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ABSTRACT

Position information is essential for language modeling. In softmax transformers,
Rotary Position Embeddings (RoPE) encode positions through fixed-angle rota-
tions, while in linear transformers, order is handled via input-dependent (selective)
gating that decays historical information. Selectivity has generally been shown to
improve language related tasks. Inspired by this, we introduce Selective RoPE,
an input-dependent rotary embedding mechanism, that generalizes RoPE, and en-
ables rotation in all angels for both linear and softmax transformers. We show that
softmax attention already performs a hidden form of these rotations on query-key
pairs, uncovering an implicit positional structure. We further show that in state-
space models and gated linear transformers, the real part manages forgetting while
the imaginary part encodes positions through rotations. We validate our method
by equipping gated linear attention (GLA) with Selective RoPE, demonstrating
that its input-dependent rotations improve performance in language modeling and
on difficult sequence tasks like copying, state tracking, and retrieval.

1 INTRODUCTION

Transformers with softmax attention (Vaswani et al., 2017) form the backbone of modern Large
Language Models (LLMs). Since attention is permutation-equivariant with respect to the input
token order, positional information must be injected explicitly. Among exiting methods, Rotary
Position Embedding (RoPE) has emerged as the popular choice due to its drop-in simplicity and
strong empirical performance (Su et al., 2021). RoPE encodes positions by applying fixed-frequency
rotations to queries and keys.

In parallel, efficient sequence models such as Linear Transformers and State Space Models (SSMs)
(Katharopoulos et al., 2020; Yang et al., 2023; 2024b) have introduced selective gating as a mech-
anism to regulate the memory. Selectivity enables models to forget past information at input-
dependent manner, greatly improving performance in language tasks and long-range reasoning.
However, these models often only rely on forgetting alone, without an explicit mechanism for en-
coding rotations that capture relative positions (Gu & Dao, 2024; Dao & Gu, 2024).

The gap between these two types of positional encodings motivates our work. We introduce Se-
lective RoPE, an input-dependent extension of RoPE that performs rotations at arbitrary, selective
frequencies. Selective RoPE generalizes RoPE beyond fixed frequencies, while retaining its drop-in
simplicity by directly rotating queries and keys. Intriguingly, we show that softmax attention already
performs a hidden form of selective rotation via the perspective of Random Fourier Features (RFF).

We also analyze the roles of forget gates and rotations in gated linear transformers: the “forget gate,”
so named since it discards history, fails to encode rotary positional information, while rotation en-
codes positions but cannot decay the past. Our theoretical analysis provides a deeper understanding
of rotary embeddings, followed by the perspective introduced in Barbero et al. (2025).

We show that diagonal linear and softmax transformers are enhanced by combining both mecha-
nisms: selective rotation and the decaying forget gate. Conceptually and empirically, we show these
gates play complementary roles, and equipping GLA and Transformer with Selective RoPE unlocks
key capabilities such as state tracking, copying, and retrieval bottlenecks for these models.

Our contributions are as follows:

• Selective RoPE: We introduce an input-dependent rotary position embedding that general-
izes RoPE from fixed to arbitrary, learnable rotations.
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At = σ(Wxt) At = exp(iΩ) At = exp(iΩxt) At = σ(Wxt) · exp(iΩxt)
GLA, Mamba RoPE Selective RoPE Selective RoPE + Decay

Figure 1: Our methods (right two columns) are with the light background (cf., Table 1). Left to
right: GLA, RoPE, Selective RoPE (ours), Selective RoPE + Decay (ours). As we observe, the
forget gate only encodes positional information through scale. On the other hand, both RoPE and
Selective RoPE allow for positional information to be encoded through rotation, with the selective
variant taking advantage of arbitrary angles. Combining the two methods yields the best result.

• Theoretical insight: We show that softmax attention without explicit positional encoding
implicitly performs random selective rotations via a Random Fourier Features expansion.
We also find a suitable distribution for the temperatures on the selective frequencies that
minimizes the error for this expansion.

• Unification of decay and rotation: We decompose the roles of imaginary and real compo-
nents in gated linear transformers and diagonal SSMs: the imaginary part encodes positions
via rotation, connecting the model to softmax attention, while the real part captures selec-
tive forgetting. A visualization of this relationship is available in Figure 1.

• Empirical evidence: We demonstrate empirical gains with Selective RoPE on linear at-
tention for challenging sequence tasks, such as copying, state tracking and retrieval, while
providing evidence for better state-tracking in softmax attention with Selective RoPE.

2 BACKGROUND

2.1 GATED LINEAR TRANSFORMERS

Standard causal softmax attention (Vaswani et al., 2017) projects a sequence of L inputs (xt)
L
t=1

into the sequence of outputs (ot)
L
t=1, where xt,ot ∈ Rd:

qt,kt,vt = Wqxt,Wkxt,Wvxt, ot =

∑t
τ=1 exp(q

⊤
t kτ )vτ∑t

τ=1 exp(q
⊤
t kτ )

. (1)

with Wq,Wk,Wv ∈ Rd×d being the projection matrices.

Linear attention (Katharopoulos et al., 2020) replaces the exponential kernel exp(q⊤
t kτ ) in equa-

tion 1 with a kernel with a positive feature map ϕ(.) : Rd → (R+)d, which makes linear attention
equivalent to an RNN:

St = St−1 + vtϕ(kt)
⊤, zt = zt−1 + ϕ(kt), ot =

Stϕ(qt)

z⊤
t ϕ(qt)

=

∑t
τ=1 ϕ(qt)

⊤ϕ(kτ )vτ∑t
τ=1 ϕ(qt)

⊤ϕ(kτ )
. (2)

Here St ∈ Rd×d and zt ∈ Rd are hidden states updated by the above recurrence. Moving forward,
we subsume the feature map ϕ(.) into query-key vectors to reduce notation clutter. To control the
influence of St−1 and prevent it from dominating, equation 2 was enhanced with gating:

St = St−1At + vtk
⊤
t , ot = Stqt. (3)

where At is known as forget gate, which selectively discards historical information. Moreover, the
normalization state zt is typically omitted in gated linear transformers and SSMs such as Mamba
(Gu & Dao, 2024) and GLA (Yang et al., 2023). Gated linear transformers construct the forget gate
in different forms: Mamba-2 (Gu & Dao, 2024) uses a scalar gate (At ∈ R); GLA and Mamba
(Yang et al., 2023; Gu & Dao, 2024) adopt vector gates (At ∈ Rd); and DeltaNet (Yang et al.,
2024b) employs a matrix gate via the Delta Rule (At = I − βtktk

⊤
t ).

The forget gate At can also be interpreted as a position encoding, as it regulates the influence of
past tokens on the current output t according to their relative distance (Yang et al., 2025b).

2
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2.2 RoPE AND COMPLEX LINEAR ATTENTION

Unlike gated linear transformers, softmax attention does not encode token positions, and is therefore,
referred to as NoPE, i.e., no position encoding (Kazemnejad et al., 2023). Rotary Position Embed-
dings (RoPE) address this by injecting relative position information through rotations of query-key
pairs (Su et al., 2021).

