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ABSTRACT

Position information is essential for language modeling. In softmax transformers,
Rotary Position Embeddings (RoPE) encode positions through fixed-angle rota-
tions, while in linear transformers, order is handled via input-dependent (selec-
tive) gating that decays past key-value associations. Selectivity has generally been
shown to improve language-related tasks. Inspired by this, we introduce Selective
RoPE, an input-dependent rotary embedding mechanism, that generalizes RoPE,
and enables rotation in arbitrary angles for both linear and softmax transformers.
We show that softmax attention already performs a hidden form of these rotations
on query-key pairs, uncovering an implicit positional structure. We further show
that in state-space models and gated linear transformers, the real part manages for-
getting while the imaginary part encodes positions through rotations. We validate
our method by equipping gated transformers with Selective RoPE, demonstrating
that its input-dependent rotations improve performance in language modeling and
on difficult sequence tasks like copying, state tracking, and retrieval.

1 INTRODUCTION

Transformers with softmax attention (Vaswani et al., 2017) are the foundation of state-of-the-art
language models. Their strong in-context recall performance is due to the ability of every token to
attend to all past tokens without decay. However, their main drawback is computational: even with
memory-efficient kernels, the arithmetic cost remains quadratic in the sequence length. To solve this,
a parallel line of work develops sub-quadratic sequence models (modern recurrent architectures)
that run in linear time and require only constant memory per step at inference (Katharopoulos et al.,
2020; Yang et al., 2024b; Gu & Dao, 2023; Dao & Gu, 2024). The bottleneck of these models is
their fixed state size: information must be selectively retained or overwritten, which often hurts long-
horizon retrieval. Hence, most recent progress has focused on improving how these models manage
their state. Selective gating (Yang et al., 2024a; Gu & Dao, 2023; Dao & Gu, 2024) adaptively
decays history; more expressive state updates (Yang et al., 2024b; Siems et al., 2025; Peng et al.,
2025) and readouts (Peng et al., 2025; Hu et al., 2025) increase the bandwidth between the state
and outputs. These mechanisms largely operate by modulating norms of key-value associations
(i.e., how quickly they decay), but do not directly provide the complementary capability of rotating
query-key representations to encode relative position.
Our view: recall needs rotation and decay. We propose a recipe for good recall, the ingredients
of which are: (i) rotation to encode relative position while preserving norms, and (ii) decay to
selectively discard past key-value associations. Through a Random Fourier Features (RFF) lens
we show that softmax attention already performs input-dependent selective rotations of query-key
pairs, which is missing entirely in modern recurrent architectures. In contrast, the latter implement
selective decay via gates but lack rotations, so they cannot encode relative phase.
Why rotation alone is insufficient. A purely complex (rotation-only) linear recurrent model be-
haves like a spectral analyzer with fixed state size. Applied to a finite sample of an input sequence,
the model will suffer from spectral leakage, which leads to a worse approximation of the input sig-
nal. This is resolved by adding an exponentially decaying component. The analog to this in modern
sequence models is sub-optimally compressing key-value associations into the fixed-size hidden
state, which is remedied by adding selective gating to the state transition.

Based on our recipe, we instantiate a complex version of Gated Linear Attention (GLA) (Yang
et al., 2024a) and demonstrate its superior performance and expressivity. In practice, we show that,
by using the RoPE trick (Su et al., 2021), we are able to efficiently compute a complex GLA by
applying a learned, input-dependent rotary position embedding to the queries and keys. Selective
RoPE is easily incorporated into the query and keys of any gated linear transformer.
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At = σ(Wxt) At = exp(iΩ) At = exp(iΩxt) At = σ(Wxt) · exp(iΩxt)
GLA, Mamba RoPE Selective RoPE Selective RoPE + Decay

Figure 1: Our methods (right two columns) are highlighted with a light blue background. Left to
right: GLA, RoPE, Selective RoPE (ours), Selective RoPE + Decay (ours). As we observe, the
forget gate only encodes positional information through scale. On the other hand, both RoPE and
Selective RoPE allow for positional information to be encoded through rotation, with the selective
variant taking advantage of arbitrary angles. Combining the two methods yields the best results.

Contributions.

• Unifying view. We show that effective recall needs both rotation and decay. Softmax
implicitly implements input-dependent rotations (RFF view). Complex-only linear models
suffer from spectral leakage, motivating explicit decay. Real parts forget; imaginary parts
encode position.

• Theory. (i) An RFF approximation of the exponential kernel that exposes selective rota-
tions in softmax and yields an optimal temperature distribution that matches exponential
schedules used in RoPE. (ii) A spectral analysis of diagonal SSMs showing why decay
suppresses leakage.

• Method: Selective RoPE. An input-dependent rotary embedding that generalizes RoPE to
learned angles and composes with gates; implemented with the RoPE trick for both linear
and softmax attention.

• Empirics. Integrating Selective RoPE with GLA significantly boosts performance on
recall-centric synthetic tasks (MQAR, copying, state tracking) and improves downstream
language modeling.

2 BACKGROUND

In this section, we provide a summary of the background information that is necessary to understand
this work. We begin with an introduction of the Transformer architecture and its relevant variants,
along with a remark on the relationship between complex linear Transformers and the RoPE trick (Su
et al., 2021).

Transformers. Standard causal softmax attention (Vaswani et al., 2017) transforms a sequence of
L inputs (xt)

L
t=1 into the sequence of outputs (ot)

L
t=1, with xt, st,ot ∈ Rd and zt ∈ R:

ot =
st
zt
, st =

t∑
τ=1

exp
(

1√
d
q⊤
t kτ

)
· vτ , zt =

t∑
τ=1

exp
(

1√
d
q⊤
t kτ

)
, (1)

where qt,kt,vt = Wqxt,Wkxt,Wvxt, and Wq,Wk,Wv ∈ Rd×d are the projection matrices and
zt is the normalization factor. Linear attention (Katharopoulos et al., 2020) replaces the exponential
kernel in softmax attention with a kernel with a positive feature map ϕ(·) : Rd → (R+)d, which
gives rise to the following model:

ot =
Stϕ(qt)

z⊤
t ϕ(qt)

, St =

t∑
τ=1

vτϕ(kτ )
⊤, zt =

t∑
τ=1

ϕ(kτ ). (2)

Here St ∈ Rd×d and zt ∈ Rd are state and the normalization factor. Due to the linear relationship,
one can write the hidden state and the normalization factor in a recurrent form as: St = St−1 +
vtϕ(kt)

⊤ and zt = zt−1 + ϕ(kt). Moving forward, we subsume the feature map ϕ(·) into query-
key vectors to simplify notation and drop the normalization factor zt following Sun et al. (2023).
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Initially, to manage the finite sized hidden state better when processing long sequences, (2) was
enhanced with a forget gate, At:

St = St−1At + vtk
⊤
t , ot = Stqt =

t∑
τ=1

vτ

{
k⊤
τ

(
t∏

κ=τ+1

Aκ

)
qt︸ ︷︷ ︸

Attt,τ

}
, (3)

which is either diagonal (Yang et al., 2024a; Gu & Dao, 2023) or scalar-valued (Dao & Gu, 2024)
and hence, the channels of the hidden state evolve independently. Here, Attt,τ is the attention
score between qt and kτ . Then,

∏t
κ=τ+1 Aκ is reducing the norm of the inner product based on

the cumulative product of gates between both positions and can hence be understood as a position
encoding (Yang et al., 2025b) as it is also dependent on the distance between t and τ . More recently,
forget gates were extended by more-expressive state transition matrices that allow for channel-
mixing across time. These often take a diagonal-plus-low-rank (DPLR) structure (Yang et al., 2025a;
Peng et al., 2025) which admits a memory-efficient representation for products of such matrices.

RoPE and Complex Linear Attention. Rotary Position Embeddings (RoPE) are used to add
relative positional information through rotations of the query-key pairs (Su et al., 2021). For queries
and keys qt,kτ ∈ R2, RoPE applies relative positional encoding using the rotation matrix Rω:

Attt,τ = exp
(
k⊤
τ R

t−τ
ω qt

)
= exp

(
(Rτ

ωkτ )
⊤(Rt

ωqt)
)
, Rω =

[
cosω − sinω
sinω cosω

]
, (4)

with ω being the frequency of rotation. The query at time t and key at time τ are rotated by Rω

with (Rω)
t = Rtω . For d-dimensional queries and keys, qt,kτ are split into d/2 vectors ∈ R2,

each rotated independently by their own frequency. This yields a block-diagonal rotation matrix
R ∈ Rd×d where each Rωk

∈ R2×2 is parameterized by a frequency ωk.

