675

predictions accessible only to those workers. Note that we sampled a balanced set based on the LLM676

judge’s evaluation: 50 that were marked by GPT-4o as correct and 50 that were marked as incorrect.677

The instructions provided to the workers and the setup of the task is kept exactly the same as the one678

provided to the LLM judge as shown by the prompt in Figure 25. We paid $0.5 USD to the workers679

for every example. The accuracy of GPT-4o’s judgement as measured against the majority vote of680

the annotators was 91%. Moreover, Cohen’s kappa (Cohen, 1960) between the majority vote of the681

annotators and the LLM judge came out to be 0.82, which indicates almost-perfect agreement.682

Cost of creation. In Table 3, we report the estimated cost of creating the three benchmarks, both in683

terms of inference time and API expenses. Note that the inference time assumes sequential execution684

of each part of the pipeline with only one process running at a time. Hence, the generation can be685

made considerably faster with increased parallelism. This table does not include the cost of other686

experiments in the paper nor does it include the cost of background experiments that went into687

designing the pipelines. We estimate the total of these costs to be over $1000 USD.688

1https://platform.openai.com
2https://aistudio.google.com
3https://console.anthropic.com
4https://api.together.xyz/
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Table 2: Model identifiers for the 27 models we studied in our work. Models that are openly available
are provided with links to their corresponding pages on Huggingface Hub.

MODEL EXACT IDENTIFIER

Llama-3.1-8B meta-llama/Llama-3.1-8B-Instruct

Llama-3.1-70B meta-llama/Llama-3.1-70B-Instruct

Mistral Small mistralai/Mistral-Small-Instruct-2409

Mistral Large 2 mistralai/Mistral-Large-Instruct-2407

Qwen2.5-7B Qwen/Qwen2.5-7B-Instruct

Qwen2.5-32B Qwen/Qwen2.5-32B-Instruct

Command R+ CohereForAI/c4ai-command-r-plus-08-2024

DBRX databricks/dbrx-instruct

Phi-3.5-MoE microsoft/Phi-3.5-MoE-instruct

DeepSeek-R1 deepseek-ai/DeepSeek-R1

DeepSeek-V3 deepseek-ai/DeepSeek-V3

R1-Llama-70B deepseek-ai/DeepSeek-R1-Distill-Llama-70B

R1-Qwen-32B deepseek-ai/DeepSeek-R1-Distill-Qwen-32B

R1-Llama-8B deepseek-ai/DeepSeek-R1-Distill-Llama-8B

R1-Qwen-7B deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

R1-Qwen-1.5B deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B

OThinker-32B open-thoughts/OpenThinker2-32B

s1-32B simplescaling/s1.1-32B

LIMO-32B GAIR/LIMO

GPT-4o-mini gpt-4o-mini-2024-07-18

GPT-4o gpt-4o-2024-05-13

o4-mini o4-mini-2025-04-16

Gemini-1.5-Flash gemini-1.5-flash-001

Gemini-1.5-Pro gemini-1.5-pro-001

Gemini-2.5-FP gemini-2.5-flash-preview-04-17

Claude-3-Haiku claude-3-haiku-20240307

Claude-3.5-Sonnet claude-3-5-sonnet-20240620

G Additional Results and Discussion689

G.1 Results for Other Models690

In Table 4, we provide results for some additional LLMs that we experimented with.691

G.2 Direct Generation Baseline692

We experimented with directly prompting models to generate challenging data for the QA and math693

tasks, without using the CHASE framework. For QA, we prompt GPT-4o with unique examples694

from CHASE-QA as the seed task and instruct it to generate new examples (Honovich et al., 2023,695

Wang et al., 2023). For math, we adapt Evol-Instruct (Xu et al., 2024) to generate more complex696

problems given seed examples from GSM8k. We carry out the same proportion of rejection sampling697

as we did for CHASE-QA and CHASE-MATH for fair comparison. We generated a total of 200698

17

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/mistralai/Mistral-Small-Instruct-2409
https://huggingface.co/mistralai/Mistral-Large-Instruct-2407
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/CohereForAI/c4ai-command-r-plus-08-2024
https://huggingface.co/databricks/dbrx-instruct
https://huggingface.co/microsoft/Phi-3.5-MoE-instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
https://huggingface.co/open-thoughts/OpenThinker2-32B
https://huggingface.co/simplescaling/s1.1-32B
https://huggingface.co/GAIR/LIMO


Table 3: Estimated cost of creating the benchmarks in terms of inference time and money.

BENCHMARK INFERENCE TIME (HOURS) COST (USD)

CHASE-QA 40 100

CHASE-CODE 55 150

CHASE-MATH 200 40

Table 4: The performance of various LLMs on all 3 domains of the CHASE benchmark. We
measure the accuracy of the predictions for CHASE-QA and CHASE-MATH, and pass@1 for
CHASE-CODE. DATA and ALGO refer to the data pre-processing and algorithms sub-domains of
CHASE-CODE.

MODELS QA CODE MATH

Command R+ 41.7 0 43.2

DBRX 15.7 2.2 21.6

Mistral Large 2 34.1 5.0 59.6

Phi-3.5-MoE 10.6 0.8 39.4

Mistral Small 35.5 1.4 50.6

examples for both tasks. We evaluated o4-mini, GPT-4o, Gemini-1.5-Pro, and Claude-3.5-Sonnet699

on these datasets and provide the results in Table 5. For both tasks, based on manual verification of700

examples, we observe that the error % is very high. Moreover, the generated data is not challenging701

for the LLMs we evaluated, all of which perform similarly.702

G.3 Scalability of CHASE703

We evaluate the scalability of CHASE by running the construction pipelines under varying cost704

budgets (in $USD) and measuring the amount of data generated. As shown in Figure 4, for CHASE-705

CODE, the size of the generated dataset scales approximately linearly with the cost budget. We706

observed similar scaling behavior for CHASE-QA and CHASE-MATH. Further, we measure707

the average accuracy of a target model (GPT-4o) after removing different fractions of the data via708

rejection sampling using GPT-4o-mini. Our results show a controllable trade-off between cost, dataset709

size, and downstream accuracy, enabling flexible tuning based on evaluation requirements.710

G.4 Controlling the Difficulty of CHASE711

A key strength of our approach is the ability to finely control various parameters of the data generation712

process, particularly to produce challenging evaluation benchmarks. Figure 5 illustrates this for713

CHASE-QA and CHASE-MATH, showing that increasing the number of distracting documents714

(while keeping the total context size constant) and the required depth of reasoning respectively715

leads to a measurable drop in model performance, thereby demonstrating effective control over task716

difficulty. In Appendix G.9, we further show the impact of context size on task difficulty.717

G.5 Diversity of Problems in CHASE718

We assess the diversity of the CHASE benchmarks across all three domains. Each benchmark is719

constructed in a way that causes variation in problem structure, content, and reasoning skills required.720

We support this claim both qualitatively—by highlighting diversity-oriented design choices—and721

quantitatively, by computing the lexicon usage diversity (LD) metric (Miao et al., 2020), which722

measures lexical diversity across a dataset.723
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Table 5: Performance of LLMs (Accuracy %) on
data generated by direct prompting approaches
without using CHASE. All models achieve sim-
ilarly high accuracies. The last line reports the
manual verification errors (%) in each dataset.

MODEL QA MATH

o4-mini 80.5 75.5
Gemini-1.5-Pro 82.0 74.0
GPT-4o 77.0 72.0
Claude-3.5-Sonnet 78.5 74.5
Error 16.5 23.0
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Figure 5: Controlling the difficulty of CHASE-QA by increasing the number of distracting documents
(left) and CHASE-MATH by increasing the depth of reasoning (right). We hold the size of the data
for each parameter setting constant at 100 examples.

Given a set of n problems P = {p1, p2, . . . , pn}, the lexicon usage diversity (LD) for a problem pi is724

defined as:725

LDi = 1−max
j ̸=i

(
BLEU(pi, pj) + BLEU(pj , pi)

2

)
where BLEU(pi, pj) is the BLEU score (using up to 4-grams) of pi with respect to pj , with smoothing726

applied for short sequences.727

The dataset-level LD is then computed as the mean across all individual scores:728

LD(P) =
1

n

n∑
i=1

LDi

Higher LD values indicate greater lexical diversity among the problem statements in the dataset. For729

reference, the LD value of the ASDiv-A dataset (Miao et al., 2020), which was considered to be very730

diverse, is 0.5.731

Diversity of CHASE-MATH. The problems in CHASE-MATH are built using the examples of732

GSM8k (Cobbe et al., 2021) as the starting point. Since GSM8k is considered to be a high-quality733

and diverse dataset, this ensures a high level of diversity in CHASE-MATH by design. The LD values734

for GSM8k and CHASE-MATH are 0.89 and 0.88 respectively, which quantitatively illustrates that735

our synthetic benchmark is as diverse as the human-curated GSM8k.736

Diversity of CHASE-QA. Each question in CHASE-QA is constructed using a scenario that737

involves a particular user persona (e.g., lawyer, doctor, etc.) searching an environment (e.g., laws738

on renting, etc.). We used 300 unique scenarios to craft the 671 questions in CHASE-QA, which739

encourages diversity by design. Furthermore, the LD value of the questions in CHASE-QA is 0.75.740

19



0 5 10 15 20 25 30 35 40
Lines of Code

0

10

20

30

40

50

Fr
eq

ue
nc

y

Lis
t[in

t], 
int

Lis
t[L

ist[
int

]], 
int

int
, st

r

Lis
t[s

tr],
 st

r

Lis
t[T

up
le[

int
,, i

nt str

Lis
t[in

t], 
int

, in
t

Lis
t[s

tr],
 in

t

Lis
t[L

ist[
int

]], 
int

, in
t

Lis
t[fl

oa
t], 

int

Parameter Type Combination

0

20

40

60

80

100

Fr
eq

ue
nc

y

Figure 6: Analysing the diversity of generated helper functions using frequency distributions over
number of lines of code (left), and the 10 most frequent unique parameter-type combinations (right).