For 2-dimensional queries and keys qt,kτ ∈ R2, RoPE applies relative positional encoding through
rotation matrix Rω , which changes the exponential kernel in softmax attention as:

exp
(
k⊤
τ R

t−τ
ω qt

)
= exp

(
(Rτ

ωkτ )
⊤(Rt

ωqt)
)
, Rω =

[
cosω − sinω
sinω cosω

]
. (4)

Here, ω determines the rotation frequency. Thus, the query at time t and key at time τ are rotated
by Rω , and the identity (Rω)

t = Rtω shows that exponentiation by t corresponds to a rotation
of angle tω. For d-dimensional queries and keys, qt,kτ ∈ Rd are split into d/2 two-dimensional
subvectors, each rotated independently with its own frequency. This yields a block-diagonal rotation
matrix R ∈ Rd×d defined as:

R =

d/2⊕
n=1

Rωn , (5)

where each Rωk
∈ R2×2 is a rotation matrix parameterized by a frequency ωk, and ⊕ denotes

the concatenation of matrices along the diagonal. Then, the exponential kernel in softmax for d-
dimensional queries and keys becomes:

exp
(
k⊤
τ R

t−τqt
)
= exp(k⊤

τ R
t(Rτ )−1qt) = exp

(
(Rτkτ )

⊤(Rtqt)
)
, (6)

which encodes relative positions through coordinated rotation across all 2D frequency subspaces. A
key connection is that RoPE is identical to a linear transformer with imaginary gate. Let q̃t, k̃t ∈
C d

2 be the complex queries and keys with real and imaginary parts as:

q̃t = q̃R
t + iq̃I

t , k̃t = k̃R
t + ik̃I

t

Let R̄ = exp(iΩ) = diag(eiω1 , . . . , eiωd/2) ∈ C
d
2×d

2 denote a diagonal, purely imaginary forget
gate, with the corresponding recurrence:

St = St−1R̄+ vtk̃
⊤
t , ot = R{Stq̃t}, (7)

where R{·} denotes taking the real part. This recurrence is equivalent to applying RoPE to a linear
transformer with real-valued queries and keys qt,kt ∈ Rd, where the real and imaginary parts of
each complex dimension are interleaved (Su et al., 2021):

qt =

d/2⊕
n=1

[
q̃R
t,n

q̃I
t,n

]
, kt =

d/2⊕
n=1

[
k̃R
t,n

k̃I
t,n

]
.

In practice, RoPE is implemented in the real domain by using equation 6, and rotating keys (kpe
τ =

Rτkτ ) and queries (qpe
t = Rtqt) eliminating the need for complex-valued operations (aka RoPE

trick). Specifically, simply through the following operation:

qpe
t =


qt,0 · cos (ω0)− qt,1 · sin (ω0)
qt,1 · cos (ω0) + qt,0 · sin (ω0)

...
qt,d−1 · cos

(
ωd/2

)
− qt,d · sin

(
ωd/2

)
qt,d · cos

(
ωd/2

)
+ qt,d−1 · sin

(
ωd/2

)

 ,kpe
τ =


kτ,0 · cos (ω0)− kτ,1 · sin (ω0)
kτ,1 · cos (ω0) + kτ,0 · sin (ω0)

...
kτ,d−1 · cos

(
ωd/2

)
− kτ,d · sin

(
ωd/2

)
kτ,d · cos

(
ωd/2

)
+ kτ,d−1 · sin

(
ωd/2

)

 ,

where qt,j and kτ,j denote the jth elements of qt and kτ , respectively.

3 THE IMPLICIT ROTATION IN SOFTMAX ATTENTION

In this section, we analyze softmax attention through Random Fourier Feature (RFF) approximation,
showing that it implicitly applies random rotations. We then derive the optimal temperature that
minimizes this approximation error.

3
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Gate Type: Gate Formulation Selectivity Model Examples Gate Spectrum

Decay : At = γ ✗ RetNet

Decay : At = σ(Wxt) ✔
Mamba, Mamba2,
GLA, HGRN2,
RWKV6

Rotation : At = exp(iΩ) ✗ Transformer+RoPE

Decay+Rotation:
At = σ(Wxt) · exp(iΩ)

✔ FoX+RoPE

Rotation : At = exp(iΩqt) ✔ Selective RoPE

Decay+Rotation:
At = σ(Wxt) · exp(iΩqt)

✔ Selective RoPE+GLA

Table 1: Comparison of different Transformers and their corresponding forget gates. Dots indicate
the relative position of two query-key pairs on the unit circle, representing their encoded distance.

3.1 RANDOM ROTATIONS IN SOFTMAX ATTENTION

We start with the connection between RFFs and the softmax attention (Peng et al., 2021), and il-
lustrate that rotation is an integral component in softmax attention. Specifically, starting from the
definition of the softmax attention:

ot =
st
zt

, st =

t∑
τ=1

exp
(

1√
d
q⊤
t kτ

)
· vτ , zt =

t∑
τ=1

exp
(

1√
d
q⊤
t kτ

)
,

with qt,kτ ∈ Rd. For simplicity, we omit the softmax temperature 1/
√
d. We define the RFF kernel

as ϕω(x) = exp
(

∥x∥2
2

2 + iω⊤x
)

, the real component of the expectation of which is:

R
{
Eω∼N (0,I) [ϕω(qt)ϕω(kτ )]

}
= exp

(
q⊤
t kτ

)
. (8)

By the law of large numbers, with ωj ∼ N
(
0, σ2I

)
for j ∈ {1, 2, · · · , D} and σ = 1 we can write:

st = limD→∞ R
{

1
D

∑D
j=1 ŝt,j

}
, where we define:

ŝt,j =

t∑
τ=1

ϕωj (qt) · ϕωj (kτ ) · vτ .

Let us define ŜD
t ∈ Rd×D as the matrix with its jth column equal to ŝt,j . Following the definition

of ϕω(.), we can write ŝDt,j in a recurrent form as:

ŝt,j = exp
(

∥qt∥2
2−∥qt−1∥2

2

2

)
exp
(
iω⊤

j (qt − qt−1)
)
ŝt−1,j + ϕωj

(qt) · ϕωj
(kt) · vt. (9)

Note that in (9) the term exp
(

∥qt∥2
2−∥qt−1∥2

2

2

)
can introduce instability to the recurrence. Therefore,

following the standard in both linear transformers (Yang et al., 2024b; 2023; Yang et al.; Lin et al.,
2025) and deep softmax transformers (Henry et al., 2020), we assume L2 normalization over the
query and key. Defining ϕ(x) as the vector with its jth element equal to ϕωj (x), we write the
recurrence over Ŝt as:

ŜD
t = ŜD

t−1R̄t + vtk̃
⊤
t , R̄t = exp

(
iΩ(qt − qt−1)

)
, k̃t = ϕ(qt) ◦ ϕ(kτ ), (10)

where ◦ corresponds to the Hadamard product of two vectors.

Similarly defining approximation of ẐD
t ∈ R1×D via RFF, we arrive at the following approximation

of the softmax attention as a complex-valued linear attention: ot = limD→∞
R{ŜD

t 1}
R{ẐD

t 1} . For a

detailed derivation, please refer to App. A.2.

