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ABSTRACT

Visual Salient Object Detection (SOD) and Camouflaged Object Detection (COD)
are two interrelated yet distinct tasks. Both tasks model the human visual system’s
ability to perceive the presence of objects. The traditional SOD datasets and meth-
ods are designed for scenes where only salient objects are present, similarly, COD
datasets and methods are designed for scenes where only camouflaged objects are
present. However, scenes where both salient and camouflaged objects coexist, or
where neither is present, are not considered. This simplifies the existing research
on SOD and COD. In this paper, to explore a more generalized approach to SOD
and COD, we introduce a benchmark called Unconstrained Salient and Camou-
flaged Object Detection (USCOD), which supports the simultaneous detection
of salient and camouflaged objects in unconstrained scenes, regardless of their
presence. Towards this, we construct a large-scale dataset, CS12K, that encom-
passes a variety of scenes, including four distinct types: scenes containing only
salient objects, scenes with only camouflaged objects, scenes where both salient
and camouflaged objects coexist, and scenes without any objects. In our bench-
mark experiments, we find that a major challenge in USCOD is distinguishing
salient objects from camouflaged objects within the same model. To address this,
we propose a USCOD baseline called USCNet, which freezes the SAM mask de-
coder for mask reconstruction, allowing the model to focus on distinguishing be-
tween salient and camouflaged objects. Furthermore, to evaluate models’ ability
to distinguish between salient and camouflaged objects, we design a metric called
Camouflage-Saliency Confusion Score (CSCS). The proposed method achieves
state-of-the-art performance on the newly introduced USCOD task. The code and
dataset will be publicly available.

1 INTRODUCTION

The attention mechanism is one of the key cognitive functions of humans Posner et al. (1990). In
real-world scenarios, people are often drawn to salient objects while overlooking camouflaged ones.
The goal of Salient Object Detection (SOD) is to detect objects in an image that the human visual
system considers most salient or attention-grabbing, while Camouflaged Object Detection (COD)
aims to detect objects that are difficult to perceive or blend seamlessly with their surroundings Li
et al. (2021). SOD simulates the human ability to focus on salient objects, while COD mimics the
human ability to discover camouflaged objects. Both of them exhibit significant potential across var-
ious fields, such as anomaly detection in medical image analysis Tang et al. (2023), obstacle recogni-
tion in autonomous driving, camouflage detection in military reconnaissance Lin & Prasetyo (2019),
and wildlife tracking in environmental monitoring Stevens & Merilaita (2009). Currently, existing
methods follow the training and inference paradigms of popular datasets, such as COD10K Fan et al.
(2020) in COD and DUTS Wang et al. (2017a) in SOD, and have made significant progress.

Limitations of existing SOD and COD methods. Existing SOD and COD methods often rely
on strong pre-defined constraints specific to the tasks, which may limit their generalizability. The
classic SOD and COD methods are designed for detecting their respective attribute-specific objects,
considering only scenes where single-attribute objects exist (Figure 1. Scene A and Scene B). They
overlook more complex scenes where both salient and camouflaged objects coexist (Figure 1. Scene
C) or where neither type of object is present (Figure 1. Scene D). Some works have already explored
how to handle SOD and COD simultaneously. EVP Liu et al. (2023) achieves the detection of
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SOD          COD          USCOD✓ ✗ ✓ SOD          COD          USCOD✓ ✓✗

SOD          COD          USCOD✗ ✓✗ SOD          COD          USCOD✗ ✓✗

A: Only Salient objects B: Only Camouflaged objects

C: Both Salient and Camouflaged objects D: None of them

Desired
Output

Input
Image

Desired
Output

Input
Image

Figure 1: SOD supports scenes that only exist salient objects, e.g., (A). COD supports scenes that
only exist camouflaged objects, e.g., (B). Compared with classic SOD and COD, the proposed Un-
constrained Salient and Camouflaged Object Detection (USCOD) supports scenes may existing
salient objects, camouflaged objects, both, or neither, e.g., (A-D). In Desired Output, the red mask
indicates the salient object, and the green mask represents the camouflaged object.