Using the RoPE trick allows us to express a complex parametrization of a linear transformer while
staying in the real domain. Consider taking the real part of the following complex attention score:

Attt,τ = ℜ{k̃H
τ diag

([
eiω1(t−τ) · · · eiωn(t−τ)

])︸ ︷︷ ︸
R̄∈Cd/2×d/2

q̃t} with q̃t, k̃τ ∈ Cd/2 (5)

where R̄ is a unitary diagonal state transition. This can be re-expressed as applying RoPE to queries
and keys qt,kτ in twice the dimensions, Rd, where we interleave the real and imaginary part in the
odd and even indices of queries and keys:

Attt,τ =

d/2∑
n=1

[
kτ,2n−1

kτ,2n

]⊤ [
cosωn(t− τ) − sinωn(t− τ)
sinωn(t− τ) cosωn(t− τ)

]
︸ ︷︷ ︸

Rt−τ
ωn

[
qt,2n−1

qt,2n

]
. (6)

When we unroll the recurrence in (3) and replace the forget gate, Aκ, with the block-diagonal
rotation matrix R ∈ Rd×d in RoPE, we get:

ot =

t∑
τ=1

vτ

{
k⊤
τ R

t−τqt

}
with Rt−τ = blockdiag

([
Rt−τ

ω1
· · · Rt−τ

ωn

])
(7)

Note that due to the block-diagonal structure of R, we can write Rt−τ = (Rτ )
H
Rt, from which

follows that k⊤
τ R

t−τqt = (Rτkτ )
H
Rtqt. This allows us to express the rotation matrix as applying

RoPE to queries and keys, similar to (6).

In summary, a linear transformer with RoPE is equivalent to the same model with a unitary, diagonal
and non-selective transition in half the dimensions. The RoPE trick allows us to implement this
complex parameterization by applying RoPE to queries and keys, effectively staying in the real
domain which allows us to re-use existing (linear) attention kernels. A full derivation is shown
in Appendix A.1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Gate Type: Gate Formulation Selectivity Model Examples Gate Spectrum

Decay: At = σ(Wxt) ✔
Mamba, Mamba2,
GLA, HGRN2,
RWKV6

Rotation: At = exp(iΩ) ✗ RoPE

Decay+Rotation:
At = σ(Wxt) · exp(iΩ)

✔ FoX+RoPE

Rotation: At = exp(iΩqt) ✔ Selective RoPE

Decay+Rotation:
At = σ(Wxt) · exp(iΩqt)

✔ Selective RoPE+GLA

Table 1: Comparison of different Transformers and their corresponding forget gates. Dots indicate
the relative position of two query-key pairs on the unit circle, representing their encoded distance.

3 A UNIFYING VIEW: DECAY AND ROTATION

In this section we motivate our method, Selective RoPE, by first observing that Softmax attention,
even without RoPE, performs random but selective rotations when viewed through the lens of Ran-
dom Fourier Features (RFFs) (Section 3.1), and that these rotations are missing in linear attention.
In Section 3.2, we explain why rotations do not suffice and why selective gating is necessary, build-
ing on the complementary roles that real (gating) and imaginary (rotation) parts play in diagonal
SSMs. Finally, in Section 3.3 we combine the previous insights and present our proposed method.

3.1 SOFTMAX ATTENTION IMPLICITLY PERFORMS ROTATIONS

We begin with the connection between RFFs and softmax attention, and illustrate that rotation is an
integral component in softmax attention. Specifically, we start from the definition of the softmax
attention in (1) (omitting temperature for simplicity). Following Peng et al. (2021) and Rahimi &
Recht (2007, Theorem 1), we define the RFF kernel as ϕω(x) = exp

(
∥x∥22/2 + iω⊤x

)
. When

applying the kernel to the dot-product of queries and keys ⟨qt,kτ ⟩, whose expected real component
is equivalent to the attention score Attt,τ :

ℜ
{
Eω∼N (0,I)

[
ϕω(qt)

⊤ϕω(kτ )
]}

= exp
(
q⊤
t kτ

)
. (8)

By the law of large numbers, with ωj ∼ N
(
0, σ2I

)
for j ∈ {1, · · · , D} and σ = 1 we can

approximate the un-normalized softmax attention output st:

st = lim
D→∞

ℜ

 1

D

D∑
j=1

ŝt,j

 , with ŝt,j =

t∑
τ=1

ϕωj
(qt)

⊤ϕωj
(kτ ) · vτ ,

where ŝt,j ∈ Rd is the j-th contribution to the attention score Attt,τ . With some manipulations
and mild assumptions (full derivation in Appendix A.2) and using the definition of ϕωj

, we can re-
express ŝj as a recurrence. Stacking D of these recurrences horizontally, gives us a matrix-valued
recurrence over Ŝt ∈ Rd×D:

Ŝt = Ŝt−1R̄t + vtk̃
⊤
t , R̄t = diag

(
exp

(
iΩ(qt − qt−1)

))
, k̃t = ϕ(qt)⊙ ϕ(kτ ), (9)

Crucially, R̄t is a diagonal input-dependent rotation matrix parametrized by random Gaussian fea-
tures Ω, conditioned on the input via qt − qt−1. Recalling the RoPE trick in Section 2, it should
become clear that we can re-express R̄t as a block-diagonal matrix where each 2×2 rotation matrix
on its diagonal rotates by angle ϕj = ⟨ωj , (qt−qt−1)⟩. Interestingly, the hard-shift over the queries
q can be expressed by a 1d short-convolution, which is a component that is already frequently used
in modern recurrent architectures (Yang et al., 2025a; Dao & Gu, 2024). We can follow a similar
derivation as in (9) for the normalizer zt. The read-out proceeds slightly differently than in normal
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Figure 3: The effects of windowing on the spectrogram of a finite sample of a sequence.

linear attention: since each column j of the recurrent state represents the contribution of the j-th
random feature to the approximation of st, we sum over the columns: Ŝt1.

0 20 40 60

Channel Index

0.0

0.5

1.0

Θ

RoPE

Ours

ε 0.1 0.01 0.001 0.0001

Figure 2: The distribution of the
phase temperatures in RoPE vs.
Selective RoPE. ϵ is the inverse
of the RoPE base frequency and
the upper-bound of query-key an-
gle in our temperature. Details
about the parameterization avail-
able in Appendix A.3.1.

The equivalence of the RFF kernel in (8). For a limited number of
samples, D, we instead choose the variance of the RFFs as shown
in Theorem 1 (Appendix A.3), which provides the optimal variance
for RFFs for a single query-key pair. Extending this, we define the
rotation matrix as R̂t = exp(iΩΘ(qt − qt−1)), where Θ is a di-
agonal matrix of temperatures. Assuming the angle between the
queries and keys are uniformly distributed in [0, 2π], the optimal
temperatures follow tan2( θ2 ) with θ ∼ U [0, 2π]. Interestingly, this
distribution closely resembles the exponentially decaying frequen-
cies used in RoPE, with a slightly faster decline, as we can observe
in Figure 2.

In summary, we have shown that softmax attention implicitly per-
forms random input-dependent rotations to encode relative posi-
tional information between tokens. Since R̄t is a rotation matrix,
it preserves the norm of the attention scores Attt,τ and hence does
not forget past information.

3.2 NECESSITY OF GATING: SPECTRAL LEAKAGE IN DIAGONAL SSMS

In this section, we will show that rotations alone are not enough to close the gap between linear
and softmax attention by analyzing the role of real and imaginary parts in complex diagonal SSMs.
Inspired by the findings of Section 3.1, let us analyze a related model to GLA in (3), where the
diagonal gate At is instead replaced by the rotation matrix R̄t introduced in (9):

St = St−1R̄t + vtk
⊤
t , ot = ℜ{Stqt} . (10)

By unrolling the recurrence, we can write the output as:

ot = ℜ
{∑d/2

j=1qt,j e
iωt,j

∑+∞
τ=−∞kτ,j e

−iωτ,jvτut(τ)dτ
}
.