In conclusion, softmax attention implicitly is applying selective rotations through the gate R̄t

4
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3.2 OPTIMAL VARIANCE FOR FOURIER FEATURES

The equivalence of the RFF kernel in equation 8 with σ = 1 holds only in expectation. For a limited
number of samples (D), we instead choose the variance of the RFFs carefully in our complex linear
attention model equation 10. We obtain the optimal variance for a given query-key pair as follows

Theorem 1 Let the expected error of the RFF kernel over ωj ∼ N
(
0, σ2I

)
be as follows:

ERR [qt,kτ ] = Eωj

[(
1
D

∑D
j=1 ϕωj

(qt) · ϕωj
(kτ )− exp

(
q⊤
t kτ

))2]
. Then, for a given a pair of

L2 normalized query and key, the optimal value of σ is equal to σ = tan

(
arccos(q⊤

t kτ)
2

)
.

Theorem 1 provides the optimal variance for RFFs for a single query-key pair. Extending this,
we define the rotation matrix as R̂t = exp(iΩΘ(qt − qt−1)), where Θ is a diagonal matrix of
temperatures. Assuming the angle between the queries and keys are uniformly distributed in [0, 2π],
the optimal temperatures follow tan2( θ2 ) with θ ∼ U [0, 2π]. Interestingly, this distribution closely
resembles the exponentially decaying frequencies used in RoPE. Together, these observations lead
to our first key insight:

Insight 1): Softmax attention implicitly applies a selective rotation, to encode relative posi-
tional information between tokens. Since ∥R̄t∥2 = 1, it preserves the norm of query-key pairs
and does not forget past information. The optimal temperature for these rotations follows a ex-
ponentially decaying pattern.

4 SELECTIVE RoPE: ROTATION IN ALL ANGLES

From section 3.1, we observe that there is a direct relationship between performing selective rota-
tions in softmax attention thorough RFF recurrence style. This relationship emphasizes the impor-
tance of rotation as a way to preserve positional information, given the superior recall ability of
softmax attention (Arora et al., 2024a; Jelassi et al., 2024). Following this intuition and the proven
benefits of selectivity in linear transformers (Yang et al., 2023; Gu & Dao, 2024; Arora et al., 2024a;
Dao & Gu, 2024), we introduce Selective RoPE as a generalization of RoPE with input-dependent
rotations allowing arbitrary frequencies for softmax and linear attentions.

The construction of Selective RoPE is simple: rather than using fixed, pre-defined frequencies Ω,
we make them input-dependent (i.e., selective). Inspired by Figure 2, the frequencies are computed
as a function of the queries qt through a linear projection of WΩ, which results in less parameters
compared to extracting them from input xt. The definition of Selective RoPE, given both in its
real-valued matrix form and its equivalent imaginary recurrence (analogous to RoPE’s recurrence
in eq. (7)), is presented in section 4. Moreover, Selectve RoPE shares the simplicity of integration
of RoPE trick as shown in the pseudo code in Figure 2. Inspired by the rotation gate in Yang et al.
(2025b), we found it to be helpful to add an input-dependent gating mechanism to the phase of the
rotation matrix, in order to endow the model with the ability to not perform rotation.

5 GATED LINEAR TRANSFORMERS EQUIPPED WITH Selective RoPE

In this section, we first analyze the roles of real and imaginary parts in non-selective SSMs (S4D),
then show how Selective RoPE naturally arises from a linear transformer with a complex forget gate.
Building on this, we demonstrate that rotation and norm decay play complementary roles, and that
linear transformers unlock new capabilities when equipped with Selective RoPE.

5.1 ROLE OF REAL AND IMAGINARY PARTS IN S4D

We start our analysis with non-selective diagonal SSMs and prove the distinct roles of the real and
imaginary components. SSMs can be derived from continuous-time representations, expressed as:

ds(t)

dt
= As(t) +Bx(t), o(t) = C⊤s(t), K(t) = C⊤eAtB, o(t) = K(t) ∗ x(t) (13)

5
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Selective RoPE:

R̄t = exp(iΩt), (Imaginary) (11)

=

d/2⊕
n=1

[
cos(Ωn,t) − sin(Ωn,t)
sin(Ωn,t) cos(Ωn,t)

]
, (Real)

Ωt = Conv1D(WΩq̃t), (12)

WΩ ∈ Rd×d/2

def Selective RoPE(Q,K,W Ω,θ, Temp):
Ω = cumsum( Conv1d ( Temp∗ (WΩ@Q) ) )
return Apply RoPE(Q,K,Ω)

def Apply RoPE(Q,K,Ω) # RoPE trick
Q r[0::2] = Q[0::2]∗cosΩ − Q[1::2]∗sinΩ
Q r[1::2] = Q[1::2]∗cosΩ + Q[0::2]∗sinΩ
K r[0::2] = K[0::2]∗cosΩ − K[1::2]∗sinΩ
K r[1::2] = K[1::2]∗cosΩ + K[0::2]∗sinΩ
return Q r, K r

Figure 2: Left) The formulation of Selective RoPE. The phase of the rotation matrix is the result of
a linear projection, a channel-wise causal convolution, and a channel-wise multiplication with the
temperatures. Right) Pseudo code of Selective RoPE. Thanks to the RoPE trick (Su et al., 2021),
implementing Selective RoPE is possible in pure PyTorch. A detailed implmenetation is available at
Figure 9.

In diagonal SSMs (S4D) with diagonal A, S4D (Gu et al., 2022) initializes the imaginary part of the
state matrix as An = iωn (n ∈ [0, N ], roots of unity), from which the output is derived as:

o(t) =

N∑
n=1

BnCne
iωnt

∫ ∞

−∞
e−iωnτx(τ)ut(τ)dτ, ut(τ) =

{
1, 0 ≤ τ ≤ t

0, otherwise
(14)

where ut(τ) is a step-window function. The integral above is equivalent to computing the Fourier
Transform of the windowed signal x(τ)ut(τ) at frequency ωn. Duality between convolution in the
time domain and multiplication in the frequency domain simplifies the equation 14 to:

o(t) =

N∑
n=1

BnCn(Xωn
∗Ut,ωn

), Ut,2ω =
sin(ωt)

ω
e−iωt (15)

with Xωn
and Ut,ωn

denote the Fourier transforms of x(τ) and ut(τ), respectively. The input spec-
trum Xω is convolved with the window spectrum Ut,ω , causing distortion, a phenomenon known as
spectral leakage. In the discrete domain, the integral in equation 14 becomes a summation:

ot =

N∑
n=0

CnBn

t∑
τ=0

exp
(
− 2πinτ

N

)
xτ . (16)

where ωn = 2πni
N and ∆ = 1

N . Thus, S4D with a purely imaginary state matrix A acts as a spectral
analyzer: it accurately computes the N -point DFT of for t ≤ N , but for t > N , suffers from
spectral leakage since the state size can at most represent N frequencies. Therefore, the higher
frequencies are being aliased or overwritten.