salient and camouflaged objects by switching different visual prompts. VSCode Luo et al. (2024)
and Spider Zhao et al. (2024) achieve the detection of salient and camouflaged objects through
joint training on multiple datasets and specific task prompts. However, these methods have certain
constraints. The visual prompt of EVP needs to be retrained according to the datasets of different
tasks and requires pre-defining the category of the detection task. Similarly, in VSCode and Spider,
while only one combined training process is needed for multiple datasets of different tasks, the task
prompts for difference datasets still need to be pre-defined. These methods cannot adaptively detect
salient and camouflaged objects based on the content of the image. Furthermore, these methods
cannot handle situations where both salient and camouflaged objects exist in the same image.

New benchmark and dataset. To overcome these constraints, we propose a new benchmark called
Unconstrained Salient and Camouflaged Object Detection (USCOD), which allows the detection
of both salient and camouflaged objects in unconstrained scenes (refer to Figure 1. Scene A-D).
However, most existing SOD and COD datasets do not include Scene C and Scene D, as they only
contain scenes with single-attribute objects. Although COD10K has collected image samples for
Scene D, these samples have not yet been effectively utilized in models. To address the limitations of
existing datasets and advance USCOD research, we construct a new USCOD dataset named CS12K.
It contains 12,000 images, covering the four scenes: 3,000 images of Scene A; 3,000 images of
Scene B; and two scenes lacking in existing datasets, including 3,000 images of Scene C and 3,000
images of Scene D, which are manually collected and annotated. The comparison of the data analysis
between our dataset and the existing SOD and COD datasets is shown in Table 1.

New evaluation metric. For the USCOD benchmark, one key issue is how to evaluate the abil-
ity of the model to understand the semantic differences between salient and camouflaged objects.
However, existing metrics fail to effectively capture this ability, as they only assess the detection
performance of salient and camouflaged objects individually, such as weighted F-measure Mar-
golin et al. (2014), Structural measure Fan et al. (2017). To fill this gap, we design a metric called
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Camouflage-Saliency Confusion Score (CSCS) to evaluate the ability of the model to distinguish
between salient and camouflaged objects.

Challenge and A baseline method. To explore solutions for the USCOD problem, we retrain and
evaluate 19 SOD and COD models. Our findings reveal that existing models struggle to accurately
distinguish between salient and camouflaged objects in unconstrained scenes, often leading to confu-
sion. For example, in Scene A of Figure 5, a prominent duck may be misidentified as a camouflaged
object, while in Scene C of Figure 5, a person disguised as grass is recognized as a salient object.
To address this issue, we propose a USCOD baseline model, USCNet, which decouples the learning
of attribute distinction from mask reconstruction. By freezing the SAM mask decoder, allowing it
to focus on attribute distinction of salient objects, camouflaged objects, and background. Addition-
ally, we design an APG module that integrates dynamic and static queries to enhance the semantic
differentiation between salient and camouflaged objects. The results demonstrate that decoupling
the learning processes enables USCNet to achieve state-of-the-art performance across all metrics in
overall scenes, e.g., 78.03% on the mIoU and 7.49% on the CSCS.

In summary, our contributions are listed as follows:
• We propose a new benchmark called USCOD, which supports the detection of both salient

and camouflaged objects in unconstrained scenes. Further, a new metric, CSCS, is intro-
duced to assess the model’s confusion between salient and camouflaged objects.

• We introduce a large-scale USCOD dataset CS12K. To our knowledge, this is the first
dataset that covers multiple scenes without restrictions on the presence of salient or cam-
ouflaged objects.

• A novel baseline USCNet decouples the learning of attribute distinction from mask recon-
struction, utilizing an Attribute-specific Prompt Generation (APG) that focuses on differ-
entiating salient objects from camouflaged objects, while the frozen SAM mask decoder is
used for reconstructing the object masks.

• Based on CS12K, we establish the complete CS12K benchmark to conduct a broader study
of the USCOD task. USCNet is compared with 19 cutting-edge SOD and COD models and
shows promising performance.