Table 6: Dataset statistics of CHASE-QA and intrinsic complexity metrics to measure the difficulty
of examples.

CRITERIA

Number of examples 671

Average context size 6000

Average number of answer points 3.61

Average number of relevant documents 3.32

Average number of distracting documents 7.72

Diversity of CHASE-CODE. We generate problems for two diverse domains: algorithms and data741

pre-processing. Each problem in CHASE-CODE is created using a distinct set of randomly sampled742

helper functions, which encourages diversity by construction. The diversity of the generated helper743

functions is quite high as evidenced by the frequency distributions over number of lines of code and744

unique parameter-type combinations shown in Figure 6. Lastly, the LD value of problem statements745

in the algorithms subset of CHASE-CODE is 0.85 and that of the data pre-processing subset is 0.83.746

G.6 Intrinsic Complexities of CHASE Benchmarks747

For all three CHASE benchmarks, we evaluate the intrinsic complexity using various metrics. For748

CHASE-QA, we measure the average number of answer points per question along with the average749

number of relevant and distracting documents. For CHASE-CODE we use AST tree-based metrics750

such as Cyclomatic Complexity (Ebert et al., 2016) and Halstead Difficulty (Hariprasad et al., 2017)751

of the answer code combined with the helper functions. For CHASE-MATH, we measure the752

average reasoning depth of the problems. The statistics and complexity values for CHASE-QA,753

CHASE-CODE, and CHASE-MATH are provided in Tables 6, 7, 8 respectively.754

G.7 Comparison of Model Performances On Similar Datasets755

CHASE-QA consists of long-context realistic-situation-based information-seeking QA problems.756

The most similar benchmarks are Loong (Wang et al., 2024), which consists of long-context QA757

problems requiring reasoning over documents (more than 100k tokens long) from domains such758

as academic papers and financial reports, and LooGLE (Li et al., 2024b), which consists of long-759

dependency QA problems over wikipedia and movie scripts (around 32k tokens context). The best760

performing models on these datasets achieve scores of around 53% and 54% respectively. The best761

performing model on CHASE-QA achieves a score of around 63%, which reduces to around 55%762

when we scale the context size to comparable levels of 30k tokens (as seen in Figure 7 right).763

CHASE-CODE consists of repository-level code generation problems. HumanEval (Chen et al.,764

2021) and LiveCodeBench (Jain et al., 2025) are some of the most widely-used challenging code765
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Table 7: Dataset statistics of CHASE-CODE and intrinsic complexity metrics to measure the difficulty
of examples.

CRITERIA ALGO DP

Number of examples 250 250

Average context size 17000 17000

Average number of statements 22.04 11.37

Average Cyclomatic Complexity 15.40 8.23

Average Halstead Difficulty 19.59 12.24

Table 8: Dataset statistics of CHASE-MATH and intrinsic complexity metrics to measure the difficulty
of examples.

CRITERIA

Number of examples 500

Average reasoning depth 3.92

Average number of words in question 278.56

generation benchmarks. We compare the performances of both, general and reasoning LLMs on766

these datasets in Table 9 and Table 10 respectively. We can clearly see that CHASE-CODE is also a767

challenging benchmark. Recently, some repository-level code benchmarks have also been proposed.768

SWE-Bench (Jimenez et al., 2024) is a benchmark of around 2300 software engineering problems769

compiled from GitHub issues in popular repositories. EvoCodeBench (Li et al., 2024a) consists770

of 275 repository-level code generation problems based on popular GitHub repositories. The best771

performing models on these benchmarks achieve around 42% and 20% scores respectively.772

CHASE-MATH consists of math reasoning problems. The most widely-used challenging bench-773

marks for this task are GSM8k (Cobbe et al., 2021), and AIME-2024 (MAA, 2024). We compare the774

performances of both, general and reasoning LLMs on these datasets in Table 9 and Table 10 respec-775

tively. It is clear that GSM8k and AIME-2024 are becoming saturated, with many state-of-the-art776

models achieving more than 90% accuracies. In comparison, CHASE-MATH is still very difficult777

for all models to solve. Moreover, the differences in performance between different models is much778

larger, which enables more confident comparison.779

G.8 Human verification of LLM verification780

We carry out human verification of each LLM verification stage. For each stage, we manually look at781

30 random instances and report the errors.782

For CHASE-QA, there are two main verification steps: (1) verifying whether the information in783

distracting answer points is not relevant for answering the question, and (2) verifying whether the784

generated documents contain only the same information as the ground truth answer (not missing785

anything, nor adding anything). We did not find any errors in the former, while we found 2 errors in786

the latter.787

For CHASE-CODE, the verification steps are: (1) verifying the execution of helper functions,788

(2) verifying the execution of the answer code, and (3) verifying whether the problem statement789

sufficiently specifies the answer code. We found only one error in the last step.790

For CHASE-MATH, the verification involves verifying a single problem continuation. We found two791

errors in this step.792
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Figure 7: Performance of LLMs decreases with increasing context sizes for 110-example subset of
CHASE-CODE (left), and 100-example subset of CHASE-QA (right).

Table 9: Comparison of performances of general LLMs on CHASE benchmarks with other human-
curated benchmarks in the domain. We compare CHASE-MATH and GSM8k, a widely-used
benchmark for grade-school level math word problem solving. We also compare CHASE-CODE and
HumanEval, a widely-used benchmark for code generation (pass@1 for both).

MODEL CHASE-MATH GSM8K CHASE-CODE HUMANEVAL

Gemini-1.5-Pro 65.4 90.8 38.2 84.1

GPT-4o 59.8 96.1 24.6 90.2

Claude-3.5-Sonnet 64.2 96.4 22.4 92.0

DeepSeek-V3 58.6 89.3 36.6 65.2

Gemini-1.5-Flash 56.6 86.2 28.6 74.3

GPT-4o-mini 48.4 94.2 18.8 86.6

Claude-3-Haiku 44.2 79.2 21.8 75.9

Llama-3.1-70B 53.4 95.1 15.6 80.5

Mistral Large 2 59.6 92.7 5.0 92.1

Qwen2.5-32B 61.2 92.9 25.0 86.6

Command R+ 43.2 70.7 0.0 70.1

DBRX 21.6 72.7 2.2 72.1

Phi-3.5-MoE 39.4 88.7 0.8 70.7

Mistral Small 50.6 87.4 1.4 73.8

Llama-3.1-8B 32.2 84.5 2.0 72.6

Qwen2.5-7B 42.8 85.4 2.2 57.9

G.9 Effect of Context Size793

We studied the impact of varying the context size for long-context reasoning. For each example794

in a randomly-sampled 100-example subset of CHASE-QA, we increase the context size by con-795

catenating the documents in that example with distracting documents randomly sampled from other796

examples. For CHASE-CODE, we create a subset of 55 randomly-sampled examples for each of the797

domains and increase the context size by concatenating irrelevant code functions in the corresponding798

repository context. Figure 7 plots the performances of 4 LLMs across different context sizes. For799

both benchmarks, we see a consistent and significant decrease in model performance as we scale up800
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Table 10: Comparison of performances of reasoning LLMs on CHASE benchmarks with other
human-curated benchmarks in the domain. We compare CHASE-MATH and AIME-24 (MAA,
2024), a widely-used benchmark for olympiad-level math reasoning. We also compare CHASE-
CODE and LiveCodeBench (LCB) (Jain et al., 2025), a widely-used benchmark for code reasoning.

MODEL CHASE-MATH AIME-24 CHASE-CODE LCB

o4-mini 69.6 93.4 38 72.2

Gemini-2.5-FP 56.8 88.0 40.8 63.5

DeepSeek-R1 55.0 79.8 36.7 65.9

R1-Llama-70B 53.6 70.0 30.4 57.5

R1-Qwen-32B 59.4 72.6 32.6 57.2

R1-Llama-8B 26.4 50.4 5.2 39.6

R1-Qwen-7B 35.2 55.5 1.4 37.6

R1-Qwen-1.5B 17.6 28.9 0.0 16.9

Table 11: Measuring performance of all models on CHASE-QA with alternative soft metrics, K-
Precision and Recall.

MODEL ACCURACY K-PRECISION RECALL

Gemini-1.5-Pro 63.2 85.1 68.6

GPT-4o 55.3 86.7 58.3

Claude-3.5-Sonnet 36.1 77.6 49.0

Gemini-1.5-Flash 55.1 82.3 61.7

GPT-4o-mini 50.2 74.1 50.7

Claude-3-Haiku 32.6 70.9 40.9

Llama-3.1-70B 41.3 76.3 46.1

Mistral Large 2 34.1 72.4 42.9

Qwen2.5-72B 38.3 78.2 47.9

Command R+ 41.7 71.7 47.4

DBRX 15.7 53.2 35.0

Phi-3.5-MoE 10.6 45.0 25.6

Mistral Small 35.5 77.2 41.1

Llama-3.1-8B 25.2 61.3 32.0

Qwen2.5-7B 22.2 56.9 30.3

the context size. Hence, even though most modern LLMs have large context sizes (upwards of 128k),801

they still struggle to reason even at the scale of 30-40k tokens.802

G.10 Alternative Metrics of Evaluation for CHASE-QA803

The metric of accuracy for CHASE-QA punishes models for not being concise and generating too804

many answer points that are not a part of the ground-truth answer. In this section, we present our805

experimental results with other softer evaluation metrics. We adapt two metrics that have been used806

by previous works for open-domain question answering (Adlakha et al., 2022): (1) K-Precision,807
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Table 12: Effect of prompt (see Figure 37) that explicitly instructs the model to solve CHASE-MATH
problems by processing one sentence at a time.