Equation 16 motivates the need to prevent spectral leakage, typically addressed by windowing in
signal processing. S4D implicitly achieves this by using a complex state matrix A with the real
part acting as a window function, a classical solution to spectral leakage (Oppenheim, 1999). Con-
cretely, with A = exp(−αn∆+ 2πin∆), S4D performs a windowed DFT using a Poisson window
(Smith III, 2011), thereby avoiding spectral leakage. Its output can be written as:

ot =

N∑
n=0

CnBn

t∑
τ=0

exp
(
− 2πinτ

N

)
xτ exp(−αn∆τ)︸ ︷︷ ︸

wτ

, (17)

where wτ is the Poisson window and ∆ = 1
N is chosen for clarity in the DFT formulation. Thus,

the real part of A in S4D acts as a window, suppressing spectral leakage and enabling undistorted
spectral representations.

Summary of the Section: In diagonal SSMs (S4D family), the two real and imaginary parts of
state matrix A serve distinct but complementary roles: Imaginary parts extract spectral infor-
mation, while Real parts suppress leakage and ensure clean representation of the spectrum.

6
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5.2 ROTATION AND FORGET GATES

In this section, we extend the analogy from section 5 to linear transformers. Considering the general
gated linear transformer’s recurrence and its unrolled form:

St = St−1At + vtk̃
⊤
t , ot = R{Stq̃t}, ot =

t∑
τ=1

vτ R

{
k̃⊤
τ

( t∏
κ=τ

Aκ

)
q̃t

}
. (18)

where k̃t, q̃t ∈ Cd, vt ∈ Rd, and the diagonal gate At ∈ Cd×d. We adopt the complex formulation
of linear transformer due to its connection with RoPE (section 2.2). In practice, several linear
transformers parameterize the gate in log-space as At = exp(−Λt + iΩt), where Λt,Ωt ∈ Rd×d

are diagonal, learned during training and Λt is contractive for recurrence stability (Orvieto et al.,
2023). Expanding the cumulative product over forget gate we achieve:

ot = R


t∑

τ=1

(
q̃t

t∏
κ=1

exp(iΩκ)

)⊤( t∏
κ=τ+1

exp(−Λκ)

)(
τ∏

κ=1

exp(−iΩκ)k̃τ

)
· vτ

 ,

=

t∑
τ=1

vτ

d∑
n=1

|k̃n,τ | |q̃n,t| e−
∑t

κ=τ Λn,κ︸ ︷︷ ︸
Norm Decay

cos
(
∠q̃n,t + ∠k̃n,τ +

t∑
κ=τ

Ωn,κ

)
︸ ︷︷ ︸

Rotation

. (19)

Here, q̃n,t, k̃n,τ ,Λn,t,Ωn,t ∈ R denote the n-th elements of the respective vectors or diagonal
matrices at time t. Equation (19) shows that the real part of A causes norm decay (forgetting),
while the imaginary part rotates query-key angles (position encoding). Together, they span the full
unit disk of query-key relations, as visualized in table 1.

Similar to RoPE, selective rotations can be applied directly to queries and keys as in equation 19:
qpe
t = q̃t

∏t
κ=1 exp(iΩκ), kpe

τ = exp(−iΩκ)k̃τ , using the standard RoPE trick, via exact code
presented in section 4. Hence, the imaginary part of At, exp(iΩt), is equivalent to Selective RoPE
and can be implemented directly in practice. This results in our second insight on applying Selective
RoPE for gated linear transformers:

Insight 2): Linear Transformers can be enhanced by using both forgetting via real decay and
rotation via imaginary gate. The rotation component enriches the connection between linear
attention and softmax attention, providing better memory, while the decay component prevents
spectral leakage and filters older information.

5.3 CONNECTIONS

In this section, we note the connection between our contribution and some of current literature -
(Yang et al., 2024b; 2025b; Yang et al.; Lin et al., 2025). For selective rotation as a method of
position embedding, we point to the DeltaNet method and the PaTH as two methods most closely
connected to our work. In App. A.4, we show that Selective RoPE can be seen as a special variant of
these models when used in linear attention or softmax attention, respectively. Similarly, considering
the relationship between softmax attention and Selective RoPE, we can view the softmax attention
with forget gate (FoX) as closely related to a GLA with Selective RoPE. In App. B.1, we further
expand on this connection.

6 EXPERIMENTS

We test the performance of Selective RoPE on synthetic and real world language modeling tasks.
For this, we implement Selective RoPE in flash-linear-attention (Yang & Zhang, 2024)
and use the model implementations provided in the library. We mainly compare Selective RoPE to
NoPE and RoPE applied to Gated Linear Attention (GLA) (Yang et al., 2024a).

6.1 SYNTHETIC LANGUAGE TASKS

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

128 256 512

Model Size

0

50

100

A
cc

u
ra

cy

Seq. 128, KV pairs 8

128 256 512

Model Size

Seq. 256, KV pairs 16

128 256 512

Model Size

Seq. 512, KV pairs 64

GLA + Selective RoPE GLA + RoPE GLA

DeltaNet H3 Heyna Transformer Mamba2

Figure 3: Multi-Query Associative Recall (MQAR) of GLA with Selective RoPE compared to RoPE,
NoPE and other architectures. MQAR feeds a sequence of key-value pairs followed by several
queries and asks the model to output the corresponding values in order. KV = key-value.

Table 2: MAD benchmark results.
Model Compress Fuzzy In-Context Memorize Noisy Selective Average

Recall Recall Recall Copy

GLA
NoPE 77.1 8.8 92.7 30.2 94.0 93.1 66.0
RoPE 77.0 8.8 92.5 29.7 88.1 93.6 64.5
Selective RoPE 78.3 9.1 97.9 28.3 95.5 97.3 67.7
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Selective RoPE

+ query conv.

+ hard shift

RoPE NoPE

Figure 4: MQAR abla-
tions.

To investigate which capabilities of linear attention are improved when
using Selective RoPE, we run experiments on synthetic tasks. For this,
we mostly focus on recall, since it is essential for language model-
ing (Arora et al., 2024a;b) and a good proxy for performance at scale.

MQAR. We evaluate GLA + Selective RoPE on Multi-Query Asso-
ciative Recall, following the same experimental setup as in Arora et al.
(2024a, Figure 2) with a finer learning rate grid, as this has been show
to improve performance (Okpekpe & Orvieto, 2025) (cf. Appendix E.2).
The results are shown in Figure 3. While GLA with RoPE and NoPE is
not able to achieve perfect accuracy at the longest sequence length, GLA
with Selective RoPE achieves 100% at all considered sequence lengths
and number of key-value pairs.

Contrary to our results on language modeling, we observed that the
causal 1D-convolution and hard-shift (cf. Section 3.1) both hurt perfor-
mance and Selective RoPE performs best on MQAR with just the phase
projection from the queries as shown in Figure 4. We hypothesize that this is a learnability rather
than a capability issue, since the model could also learn to ignore past queries in the causal 1D-
convolution and place all weight on the current query qt.

50 100 150

Sequence Length

0.0

0.5

1.0

A
cc

u
ra

cy

GLA: String copying

Selective RoPE RoPE NoPE

Figure 5: Copying accuracy of
GLA with CIs. Dashed line is
the training sequence length.