2 RELATED WORK

2.1 SALIENT AND CAMOUFLAGED OBJECT DETECTION

SOD. In recent years, salient object detection models have focused on better detecting salient
objects in images using various approaches. The main approaches can be divided into attention-
based methods Liu et al. (2018); Piao et al. (2019); Zhang et al. (2018), multi-level feature-based
methods Fang et al. (2022); Hou et al. (2017); Pang et al. (2020); Wang et al. (2017b); Zhao et al.
(2020), and recurrent-based methods Deng et al. (2018); Liu & Han (2016); Wang et al. (2018).
Saliency detection Zhao et al. (2020); Zhang et al. (2021); Liu et al. (2021a); Zhuge et al. (2022)
primarily focus on achieving saliency predictions while preserving the structure.

COD. Compared to salient object detection, current COD methods Fan et al. (2021); Mei
et al. (2021); Pang et al. (2022); He et al. (2023); Jia et al. (2022) focus primarily on edge-aware
perception and texture perception. Mainly divided into the following two types, multi-level
feature-based methods Zhang et al. (2022); Yang et al. (2021); Ren et al. (2021); Zhai et al. (2022),
Edge joint learning Zhai et al. (2021); Sun et al. (2022); He et al. (2023).

Unified. SOD and COD are distinct yet interrelated tasks Luo et al. (2024). Recently, some
works have already begun to unify the two tasks. EVP Liu et al. (2023) solves the detection of
Camouflaged, Forgery, Shadow, and Defocus Blur by adding a visual prompt to the same base
segmentation model, allowing a single base model to handle different tasks by using specific visual
prompt. VSCode Luo et al. (2024) uses a multi-dataset joint training approach, simultaneously
utilizing datasets from RGB SOD, RGB COD, RGB-D SOD, RGB-D COD, RGB-T SOD, Video
SOD (VSOD), and VCOD, and assigning different task prompts for SOD and COD tasks to
achieve task unification. Similarly, Spider Zhao et al. (2024) uses a comparable method to unify
Context-dependent tasks. It also requires the input of specific task prompts.
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The unified models mentioned above have two constrains. First, they require the task type to be
pre-defined in advance, with a specific prompt input into the model, thus being constrained by the
prompt. Second, they cannot handle scenarios where both salient object and camouflaged object are
present simultaneously, being constrained by the scenario. The USCOD task we proposed success-
fully addresses these two aspects, achieving unconstrained by both the prompt and the scenario.

2.2 APPLICATIONS OF SAM.

The Segment Anything Model (SAM) Kirillov et al. (2023) represents a significant advancement
in scene segmentation using large vision models. Its versatility and adaptability underscore its ca-
pability to comprehend complex scenarios and objects, thereby pushing the boundaries of image
segmentation tasks even further. Current works leveraging SAM Chen et al. (2023a); Zhang et al.
(2023); Xiong et al. (2023); Ma et al. (2024) showcase its adaptability to downstream tasks, notably
in areas where traditional segmentation models struggle, such as EfficientSAM Xiong et al. (2023)
and MedSAM Ma et al. (2024). More recently, the release of SAM2 Ravi et al. (2024) enhances
the original SAM’s ability to handle video content while demonstrating improved segmentation ac-
curacy and inference efficiency in image segmentation across various downstream applications Zhu
et al. (2024); Yan et al. (2024); Lian & Li (2024); Lou et al. (2024).

Some works that use SAM for SOD and COD are closely related to our research. MDSAM Gao
et al. (2024) is a novel multi-scale and detail-enhanced SOD model based on SAM, aimed at improv-
ing the performance and generalization capability of SOD task. SAM-Adapter Chen et al. (2023a)
and SAM2-Adapter Chen et al. (2024) offers a parameter-efficient fine-tuning way to enhance per-
formance of SAM and SAM2 in downstream tasks like COD and medical image segmentation by
adding task-specific knowledge. Nevertheless, these methods may be suboptimal for fine-tuning
SAM for the USCOD task, as they discard prompt architecture of SAM and tune the mask decoder
to simultaneously learn distinguishing attributes and segmenting mask, even though the mask de-
coder is not designed for attribute distinction. Therefore, we retain the mask decoder solely for mask
reconstruction and use independent learning for attribute distinction to better differentiate between
salient objects, camouflaged objects, and background.