MODEL 8-SHOT COT (DEFAULT) 8-SHOT SENTENCE-BY-SENTENCE

Gemini-1.5-Pro 65.4 69.2

GPT-4o 59.8 61.4

Llama-3.1-70B 53.4 56.8

which for a particular example, evaluates whether all of the answer points in the model’s prediction808

are discussed in the documents, and (2) Recall, which evaluates whether all the ground truth answer809

points are a part of the model’s prediction. K-Precision is used to measure the faithfulness of the810

model’s prediction to the provided documents. Recall is used to measure the correctness of the811

model’s prediction compared to the ground-truth. We define both the metrics as binary per example.812

Similar to how we calculated accuracy, we use GPT-4o as a judge with the prompts provided in813

Figure 26 and Figure 27 respectively. The results are provided in Table 11.814

Note that the errors in CHASE-QA pertain to the cases where the ground-truth answer may not815

completely encompass all the relevant information about the question that is mentioned in the816

documents. We believe that comparisons of models on the basis of recall is relatively less affected by817

the presence of such errors. This is because if a model has comparatively lesser recall, that means818

that it generated more responses where it did not include the ground-truth information (irrespective819

of whether it generated any extra relevant information for the question that is not in the ground truth).820

G.11 Effect of Prompt for Solving CHASE-MATH821

Considering the fact that CHASE-MATH is built by increasingly concatenating problems, we822

experiment with solving it using a different prompt format that explicitly instructs the model to823

process one sentence at a time, from the first to the last until it arrives at the final answer. We also824

illustrate this methodology in the prompt using 8 problems different from the original chain-of-825

thought prompt examples. Each of these new problems have a much higher reasoning depth. The826

prompt is provided in Figure 37. The results for 3 different models are shown in Table 12. While827

there is a clear increase in performance for all models, the task still remains difficult to solve, in828

general. Examples of errors made by models even with this better prompting technique are provided829

in Figure 13 and Figure 14.830

H Related Work831

Synthetic data for evaluation. Multiple prior works have used synthetic data in some form for832

evaluation. Sprague et al. (2024) generate a narrative QA dataset by sampling facts and prompting833

an LLM to write narratives. Bohnet et al. (2024) extract entities and reference chains from existing834

stories to generate questions. Gu et al. (2024) prompt CodeLlama (Rozière et al., 2024) to generate835

Python functions and inputs for code understanding. Chen et al. (2024) propose a self-challenge836

framework that generates new problems based on model errors. Yu et al. (2024b) use prompt-chaining837

to perturb existing evidences for generating new test cases to evaluate hallucination. Tyen et al. (2024)838

create the BIG-Bench Mistake dataset using CoT traces from PaLM 2 (Anil et al., 2023). Most of839

these works rely on seed data (Bohnet et al., 2024, Chen et al., 2024, Tyen et al., 2024, Yu et al.,840

2024b), human involvement (Chen et al., 2024, Tyen et al., 2024), or focus on niche sub-domains841

(Gu et al., 2024, Sprague et al., 2024). In contrast, we propose general principles for scalable,842

fully automatic benchmark generation across diverse tasks, such as information-seeking QA and843

repository-level code generation, without always relying on pre-existing data. Similar to our work,844

AutoBencher (Li et al., 2025) automates benchmark creation across domains, but its difficulty stems845

from knowledge/tool-use gaps, whereas ours emphasizes complex reasoning. Our approach also846

leverages the idea of verifying simpler sub-steps during generation to ensure data correctness.847

Task-specific synthetic data. Recent works have explored generating synthetic datasets for content-848

grounded QA tasks. Dai et al. (2022) and Yehudai et al. (2024) use LLMs to generate questions based849
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on Wikipedia and Web text. In contrast, we design a benchmark for document-based information-850

seeking questions that model realistic situations. Moreover, we generate the entire documents using851

LLMs, allowing a higher degree of control. In the code domain, Yu et al. (2024c) and Wei et al.852

(2024) leverage existing code data to generate examples for instruction tuning. We instead focus on853

repository-level code completion, generating both the repositories and their test suites from scratch.854

Synthetic math data generation has also been explored by previous works (Liu et al., 2023, Lu et al.,855

2024, Yu et al., 2024a) that generate new problems by directly prompting with existing examples.856

Similar to our work, some prior works have focused on creating challenging math problems. Shah857

et al. (2024) employ a human-in-the-loop approach and prompt LLMs to design problems requiring858

a given set of core skills. Liu et al. (2024) iteratively prompt an LLM with a seed question to859

produce increasingly complex variants. In this work, we design a fully automated pipeline to craft860

grade-school level math problems that are challenging to solve even for the LLM that generated them.861

I Error Analysis862

We provide examples for two types of errors, those made while solving the benchmarks, and those863

made while generating the benchmarks.864

I.1 Errors made while solving CHASE benchmarks.865

Figure 8 provides an example of an error made by Gemini-1.5-Pro on a problem from CHASE-QA.866

The model fails to mention two important points relevant for answering the question, which have867

been discussed in the documents. Figure 9 provides as example of an error made by o4-mini on a868

problem from CHASE-QA. The model falls into the trap of thinking that the distracting information869

is relevant for answering the question. These instances provide qualitative examples of how even870

the most powerful models are unable to properly pay attention to all parts of a long-context and may871

miss some important information or fail to make the appropriate connections.872

Figure 10 provides an example of an error made by Gemini-1.5-Pro in generating the correct code for873

a problem in CHASE-CODE. The model generates most of the code correctly, but for a particular874

objective, it gets confused in choosing to call the right helper function from the long-context code875

repository. This example qualitatively illustrates that doing well on this task requires not only a good876

understanding of the user-specified objectives, but also requires an in-depth understanding of all parts877

of the code repository.878

Figure 11 provides an example of an error made by Gemini-1.5-Pro in solving a math word problem879

from CHASE-MATH. The model executes most of the reasoning steps correctly but fails at the last880

one. Figure 12 provides an example of an error made by o4-mini in solving a math word problem881

from CHASE-MATH. The model misunderstood a crucial aspect of the problem and made a mistake.882

Such errors show that while these models are very capable of solving even advanced olympiad-level883

math problems, they can still sometimes fail at language-heavy math reasoning.884

I.2 Errors made in the generation process when using CHASE.885

In Figure 15, we show an error made in the generation process of CHASE-QA by GPT-4o. In the886

document generation stage, the model generated a document which contained extra information887

that was directly relevant for answering the given question but was not included in the ground-truth888

answer. This is also a failure case of our verification engine (the one that uses the prompt in Figure889

22) which failed to detect the presence of this extra relevant information in the generated document.890

We believe such errors can be further reduced by using an ensemble of verifiers to carry out each891

verification task.892

Figure 16 provides en example of an error made by GPT-4o-mini while generating the CHASE-893

MATH benchmark. The model’s generated answer did not correspond to its generated problem. This894

is also a failure for both the generator and verifier. Such failures may be reduced by using an ensemble895

of stronger LLMs for verification instead.896
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J Prompts897

J.1 Prompts for CHASE-QA898

In this section, we outline the exact prompts for all experiments related to CHASE-QA:899

• Generating scenarios: Figure 17900

• Generating QA pairs: Figure 18901

• Generating distracting information: Figure 19902

• Generating documents: Figure 20903

• Verifying distracting information: Figure 21904

• Verifying absence of relevant information: Figure 22905

• Verifying presence of answer: Figure 23906

• Solving the task: Figure 24907

• LLM-as-a-judge: Figure 25908

J.2 Prompts for CHASE-CODE909

In this section, we outline the exact prompts for all experiments related to CHASE-CODE:910

• Generating helper functions: Figure 28911

• Generating problem statement and answer code: Figure 29912

• Generating test code: Figure 30913

• Generating test for verifying if function executes: Figure 31914

• Verify correctness of problem statement: Figure 32915

• Solving the task: Figure 33916

J.3 Prompts for CHASE-MATH917

In this section, we outline the exact prompts for all experiments related to CHASE-MATH:918

• Breaking down seed MWPs: Figure 34919

• Creating continuation of MWP: Figure 35920

• Solving MWP: Figure 36921

• Solving MWP sentence-by-sentence: Figure 37922
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Error Analysis: Solving CHASE-QA - Gemini-1.5-Pro

Question: What are the regulations and financial support options available for starting an
artisanal cheese-making business in Vermont?

Ground-truth Answer:
- Obtain a Dairy Processing License from the Vermont Agency of Agriculture, Food &
Markets.
- Adhere to the Vermont Department of Environmental Conservation’s (VT DEC) regulations
regarding wastewater management.
- Apply for the Vermont Economic Development Authority (VEDA) Entrepreneurial Loan
Program for startup financing.
- Comply with the Vermont Department of Taxes’ requirements for sales and use tax on dairy
products.
- Secure a Vermont Working Lands Enterprise Initiative Grant for equipment and facility
improvement.

distracting Information:
- Obtain a Microbrewery License from the New York State Liquor Authority (NYSLA).
- Adhere to the New York State Department of Environmental Conservation (NYSDEC)
regulations regarding waste disposal.