MAD and Copying. We also evaluate our method on the MAD
benchmark suite (Poli et al., 2024) which tests a models ability to
store and recall information within its context. Here, we note that
using Selective RoPE consistently improves performance over NoPE
and RoPE on almost all considered tasks. We also evaluate string
copying following Jelassi et al. (2024). This task differs from Selec-
tive Copy in MAD in that the entire input sequence has to be copied
token-by-token after the models is presented with a <copy> token.
The results in Figure 5 show that Selective RoPE again improves over
the alternatives and learns to length extrapolate very robustly. The
poor result of RoPE is reported in prior works (Jelassi et al., 2024; Li
et al., 2024) and attributable to it’s generally poor length extrapolation
performance without fine-tuning on longer sequence lengths.

State Tracking. A common way to evaluate the expressivity of a model is state tracking on per-
mutation composition (Liu et al., 2023). Recently, it has been shown, that SSMs and linear RNNs
are not even capable of learning parity (Merrill et al., 2024), which amounts to permutation com-
position on the symmetric group of two elements, S2, and that one needs to extend the eigenvalue
range of the state transition At from [0, 1] to [−1, 1] (Grazzi et al., 2025). In Figure 6 we see that
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Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑

NoPE 28.24 37.37 32.1 64.8 34.3 52.2 45.8 23.5 46.05

Selective RoPE 23.21 21.82 38.1 70.8 48 54 53.4 24.7 48.16

Table 3: Evaluation results of 370M on tasks from lm-eval-harness (Gao et al., 2024).

GLA with Selective RoPE is able to learn and length, extrapolate on S2. This is in line with our ex-
pectations since the input dependent rotations allow it to model “flips” depending on the input either
being a 0 or a 1, while GLA with NoPE and RoPE does not even learn the training context length.
This places GLA + Selective RoPE outside the TC0 complexity class (Merrill et al., 2024). Simi-
larly, we can see that Selective RoPE also improves the state tracking abilities in Transformers (i.e.,
softmax attention) allowing them to solve the parity problem up to, and slightly more, than the train
sequence length. To the best of our knowledge, Transformer with Selective RoPE is the only variant
of Transformers capable of solving the parity task with a single layer up to this sequence length (Liu
et al., 2023). We also experiment on A3 with a 2-layer DeltaNet Yang et al. (2024b), which is the
permutation composition on the symmetric group of three elements, limited to even permutations.
As we can observe, Selective RoPE improves the expressivity of the model up to a point where it is
capable of solving A3 up to the training sequence length. To the best of our knowledge, this is the
first time these results have been presented for our choice of model on this task.

128 512

Sequence Length

0.0

0.5

1.0

A
cc

u
ra

cy

GLA: Group S2

128 512

Sequence Length

Transformer: Group S2

128 512

Sequence Length

DeltaNet: Group A3

Selective RoPE NoPE RoPE

Figure 6: State tracking peformance of GLA, Transformer, and DeltaNet with different positional
embeddings on S2 and A3. GLA and Transformer were trained with one layer whereas DeltaNet
was trained with two layers. Vertical dashed line indicates training sequence length.

6.2 LANGUAGE MODELING

For our language modeling experiments we follow the same training setup as in Siems et al. (2025a)
and train a 370M GLA (Yang et al., 2024a). Our main experiments are carried out at 35B tokens
(≈ 5× Chinchilla). To account for differences optimal learning rates for the considered positional
embedding schemes, we sweep learning rates following Orvieto & Gower (2025) at the largest
scale and early stop under-performing runs due to compute constraints. The downstream evaluation
performance of GLA with Selective RoPE is shown in Table 3. During training, we observed loss
spikes when using Selective RoPE which we were able to mitigate by placing a sigmoid gate on the
phase (angle) projection. This also allows us to not rotate, similarly to PaTH (Yang et al., 2025a)
(cf. Section 4). As shown in Table 3, using Selective RoPE consistently improves over NoPE.

7 CONCLUSION

We introduced Selective RoPE, an input-dependent rotary position embedding that generalizes RoPE
from fixed to arbitrary, learnable rotations. Our theory shows (i) softmax attention admits a complex
linear formulation that implicitly performs selective rotations, and (ii) this complex formulation
introduces spectral leakage, which can be supressed through the forget gate mechanism. Empiri-
cally, equipping GLA with Selective RoPE improves recall-centric synthetic tasks and strengthens
language modeling downstream performance .
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A MATHEMATICAL DERIVATIONS AND PROOFS

A.1 RoPE AS IMAGINARY-VALUED LINEAR TRANSFORMER

We start by unrolling the linear transformers recurrence:

St = St−1R̄+ vtk̃
⊤
t , ot = R{Stq̃t}

ot = R

{
t∑

τ=1

vτ k̃
⊤
τ R̄

t−τ q̃t

}
=

t∑
τ=1

vτR
{
k̃⊤
τ R̄

t−τ q̃t

}
Therefor, the attention score applied to value vτ is:

Atttτ = R
{
k̃⊤
τ R̄

t−τ q̃t

}
where R extracts the real part of attention. Since R̄ is diagonal, we can expand the expression as:

Atttτ = R


d/2∑
n=1

(q̃R
t,n + i q̃I

t,n) · eiωn(t−τ) · (k̃R
τ,n + i k̃I

τ,n)


= R


d/2∑
n=1

|q̃t,n| e−i∠q̃t,n · eiωn(t−τ) · |k̃τ,n| e−i∠k̃τ,n


Atttτ = R


d/2∑
n=1

|q̃t,n| |k̃τ,n| ei(ωn(t−τ)−∠q̃t,n−∠k̃τ,n)


Atttτ =

d/2∑
n=1

|q̃t,n| |k̃τ,n| cos
(
ωn(t− τ)− ∠q̃t,n − ∠k̃τ,n

)
(20)

where ∠q̃t,n and ∠k̃τ,n denote the complex phases (angles) of the n-th component of q̃t and k̃τ ,
respectively. Equation 20 shows that an imaginary forget gate rotates the query/key pairs at each
index n with a distinct frequency ωn. We now demonstrate that this is equivalent to applying RoPE.
Replacing the cosine in Equation 20 with its matrix multiplication equivalent:

cos
(
ωn(t− τ)− ∠q̃t,n − ∠k̃τ,n

)
=

[
cos(∠q̃t,n)
sin(∠q̃t,n)

]⊤ [
cos(ωn(t− τ)) − sin(ωn(t− τ))
sin(ωn(t− τ)) cos(ωn(t− τ))

] [
cos(∠k̃τ,n)

sin(∠k̃τ,n)

]
Plugging above in Equation 20 we achieve:

Atttτ =

d/2∑
n=1

|q̃t,n| |k̃τ,n|
[
cos(∠q̃t,n)
sin(∠q̃t,n)

]⊤ [
cos(ωn(t− τ)) − sin(ωn(t− τ))
sin(ωn(t− τ)) cos(ωn(t− τ))

] [
cos(∠k̃τ,n)

sin(∠k̃τ,n)

]

Atttτ =

d/2∑
n=1

|q̃t,n|
[
cos(∠q̃t,n)
sin(∠q̃t,n)