3 PROPOSED CS12K DATASET

The current datasets for camouflaged object detection, such as COD10K Fan et al. (2020), CAMO Le
et al. (2019), NC4K Lv et al. (2021), primarily feature scenes with exclusively camouflaged objects.
Similarly, datasets for salient object detection, such as DUTS Wang et al. (2017a), and HKU-IS Li
& Yu (2015), predominantly focus on scenes with solely salient objects. There are relatively few
samples with both salient objects and camouflaged objects in an image, which is not conducive to the
realization of the unconstrained existence of salient and camouflaged object detection. Therefore,
we introduce the CS12K, a dataset that includes more comprehensive and complex scenarios for
unconstrained salient and camouflaged object detection. It includes scenes with both salient and
camouflaged objects, scenes with only one type, and scenes without either. We will describe the
details of CS12K in terms of three key aspects, as follows.

3.1 DATA COLLECTION

Under the premise of ensuring sample balance, we collect 12,000 images from 8 different sources
and divide them into four scenes after manual filtering: (A) Scenes with only salient objects: 3,000
images containing only salient objects selected from SOD datasets DUTS and HKU-IS; (B) Scenes
with only camouflaged objects: 3,000 images containing only camouflaged objects selected from
COD datasets COD10K and CAMO; (C) Scenes with both salient and camouflaged objects: 342 im-
ages from the COD datasets COD10K, CAMO, and NC4K, along with 41 images from the datasets
LSUI Peng et al. (2023) and AWA2 Xian et al. (2018), and an additional 2,617 images collected
from the internet, making a total of 3,000 images; (D)Scenes without salient and camouflaged ob-
jects, considered as background: 1,564 images from COD10K, and 1,436 images from the Internet.
Finally, we get 12,000 images, with the training set containing 8,400 images and the testing set
containing 3,600 images. The data source is shown in Figure 2 (Left).
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Figure 2: Left: The data source and distribution of different data types. Right: Categories and
groups of our CS12K dataset. Zoom-in for better view.

Table 1: Data analysis of existing datasets.
Task Dataset #Ann. IMG Class Scene A Scene B Scene C Scene D

SOD

SOD Movahedi & Elder (2010) 300 - 300 % % %
PASCAL-S Li et al. (2014) 850 - 850 % % %
ECSSD Yan et al. (2013) 1000 - 1000 % % %
HKU-IS Li & Yu (2015) 4447 - 4447 % % %
MSRA-B Liu et al. (2011) 5000 - 5000 % % %
DUT-OMRON Yang et al. (2013) 5168 - 5168 % % %
MSRA10K Cheng et al. (2015) 10000 - 10000 % % %
DUTS Wang et al. (2017a) 15572 - 15572 % % %
SOC Fan et al. (2018a) 3000 80 3000 % % %

COD
CAMO Le et al. (2019) 1250 8 % 1250 % %
CHAMELEON Skurowski et al. (2018) 76 - % 76 % %
NC4K Lv et al. (2021) 4121 - % 4121 % %
COD10K Fan et al. (2020) 7000 78 % 5066 % 1934

USCOD CS12K(Ours) 12000 179 3000 3000 3000 3000

3.2 DATA ANNOTATION

We use SAM Kirillov et al. (2023) for mask labeling and manual correction. When labeling, we first
retain the RGB pixels corresponding to the object instance in the image, set the remaining pixels to 0,
obtain the rough classification results through CLIP Radford et al. (2021), and then perform manual
comparison and correction. In addition to the camouflaged object category labels already included
in the images from COD10K Fan et al. (2020), the remaining objects require category assignment.
Some example images of different scenes from our CS12K dataset are shown in Figure 3. Then
we assign category labels to each image, including 9 super-classes and 179 sub-classes. Figure 2
(Right) illustrates the class breakdown of our CS12K dataset.