This is a convolution over the value (i.e., the input) and an exponential of imaginary function (i.e.,
e−iωτ,j ), which can be seen as a spectral analysis (discrete Fourier transform, DFT) of the value
signal, in the presence of the step-window function ut(τ) (definition in Appendix A.4), which is
visualized in Figure 3a. When naively performing a DFT over a finite sample, the resulting discon-
tinuities at the margins of the sample cause spectral leakage in the spectrogram as shown in (c). To
avoid this, one usually places a non-rectangular window which tapers off towards the margins. The
convolved signal with a Hann window (Oppenheim, 1999) function is shown in (b) and the resulting
magnitude spectrum in (c). In (d), we show that we are able to recover the correct frequency after a
window FFT when applying a Hann window to our input signal. The window function chosen here
acts like an exponential decay towards the margins, which is analogous to using a gate in our model
in (10). The use of gates in sequence models has a long history. Starting from the gating mechanism
in LSTMs (Hochreiter & Schmidhuber, 1997), it is also widely used in linear attention, linear RNNs
and SSMs (Yang et al., 2024a; Gu & Dao, 2023), and even softmax Transformers (Lin et al., 2025).
Our results in this section provide a theoretical motivation for the use of gating mechanisms.

3.3 DESIGN PRINCIPLES FOR LINEAR ATTENTION

In this section we combine the insights gained in Section 3.1 and 3.2 to formulate general design
principles that are required to narrow the gap between linear and softmax attention. For this, we
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analyze a general form of linear attention, which encompasses both models in (3) and (10):

St = St−1At + vtk̃
H
t , ot = ℜ{Stq̃t}, ot =

t∑
τ=1

vτ ℜ

{
k̃H
τ

( t∏
κ=τ

Aκ

)
q̃t

}
. (11)

In Section 3.1 we have shown that softmax attention implicitly performs input-dependent rotations,
and that this is missing from linear attention. We can introduce rotation to the model in (11) by
setting At = R̄t. This is stable since R̄t is a rotation matrix and will give us the model in (10).
However, purely rotating will make this a spectral analyzer. Meaning that the positional information,
which is encoded through rotation in (10), will lack the ability to encode higher frequencies. Con-
sequently, we also need a decay (i.e., the window function), which we choose to be exponentially
decaying. This can be achieved by setting At = Λt which gives us the model in (3). In summary, a
performant linear transformer requires both: (a) rotation and (b) gating.

One can introduce both components by writing At = ΛtR̄t. Interestingly, in DeltaNet one can
observe that the rotation component already exists to some degree in the form of a Householder.
Then, adding the forget gate, as done by Yang et al. (2025a) improves the performance, which is
in line with our design principle. In the case of the softmax transformers we know the rotation
component already exists along random axes. Consequently, one only needs the forget gate to fully
align with this design principle, which was shown to be effective in the Forgetting Transformer (Lin
et al., 2025).

In summary, as the main contribution of the paper, we introduce Selective RoPE, which we define
as Linear Attention with an input-dependent rotation matrix Rt as its state transition:

St = St−1Rt + vtk
⊤
t , ot = Stqt. (12)

Recalling the RoPE trick in (7) and defining Ri:j =
∏j

κ=i Rκ for the input-dependent rotation
matrix Rκ, we can equivalently write this as:

Selective RoPE: ot =

t∑
τ=1

vτ

{
k⊤
τ Rτ+1:tqt

}
=

t∑
τ=1

vτ

{
k⊤
τ R

⊤
1:τR1:tqt

}
, (13)

which we can easily apply to both queries and keys and hence, largely reuse existing RoPE kernels.
However, considering the extensive research done on the forget gate, we shift our focus from this
component and instead rely on the built-in forgetting functionality of the baseline architectures.

In this section, we provide theoretical results that motivate the use of complex rotation and ex-
ponential decay in a linear attention model. The resulting design principle argues that both these
components are required for a well-performing sequence model. This design principle also pro-
vides a fresh perspective on the success of Forgetting Transformers (Lin et al., 2025) and variants
of DeltaNet (Yang et al., 2024b; 2025a), which we further elaborate on in Appendix A.6 and Ap-
pendix A.5.

4 EXPERIMENTS

In the following section we test our proposed model on synthetic and real-world language modeling
tasks. For this we first provide our implementation details and then explain the specific experimental
setup for each task and discuss the accompanying results. We primarily apply Selective RoPE to
Gated Linear Attention (GLA) (Yang et al., 2024a) and compare with other linear and softmax
attention variants. We sweep learning rates (reported in Appendix B) unless otherwise specified.

4.1 IMPLEMENTATION

def selective_rope(
q, k, W_omega, temp

) -> tuple[Tensor, Tensor]:
omega = conv1d(W_omega@q)
omega = temp*cumsum(omega)
sin_o, cos_o = sincos(omega)
return rope(q, k, cos_o,

sin_o)↪→

Figure 4: Pseudocode of Selective RoPE.

In the implementation of Selective RoPE we make sev-
eral design choices that go beyond the architecture de-
scribed in Section 3.3: Following Zhang et al. (2024),
where learning the random features introduced by Choro-
manski et al. (2021) was shown to be more effective,
we make the parameters ω in Selective RoPE learn-
able. This makes the rotations input-dependent and learn-
able. Following Yang et al. (2025b), we place a sig-
moid gate on the rotation angles to allow the model to control whether to rotate or not.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

50 100 150

Sequence Length

0.0

0.5

1.0

A
cc

u
ra

cy

GLA: String copying

Selective RoPE RoPE NoPE

Figure 6: Copying accuracy of
GLA with CIs. Dashed line is
the training sequence length.

Table 2: MAD benchmark results. We ablate the effectiveness of each
extra component introduced to Selective RoPE on GLA. The best results
are marked in bold and the second best in underline.

Model Compress Fuzzy In-Context Memorize Noisy Selective Average
Recall Recall Recall Copy

GLA
NoPE 82.0 8.5 87.3 38.7 87.6 91.1 65.9
RoPE 85.2 7.5 92.6 61.4 91.9 96.4 72.5

Selective RoPE 85.2 9.0 94.0 57.1 91.7 94.9 72.0
+ phase gate 85.1 7.5 96.6 56.9 94.3 93.5 72.3
+ bias 85.0 8.4 95.0 61.3 91.2 95.4 72.7
+ phase gate & bias 85.4 7.2 95.9 60.4 95.0 95.6 73.2

We also add a learnable bias term, which is not dependent on relative token positions (Li
et al., 2024). Finally, we place a weight norm (Kingma, 2016) on the input projection.
We ablate our architectural choices on the MAD dataset and language modeling experiments.
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Figure 5: Prefill throughput on
NVIDIA B200 with batch size=1

We implement Selective RoPE in PyTorch and integrate it into
flash-linear-attention (Yang & Zhang, 2024) for our ex-
periments. Using the RoPE trick (cf. section 2), we are able to
implement our method as a prelude to RoPE where we determine
the sin and cos from the input as shown in Figure 4. To optimize the
throughput of our implementation, we follow the GPT-NeoX (Black
et al., 2022) style of applying rotations to allow for coalesced mem-
ory access. This is equivalent to our derivations which follows the
original RoPE implementation by Su et al. (2021), up to an index
permutation. Despite these changes, the kernels generated by Py-
Torch compile are memory bound (Dao et al., 2022) due to missing
epilogue fusion support for cumulative sums in PyTorch compile.
We provide a Triton implementation that performs epilogue fusion
for the cumulative sum and the operations following it. This yields
an up to 340% improvement in prefill throughput on long sequences on modern GPUs as shown
in Figure 5.

4.2 SYNTHETIC LANGUAGE TASKS

To investigate which capabilities of linear attention are improved when using Selective RoPE, we
run experiments on synthetic tasks. For this, we mostly focus on recall, since it is essential for
language modeling (Arora et al., 2024a;b) and a good proxy for performance at scale.
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Figure 7: MQAR results.

MQAR. We evaluate GLA + Selective RoPE on Multi-Query
Associative Recall, following the same experimental setup as
in Arora et al. (2024a, Figure 2) with a finer learning rate grid,
as this has been shown to improve performance (Okpekpe &
Orvieto, 2025) (cf. Appendix B.2). The results in Figure 7 show
that GLA improves with extra positional information and that
Selective RoPE achieves the greatest improvement over the base
model with no positional embedding.

MAD and Copying. We also evaluate our method on the MAD benchmark suite (Poli et al.,
2024) which tests a model’s ability to store and recall information within its context. Here, we note
that using Selective RoPE consistently improves performance over NoPE and RoPE on almost all
considered tasks. We also evaluate string copying following Jelassi et al. (2024). This task differs
from Selective Copy in MAD in that the entire input sequence has to be copied token-by-token
after the model is presented with a <copy> token. The results in Figure 6 show that Selective RoPE
again improves over the alternatives and learns to length extrapolate very robustly. The poor result of
RoPE is reported in prior works (Jelassi et al., 2024; Li et al., 2024) and attributable to its generally
poor length extrapolation performance without fine-tuning on longer sequence lengths.