]⊤ [
cos(ωn(t− τ)) − sin(ωn(t− τ))
sin(ωn(t− τ)) cos(ωn(t− τ))

]
|k̃τ,n|

[
cos(∠k̃τ,n)

sin(∠k̃τ,n)

]

Atttτ =

d/2∑
n=1

[
q̃R
t,n

q̃I
t,n

]⊤ [
cos(ωn(t− τ)) − sin(ωn(t− τ))
sin(ωn(t− τ)) cos(ωn(t− τ))

] [
k̃R
t,n

k̃I
t,n

]
(21)

Using the definition of:

qt =

d/2⊕
n=1

[
q̃R
t,n

q̃I
t,n

]
, kt =

d/2⊕
n=1

[
k̃R
t,n

k̃I
t,n

]
.

we can write equation 21 as:

Atttτ =

d/2∑
n=1

qt,nR
t−τ
ωn

kτ,n

which is theoretically equivalent to applying RoPE to query/key pairs qt,kτ . RoPE interleaves the
real and imaginary parts of complex queries and keys across the hidden dimension, then applies 2D
rotations to each pair.
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A.2 SOFTMAX ATTENTION DERIVATION

We start with the definition of softmax attention:

ot =
st
zt

, st =

t∑
τ=1

exp
(

1√
d
q⊤
t kτ

)
· vτ , zt =

t∑
τ=1

exp
(

1√
d
q⊤
t kτ

)
,

where qt,kτ ∈ Rd. For simplicity, we omit the normalization factor 1/
√
d and first focus on the

numerator of the output, specifically the exponential kernel. As in equation 2, the denominator
scaling can be handled separately through an external state zt.

To approximate the exponential kernel exp(q⊤
t kτ ), we use Random Fourier Features (RFF) (Rahimi

& Recht, 2007) with frequencies ω ∈ Rd ∼ N (0, σ2I). The feature map is defined as

ϕω(x) = exp

(
∥x∥22
2

+ iω⊤x

)
,

so that
exp(q⊤

t kτ ) = R
{
Eω∼N (0,σ2I)

[
ϕω(qt)

⊤ϕω(kτ )
]}

,

for σ = 1. By applying this feature map, the linear attention formulation in equation 2, we can
approximate the exponential kernel in softmax attention. Continuing the approximation:

exp
(
q⊤
t kτ

)
= exp

(
∥qt∥22 + ∥kτ∥22

2

)
· R
{
Eω∼N (0,I)

[
exp(iω⊤qt) exp(−iω⊤kτ )

]}
.

Let ωj ∼ N
(
0, σ2I

)
for j ∈ {1, 2, . . . , D}. Then due to the law of large numbers we have:

exp
(
q⊤
t kτ

)
= exp

(
∥qt∥22 + ∥kτ∥22

2

)
· R

 lim
D→∞

1

D

D∑
j=1

exp
(
iω⊤

j qt
)
· exp

(
−iω⊤

j kτ

) .

Therefore, we can approximate exp
(
q⊤
t kτ

)
as the dot product of the random exponential projection

of the query and the key using D random ωjs:

ŝDt =
1

D

t∑
τ=1

D∑
j=1

exp

(
∥qt∥22 + ∥kτ∥22

2

)
exp

(
iω⊤

j qt
)
exp

(
−iω⊤

j kτ

)
· vτ .

This allows us to compute the softmax attention as the linear attention parameterized by:

ϕ(qt) = exp

(
∥qt∥22
2

)
· exp(iΩ⊤qt), ϕ(kτ ) = exp

(
∥kt∥22
2

)
· exp(−iΩ⊤kτ ),

with limD→∞ R
{
ŝDt
}
=
∑t

τ=1 exp
(
q⊤
t kτ

)
· vτ and Ω = [ω1, ...,ωD]. Omitting the superscript

D for simplifying the notation, let us focus on one random feature ωj and its contribution to the
output:

ŝt,j =

t∑
τ=1

exp

(
∥qt∥22
2

)
exp

(
∥kτ∥22

2

)
exp

(
iω⊤

j qt
)
exp

(
−iω⊤

j kτ

)
· vτ .

In this case, we have ŝDt = 1
D ŜD

t 1, where ŜD
t = [ŝt,1 ŝt,2 . . . ŝt,D] ∈ Cd×D. Now note that

we have:

ŝt,j =

t−1∑
τ=1

exp
(

∥qt∥2
2−∥qt−1∥2

2

2

)
exp
(
iω⊤

j qt−1

)
exp
(
iω⊤

j (qt − qt−1)
)
exp
(
−iω⊤

j kτ

)
· vτ (22)

+ exp
(

∥qt∥2
2

2

)
exp
(

∥kt∥2
2

2

)
exp
(
iω⊤

j (qt − kt)
)
· vt. (23)

= exp
(

∥qt∥2
2−∥qt−1∥2

2

2

)
exp
(
iω⊤

j (qt − qt−1)
)
ŝjt−1 + ϕωj (qt) · ϕωj (kt) · vt (24)

Note that the real exponential component in equation 24 can introduce instability to the recurrence.
Therefore, following the standard in both linear transformers (Yang et al., 2024b; 2023; Yang et al.;
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Lin et al., 2025) and deep softmax transformers (Henry et al., 2020), we assume L2 normalization
over the query and the key, i.e., ∥qt∥2 = ∥qt−1∥2. Thus, recurrence presented in equation 24
simplifies to:

ŝt,j = exp
(
iω⊤

j (qt − qt−1)
)
ŝt−1,j + ϕωj (qt) · ϕωj (kt) · vt, (25)

with ŝt,j being the jth column of ŜD
t is scaled by the values exp

(
iω⊤

j (qt − qt−1)
)
. Therefore, we

can write the recurrence over Ŝt as:

ŜD
t = Ŝt−1R̄t + vt (ϕ(qt) ◦ ϕ(kt))

⊤
, ŝDt =

1

D
ŜD
t 1.

where ϕ(x) is a vector with its jth element equal to ϕωj
(x), and R̄t is:

R̄t = exp(iΩ⊤(qt − qt−1)) (26)

Focusing on equation 26, we observe that exponential kernel in softmax attention implicitly ap-
plies a form of input-dependent (Selective) RoPE (see Sec. 2.2). However, instead of learning the
frequencies Ω, they are randomly sampled from a normal distribution.

Similarly, we can also approximate the normalizing factor zt as:

ẑD
t =

1

D

t∑
τ=1

D∑
j=1

exp

(
∥qt∥22 + ∥kτ∥22

2

)
exp

(
iω⊤

j qt
)
exp

(
−iω⊤

j kτ

)
.

Separating the contribution of each random feature, we have:

ẑt,j =

t∑
τ=1

exp

(
∥qt∥22
2

)
exp

(
∥kτ∥22

2

)
exp

(
iω⊤

j qt
)
exp

(
−iω⊤

j kτ

)
.

Finally, defining ẐD
t = [ẑt,1 ẑt,2 . . . ẑt,D,] we arrive at a similar result. The full recurrence

of softmax attention, therefore, can be written as:

ŜD
t = ŜD

t−1R̄t + vt (ϕ(qt) ◦ ϕ(kt))
⊤
, ẐD

t = ẐD
t−1R̄t + ϕ(qt) ◦ ϕ(kt), ôt =

ŜD
t 1

ẑD
t 1

.

which again highlights the importance of the gate R̄ as selective rotation.