3.3 DATA ANALYSIS

For deeper insights into USCOD dataset, we compare our CS12K against 13 other related datasets
including: (1) nine SOD datasets: SOD Movahedi & Elder (2010), PASCAL-S Li et al. (2014),
ECSSD Yan et al. (2013), HKU-IS Li & Yu (2015), MSRA-B Liu et al. (2011), DUT-OMRON Yang
et al. (2013), MSRA10K Cheng et al. (2015), DUTS Wang et al. (2017a), and SOC Fan et al.
(2018a); (2) four COD datasets: CAMO Le et al. (2019), CHAMELEON Skurowski et al. (2018),
COD10K Fan et al. (2020), and NC4K Lv et al. (2021); Table 1 shows the detailed information
of these datasets. It can be seen that except for COD10K, all SOD datasets only contain salient
objects, and all COD datasets only contain camouflaged objects. The scene of these datasets are
relatively single. It is worth noting that, although the COD dataset COD10K contains some images
with salient objects and images without any objects, these images lack labels and are not included
in the training process. In contrast, the CS12K dataset we propose imposes no restrictions on scenes
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Figure 3: Example images from the CS12K dataset: Scene A: Only camouflaged object. Scene B:
Only salient object. Scene C: Both salient and camouflaged objects simultaneously. Scene D: Back-
ground, with the absence of both types of objects. More examples can be found in Appendix.§E.

and includes labels for three attributes: saliency, camouflage, and background, with a well-balanced
distribution. We aim to advance the field and explore effective methods for capturing camouflage
and saliency patterns in unconstrained scenes.

4 PROPOSED USCNET BASELINE

Overview. As illustrated in Figure 4, the main components of the proposed USCNet include: (1) A
SAM image encoder to extract object feature representation with adapter layers. (2) An Attribute-
specific Prompt Generation (APG) that generates three discriminative prompts for each attribute:
saliency, camouflage, and background. (3) A frozen mask decoder of SAM that is applied to predict
the final saliency, camouflaged, and background masks based on different attribute prompts.

4.1 SEGMENT ANYTHING MODEL

SAM Kirillov et al. (2023) designs a flexible prompting-enabled model architecture for category-
agnostic segmentation. Specifically, SAM consists of an image encoder, a prompt encoder, and a
mask decoder. The image encoder is pre-trained using the Masked Auto Encoder (MAE) He et al.
(2022), the prompt encoder handles dense and sparse inputs like boxes and points, and the mask
decoder predicts the masks based on the encoded embeddings. In USCNet, we utilize the prompt
architecture of SAM for identifying three attributes: saliency, camouflage, and background. The
attribute prompts is generated by a designed APG module, eliminating the need for manual prompt.
As a result, each attribute prompt is mapped to a distinct binary mask.

4.2 SAM ENCODER WITH ADAPTER

To leverage knowledge from SAM, SAM-Adapter Chen et al. (2023a) adapts SAM to downstream
tasks and achieve enhanced performance with a parameter-efficient fine-tuning approach. Following
that, USCNet integrates adapters into each layer of the SAM encoder, as depicted in Figure 4. As
a result, the output image embedding F from the tuned SAM Encoder exhibits features adept at
addressing USCOD task. Through this approach, USCNet blending USCOD-specific knowledge
with the general knowledge acquired by the larger model, better adapting to unconstrained scenes.

4.3 ATTRIBUTE-SPECIFIC PROMPT GENERATION

Our insight is that the detection of salient and camouflaged objects within a sample requires consid-
eration of features across two dimensions: (i) Sample-generic features: For all samples, character-
istics such as the size, position, color, and texture of the object serve as important generic features

6
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Figure 4: Architecture of our USCNet. USCNet includes: SAM image encoder with adapter,
Attribute-specific Prompt Generation (APG) module, and frozen SAM mask decoder.

for distinguishing salient and camouflaged objects. These features are applicable in most scenar-
ios and can act as universal criteria for judgment; (ii) Sample-specific features: Relying solely on
sample-generic features may not suffice in certain complex situations. For instance, when the salient
and camouflaged objects share similar colors or categories, sample-generic features alone are insuf-
ficient for effective differentiation. In such cases, it is crucial to consider the specific contextual
information within the sample and learn features that are closely associated with the current sample
to assist in making an accurate judgment.