State Tracking. A common way to evaluate the expressivity of a model is state tracking on per-
mutation composition (Liu et al., 2023). Recently, it has been shown that SSMs and linear RNNs
are not capable of learning parity (Merrill et al., 2024), which amounts to permutation composition
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Figure 8: State tracking peformance of GLA, Transformer, and DeltaNet with different positional
embeddings on S2 and A3. The models on S2 were trained with one layer whereas DeltaNet was
trained with two layers on A3. Vertical dashed line indicates training sequence length.

on the symmetric group of two elements, S2, and that one needs to extend the eigenvalue range of
the state transition At from [0, 1] to [−1, 1] (Grazzi et al., 2025). In Figure 8 we see that GLA with
Selective RoPE is able to learn and length-extrapolate on S2. This is in line with our expectations
since the input dependent rotations allow it to model “flips” depending on the input either being a
0 or a 1, while GLA with NoPE and RoPE does not even learn the training context length. This
places GLA + Selective RoPE outside the TC0 complexity class (Merrill et al., 2024). Similarly,
we can see that Selective RoPE also improves the state tracking abilities in Transformers (i.e., soft-
max attention) allowing them to solve the parity problem up to, and slightly more, than the train
sequence length. To the best of our knowledge, Transformer with Selective RoPE is the only variant
of Transformers capable of solving the parity task with a single layer up to this sequence length (Liu
et al., 2023). We also experiment on A3 with a 2-layer DeltaNet (Yang et al., 2024b), which is the
permutation composition on the symmetric group of three elements, limited to even permutations.
As we can observe, Selective RoPE improves the expressivity of the model up to a point where it is
capable of solving A3 up to the training sequence length. To the best of our knowledge, this is the
first time these results have been presented for our choice of model on this task.

4.3 LANGUAGE MODELING

For our language modeling experiments we train 370M parameter versions of GLA (Yang et al.,
2024a), Gated DeltaNet (Yang et al., 2025a), and the Forgetting Transformer (FoX) (Lin et al., 2025)
using AdamW (Loshchilov & Hutter, 2019) and a warmup and cosine-decay schedule (Loshchilov
& Hutter, 2017). All models are trained on 35B tokens (≈ 5× Chinchilla (Hoffmann et al., 2022))
of FineWeb (Penedo et al., 2024) at a context length of 4096 and use the Mistral 7B tokenizer (Jiang
et al., 2023) with a vocabulary size of 32 000. All remaining architectural and optimizer hyperpa-
rameters (batch size, learning rate schedule, gradient clipping, weight decay) follow Siems et al.
(2025) and are detailed in Appendix B. To account for differences in optimal learning rates for the
considered positional embedding schemes, we sweep learning rates exhaustively following Orvieto
& Gower (2025) at the largest scale (35B tokens) using the grid [5e-4, 1e-3, 2e-3, 4e-3,
8e-3]. To select the best learning rate for each model and position embedding combination, we
use the perplexity on 4 million tokens not seen during training. The best models are then evaluated
on downstream tasks from lm-eval-harness (Gao et al., 2024), the results of which are shown
in Table 3. We follow the default zero-shot evaluation setup in lm-eval-harness, using its
standard prompting and report the macro-average accuracy over the core multiple-choice tasks in
the Avg. column. We select the same set of tasks as in GLA (Yang et al., 2024a) and DeltaNet (Yang
et al., 2024b).

Across GLA and Gated DeltaNet, Selective RoPE improves the average downstream accuracy over
both RoPE and NoPE. For FoX, the variant with a phase gate slightly improves the average accu-
racy over RoPE, while the plain Selective RoPE matches NoPE. For GLA, Selective RoPE reduces
Lambada perplexity relative to RoPE and maintains comparable downstream accuracy to NoPE.
For Gated DeltaNet, Selective RoPE mainly benefits the multiple-choice benchmarks (LAMBADA,
PIQA, ARC), whereas FoX already performs very strongly on span-based tasks and sees smaller but
consistent gains from adding Selective RoPE.

We ablate adding a rotation (i.e., phase) gate and a learnable bias term (Li et al., 2024). We found
that, at higher learning rates, Selective RoPE experienced training instabilities, characterized by
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Model LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑

GLA (370M)

NoPE 19.21 39.4 69.7 48.0 53.1 50.9 24.6 47.6
RoPE 23.96 36.1 69.7 47.7 54.0 50.9 25.1 47.2

Selective RoPE 21.50 37.6 70.3 48.1 52.2 51.3 26.2 47.6
+ phase gate 22.85 37.2 70.2 47.6 52.2 52.1 25.9 47.5
+ bias 20.12 39.6 70.7 47.3 52.0 52.1 25.3 47.9
+ phase gate & bias 21.16 37.4 70.6 47.9 53.9 52.0 26.2 48.0

Gated DeltaNet (370M)

NoPE 22.50 37.2 70.9 47.6 53.2 52.0 25.9 47.8
RoPE 20.84 38.9 70.7 48.2 53.4 51.3 25.1 48.0

Selective RoPE 21.23 39.0 71.1 47.9 53.7 52.1 24.8 48.1
+ phase gate 18.37 41.4 69.5 48.4 54.6 51.7 26.5 48.7
+ bias 19.11 40.5 70.9 47.9 53.9 51.9 25.9 48.5
+ phase gate & bias 19.28 39.4 70.1 47.6 54.9 52.4 25.4 48.3

FoX (370M)

NoPE 26.04 37.4 69.6 47.0 55.2 50.7 25.8 47.6
RoPE 23.16 37.7 69.5 47.6 55.0 52.7 25.3 48.0

Selective RoPE 23.28 38.2 69.3 47.6 53.9 50.1 24.0 47.2
+ phase gate 21.89 38.2 70.2 47.8 54.1 52.4 26.1 48.1
+ bias 23.67 37.8 70.0 48.0 54.1 51.7 25.3 47.8
+ phase gate & bias 24.98 37.1 70.0 47.9 54.9 51.9 24.9 47.8

Table 3: Evaluation results on tasks from lm-eval-harness (Gao et al., 2024) for GLA (370M),
Gated DeltaNet (370M), and FoX (370M) trained on 35B tokens of FineWeb (Penedo et al., 2024).
The best results for each model architecture are marked in bold and the second best in underline.

gradient norm and loss spikes. This in line with previous findings in the literature documenting dif-
ficulties when optimizing functions with high frequency components using gradient descent (Candès
& Fernandez-Granda, 2014; Rahaman et al., 2019). We found that adding the phase gate generally
improved downstream performance and training stability which was further improved by adding
weight normalization (Kingma, 2016) to the input projection of Selective RoPE. Notably, we found
GLA to be the most impacted by training instabilities and hypothesize that this is due to its large
default normalization constant for its gate projection. On the other hand, adding a bias alone or
in combination with the phase gate did not yield to significant performance improvements over the
other variants of Selective RoPE.

5 RELATED WORK

There have been several attempts at reducing the quadratic complexity of softmax attention (Dao,
2024), one of which is linearization (Katharopoulos et al., 2020), which results in a recurrent model
with sub-quadratic cost (Martin & Cundy, 2018; Gu et al., 2020). However, the reduced complex-
ity comes at the cost of lower performance, especially in recall-intensive tasks (Waleffe et al., 2024;
Peng et al., 2021; Choromanski et al., 2021; Zhang et al., 2024). This led to the development of archi-
tectures which used gating to increase their expressivity. Non-selective state-space models (SSMs)
made use of input-independent gating mechanisms and vector-valued states to perform sequence
modeling (Orvieto et al., 2023; Gu et al., 2022b;a; Sun et al., 2023). Later, these architectures were
improved by adding selective gating (De et al., 2024; Qin et al., 2023) and matrix-valued states (Gu
& Dao, 2023; Dao & Gu, 2024; Yang et al., 2024a; Beck et al., 2024; Qin et al., 2024). Concurrently,
DeltaNet (Schlag et al., 2021; Yang et al., 2024b) extended the notion of a gate to a state transition
matrix by using an input-dependent generalized Householder matrix, which implements the error-
correcting delta-rule (Widrow et al., 1988). A byproduct of our theoretical analysis are further
insights into the functionality of the gating mechanism and forget gate in Section 3. Another line of
work has improved sub-quadratic sequence models through better kernel approximations of softmax
attention (Katharopoulos et al., 2020). This approach led to the use of random features (Choroman-
ski et al., 2021; 2022), which was extended to learning the features directly (Zhang et al., 2024).
Interestingly, a polynomial kernel inspired by the Taylor expansion of the exponential function has
proved effective in closing the performance gap, while being less efficient in terms of computational
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complexity (Zhang et al., 2024; Kacham et al., 2023). We base our theoretical investigation on the
work of Peng et al. (2021), deriving a linear attention variant as an approximation of the softmax
Transformer.