A.3 OPTIMAL VARIANCE FOR RFF: PROOF OF THEOREM 1

Proof 1 We start by writing down the error:

ERR [qt,kτ ] =
e2

D2

∑
j,j′=1

E
[
R
[
exp
(
i (ωj + ωj′)

⊤
(qt − kτ )

)]]
− 2e

D

∑
j=1

E
[
R
[
exp
(
iω⊤

j (qt − kτ )
)]]

exp
(
q⊤
t kτ

)
+ const.

=
e2

D
E
[
cos2

(
iω⊤ (qt − kτ )

)]
+

e2
(
D2 −D

)
D2

E
[
cos
(
iω⊤ (qt − kτ )

)]2
− 2e · E

[
cos
(
iω⊤ (qt − kτ )

)]
exp
(
q⊤
t kτ

)
+ const.,

where the const. term corresponds to the terms constant w.r.t. the variance of the distribution σ2.
Plugging in the expectation of the cos(.) and cos2(.) functions (Choromanski et al., 2021), we get
the following optimization problem:

min
σ

[
e2−4σ2 · exp

(
−4σ2ξ

)
2D

+
D − 1

D
e2−2σ2

exp
(
−2σ2ξ

)
− 2e1−σ2

exp
((
1− σ2

)
ξ
)]

,

where for simplicity, we set q⊤
t kτ = ξ ∈ [0, 1]. Since in most cases, D is a sizable number, we try

to solve this optimization problem in the limit D → ∞, which is equivalent to:

min
σ

[
e2−2σ2(1+ξ) − 2e(1−σ2)(1+ξ)

]
,
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with the optimal value equal to:

σ =

√
1− ξ

1 + ξ
.

Considering normalized queries and keys ||kt|| = ||qt|| = 1 we can replace the ξ = q⊤
t kτ with

cos(θ) therefor above also simplifies to:

σ =

√
1− cos(θ)

1 + cos(θ)
= tan(θ/2).

This completes our proof. ■

A visualization of the temperature distribution in Selective RoPE compared to standard RoPE is
shown in fig. 7.

1.0 0.5 0.0 0.5 1.0
0

1

Figure 7: Comparison of temperature distributions in RoPE and Selective RoPE.

A.4 COMPLEX ROTATIONS AND HOUSEHOLDER MATRICES

Another approach towards introducing rotations to the quries and keys is using Householder reflec-
tion matrices Yang et al. (2024b; 2025b). In this approach, the rotation of the query and key pair is
limited to a single reflection along the direction of an input-dependent vector. Specifically, let wt be
an input-dependent unit vector. Then, the positional information is encoded through the product of
Householder reflection matrices as:

q⊤
t Rt:τkτ = q⊤

t

(
t∏

κ=τ+1

(
I − 2βκ ·wκw

⊤
κ

))
kτ .

Therefore, the positional information between the tth and τ th token is encoded through a rotation
consisting of t− τ reflections.

Conveniently, we can also write the complex diagonal rotation matrix in Selective RoPE in terms
of the product of Householder matrices. Specifically, we can write the realification of the rotation
matrix in equation 5 as the product of d Householer reflections, each of which performs the reflection
over a single pair of adjacent elements:

Rt =

d∏
j=1

I − 2 ·

 0j

1
0

0d−j−2


 0j

1
0

0d−j−2


⊤

I − 2

 0j

cos (ωt,j/2)
sin (ωt,j/2)
0d−j−2


 0j

cos (ωt,j/2)
sin (ωt,j/2)
0d−j−2


⊤ ,

where we define 0m ∈ Rm as a vector with all zeros. Assuming we split adjacent elements in the
query/key into the real and imaginary components, then Selective RoPE is performing two reflec-
tions over each adjacent element pair of the input, with one of them a parametric reflection, and the
other negating the first element.
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This interpretation also explains why we gain more expressivity when using Selective RoPE: due to
the block-diagonal structure, there is a channel mixing happening between the adjacent query/key
elements. Channel mixing is a key component in improving the expressivity of sequence mod-
els (Muca Cirone et al., 2024), thus improving the state-tracking abilities of the network (Siems
et al., 2025b).

B BACKGROUND WORK ON DIAGONAL STRUCTURED SSMS

Structured SSMs are motivated based on the continuous-time SSM representations and can be pre-
sented as linear ODE or in parallel convolution form (Gu et al., 2022):

ds(t)

dt
= As(t) +Bx(t), o(t) = C⊤s(t), K(t) = C⊤eAtB, o(t) = K ∗ x (27)

Here, the parameters are defined as A ∈ CN×N ,B,C ∈ CN . Above can be mapped into the
discrete domain using different discretizations, resulting in:

st = Āst−1 + B̄xt, ot = C̄⊤st (28)

where discrete state values Ā, B̄, C̄ are dependent on their continuous forms A,B,C via choice
of discretization and scalar sampling step ∆. Diagonal SSMs, such as S4D (Gu et al., 2022), use a
diagonal state matrix A with Zero-Order Hold (ZOH) discretization (Kalman, 1960), resulting in:

st = eA∆st−1 +Bxt, ot = C⊤(eA∆ − I)A−1st, A = − exp(AR) + iAI (29)

where AR and AI are the real and imaginary parts of the diagonal state matrix A, respectively. For
stability, S4D enforces negative real parts via − exp(AR), with AR,AI initialized using HIPPO
(Gu et al., 2020) or close to unit circle initialization (Orvieto et al., 2023).

B.1 RELATIONSHIP BETWEEN Selective RoPE AND FOX

FoX (Lin et al., 2025) is a softmax transformer that augments attention with a real-valued forget gate
inspired by GLA. Its attention can be written as:

qt,kt,vt = Wqxt,Wkxt,Wvxt, ot =

∑t
τ=1 exp(q

⊤
t kτ +

∏t
κ=τ aκ)vτ∑t

τ=1 exp(q
⊤
t kτ +

∏t
κ=τ aκ)

. (30)

Here, the gate decays the norm of querykey pairs through a selective decay parameterized in log-
space, at = log(ft). This enhances the forgetting capability of transformers, addressing our earlier
observation in section 3.1 that softmax alone preserves norms and thus cannot forget. Interestingly,
in the softmax setting, Selective RoPE closely parallels FoX: it can be seen as replacing the decay
term at with a rotation matrix Rt.

C NEURAL ARCHITECTURE OF GLA WITH Selective RoPE

D IMPLEMENTATION

We provide a PyTorch implementation of Selective RoPE in Figure 9.

E EXPERIMENTAL DETAILS

In this section we provide additional details on our experimental setup for the tasks considered in
the paper.

E.1 LANGUAGE MODELING

E.1.1 SETUP AND HYPERPARAMETERS.