[Redacted]

Prediction:
- Comply with the Vermont Department of Taxes’ requirements for sales and use tax on dairy
products, including registering for a sales tax permit, tracking sales, and remitting collected
tax. (Document 10)
- Adhere to the Vermont Department of Environmental Conservation’s (VT DEC) regulations
regarding wastewater management, ensuring waste byproducts are treated and disposed of
properly to prevent water contamination. (Document 13)
- Obtain a Dairy Processing License from the Vermont Agency of Agriculture, Food &
Markets. (Document 12)

LLM Evaluation:
Result: False. The prediction is missing two main points from the ground-truth answer:
1. Applying for the Vermont Economic Development Authority (VEDA) Entrepreneurial
Loan Program for startup financing.
2. Securing a Vermont Working Lands Enterprise Initiative Grant for equipment and facility
improvement.

These are crucial financial support options that are not mentioned in the prediction.

Figure 8: Example of error made by Gemini-1.5-Pro on CHASE-QA. The GPT-4o judge correctly
evaluates the prediction to be wrong because it fails to mention some major points from the ground-
truth answer which were discussed in the documents.
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Error Analysis: Solving CHASE-QA - o4-mini

Question: Which elements are essential when evaluating the effectiveness and satisfaction of
remote work policies for employees in the healthcare industry?

Ground-truth Answer:
- Availability and quality of remote work tools and technology.
- Training and support provided for remote work adaptation.
- Communication and collaboration effectiveness within remote teams

Distracting Information:
- Availability and diversity of training formats (e.g., online courses, workshops, mentoring).
- Alignment of professional development opportunities with career advancement goals.
- Impact of professional development on teaching methodologies and student performance.
- Frequency and quality of feedback from employees regarding the professional development
programs.

Prediction:
- Comprehensive training and support programs (e.g., time management, conducting uninter-
rupted patient consultations, digital-health outreach).
- High-quality remote-work technology and tools (e.g., high-speed internet, secure communi-
cation platforms, specialized telehealth software).
- Effective communication and collaboration platforms and practices (e.g., real-time case
discussions, coordinated care planning, digital teamwork).
- Evaluate professional development programs using online courses, in-person workshops,
and mentoring sessions.

LLM Evaluation:
Result: False. While the prediction correctly includes comprehensive training and support
for remote work adaptation, high-quality remote work tools and technology, and effective
communication and collaboration within remote teams—matching the main points in the
ground-truth answer—it also mentions the distracting answer point of evaluating professional
development programs.

Figure 9: Example of error made by o4-mini on CHASE-QA. The GPT-4o judge correctly evaluates
the prediction to be wrong because it mentions the distracting point which was discussed in the
documents.
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Error Analysis: Solving CHASE-CODE (Algorithms) - Gemini-1.5-Pro

Objectives:
[Redacted]
- For each coordinate from the previous sub-goal, calculate the Manhattan distance from the
origin (0,0) for the interesting cells found, returning a list of tuples.

Ground-truth Answer Code:
1 import numpy as np
2 from matrix_decomposition import svd_reconstruction
3 from entity_extractor import extract_entities
4 from meeting_scheduling import can_schedule_meetings
5 from grid_analyzer import high_value_coordinates
6

7 def complex_analysis(matrix , k, text , entities , intervals ,
threshold):

8 reconstructed_matrix = svd_reconstruction(matrix , k)
9 extracted_entities = extract_entities(text , entities)

10 can_schedule = can_schedule_meetings(intervals , 0)
11 interesting_cells = high_value_coordinates(

reconstructed_matrix , threshold)
12 interesting_cells_with_distances = [((i, j), abs(i) + abs(j)

) for ((i, j), _) in interesting_cells]
13 return reconstructed_matrix , extracted_entities ,

can_schedule , interesting_cells_with_distances

Predicted Code:
1 import numpy as np
2 from matrix_decomposition import svd_reconstruction
3 from entity_extractor import extract_entities
4 from meeting_scheduling import can_schedule_meetings
5 from matrix_analyzer import find_interesting_cells
6

7 def complex_analysis(matrix , k, text , entities , intervals ,
threshold):

8 reconstructed_matrix = svd_reconstruction(np.array(matrix),
k)

9 extracted_entities = extract_entities(text , entities)
10 can_schedule = can_schedule_meetings(intervals , 0)
11 interesting_cells = find_interesting_cells(

reconstructed_matrix , threshold)
12 interesting_cells_with_distances = [((row , col), abs(row) +

abs(col)) for row , col in interesting_cells]
13 return reconstructed_matrix , extracted_entities ,

can_schedule , interesting_cells_with_distances

Figure 10: Example of error made by Gemini-1.5-Pro on an example from the algorithms split of
CHASE-CODE. The prediction incorrectly calls the find_interesting_cells helper function
(see line number 11) which does not calculate manhattan distances as requested by the objective.
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Error Analysis: Solving CHASE-MATH - 8-shot chain-of-thought - Gemini-1.5-Pro

Question:
Harry slept 9 hours last night. His friend James slept only 2/3 of what Harry slept. After
their sleep, Harry decided to wake up early and went for a jog. He invited James to join
him, and they jogged for 4 times the additional hours Harry slept compared to James. They
both felt energized and decided to go for breakfast, where they calculated the total hours
they spent jogging. After their breakfast, Harry and James sat down to review their fitness
goals. They discussed their jogging session and decided it would be beneficial to repeat such
sessions. However, they wanted to gauge how many smaller jogging sessions equal the time
they previously spent jogging. James suggested that they break down their jogging time into
segments of 3 hours to see how many complete segments they can fit within their total jogging
time. After evaluating their jogging goals, Harry and James decided to increase the duration
of their future jogging sessions. They considered adding an additional hour to each segment
to further enhance their fitness regimen, while keeping the same total jog time of all sessions
combined. After successfully completing their new jogging regimen for a month, Harry and
James noticed that their stamina had increased significantly. They decided to celebrate this
achievement by doubling their number of sessions for the future. They planned to increase
from their current number of complete sessions to a total that is double their current sessions.
They are excited to see how their increased devotion to jogging will impact their overall
fitness. After a successful month of their increased jogging regimen, Harry and James wanted
to keep track of their progress. They decided to add rest sessions into their training schedule
to avoid burnout. For every 1/3 of the number of jogging sessions in their regimen, they
would incorporate 1 rest session. If they have done 4 rest sessions so far, how many total
jogging sessions have they finished?

Ground-truth Answer:
James slept 9 hours * 2/3 = 6 hours. So, Harry slept 9 - 6 = 3 hours more than James. They
jogged for 4 times that amount, so 12 hours together. We then divide 12 by 3 to get 4 complete
sessions. Now divide the 12 hours by the new session duration (4 hours) which yields 3
sessions. Doubling that quantity results 6. They add rest sessions for every 1/3 * 6 = 2 jogging
sessions. So for 4 rest sessions, they have 4 * 2 = 8 jogging sessions. #### 8.0

Prediction:
Let’s break down this problem step-by-step:
1. **James’s sleep:** James slept 2/3 of Harry’s 9 hours, which is (2/3) * 9 = 6 hours.
2. **Additional hours Harry slept:** Harry slept 9 hours - 6 hours = 3 more hours than
James.
3. **Jogging time:** They jogged for 4 times the additional hours Harry slept, meaning they
jogged for 4 * 3 = 12 hours.
4. **Segments of jogging:** They want to break down their jogging time into 3-hour
segments, so they have 12 hours / 3 hours/segment = 4 segments.
5. **Increased segment duration:** They increase each segment by 1 hour, making each
segment 3 hours + 1 hour = 4 hours long.
6. **Total sessions:** Since they keep the same total jogging time, they still have 12 hours of
jogging. With the new segment length, they have 12 hours / 4 hours/session = 3 sessions.
7. **Doubled sessions:** They double their number of sessions from 3 to 3 * 2 = 6 sessions.
8. **Rest sessions and total jog sessions:** They incorporate 1 rest session for every 1/3 of
their jogging sessions. Since they’ve done 4 rest sessions, they have completed 4 rest sessions
* 3 jog sessions/rest session = 12 jogging sessions.
The answer is 12.

Figure 11: Example of error made in the last step by Gemini-1.5-Pro on an example from CHASE-
MATH when prompted with the default 8-shot chain-of-thought.
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Error Analysis: Solving CHASE-MATH - 8-shot chain-of-thought - o4-mini

Question:
Marcus ordered 5 croissants at $3.00 apiece, 4 cinnamon rolls at $2.50 each, 3 mini quiches
for $4.00 apiece and 13 blueberry muffins that were $1.00 apiece. At checkout, Marcus shows
his loyalty card that gives him 10% off of his purchase. Marcus then sees that the bakery
offers a special deal: If a customer spends over $30 after discounts, they can add an extra
item worth $10 for an additional $5. Marcus considers whether to purchase this extra item
based on his current total; however, he instead decides to spend 30% of his potential total bill
at the bakery on a different treat and save the rest of the money. After determining how much
he has left, Marcus decides to invest the remaining amount into a savings account that offers
a fixed interest rate of 5% annually. He wonders how much interest he would earn if he left
the remaining amount in the savings account for one year. How much interest will Marcus
earn after one year if he invests his remaining amount at a 5% interest rate?