RoPE and complex parameterizations of RNNs. The primary method of encoding positional
information in sub-quadratic attention variants is exponential decay (Lin et al., 2025). However, in
softmax transformers, rotary position embeddings (RoPE) have proven to be very effective (Su et al.,
2021; Shaw et al., 2018; Yang et al., 2025b) compared to no positional embeddings (NoPE) (Kazem-
nejad et al., 2023). RoPE encodes positional information through point-wise rotation of the query-
key pairs. Other variants of RoPE have made attempts at improving RoPE in terms of its short-
comings in generalizing to longer sequences by learning the position embedding (Li et al., 2024),
framing it as a kernel design problem (Chi et al., 2022), or utilizing theoretical tools (Peng et al.,
2024). Interestingly, our model generalizes RoPE by making angles input-dependent. In our ex-
periments, we show the effectiveness of our proposed position embedding both in linear attention
models and softmax Transformers. As shown in Section 2, applying RoPE to a linear transformer is
equivalent to operating in the complex domain and theoretically, this is essential for the universality
guarantees of RNNs and SSMs (Orvieto et al., 2024; Gu et al., 2020). Further investigation showed
an improvement in the recall capabilities and expressivity of SSMs when operating in the complex
domain (Ran-Milo et al., 2024). However, later variants of these models removed the complex re-
currence due to inconclusive evidence for their benefits in language modeling and implementation
overhead (Gu & Dao, 2023; Dao & Gu, 2024; De et al., 2024). In this paper, we focus on the kernel
view of softmax attention, providing a connection between it and linear attention models operat-
ing in the complex domain. The resulting design principle provides a connection between softmax
attention, complex linear attention, the gating mechanism, and position embeddings.

6 CONCLUSION

We introduced Selective RoPE, an input-dependent rotary position embedding that generalizes RoPE
from fixed to arbitrary, learnable rotations. Our theory shows (i) softmax attention admits a com-
plex linear formulation that implicitly performs selective rotations, and (ii) this complex formulation
introduces spectral leakage, which can be suppressed through the forget gate mechanism. Empiri-
cally, equipping certain sequence models (namely, GLA, Gated DeltaNet, and FoX) with Selective
RoPE improves recall-centric synthetic tasks and strengthens language modeling downstream per-
formance. Furthermore, we show that this improvement in performance comes at very little compu-
tational cost, with an easy implementation thanks to the RoPE trick.

Future work. There are several aspects of Selective RoPE and the proposed design principle in-
troduced in our paper that require further investigation. Firstly, we note that incorporating RoPE is
notoriously detrimental to the length-extrapolation capabilities of sequence models (Li et al., 2024).
In this paper, we do not investigate this aspect since we consider it to be out of the scope of our
research. Secondly, we believe that further investigation of the effect of the extra components used
in Selective RoPE, namely the bias term and the phase gate, can be a fruitful direction for future
research. Thirdly, we consider the impact of choosing a diagonal as opposed to a scalar forget gate
to be an interesting question, since our theoretical justification for forget gates is only concerned
with an exponentially decaying component in the sequence model, and not the dimensionality of it.
Finally, given the existing variants of RoPE (Black et al., 2022; Su et al., 2021), we believe it to be
important to also incorporate the progress on the positional embedding front into future work.
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M. Beck, K. Pöppel, M. Spanring, A. Auer, O. Prudnikova, M. Kopp, G. Klambauer, J. Brandstetter,
and S. Hochreiter. xLSTM: Extended Long Short-Term Memory. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Proceedings of the 37th In-
ternational Conference on Advances in Neural Information Processing Systems (NeurIPS’24),
2024.

S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding, H. He, C. Leahy, K. McDonell,
J. Phang, M. Pieler, U. Prashanth, S. Purohit, L. Reynolds, J. Tow, B. Wang, and S. Weinbach.
GPT-NeoX-20B: An open-source autoregressive language model. arXiv:2204.06745 [cs.CL],
2022.

E. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Commu-
nications on Pure and Applied Mathematics, 67(6):906–956, 2014. doi: https://doi.org/10.1002/
cpa.21455. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.
21455.

T.-C. Chi, T.-H. Fan, P. Ramadge, and A. Rudnicky. KERPLE: Kernelized Relative Positional
Embedding for Length Extrapolation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Proceedings of the 35th International Conference on Advances in
Neural Information Processing Systems (NeurIPS’22), 2022.

K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins, J. Davis,
A. Mohiuddin, L. Kaiser, D. Belanger, L. Colwell, and A. Weller. Rethinking attention with per-
formers. In The Ninth International Conference on Learning Representations (ICLR’21). ICLR,
2021.

K. Choromanski, H. Chen, H. Lin Y. Ma, A. Sehanobish, D. Jain, M. Ryoo, J. Varley, A. Zeng,
V. Likhosherstov, D. Kalashnikov, V. Sindhwani, and A. Weller. Hybrid Random Features. In
The Tenth International Conference on Learning Representations (ICLR’22). ICLR, 2022.

N. M. Cirone, A. Orvieto, B. Walker, C. Salvi, and T. Lyons. Theoretical Foundations of Deep
Selective State-Space Models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang (eds.), Proceedings of the 37th International Conference on Advances
in Neural Information Processing Systems (NeurIPS’24), 2024.

T. Dao. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. In The
Twelfth International Conference on Learning Representations (ICLR’24). ICLR, 2024.

T. Dao and A. Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver,
J. Scarlett, and F. Berkenkamp (eds.), Proceedings of the 41st International Conference on Ma-
chine Learning (ICML’24), volume 251 of Proceedings of Machine Learning Research. PMLR,
2024.
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The supplementary is structured as follows:

Appendix A contains all derivations and proofs:

• A.1 shows that parameterizing a linear transformer with a unitary diagonal state transition
can be implemented by applying RoPE to the queries and keys of the same models.

• A.2 shows that one can use Random Fourier Features (RFFs) to approximate the expo-
nential kernel and thereby softmax attention and, when limiting the approximation to the
D-dimensions, can be expressed as a recurrent model that can be implemented using an
input-dependent variant of RoPE.

• A.3 derives the optimal variance for the RFFs used in Appendix A.2.

• A.4 shows that complex diagonal SSMs can be understood as spectral analyzers that suffer
from spectral leakage. A well known remedy for spectral leakage is using real-valued
decaying window functions, which can also be seen as forget gates, a prevalent component
in modern sequence models. This highlights the complementary roles of both imaginary
and real parts of a gate in recurrent sequence models, with the former rotating and the latter
decaying the past observation.

• A.5 derives the connection between rotation using RoPE and Householder products used
in DeltaNet.

Appendix B lists the experimental details for language modeling and synthetic tasks and includes a
code listing of the implementation of Selective RoPE.

Notation. We use the following notation for mathematical objects: Lower-case letters denote
scalars (α, β). Upper-case bold letters denote matrices (W ,A). Lower-case bold letters denote
vectors (v,k, q). ⊤ denotes the transpose operator. H denotes the conjugate transpose operator.
⊙ denotes the Hadamard-product. Taking the real or imaginary component of an expression is
denoted by either ℜ or ℑ. Expressing a vector as a diagonal matrix is denoted by diag(·). Block-
diagonalizing a set of square matrices is denoted by blockdiag (·). Concatenating vectors is denoted
by xt = concat

(
[· · ·]⊤

)
. By φ we denote the argument of a complex number.