We use PlainLM (Ajroldi, 2024) together with an adapted version of
flash-linear-attention for all of our language model trainings. We train on > 80GB
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SwiGLU

RMSNorm

GLA w 
Selective RoPE

RMSNorm

+

RMSNorm

Linear

Linear Linear Linear

Gated Linear Attention

Linear

RMSNorm

Conv

+
Linear

Conv

L2Norm

Selective RoPE

	𝜎
𝑞 𝑘

𝑣 𝐴

Input

Output

Ω

𝑁×

Figure 8: neural Architecture of GLA+Selective RoPE

VRAM GPUs incuding NVIDIA A100, H100 and B200. One model training (370M parameters,
35B tokens) is performed on a single node with 4 to 8 of such GPUs and takes anywhere from 48
hours (on 4 A100) to 9 hours on 8 B200. We use Distributed Data Parallel (DDP) for multi-GPU
training.

Table 4: Optimizer and learning-rate schedule hyperparameters for language modeling.

Optimizer
Parameter Symbol Value

Base learning rate (candidates) η [5e-4, 1e-3, 2e-3, 4e-3, 8e-3, 1.6e-2]
Adam β1 β1 0.9
Adam β2 β2 0.95
Weight decay λ 0.1
Numerical epsilon ϵ 1× 10−8

Gradient clipping (global norm) clipℓ2 1.0

LR Schedule / Training Horizon
LR start (schedule) ηstart 1e-5
LR end (schedule) ηend 1e-4
Warmup (fraction of steps) – 0.1
Total optimizer steps T 66,758

E.2 SYNTHETIC TASKS

E.2.1 MAD

For MAD, we take the implementation from mad lab and implement Selective RoPE in GLA. We
follow the exact experimental setup outlined in the paper (Poli et al., 2024) and run all variations of
task difficulty and optimizer hyperparameters which results in 66 task settings × 6 optimizer settings
= 396 trained models per considered setting (i.e., GLA with Selective RoPE, RoPE or NoPE). We
provide the logs from the experiments in our supplementary.

E.2.2 STATE TRACKING

For state tracking we adopt the exact experimental setup as described in DeltaProduct (Siems et al.,
2025a) and Grazzi et al. (2025).

E.2.3 MQAR

We have carefully followed the training recipe of Arora et al. (2024a) for all models including:
GLA (Yang et al., 2024a), DeltaNet (Yang et al., 2024b), Mamba2 (Dao & Gu, 2024) and Trans-
former++ (Touvron et al., 2023). The learning rate for all models were swiped within the range of
[0.0001, 0.01] for 8 different values per each model. All other configuration and the model dimen-
sions were remained the same as original reference Arora et al. (2024a).

18
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Table 5: Training state tracking configuration.

Training Loop
Parameter Value

Epochs 100
Batch size 4096

Optimization
Learning rate 1e-3
β1 0.9
β2 0.999
Optimizer ϵ 1e-8
Weight decay 1e-6
LR scheduler cosine

Precision / Compile
Mixed precision true
DType bfloat16

Data
Train set size 2,000,000 sequences
Train sequence length 128 tokens
Eval set size 500,000 sequences
Eval sequence length 512 tokens

Seeds & Eval
Seeds [555, 666, 777, 888, 999]
Eval batch size 128

E.2.4 COPYING

Table 6: Optimizer and Data parameters for Copying

Optimizer
Learning rate 5.0e-5
Weight decay 0.1
β1 0.9
β2 0.999
Optimizer ϵ 1.0e-8
Gradient clipping (global norm) 1.0

Scheduler
Scheduler linear
Warmup (fraction of steps) 0.1

Seeds & Eval
Seed 42
Eval batch size 256

Data
Vocab size 26
n-gram 0
Answer length 0
Train task copy
Eval task copy
Sequence length 420
Min length (train) 2
Max length (train) 64
Min length (eval) 2
Max length (eval) 512
Sampler type sequential
Sampler seed null

E.3 THE USE OF LARGE LANGUAGE MODELS (LLMS)

While preparing this manuscript, we limitedly used Large Language Models (LLMs). Their role was
restricted to assisting with editing and polishing the writing, such as improving clarity, grammar, and
flow. All conceptual ideas, methods, experiments, and analyses presented in this paper are entirely
the work of the authors. No ideas, algorithms, or research contributions were generated by an LLM.
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The LLM served only as a tool to refine the presentation of the text without influencing the substance
of the research.
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from fla.modules.convolution import ShortConvolution
from einops import rearrange
import torch
import torch.nn as nn
from .chunked_linear import ChunkedLinear

class SelectiveRoPE(nn.Module):
def __init__(

self,
head_dim: int,
num_heads: int = 1,
dtype: torch.dtype | None = None,
d_conv: int = 4,
temp_type: str = "rope",
temp_theta: float = 500000,
temp_max: float = 1.0,
temp_grad: bool = False,
is_softmax: bool = False,
phi_conv_activation: str | None = None,

):
super().__init__()
self.head_dim = head_dim
self.num_heads = num_heads
self.is_softmax = is_softmax
pe_dim = head_dim
self.phi_proj = ChunkedLinear(2 * pe_dim, pe_dim,

num_heads=num_heads, bias=False, random_init=True,
rank=-1,

)
self.phi_conv1d = ShortConvolution(

hidden_size=num_heads * pe_dim,
kernel_size=d_conv, bias=False,
activation=phi_conv_activation, dtype=dtype,

)
self.temperature = nn.Parameter(

rotary_temperature(temp_type, temp_theta, head_dim, temp_max).reshape(1, 1, 1,
-1),↪→

requires_grad=temp_grad,
)
self.phase_gate_proj = nn.Linear((num_heads * head_dim), num_heads, bias=True)

def forward(
self,
q: torch.Tensor,
k: torch.Tensor,
inputs: torch.Tensor | None = None,
output_final_state: bool = False,
cache: None = None,
cu_seqlens: None = None,

) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor | None]:
if self.is_softmax:

q_norm = l2_norm(q)

phi = rearrange(
self.phi_proj(

rearrange(q_norm if self.is_softmax else q, "b t h d -> (b t) h d")
),
"(b t) h d -> b (h d) t",
b=q.shape[0],

)
phi, conv_cache = self.phi_conv1d(

rearrange(phi, "b d t -> b t d"),
cache=cache, output_final_state=output_final_state, cu_seqlens=cu_seqlens,

)
phi = rearrange(phi,"b t (h d) -> b t h d",h=self.num_heads)
phase_gate = self.phase_gate_proj(l2_norm(inputs)).sigmoid()
phi = phi * phase_gate.unsqueeze(-1)
phi_tilde = torch.cumsum(phi, dim=1)
qk_phi_tilde = torch.cat([phi_tilde, phi_tilde], dim=2)
qk_r2 = torch.cat([q, k], dim=2).unflatten(dim=-1, sizes=(-1, 2)).float()
rotated_qk = torch.stack(

[
qk_r2[..., 0] * torch.cos(self.temperature * qk_phi_tilde)
- qk_r2[..., 1] * torch.sin(self.temperature * qk_phi_tilde),
qk_r2[..., 1] * torch.cos(self.temperature * qk_phi_tilde)
+ qk_r2[..., 0] * torch.sin(self.temperature * qk_phi_tilde),

],
-1,

).flatten(3)
return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2), conv_cache

Figure 9: Selective RoPE in PyTorch.
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