Ground-truth Answer:
5 croissants cost $3.00 each so they cost 5*3 = $<< 5 ∗ 3 = 15.00 >> 15.00 4 cinnamon
rolls cost $2.50 each so they cost 4*2.5 =$<< 4 ∗ 2.5 = 10.00 >> 10.00 3 mini quiches
cost $4.00 each so they cost 3*4 = $<< 3 ∗ 4 = 12.00 >> 12.00 13 blueberry muffins cost
$1.00 each so the cost 13*1 = $<< 13 ∗ 1 = 13.00 >> 13.00 All total, his pastries costs
15+10+12+13 = $<< 15 + 10 + 12 + 13 = 50.00 >> 50.00 His has a 10% coupon for his
$50.00 purchase so that saves him .10*50 = $<< 10 ∗ .01 ∗ 50 = 5.00 >> 5.00 His total bill
is $50 minus his discount of $5.00 so 50-5 = $<< 50− 5 = 45.00 >> 45.00 To determine
how much Marcus will have remaining after spending 30% of his total bill, we first calculate
30% of his total bill of $45. That is calculated as 0.30 * 45 = $13.50. Then, we subtract this
amount from his original total bill: 45 - 13.50 = $31.50. This gives us the remaining amount
Marcus has after his additional expenditure. To find out how much interest Marcus will earn,
we apply the formula for simple interest, which is I = P * r * t, where I is the interest, P is the
principal amount (the remaining amount), r is the rate (in decimal), and t is the time in years.
Here, P is $31.50, r is 0.05, and t is 1. Therefore, the interest earned after one year would be
31.50 * 0.05 * 1 = $1.575. #### 1.575

Prediction:
Lets work through step by step.
1. Compute the original subtotal: 5 croissants at $3.00 each: 5*3.00 = $15.00 4 cinnamon
rolls at $2.50 each: 4*2.50 = $10.00 3 mini quiches at $4.00 each: 3*4.00 = $12.00 13
blueberry muffins at $1.00 each: 13*1.00 = $13.00 Subtotal = 15.00 + 10.00 + 12.00 + 13.00
= $50.00
2. Apply the 10% loyalty card discount: Discount = 0.10*50.00 = $5.00 Total after discount
= 50.00 - 5.00 = $45.00
3. Hes eligible for the spend over $30 special. If hed taken it, he would pay an extra $5 for a
$10 item, making a potential total of 45.00 + 5.00 = $50.00
4. Instead of actually buying that extra item, he would be spending $50, but chooses to spend
30% of that ($50) on another treat and save the rest. Amount actually spent on the treat:
0.30*50.00 = $15.00 Amount saved (and available to invest): 0.70*50.00 = $35.00
5. He invests $35.00 at 5% for one year. The interest earned is Interest = 0.05*35.00 = $1.75
Therefore, the one year interest is 1.75 .

Figure 12: Example of error made by o4-mini on an example from CHASE-MATH when prompted
with the default 8-shot chain-of-thought.
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Error Analysis: Solving CHASE-MATH - 8-shot sentence-by-sentence - Gemini-1.5-Pro

Question:
James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. After a month
of consistent training, James feels he needs to increase his speed. He decides to take a break
from sprinting for one week to focus on recovery. During this recovery week, he runs a shorter
distance of 30 meters for only 2 sprints, 3 times that week instead. After his recovery week,
James feels rejuvenated and ready to resume his training. He decides to continue running
but at double the distance he covered during his recovery week for each day the next week,
aiming to improve his overall performance. He runs this increased distance for 7 days straight,
maintaining consistency every day. After running consistently throughout the week, James
notices a small injury starting to develop in his leg. Concerned about this, he decides to cut
back on his total running distance for the following week. To ensure he allows for proper
recovery and does not worsen the injury, he plans to reduce his total running distance from
the prior week by 420 meters. How much distance will James run in the following week after
the reduction?

Ground-truth Answer:
He sprints 3 ∗ 3 =<< 3 ∗ 3 = 9 >> 9 times So he runs 9 ∗ 60 =<< 9 ∗ 60 = 540 >> 540
meters In the recovery week, James runs 2 sprints each day for 3 days, covering 30 meters
each sprint. Therefore, the total distance covered during the recovery week is calculated
as follows: he runs 2 sprints/day * 3 days = 6 sprints. Then, multiplying by the distance
per sprint gives 6 sprints * 30 meters/sprint = 180 meters. To find out how much less he
runs compared to his regular week, we subtract the total distance he runs that week from the
distance he typically runs in a week, which is 540 - 180 = 360 meters less. James runs a
distance that is double what he covered in the recovery week, which is 180 meters. Therefore,
if he runs this doubled distance for 7 days, we first calculate the distance he covers in one
day, which is 180 meters * 2 = 360 meters. Over the course of 7 days, the total distance will
be 360 meters/day * 7 days. To find the distance James will run in the following week after
reducing his initial total distance by 420 meters, I will need to subtract 420 from the total
distance he ran in the previous week, which was 2520.0 meters. Hence, the calculation will
be: 2520.0 - 420 = 2100.0 meters. ####2100.0

Prediction:
Sentence 1: James runs 3 sprints * 60 meters/sprint = 180 meters per day.
Sentence 2: He runs 180 meters/day * 3 days/week = 540 meters per week.
Sentence 3: Nothing to solve.
Sentence 4: During his recovery week, he runs 30 meters/sprint * 2 sprints = 60 meters per
day.
Sentence 5: He runs this shorter distance 3 times a week, so 60 meters/day * 3 days/week =
180 meters.
Sentence 6: Nothing to solve.
Sentence 7: He doubles his recovery week distance, running 60 meters * 2 = 120 meters per
day.
Sentence 8: He runs this distance for 7 days straight, totaling 120 meters/day * 7 days = 840
meters.
Sentence 9: Nothing to solve.
Sentence 10: He reduces his total running distance by 420 meters, meaning he’ll run 840
meters - 420 meters = 420 meters.
The answer is 420.

Figure 13: Example of error made by Gemini-1.5-Pro on an example from CHASE-MATH when
prompted with 8-shot sentence-by-sentence solving examples.
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Error Analysis: Solving CHASE-MATH - 8-shot sentence-by-sentence - Gemini-1.5-Pro

Question:
Rani has ten more crabs than Monic, who has 4 fewer crabs than Bo. If Bo has 40 crabs,
calculate the total number of crabs the three have together. After counting their crabs, Rani,
Monic, and Bo decide to share their crabs equally among themselves for a crab feast. However,
before they can do that, Rani finds out that they must provide 2 additional crabs to a local
aquarium as a donation. After their crab feast, Rani, Monic, and Bo decide to host another
gathering for their friends. They plan to invite 5 additional friends to enjoy crabs. Each
person, including Rani, Monic, Bo, and their friends, should receive an equal amount of crabs
for this new gathering. They go and buy new crabs which are in total 3 times the number of
crabs each person ate after the donation. How many crabs did they have altogether to share
with the additional friends in the end?

Ground-truth Answer:
If Bo has 40 crabs, then Monic, who has 4 fewer crabs than Bo, has 40-4 = << 40 − 4 =
36 >> 36 crabs. Bo and Monic have a total of 36+40 = << 36 + 40 = 76 >> 76 crabs.
Since Monic has 36 crabs, Rani’s number of crabs is 36+ 10 = << 36 + 10 = 46 >>46.
Together, the three have 76+46 = << 76 + 46 = 122 >> 122 crabs. First, calculate how
many crabs remain after the donation: 122 - 2 = 120. Now, to find out how many crabs
each person will receive, divide the remaining number of crabs (120) by 3, since there are
three individuals: 120 3 = 40. Since each of them originally ate 40 crabs, if we multiply that
number by 3, we calculate the total number of crabs available in the end. ####120.0

Prediction:
Sentence 1: Monic has 40 - 4 = 36 crabs.
Sentence 2: Rani has 36 + 10 = 46 crabs.
Sentence 3: Bo has 40 crabs.
Sentence 4: Together they have 46 + 36 + 40 = 122 crabs.
Sentence 5: They donate 2 crabs, leaving them with 122 - 2 = 120 crabs.
Sentence 6: They share the 120 crabs equally, so each person gets 120 / 3 = 40 crabs.
Sentence 7: They invite 5 more friends, making a total of 3 + 5 = 8 people.
Sentence 8: They buy new crabs totaling 3 times the number each person ate after the
donation, which is 3 * 40 = 120 crabs.
Sentence 9: Including the 120 crabs they bought and the remaining crabs they shared after
donating, they had 120 + 40*3 = 120 + 120 = 240 crabs altogether to share with the additional
friends.

The answer is 240.

Figure 14: Example of error made by Gemini-1.5-Pro on an example from CHASE-MATH when
prompted with 8-shot sentence-by-sentence solving examples. The model fails to understand that the
120 crabs they had earlier have already been eaten and that only the new 120 crabs bought in the end
are available to share with the new friends.
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Error Analysis: Generating CHASE-QA - GPT-4o

Documents:
[Redacted]

Document 2: Title: Semiconductor Advancements and Emerging Trends Text: The
semiconductor industry has witnessed numerous advancements over the past few years,
driven by the rapid pace of technological innovation. One of the most promising materials
being explored for next-generation processors is Gallium Nitride (GaN). GaN is being
investigated for its potential to significantly improve the speed and efficiency of processors.
Its unique properties, such as high electron mobility and wide bandgap, enable faster electron
transmission and greater thermal conductivity. This makes GaN an ideal candidate for
applications requiring high power and high-frequency operation.