A MATHEMATICAL DERIVATIONS AND PROOFS

A.1 RoPE AS IMAGINARY-VALUED LINEAR TRANSFORMER

We start by unrolling the linear transformers recurrence:

St = St−1R̄+ vtk̃
H
t , ot = ℜ{Stq̃t}

ot = ℜ

{
t∑

τ=1

vτ k̃
H
τ R̄

t−τ q̃t

}
=

t∑
τ=1

vτℜ
{
k̃H
τ R̄

t−τ q̃t

}

Therefore, the attention score applied to value vτ is:

Attt,τ = ℜ
{
k̃⊤
τ R̄

t−τ q̃t

}
16
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Since R̄ is diagonal, we can expand the expression as:

Atttτ = ℜ


d/2∑
n=1

(q̃R
t,n + i q̃I

t,n) · eiωn(t−τ) · (k̃R
τ,n + i k̃I

τ,n)


= ℜ


d/2∑
n=1

|q̃t,n| e−iφ(q̃t,n) · eiωn(t−τ) · |k̃τ,n| e−iφ(k̃τ,n)


= ℜ


d/2∑
n=1

|q̃t,n| |k̃τ,n| ei(ωn(t−τ)−φ(q̃t,n)−φ(k̃τ,n))


=

d/2∑
n=1

|q̃t,n| |k̃τ,n| cos
(
ωn(t− τ)− φ(q̃t,n)− φ(k̃τ,n)

)
(14)

where φ(q̃t,n) and φ(k̃τ,n) denote the complex phases (angles) of the n-th component of q̃t and k̃τ ,
respectively. Equation (14) shows that an imaginary forget gate rotates the query-key pairs at each
index n with a distinct frequency ωn. We now demonstrate that this is equivalent to applying RoPE.
Replacing the cosine in eq. (14) with its matrix multiplication equivalent:

cos
(
ωn(t− τ)− ∠q̃t,n − ∠k̃τ,n

)
=

[
cos(∠q̃t,n)
sin(∠q̃t,n)

]⊤ [
cos(ωn(t− τ)) − sin(ωn(t− τ))
sin(ωn(t− τ)) cos(ωn(t− τ))

] [
cos(∠k̃τ,n)

sin(∠k̃τ,n)

]
Plugging above in eq. (14) we achieve:

Attt,τ =

d/2∑
n=1

|q̃t,n| |k̃τ,n|
[
cos(∠q̃t,n)
sin(∠q̃t,n)

]⊤ [
cos(ωn(t− τ)) − sin(ωn(t− τ))
sin(ωn(t− τ)) cos(ωn(t− τ))

] [
cos(∠k̃τ,n)

sin(∠k̃τ,n)

]

=

d/2∑
n=1

|q̃t,n|
[
cos(∠q̃t,n)
sin(∠q̃t,n)

]⊤ [
cos(ωn(t− τ)) − sin(ωn(t− τ))
sin(ωn(t− τ)) cos(ωn(t− τ))

]
|k̃τ,n|

[
cos(∠k̃τ,n)

sin(∠k̃τ,n)

]

=

d/2∑
n=1

[
q̃R
t,n

q̃I
t,n

]⊤ [
cos(ωn(t− τ)) − sin(ωn(t− τ))
sin(ωn(t− τ)) cos(ωn(t− τ))

] [
k̃R
τ,n

k̃I
τ,n

]
(15)

Using the definition of:

qt =

d/2⊕
n=1

[
q̃R
t,n

q̃I
t,n

]
, kτ =

d/2⊕
n=1

[
k̃R
τ,n

k̃I
τ,n

]
.

we can write Equation (15) as:

Attt,τ =

d/2∑
n=1

qt,nR
t−τ
ωn

kτ,n

which is theoretically equivalent to applying RoPE to query-key pairs qt,kτ . RoPE interleaves the
real and imaginary parts of complex queries and keys across the hidden dimension, then applies 2D
rotations to each pair.

A.2 RANDOM FOURIER FEATURE APPROXIMATION OF SOFTMAX ATTENTION

We start with the definition of softmax attention:

ot =
st
zt

, st =

t∑
τ=1

exp
(

1√
d
q⊤
t kτ

)
· vτ , zt =

t∑
τ=1

exp
(

1√
d
q⊤
t kτ

)
,

where qt,kτ ∈ Rd. For simplicity, we omit the normalization factor 1/
√
d and first focus on the

numerator of the output, specifically the exponential kernel. As in Equation (2), the denominator
scaling can be handled separately through an external state zt.
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To approximate the exponential kernel exp(·), we use Random Fourier Features (RFF) (Rahimi &
Recht, 2007) with frequencies ω ∈ Rd ∼ N (0, σ2I). The feature map is defined as

ϕω(x) = exp

(
∥x∥22
2

+ iω⊤x

)
,

so that
exp(q⊤

t kτ ) = ℜ
{
Eω∼N (0,σ2I)

[
ϕω(qt)

⊤ϕω(kτ )
]}

,

for σ = 1. By applying this feature map, the linear attention formulation in Equation (2), we can
approximate the exponential kernel in softmax attention. Continuing the approximation:

exp
(
q⊤
t kτ

)
= exp

(
∥qt∥22 + ∥kτ∥22

2

)
· ℜ
{
Eω∼N (0,I)

[
exp(iω⊤qt) exp(−iω⊤kτ )

]}
.

Let ωj ∼ N
(
0, σ2I

)
for j ∈ {1, 2, . . . , D}. Then due to the law of large numbers we have:

exp
(
q⊤
t kτ

)
= exp

(
∥qt∥22 + ∥kτ∥22

2

)
· ℜ

 lim
D→∞

1

D

D∑
j=1

exp
(
iω⊤

j qt
)
· exp

(
−iω⊤

j kτ

) .

Therefore, we can approximate exp
(
q⊤
t kτ

)
as the dot product of the random exponential projection

of the query and the key using D random ωjs:

ŝDt =
1

D

t∑
τ=1

D∑
j=1

exp

(
∥qt∥22 + ∥kτ∥22

2

)
exp

(
iω⊤

j qt
)
exp

(
−iω⊤

j kτ

)
· vτ .

This allows us to compute the softmax attention as the linear attention parameterized by:

ϕ(qt) = exp

(
∥qt∥22
2

)
· exp(iΩ⊤qt), ϕ(kτ ) = exp

(
∥kt∥22
2

)
· exp(−iΩ⊤kτ ),

with limD→∞ ℜ
{
ŝDt
}
=
∑t

τ=1 exp
(
q⊤
t kτ

)
· vτ and Ω = [ω1, ...,ωD]. Omitting the superscript

D for simplifying the notation, let us focus on one random feature ωj and its contribution to the
output:

ŝt,j =

t∑
τ=1

exp

(
∥qt∥22
2

)
exp

(
∥kτ∥22

2

)
exp

(
iω⊤

j qt
)
exp

(
−iω⊤

j kτ

)
· vτ .

In this case, we have ŝDt = 1
D ŜD

t 1, where ŜD
t = [ŝt,1 ŝt,2 . . . ŝt,D] ∈ Cd×D. Now note that

we have:

ŝt,j =
t−1∑
τ=1

exp
(

∥qt∥2
2−∥qt−1∥2

2

2

)
exp
(
iω⊤

j qt−1

)
exp
(
iω⊤

j (qt − qt−1)
)
exp
(
−iω⊤

j kτ

)
· vτ (16)

+ exp
(

∥qt∥2
2

2

)
exp
(

∥kt∥2
2

2

)
exp
(
iω⊤

j (qt − kt)
)
· vt. (17)

= exp
(

∥qt∥2
2−∥qt−1∥2

2

2

)
exp
(
iω⊤

j (qt − qt−1)
)
ŝjt−1 + ϕωj (qt) · ϕωj (kt) · vt (18)

Note that the real exponential component in Equation (18) can introduce instability to the recurrence.
Therefore, following the standard in both linear transformers (Yang et al., 2024b;a; 2025a; Lin et al.,
2025) and deep softmax transformers (Henry et al., 2020), we assume L2 normalization over the
query and the key, i.e., ∥qt∥2 = ∥qt−1∥2. Thus, recurrence presented in Equation (18) simplifies to:

ŝt,j = exp
(
iω⊤

j (qt − qt−1)
)
ŝt−1,j + ϕωj (qt) · ϕωj (kt) · vt, (19)

with ŝt,j being the jth column of ŜD
t is scaled by the values exp

(
iω⊤

j (qt − qt−1)
)
. Therefore, we

can write the recurrence over Ŝt as:

ŜD
t = Ŝt−1R̄t + vt (ϕ(qt) ◦ ϕ(kt))

⊤
, ŝDt =

1

D
ŜD
t 1.

18
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where ϕ(x) is a vector with its jth element equal to ϕωj
(x), and R̄t is:

R̄t = exp(iΩ⊤(qt − qt−1)) (20)

Focusing on Equation (20), we observe that exponential kernel in softmax attention implicitly ap-
plies a form of input-dependent (Selective) RoPE (see Sec. 2). However, instead of learning the
frequencies Ω, they are randomly sampled from a normal distribution.

Similarly, we can also approximate the normalizing factor zt as:

ẑD
t =

1

D

t∑
τ=1

D∑
j=1

exp

(
∥qt∥22 + ∥kτ∥22

2

)
exp

(
iω⊤

j qt
)
exp

(
−iω⊤

j kτ

)
.

Separating the contribution of each random feature, we have:

ẑt,j =

t∑
τ=1

exp

(
∥qt∥22
2

)
exp

(
∥kτ∥22

2

)
exp

(
iω⊤

j qt
)
exp

(
−iω⊤

j kτ

)
.

Finally, defining ẐD
t = [ẑt,1 ẑt,2 . . . ẑt,D,] we arrive at a similar result. The full recurrence

of softmax attention, therefore, can be written as:

ŜD
t = ŜD

t−1R̄t + vt (ϕ(qt) ◦ ϕ(kt))
⊤
, ẐD

t = ẐD
t−1R̄t + ϕ(qt) ◦ ϕ(kt), ôt =

ŜD
t 1

ẑD
t 1

.

which again highlights the importance of the gate R̄ as selective rotation.

A.3 OPTIMAL VARIANCE FOR RANDOM FOURIER FEATURES

Theorem 1 Let the expected error of the RFF kernel over ωj ∼ N
(
0, σ2I

)
be as follows:

ERR [qt,kτ ] = Eωj

[(
1
D

∑D
j=1 ϕωj

(qt) · ϕωj
(kτ )− exp

(
q⊤
t kτ

))2]
. Then, for a given a pair of

L2 normalized query and key, the optimal value of σ is equal to σ = tan

(
arccos(q⊤

t kτ)
2

)
.

Proof 1 We start by writing down the error:

ERR [qt,kτ ] =
e2

D2

∑
j,j′=1

E
[
ℜ
[
exp
(
i (ωj + ωj′)

⊤
(qt − kτ )

)]]
− 2e

D

∑
j=1

E
[
ℜ
[
exp
(
iω⊤

j (qt − kτ )
)]]

exp
(
q⊤
t kτ

)
+ const.

=
e2

D
E
[
cos2

(
iω⊤ (qt − kτ )

)]
+

e2
(
D2 −D

)
D2

E
[
cos
(
iω⊤ (qt − kτ )

)]2
− 2e · E

[
cos
(
iω⊤ (qt − kτ )

)]
exp
(
q⊤
t kτ

)
+ const.,

where the const. term corresponds to the terms constant w.r.t. the variance of the distribution σ2.
Plugging in the expectation of the cos(·) and cos2(·) functions (Choromanski et al., 2021), we get
the following optimization problem:

min
σ

[
e2−4σ2 · exp

(
−4σ2ξ

)
2D

+
D − 1

D
e2−2σ2

exp
(
−2σ2ξ

)
− 2e1−σ2

exp
((
1− σ2

)
ξ
)]

,

where for simplicity, we set q⊤
t kτ = ξ ∈ [0, 1]. Since in most cases, D is a sizable number, we try

to solve this optimization problem in the limit D → ∞, which is equivalent to:

min
σ

[
e2−2σ2(1+ξ) − 2e(1−σ2)(1+ξ)

]
,

with the optimal value equal to:

σ =

√
1− ξ

1 + ξ
.
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Considering normalized queries and keys ||kt|| = ||qt|| = 1 we can replace the ξ = q⊤
t kτ with

cos(θ) therefore above also simplifies to:

σ =

√
1− cos(θ)

1 + cos(θ)
= tan(θ/2).

This completes our proof. ■

A.3.1 PARAMETERIZATION OF THE TEMPERATURES

We can generalize the parameterization of our proposed temperatures vs. that of RoPE introduced
by Su et al. (2021) as follows. Let ϵ be a small enough number. Then, we have:

RoPE: ϕ = arange(1.0, D//2 - 1), D // 2) Θ =ϵϕ

Selective RoPE: ϕ = linspace(0.0, (1-ϵ)π, D // 2) Θ =tan (ϕ/2)

Here, ϵ can be seen as the inverse of the base frequency in RoPE (?), and the upper-bound on the
angle between the queries and keys in our temperature scheme. A visualization of the temperature
distribution in Selective RoPE compared to standard RoPE is shown in Figure 2. Our proposed
variation of the temperature has an extremely similar distribution, but with a slightly faster decay to
0.

A.4 ROLE OF REAL AND IMAGINARY PARTS IN DIAGONAL SSMS

We start our analysis with non-selective diagonal SSMs and show the distinct roles of the real and
imaginary components. SSMs can be derived from continuous-time representations, expressed as1:

ds(t)

dt
= As(t) + kv(t), o(t) = q⊤s(t), K(t) = q⊤eAtk, o(t) = K(t) ∗ v(t), (21)

where we assume the continuous value signal v(t) and the continuous output signal o(t) to both be
scalars. Inspired by S4D (Gu et al., 2022b), which is an SSM with diagonal A, we initialize the
imaginary part of the state matrix as An = iωn (n ∈ [0, N ], roots of unity), from which the output
is derived as:

o(t) =

N∑
n=1

knqne
iωnt

∫ ∞

−∞
e−iωnτv(τ)ut(τ)dτ, ut(τ) =

{
1, 0 ≤ τ ≤ t

0, o.w.
(22)

where ut(τ) is a step-window function. The integral in Equation (22) is equivalent to computing the
Fourier Transform of the windowed signal v(τ)ut(τ) at frequency ωn. Duality between convolution
in the time domain and multiplication in the frequency domain simplifies eq. (22) to:

o(t) =

N∑
n=1

knqn(Vωn ∗ Ut,ωn), Ut,2ω =
sin(ωt)

ω
e−iωt (23)

with Vωn and Ut,ωn denoting the Fourier transforms of v(τ) and ut(τ), respectively. The input
spectrum Vω is convolved with the window spectrum Ut,ω , causing distortion, a phenomenon known
as spectral leakage. In the discrete domain, the integral in eq. (22) becomes a summation:

ot =

N∑
n=0

qnkn

t∑
τ=0

exp
(
− 2πinτ

N

)
vτ . (24)

where ωn = 2πni
N and ∆ = 1

N . Thus, S4D with a purely imaginary state matrix A acts as a spectral
analyzer: it accurately computes the N -point DFT of the value vt for t ≤ N . But for t > N ,
this spectral analysis suffers from spectral leakage since the state size can at most represent N
frequencies. Therefore, the higher frequencies are being aliased or overwritten.

1For consistency within our notation, we replace the common SSM notation for the B and C matrix and
the input with our self-attention based notation, i.e., B denoted as the key k, C denoted as the query q, and the
input signal u denoted as the value v. For a detailed comparison, refer to Table 2 from Yang et al. (2024b).
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In Signal Processing, spectral leakage is addressed by windowing (Harris, 2005). In S4D, this is
achieved implicitly by using a complex state matrix A with the real part acting as a window function,
a classical solution to spectral leakage (Oppenheim, 1999). Concretely, with A = exp(−αn∆ +
2πin∆), S4D performs a windowed DFT using a Poisson window (III, 2011), thereby avoiding
spectral leakage. Its output can be written as:

ot =

N∑
n=0

qnkn

t∑
τ=0

exp
(
− 2πinτ

N

)
vτ exp(−αn∆τ)︸ ︷︷ ︸

wτ

, (25)

where wτ is the Poisson window and ∆ = 1
N is chosen for clarity in the DFT formulation. Thus,

the real part of A in S4D acts as a window, suppressing spectral leakage and enabling undistorted
spectral representations. Therefore, to summarize: the two real and imaginary parts of state transi-
tion matrix A serve distinct but complementary roles; Imaginary parts extract spectral information,
while Real parts suppress leakage and ensure clean representation of the spectrum.

A.5 COMPLEX ROTATIONS AND HOUSEHOLDER MATRICES

Another approach towards introducing rotations to the queries and keys is using Householder reflec-
tion matrices (Yang et al., 2024b; 2025b). In this approach, the rotation of the query and key pair is
limited to a single reflection along the direction of an input-dependent vector. Specifically, let wt be
an input-dependent unit vector. Then, the positional information is encoded through the product of
Householder reflection matrices as:

q⊤
t Rt:τkτ = q⊤

t

(
t∏

κ=τ+1

(
I − 2βκ ·wκw

⊤
κ

))
kτ .

Therefore, the positional information between the tth and τ th token is encoded through a rotation
consisting of t− τ reflections.

Conveniently, we can also write the complex diagonal rotation matrix in Selective RoPE in terms
of the product of Householder matrices. Specifically, we can write the realification of the rotation
matrix Rt as the product of d Householder reflections, each of which performs the reflection over a
single pair of adjacent elements:

Rt =

d∏
j=1

I − 2 ·

 0j

1
0

0d−j−2


 0j

1
0

0d−j−2


⊤

I − 2

 0j

cos (ωt,j/2)
sin (ωt,j/2)
0d−j−2


 0j

cos (ωt,j/2)
sin (ωt,j/2)
0d−j−2


⊤ ,

where we define 0m ∈ Rm as a vector with all zeros. Assuming we split adjacent elements in the
query-key into the real and imaginary components, then Selective RoPE is performing two reflec-
tions over each adjacent element pair of the input, with one of them a parametric reflection, and the
other negating the first element.