Developments in artificial intelligence algorithms for natural language processing continue
to push the boundaries of what machines can understand and generate in human language.
Meanwhile, the impact of 5G technology on mobile communications and IoT devices opens
up new possibilities for high-speed, low-latency connectivity.

Additionally, Graphene-based semiconductors hold the potential to revolutionize
processor technology. Graphene, a single layer of carbon atoms arranged in a hexagonal
lattice, exhibits exceptional electrical properties. Its high electrical conductivity and
mechanical strength make it an attractive material for creating faster and more efficient
processors. Researchers are working on overcoming the challenges associated with mass
production and integration of graphene into existing manufacturing processes.

[Redacted]

Question: What new semiconductor materials are being explored for next-generation proces-
sors, and which startups have recently secured funding to advance these technologies?

Ground-truth Answer:
- Gallium Nitride (GaN) is being investigated for its potential to improve the speed and
efficiency of processors.
- Anokiwave, a pioneering startup in GaN-based semiconductors, has recently raised $45
million in Series C funding.
- Paragraf, a startup developing electronic devices for the semiconductor industry, secured
$30 million in a recent funding round.
- The development of molybdenum disulfide (MoS2) as a semiconductor material could lead
to significant advancements in processor miniaturization.

Figure 15: Example of an error made in the generation process of CHASE-QA. The model generated
a document which contained additional relevant information about the question (the point about
graphene-based semiconductors highlighted in bold in the text) which is not a part of the ground-truth
answer.
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Error Analysis: Generating CHASE-MATH - GPT-4o

Question: Rani has ten more crabs than Monic, who has 4 fewer crabs than Bo. If Bo has
40 crabs, calculate the total number of crabs the three have together. After counting their
crabs, Rani, Monic, and Bo decide to share their crabs equally among themselves for a crab
feast. However, before they can do that, Rani finds out that they must provide 2 additional
crabs to a local aquarium as a donation. After their crab feast, Rani, Monic, and Bo decide to
host another gathering for their friends. They plan to invite 5 additional friends to enjoy the
remaining crabs. Each person, including Rani, Monic, Bo, and their friends, should receive
an equal amount of crabs for this new gathering. They want to figure out how many crabs
they have available for their friends while ensuring that each person gets an equal share. If
they multiply the number of crabs each had after the donation by 3, how many crabs did they
have altogether to share with the additional friends?

Ground-truth Answer:
If Bo has 40 crabs, then Monic, who has 4 fewer crabs than Bo, has 40-4 = << 40 − 4 =
36 >> 36 crabs. Bo and Monic have a total of 36+40 = << 36 + 40 = 76 >> 76 crabs.
Since Monic has 36 crabs, Rani’s number of crabs is 36+ 10 = << 36 + 10 = 46 >> 46.
Together, the three have 76+46 = << 76 + 46 = 122 >> 122 crabs. First, calculate how
many crabs remain after the donation: 122 - 2 = 120. Now, to find out how many crabs each
person will receive, divide the remaining number of crabs (120) by 3, since there are three
individuals: 120 ÷ 3 = 40. Since each of them originally received 40 crabs, if we multiply
that number by 3 individuals (Rani, Monic, and Bo), we calculate the total number of crabs
available for sharing. ####120.0

Figure 16: Example of an error made in the generation process of CHASE-MATH. The reasoning
in the answer wrongly considers the number of people for which to divide crabs to be 3 while the
context has added new information that there are 5 additional friends to consider.
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CHASE-QA: Generating Scenarios

System Prompt: You are an expert generator of data.

You are a research scientist. You want to make data to test an advanced question answering
system.

Give me 5 examples of real-life scenarios where a USER_PERSONA may seek information in a
COLLECTION_OF_DOCS. Do not consider educational or historical scenarios.

Some examples are:
USER_PERSONA: College student
COLLECTION_OF_DOCS: Intranet on the university website

USER_PERSONA: Intern doctor at a hospital
COLLECTION_OF_DOCS: Encyclopedia of diseases

USER_PERSONA: Immigrant in NYC
COLLECTION_OF_DOCS: Laws on renting and subletting

USER_PERSONA: HR manager at a top law firm
COLLECTION_OF_DOCS: Court and newspaper records

USER_PERSONA: Scientist at an NGO
COLLECTION_OF_DOCS: Government website for Income Tax

Answer in the following format:
USER_PERSONA:
COLLECTION_OF_DOCS:

Figure 17: Prompt for generating diverse scenarios for CHASE-QA.
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CHASE-QA: Generating QA Pairs

System Prompt: You are an expert generator of data. Do not use ** to start lines or denote
points.

You are a research scientist. You want to make data to test an advanced question answering
system.

Give me an example question and corresponding answer that a {USER_PERSONA} may
ask that compulsorily requires searching a {COLLECTION_OF_DOCS}. Make questions that
cannot be answered directly with general knowledge but necessarily require some uncommon
information that is present in some documents. The answer must be very specific and written
in bullet points, so that it is easier to objectively evaluate. Depending on the question, the
answer can have anything between 3-6 bullet points without any sub-points.

The answer to the question you create must be scattered across different documents (at
least 3). Assign each point of the answer to a specific document in which that point will be
discussed. You may assign multiple points to the same document, but each point must only
be assigned to a single document. You must state the title and answer points assigned for
each of the documents.

Answer in the following format:

Question: <Question>
Answer: <Answer>

Document 1 Title: <Title>
Document 1 Answer points assigned: <Points>

Document 2 Title: <Title>
Document 2 Answer points assigned: <Points>

and so on...

Figure 18: Programmatic prompt for generating question-answer pairs for CHASE-QA.
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CHASE-QA: Generating distracting Information QA Pairs

System Prompt: You are an expert generator of data. Do not use ** to start lines or denote
points.

You are a research scientist. You want to make hard data to test an advanced question
answering system. You are given a question that a {USER_PERSONA} might want
answered, along with the corresponding answer, and information of documents from
{COLLECTION_OF_DOCS} that are important for answering that question.

Original Question: {QUESTION}

Original Answer:
{ANSWER}

Original Documents Information:
{DOCS_INFORMATION}

You must generate an adversarial question, adversarial answer, and corresponding adversarial
documents that ask for something different but on similar topics or type so that it is difficult
to answer the original question. Examples of how adversarial questions should look like are
provided below:

Original Question: What are the best activities to do in Montreal, Canada during the winter
season?
Adversarial Question: What activities should I look at when visiting Tokyo during the
summer?

[Redacted]

Also provide an answer to the adversarial question, which is similar in style to the original
answer, but differs significantly in information or specifics. The answer points for the
adversarial question should be written in context of that adversarial question, so that they
cannot be confused with the original question. Note that none of the points appearing in the
original answer should be present in the answer to the adversarial question.

The answer to the adversarial question you craft must be scattered across different documents
(at least 3) separate from the original answer documents. Assign each point of the adversarial
answer to a specific document in which that point will be discussed. You may assign multiple
points to the same adversarial document, but each point must only be assigned to a single
adversarial document. You must state the title and adversarial answer points assigned for each
of the adversarial documents. These adversarial documents should not have any overlapping
information with the original answer documents.

Answer in the following format:

[Redacted]

Figure 19: Programmatic prompt for generating distracting information question-answer pairs for
CHASE-QA.
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CHASE-QA: Generating Documents

System Prompt: You are an expert data generator. Following the instruction, you must
generate long and correct documents.

You need to generate the documents for an example of a retrieval based Question Answering
Task.

The task consists of n documents provided in English text that consist of information about
different topics and a question. To answer the question correctly compulsorily requires using
some of the information in some subset of the documents provided.

Given below is a situation faced by {USER_PERSONA} when searching
{COLLECTION_OF_DOCS}. The question-answer pair is:

Question: {QUESTION}
Answer: {ANSWER}

Given below are the assigned answer points for each document.

{DOCS_INFORMATION}

Your job is to create long documents according to this information. For each document, first
create 10-12 unique other points that are in no way related to the topic of the question and
answer (different points for each document). These points should discuss very different
things about a similar but different topic. Then use these points along with the assigned
answer points to create a long document (at least 700 words long). The assigned answer
points must be discussed taking into account the question. You must only discuss about
these points and nothing else. Change the order of the points so that the answer points
are embedded inside the document. Assign an appropriate title to the document. Do not
summarize or conclude the document in the end.

Additionally, ensure that the documents you create do not have any information related to the
following distracting question-answer pairs. You should create documents that discuss topics
that are completely different from the following information.

{DISTRACTING_QUESTIONS_ANSWERS}

Give output in the following format:
Document 1:
Title: <Title>
Question: {QUESTION}
Answer points assigned [Only these points must be covered with respect to the question]:
<Points>
Other unrelated points created: <Points>
Text:
<Document Text>

[Redacted]
and so on...

Figure 20: Programmatic prompt for generating documents for CHASE-QA.
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CHASE-QA: Verifying Distracting Information

System Prompt: You are an expert at verifying data.

You are given a question and an answer. You must check whether the answer is even partially
relevant for answering the question. If the answer is not relevant at all, output “False" to
“Relevance". Otherwise, if and only if the answer discusses information that is at least
partially necessary to answer the question, output “True".

Question: {QUESTION}

Answer:
{DISTRACTING_ANSWERS}

Give output in the following format:
Relevance: True/False

Figure 21: Programmatic prompt for verifying irrelevance of distracting information for CHASE-
QA.
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CHASE-QA: Verifying Absence of Relevant Information

System Prompt: You are an expert at verifying data.

You are given a document followed by a question and some answer points. You must
check whether there are any additional major points in the document that provide relevant
information for answering the question that are currently missing from the answer. Follow
these instructions:

1. Do not look for exact phrases or explicit mentions since the answer can have points that
are a paraphrase of the same broad information.

2. It is ok if the document provides more specifics or details about the points already in the
answer or if it discusses them in more depth by introducing related information so you can
ignore that.

3. Check if the document introduces a new “major" idea or point that is crucial for answering
the question and is not at all mentioned in the answer and is not an extension of the existing
points in the answer.

4. Your job is not to check if the question can be sufficiently answered. You should ignore if
the document or answer points are missing any points that are needed in the answer to the
question.

If the document is not introducing major new points pertaining to the answer, output “False"
to “Presence of Extra Points" without giving any explanation. Otherwise, if and only if the
document discusses major additional points that are necessary to answer the question, output
“True" and mention only the extra major points discussed.

Document:
{Document}

Question: {QUESTION}

Answer Points:
{ANSWER}

Give output in the following format:
Presence of Extra Points: True/False
Extra Points Mentioned (if any):

Figure 22: Programmatic prompt for verifying absence of relevant information in the documents for
CHASE-QA.
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CHASE-QA: Verifying Presence of Answer

System Prompt: You are an expert at verifying data.

You are given a document followed by a question and an answer point. You must check two
things:
1. Presence: Is the point mentioned in the document?
2. Relevance: Is the point discussed in a manner such that it can be used to partially answer
the question?

Document:
{DOCUMENT}

Question: {QUESTION}

Answer Point:
{ANSWER_POINT}

Give output in the following format:
Presence: True/False
Explanation for Presence:

Relevance: True/False
Explanation for Relevance:

Figure 23: Programmatic prompt for verifying presence of ground-truth answer in the documents for
CHASE-QA.

CHASE-QA: Solving the Task

System Prompt: You are an expert at answering questions based on documents.

You are given some documents followed by a question. You need to generate the answer for
that question. Provide the answer in bullet points, so that it is easier to objectively evaluate.
Answering the question correctly requires information from multiple documents. You must
only generate the points necessary for answering the question, without mentioning anything
irrelevant to the question. If you find no relevant information in the documents for answering
the question, you must only generate “No relevant information found in the documents." and
nothing else.

Documents: {DOCUMENTS}

Question: {QUESTION}

Answer:

Figure 24: Programmatic prompt for solving examples in CHASE-QA.
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CHASE-QA: LLM-as-a-Judge for Calculating Accuracy

System Prompt: You are an expert evaluator.

You are given a question, distracting answers, the ground-truth answer, and a prediction.
You need to evaluate whether the prediction is correct by matching against the ground truth
answer. Do not look for exact phrases or words since the prediction can have points that
are a paraphrase of the same information. Based on the question, check for the presence of
the same ideas or main points in the prediction as in the ground-truth answer. All the main
points in the ground-truth answer must be mentioned in the prediction. The order of points
mentioned is irrelevant. It is allowed for the prediction to elaborate or provide more specifics
or details over the major points in the ground-truth answer. However, the prediction should
not contain additional major points that are contradictory or irrelevant for answering the
question. Importantly, the prediction must not discuss any of the points mentioned in the
“distracting answers". The first word in your response must be either True or False. If False,
explain why you think the prediction is wrong in detail.

Question: {QUESTION}

Distracting Answers: {DISTRACTING_ANSWERS}

Ground-truth Answer: {GROUND_TRUTH_ANSWER}

Prediction: {PREDICTION}

Result:

Figure 25: Programmatic prompt for evaluating accuracy of predictions of models for problems in
CHASE-QA.

CHASE-QA: LLM-as-a-Judge for Calculating K-Precision

System Prompt: You are an expert evaluator.

You are given a question, an answer written in points, and some documents. You need
to check whether the information in the answer points is discussed in the documents in a
manner such that it can be used to at least partially answer the question. You do not need
to think about the overall correctness of the answer points, just check whether or not a
particular answer point is discussed in the documents. Your goal is to calculate precision, i.e.,
the percentage (out of 100) of answer points that have been adequately mentioned in the
document. The first thing in your response must be “Precision: " followed by the precision
value in decimal form. If precision is less than 100%, explain which answer points are not
present in the document.

Documents: {DOCUMENTS}

Question: {QUESTION}

Answer Points: {ANSWER_POINTS}

Result:

Figure 26: Programmatic prompt for evaluating K-Precision of predictions of models for problems in
CHASE-QA.
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CHASE-QA: LLM-as-a-Judge for Calculating Recall

System Prompt: You are an expert evaluator.

You are given a question, a statement, and some reference points. You need to check whether
the information in the statement is discussed in the reference points in a manner such that it
can be used to at least partially answer the question. It is okay if the reference points contain
a lot more information, your goal is to only check whether the statement is included in the
reference points. The first word in your response must be either True or False. If False,
explain why in detail.

Question: {QUESTION}

Statement: {STATEMENT}

Reference Points: {REFERENCE_POINTS}

Result:

Figure 27: Programmatic prompt for evaluating recall of predictions of models for problems in
CHASE-QA.
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CHASE-CODE: Generating Helper Functions

System Prompt: You are an expert generator of code data.

You are a research scientist. You want to make data to test an advanced code generation
system. You are given a domain. Assume that there is a large python code base ’C’ with at
least 10 python files on that domain.

Domain: {DOMAIN}

You need to create 5 functions in this codebase for achieving various objectives. First
define the parameters that will be input to the function. Then define the objective of the
function. The objective must consist of 3-4 sub-goals, each of which must involve complex
logic that make it very difficult to implement the function. However, each sub-goal must
be well-specified such that there is only one way to implement the sub-goal. Then based
on the objective, you need to create a single function (do not create other functions inside this).

Some examples are:

Parameters:
- data: pandas.DataFrame
- k: int
Objectives:
- In the dataframe “data", find the “frequency" of occurence of rows that have at least one
string field with the number of letters divisible by “k".

[redacted]

Function “filter_k_frequency" in file “string_filters.py":

1 import pandas as pd
2

3 def filter_k_frequency(data , k):
4 [redacted]
5 return frequency , filtered_df

Now you need to create 5 unique, diverse, and complex functions. Answer in the following
format:

Function <Number>:
Parameters:
- <para_name>: <data_type>
...
Objectives:
- <sub_goal>
...

Function “function_name" in file “file_name.py":
<import statements>

<function definition>

Figure 28: Prompt for generating helper functions for CHASE-CODE.

45



CHASE-CODE: Generating Problem Statement and Answer Code

System Prompt: You are an expert generator of code data.

You are a research scientist. You want to make data to test an advanced code generation
system.

Below, you are given 10 functions from a codebase “C" in the domain of {DOMAIN}.

Parameters:
- data: pandas.DataFrame
- k: int
Objectives:
- In the dataframe “data", find the “frequency" of occurence of rows that have at least one
string field with the number of letters divisible by “k".

[redacted]

Function “filter_k_frequency" in file “string_filters.py":

1 import pandas as pd
2

3 def filter_k_frequency(data , k):
4 [redacted]
5 return frequency , filtered_df

[redacted]

You need to create a complex function that calls at least 4 (but not more than 6) of these
functions to achieve various objectives. Apart from just calling these functions, it should also
implement some other pieces of complex logic. You first need to define the parameters that
will be input to the function. Then you need to define the objective of the function. Follow
these instructions for creating the objective:

1. The objective must consist of 6-8 sub-goals. Each sub-goal must be detailed and
well-specified such that there is only one way to implement the sub-goal.
2. VERY IMPORTANT: The objective must not explicitly specify which functions should be
called.
3. Always give names for variables you are talking about in the objective.
4. You must explicitly mention what parameters are to be used for a specific sub-goal by the
name of the parameter.
5. Whenever a variable is obtained that must be returned by the function, you must explicitly
state that in the sub-goal.
6. At least 2 of the sub-goals must involve some complex logic, apart from just calling helper
functions that make it very difficult to implement the function.

Once you write down the objective, you need to create the function that achieves this
objective. Import the required functions from the codebase “C" and use them in your
function.

You must give output in the following format:

[redacted]

Figure 29: Programmatic prompt for generating problem statement and answer code for CHASE-
CODE.
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CHASE-CODE: Generating Test Code

System Prompt: You are an expert tester of code systems.

You are given a function. You need to define an input-output test case for that function to
exhaustively test all scenarios.

{ANSWER_FUNCTION}

Follow these instructions:
1. You must output only a single long python code.
2. First initialize the input parameters for the function in python code. If the function reads
data from files, you should create and store the necessary files with sample data in the
corresponding filepath in the python code. Call the function and assign the return values to
variables named as return_<variable_name>.
3. Then write new code to implement the exact logic of the function. This way, you need to
simulate step-by-step how the values of the input parameters will be used to obtain the final
return values. Call these values as correct_<variable_name>.
4. Finally, and most importantly use assert statements to compulsorily check if the returned
outputs of the function (return_<variable_name> variables) match with the ones you
computed yourself (correct_<variable_name> variables).