This interpretation also explains why we gain more expressivity when using Selective RoPE: due to
the block-diagonal structure, there is a channel mixing happening between the adjacent query-key
elements. Channel mixing is a key component in improving the expressivity of sequence mod-
els (Cirone et al., 2024), thus improving the state-tracking abilities of the network (Siems et al.,
2025).

A.6 RELATIONSHIP BETWEEN Selective RoPE AND FOX

FoX (Lin et al., 2025) is a softmax transformer that augments attention with a real-valued forget gate
inspired by GLA. Its attention can be written as:

qt,kt,vt = Wqxt,Wkxt,Wvxt, ot =

∑t
τ=1 exp(q

⊤
t kτ +

∏t
κ=τ aκ)vτ∑t

τ=1 exp(q
⊤
t kτ +

∏t
κ=τ aκ)

. (26)

Here, the gate decays the norm of query-key pairs through a selective decay parameterized in log-
space, at = log(ft). This enhances the forgetting capability of transformers, addressing our earlier
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observation in section 3.1 that softmax alone preserves norms and thus cannot forget. Interestingly,
in the softmax setting, Selective RoPE closely parallels FoX: it can be seen as replacing the decay
term at with a rotation matrix Rt.

B EXPERIMENTAL DETAILS

In this section we provide additional details on our experimental setup for the tasks considered in
the paper.

B.1 LANGUAGE MODELING

We use PlainLM (Ajroldi, 2024) together with an adapted version of
flash-linear-attention for all of our language model trainings. We train on > 80GB
VRAM GPUs including NVIDIA A100, H100 and B200. One model training (370M parameters,
35B tokens) is performed on a single node with 4 to 8 of such GPUs and takes anywhere from 48
hours (on 4 A100) to 9 hours on 8 B200. We use Distributed Data Parallel (DDP) for multi-GPU
training.

Table 4: Optimizer and learning-rate schedule hyperparameters for language modeling.

Optimizer
Parameter Symbol Value

Base learning rate (candidates) η [5e-4, 1e-3, 2e-3, 4e-3, 8e-3, 1.6e-2]
Adam β1 β1 0.9
Adam β2 β2 0.95
Weight decay λ 0.1
Numerical epsilon ϵ 1× 10−8

Gradient clipping (global norm) clipℓ2 1.0

LR Schedule / Training Horizon
LR start (schedule) ηstart 1e-5
LR end (schedule) ηend 1e-4
Warmup (fraction of steps) – 0.1
Total optimizer steps T 66,758

B.2 SYNTHETIC TASKS

B.2.1 MAD

For MAD, we take the implementation from mad lab and implement Selective RoPE in GLA. We
follow the exact experimental setup outlined in the paper (Poli et al., 2024) and run all variations of
task difficulty and optimizer hyperparameters which results in 66 task settings × 6 optimizer settings
= 396 trained models per considered setting (i.e., GLA with Selective RoPE, RoPE or NoPE). We
provide the logs from the experiments in our supplementary.

B.2.2 STATE TRACKING

For state tracking we adopt the exact experimental setup as described in DeltaProduct (Siems et al.,
2025) and Grazzi et al. (2025).

B.2.3 MQAR

We have carefully followed the training recipe of Arora et al. (2024a) for all models including: GLA
(Yang et al., 2024a), DeltaNet (Yang et al., 2024b), Mamba2 (Dao & Gu, 2024) and Transformer++
(Touvron et al., 2023). The learning rate for all models was swept within the range of [0.0001, 0.01]
for 8 different values per each model ranging uniformly from 0.01 to 0.001. All other configuration
and the model dimensions were remained the same as original reference Arora et al. (2024a).
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Table 5: Training state tracking configuration.

Training Loop
Parameter Value

Epochs 100
Batch size 4096

Optimization
Learning rate 1e-3
β1 0.9
β2 0.999
Optimizer ϵ 1e-8
Weight decay 1e-6
LR scheduler cosine

Precision / Compile
Mixed precision true
DType bfloat16

Data
Train set size 2,000,000 sequences
Train sequence length 128 tokens
Eval set size 500,000 sequences
Eval sequence length 512 tokens

Seeds & Eval
Seeds [555, 666, 777, 888, 999]
Eval batch size 128

Table 6: Optimizer and Data parameters for Copying

Optimizer
Learning rate 5.0e-5
Weight decay 0.1
β1 0.9
β2 0.999
Optimizer ϵ 1.0e-8
Gradient clipping (global norm) 1.0

Scheduler
Scheduler linear
Warmup (fraction of steps) 0.1

Seeds & Eval
Seed 42
Eval batch size 256

Data
Vocab size 26
n-gram 0
Answer length 0
Train task copy
Eval task copy
Sequence length 420
Min length (train) 2
Max length (train) 64
Min length (eval) 2
Max length (eval) 512
Sampler type sequential
Sampler seed null

B.2.4 COPYING

B.3 IMPLEMENTATION

We provide a PyTorch implementation of Selective RoPE in Figure 9.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

While preparing this manuscript, we used Large Language Models (LLMs) to a limited extent. Their
role was restricted to assisting with editing and polishing the writing, such as improving clarity,
grammar, and flow. All conceptual ideas, methods, experiments, and analyses presented in this
paper are entirely the work of the authors. No ideas, algorithms, or research contributions were
generated by an LLM. The LLM served only as a tool to refine the presentation of the text without
influencing the substance of the research.
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from fla.modules.convolution import ShortConvolution
from einops import rearrange
import torch
import torch.nn as nn
from .chunked_linear import ChunkedLinear

class SelectiveRoPE(nn.Module):
def __init__(

self,
head_dim: int,
num_heads: int = 1,
dtype: torch.dtype | None = None,
d_conv: int = 4,
temp_type: str = "rope",
temp_theta: float = 500000,
temp_max: float = 1.0,
temp_grad: bool = False,
is_softmax: bool = False,
phi_conv_activation: str | None = None,

):
super().__init__()
self.head_dim = head_dim
self.num_heads = num_heads
self.is_softmax = is_softmax
pe_dim = head_dim
self.phi_proj = ChunkedLinear(2 * pe_dim, pe_dim,

num_heads=num_heads, bias=False, random_init=True,
rank=-1,

)
self.phi_conv1d = ShortConvolution(

hidden_size=num_heads * pe_dim,
kernel_size=d_conv, bias=False,
activation=phi_conv_activation, dtype=dtype,

)
self.temperature = nn.Parameter(

rotary_temperature(temp_type, temp_theta, head_dim, temp_max).reshape(1, 1, 1,
-1),↪→

requires_grad=temp_grad,
)
self.phase_gate_proj = nn.Linear((num_heads * head_dim), num_heads, bias=True)

def forward(
self,
q: torch.Tensor,
k: torch.Tensor,
inputs: torch.Tensor | None = None,
output_final_state: bool = False,
cache: None = None,
cu_seqlens: None = None,

) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor | None]:
if self.is_softmax:

q_norm = l2_norm(q)

phi = rearrange(
self.phi_proj(

rearrange(q_norm if self.is_softmax else q, "b t h d -> (b t) h d")
),
"(b t) h d -> b (h d) t",
b=q.shape[0],

)
phi, conv_cache = self.phi_conv1d(

rearrange(phi, "b d t -> b t d"),
cache=cache, output_final_state=output_final_state, cu_seqlens=cu_seqlens,

)
phi = rearrange(phi,"b t (h d) -> b t h d",h=self.num_heads)
phase_gate = self.phase_gate_proj(l2_norm(inputs)).sigmoid()
phi = phi * phase_gate.unsqueeze(-1)
phi_tilde = torch.cumsum(phi, dim=1)
qk_phi_tilde = torch.cat([phi_tilde, phi_tilde], dim=2)
qk_r2 = torch.cat([q, k], dim=2).unflatten(dim=-1, sizes=(-1, 2)).float()
rotated_qk = torch.stack(

[
qk_r2[..., 0] * torch.cos(self.temperature * qk_phi_tilde)
- qk_r2[..., 1] * torch.sin(self.temperature * qk_phi_tilde),
qk_r2[..., 1] * torch.cos(self.temperature * qk_phi_tilde)
+ qk_r2[..., 0] * torch.sin(self.temperature * qk_phi_tilde),

],
-1,

).flatten(3)
return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2), conv_cache

Figure 9: Selective RoPE in PyTorch.
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