Give output in the following format:

1 # Import statements if required
2 import <>
3 ...
4

5 # Import function from file
6 from <filename > import <function_name >
7

8 # Initialize input parameters
9 <param1 > = <value1 >

10 ...
11

12 # Call function with input parameters
13 return_ <variable1 >, return_ <variable2 >, ... = $<function_name >(<

param1 >, <param2 >, ...)
14

15 # Step -by -step run -through of function to obtain intermediate
outputs:

16

17 # Step 1
18 # Explanation: <>
19 <Code for step -1>
20

21 [redacted]
22

23 # Final Expected Output:
24 correct_ <variable1 > = <value1 >
25 ...
26

27 # Assert statements (compulsory) to check if the function
returns the correct values:

28 assert return_ <variable1 > == correct_ <variable1 >
29 ...

Figure 30: Programmatic prompt for generating the test code for CHASE-CODE.
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CHASE-CODE: Verifying if Function Executes

System Prompt: You are an expert tester of code systems.

You are given a function in a file. You need to check whether the function correctly executes.

{FUNCTION}

Follow these instructions:
1. You must output only a single long python code.
2. First initialize the input parameters for the function in python code. If the function reads
data from files, you should create and store the necessary files with sample data in the
corresponding filepath in the python code.
3. Finally, call the function with the input parameters.

Give output in the following format:

1 # Import statements if required
2 import <>
3 ...
4

5 # Import function from file
6 from <filename > import <function_name >
7

8 # Initialize input parameters
9 <param1 > = <value1 >

10 ...
11

12 # Call function with input parameters
13 return_ <variable1 >, return_ <variable2 >, ... = <function_name >(<

param1 >, <param2 >, ...)

Figure 31: Programmatic prompt for generating the test code for verifying if a function executes
correctly for CHASE-CODE.
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CHASE-CODE: Verifying Problem Statement

System Prompt: You are an expert programmer.

You are given a codebase with some files and functions in the domain of params[0]. You need
to write a single python function to achieve the objectives specified in the problem statement.
You may call the functions in the codebase when necessary. Do not give any examples of
usage or any explanations.

Codebase:

{RELEVANT_FUNCTIONS}

Problem Statement:

{PROBLEM_STATEMENT}

Give output in the following format:

1 # Import statements if required
2 import <>
3 ...
4

5 # Import necessary helper functions from their files
6 from <filename > import <function_name >
7

8 # Define the function
9 def <function_name >(<param1 >, <param2 >, ...):

10 # Your code here
11 ...
12

13 return <return_variable >

Figure 32: Programmatic prompt for verifying if the problem statement sufficiently specifies the
answer code for CHASE-CODE.
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CHASE-CODE: Solving the Task

System Prompt: You are an expert programmer. You must output only python code.

You are given a codebase. You need to write a single python function to achieve the objectives
specified in the problem statement. In your function, you should call some of the functions
in the codebase to achieve specific objectives. Do not give any examples of usage or any
explanations.

Codebase:

{CODEBASE}

Problem Statement:

{PROBLEM_STATEMENT}

Give output in the following format:

1 # Import statements if required
2 import <>
3 ...
4

5 # Import necessary helper functions from their files
6 from <filename > import <function_name >
7

8 # Define the function
9 def <function_name >(<param1 >, <param2 >, ...):

10 # Your code here
11 ...
12

13 return <return_variable >

Figure 33: Programmatic prompt for solving examples in CHASE-CODE.
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CHASE-MATH: Breaking-down Seed MWPs

System Prompt: You are an expert mathematician.

You are a research scientist. Your task is to create a hard math word problem to test an
advanced math reasoning system. For that, you are given the following problem:

Q: {QUESTION}
A: {ANSWER}

Your job is to first divide up the problem into the “context" and the “question statement".
Isolate the quantity that the problem is inquiring about by looking at the final question
statement and the rest of the information provided becomes the context. Also form a brief
answer statement by phrasing the answer in a complete sentence. Do not include the answer
statement in the context.

Give output in the following format only:
Original context [without question statement]: <>
Question statement: <>
Original answer: <>
Original answer statement: <>

Figure 34: Programmatic prompt for breaking down the seed MWP for CHASE-MATH.

CHASE-MATH: Creating Continuation of MWP

System Prompt: You are an expert mathematician.

You are a research scientist. Your task is to create a hard math word problem to test an
advanced math reasoning system. For that, you are given the following problem:

Context: {CONTEXT}
Question statement: {QUESTION_STATEMENT}
Answer: {ANSWER}
Answer statement: {ANSWER_STATEMENT}

You need to further continue the problem over the answer quantity, by introducing a scenario
and new question where you need to perform one more operation (such as +,-,/,*, etc.)
over this quantity to get the final answer. Crucially, the new context must not mention the
original answer - it still has to be inferred based on previous information. Do not make any
calculation or inference in the new context. Try to make the new context challenging. Also
provide a complete reasoning of how you reached the new answer (never round down or
round up decimals).

Give output in the following format only:
New operation over original answer: <>
New context [Do not mention original answer]: <>
New question statement: <>
New answer reasoning: <>
New answer [Number only]: <>

Figure 35: Programmatic prompt for extending the seed MWP for CHASE-MATH.
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CHASE-MATH: Solving MWP - 8-shot chain-of-thought

System Prompt: You are an expert mathematician. Your final statement must be of the form
’The answer is <answer>’.

Solve the final math word problem given below by thinking step-by-step. You should always
work with exact numbers - never round down or round up decimals based on context. Give
the final answer in the end by saying “The answer is <number>".

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After
they are done, there will be 21 trees. How many trees did the grove workers plant today?
A: There are 15 trees originally. Then there were 21 trees after some more were planted. So
there must have been 21 - 15 = 6. The answer is 6.
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the
parking lot?
A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they
have left in total?
A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74.
After eating 35, they had 74 - 35 = 39. The answer is 39.
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?
A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave
Denny 20 - 12 = 8. The answer is 8.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How
many toys does he have now?
A: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more
toys. 5 + 4 = 9. The answer is 9.
Q: There were nine computers in the server room. Five more computers were installed each
day, from monday to thursday. How many computers are now in the server room?
A: There were originally 9 computers. For each of 4 days, 5 more computers were added. So
5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more.
How many golf balls did he have at the end of wednesday?
A: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After
losing 2 more, he had 35 - 2 = 33 golf balls. The answer is 33.
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 -
15 dollars left. 23 - 15 is 8. The answer is 8.
Q: {QUESTION}
A:

Figure 36: Programmatic prompt for solving an example in CHASE-MATH using chain-of-thought.
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CHASE-MATH: Solving MWP - 8-shot sentence-by-sentence

System Prompt: You are an expert mathematician. Your final statement must be of the form
’The answer is <answer>’.

You need to solve the given math word problem. You should break down the problem
sentence by sentence, and solve each sentence, one at a time, from start to finish until you get
the final answer. You should always work with exact numbers - never round down or round
up decimals based on context. Give the final answer in the end by saying “The answer is
<number>".
Given below are illustrations of solving sentence-by-sentence:

Q: In a store, an Uno Giant Family Card costs $12. When Ivan bought ten pieces, he was
given a discount of $2 for each. The store has a 8% sales tax added to all purchases. Ivan
decides to save 25% of this expenditure for a future vacation. After saving, Ivan instead
decides to split this amount between two of his friends who are always helping him out. One
of the friends decided to split their received amount equally among the five children in Ivan’s
neighborhood who helped him move the previous day. How much will each child receive?

A: Sentence 1: Uno card costs $12.
Sentence 2: Ivan bought 10 cards and there was a discount of $2 each. So, 10 * $12 = $120
total cost of cards and, 10 * $2 = $20 discount.
Sentence 3: Sales tax is 8% of ($120 - $20 = $100). So, 8% of $100 = $8.
Sentence 4: Ivan saves 25% of ($100 + $8) = $108. So, 25% of $108 = $27.
Sentence 5: Ivan splits $27 between 2 friends. So, $27 / 2 = $13.50 each.
Sentence 6: One friend splits $13.50 among 5 children. So, $13.50 / 5 = $2.70 each.
The answer is 2.70.

[redacted]

Q; Carly is trying to get in shape to try out for the soccer team. She starts by running 2 miles
a week. The second week, she runs twice as long plus 3 extra miles per week. The third
week she runs 9/7 as much as she ran the second week. The week after that, she sprains her
ankle and has to reduce her running time by 5 miles this week compared to the previous
week. After a few weeks of recovering from her ankle injury, Carly starts to feel better and
decides to gradually increase her running time. She starts with a shorter routine that is one
quarter of the amount she ran the week she was injured. After a week of intense training,
Carly decides to boost her speed and endurance by increasing her weekly running routine to
2.5 times longer. Carly is planning increase the weekly routine by 5 times now. How much is
Carly planning to run every week?

A: Sentence 1: Nothing to solve.
Sentence 2: Carly runs 2 miles a week.
Sentence 3: Carly runs 2 * 2 + 3 = 7 miles in the second week.
Sentence 4: Carly runs 9/7 * 7 = 9 miles in the third week.
Sentence 5: Carly reduces her running time by 5 miles this week. So, 9 - 5 = 4 miles.
Sentence 6: Nothing to solve.
Sentence 7: Carly starts with 1/4 of 4 miles = 1 mile.
Sentence 8: Carly increases her running routine to 2.5 times longer. So, 1 * 2.5 = 2.5 miles.
Sentence 9: Carly wants to make her long run 5 times as long as her new routine. So, 2.5 * 5
= 12.5 miles.
The answer is 12.5.

Q: {QUESTION}
A:

Figure 37: Programmatic prompt for solving an example in CHASE-MATH sentence-by-sentence.
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