Based on this, we propose Attribute- specific Prompt Generation (APG) integrates both Dynamic
Prompt Query (DPQ) and Static Prompt Query (SPQ) to generate discriminative attribute-specific
prompts, where SPQ to extract sample-generic features, capturing attribute information that applies
to all samples, and DPQ to extract sample-specific features, focusing on the unique contextual in-
formation of the current sample. Specifically, as depicted in Figure 4, the APG integrates both the
Dynamic Prompt Query (DPQ) and Static Prompts Query (SPQ) to create attribute-specific prompts.
The SPQ consists of a set of learnable query embeddings, which are designed to encapsulate gen-
eral attributes. To formulate the DPQ, the system initially extracts features F from the encoder
to generate a coarse prediction, which is then processed through a sigmoid function to produce an
attention map. This attention map is then element-wise multiplied with the original features F to
isolate attribute-specific features. These features are further refined through a linear layer to produce
the DPQ, tailored to capture nuanced and specific attributes within individual samples. The DPQ
generation process can be described by the formula:

[QD S , QD C , QD B ] = MLP (σ(ΦCH(F ))⊗ F ), (1)
where QD S , QD C , and QD B represent the DPQ for saliency, camouflage, and background, re-
spectively. MLP stands for a Multi-Layer Perceptron that processes the output. σ denotes the
sigmoid function, and ΦCH represents the operation to predict a coarse prediction from the features
F . The symbol ⊗ denotes element-wise multiplication. Unlike standard query embeddings which
are fixed after training, the DPQ changes according to the sample, making it highly adaptable and
capable of explicitly capturing the distinctive features of the camouflage and saliency across varying
samples. The DPQ captures feature information from specific images, whereas the SPQ discerns the
fundamental differences among three attributes. By combining the two, our APG attains improved
performance. Subsequently, we employ self-attention to establish relationships between queries, and
query-to-image (Q2I) attention to interact with image embedding, ultimately generating prompts for
the three attributes: PS , PC , PB . The process can be formulated as follows:

[PS , PC , PB ] = MLP (Q2I(SA(DPQ+ SPQ), F )), (2)
where PS , PC , and PB represent the prompts generated for identifying saliency, camouflage,
and background elements, respectively. SA represents the self-attention. Q2I denotes the cross-
attention from queries to the image embedding F , enabling the model to focus on relevant parts of
the input based on the queries. Furthermore, we use a cross-attention from the image embedding to
queries (I2Q) to focus on features related to attributes.

Based on the three attribute-specific prompts fed into the pre-trained mask decoder in SAM, three
masks are obtained: Mask S, Mask C, and Mask B, representing the output saliency, camou-
flage, and background predictions, respectively. The process can be described as:

[Mask S,Mask C,Mask B] = MaskDe([PS , PC , PB ], F ), (3)
where MaskDe denotes frozen SAM mask decoder. Finally, a softmax function is applied to produce
the final prediction.
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Table 2: Quantitative comparisons with 19 related methods for USCOD. IoUS ↑: IoU score for
salient objects. IoUC ↑: IoU score for camouflaged objects. The best two scores are highlighted in
red and green, respectively. All metrics presented in the table are expressed as percentages (%). We
use mIoU↑, mAcc↑, and CSCS↓ to evaluate the models in overall scenes.

Update Scene A Scene B Scene C Overall Scenes
Task Model Venue Para.(M) IoUS IoUC IoUS IoUC IoUS IoUC mIoU mAcc CSCS

GateNet Zhao et al. (2020) ECCV 128 68.32 54.26 66.85 35.03 65.08 44.17 68.27 78.07 11.30
F3Net Wei et al. (2020) AAAI 26 70.05 52.62 67.20 36.38 66.12 44.81 68.80 77.86 9.36
MSFNet Zhang et al. (2021) MM 28 70.14 54.78 69.92 36.64 66.69 45.89 69.40 79.77 9.90
VST Liu et al. (2021a) ICCV 43 68.14 49.82 61.61 22.56 63.18 38.45 65.55 74.77 11.30

SOD

EDN Wu et al. (2022) TIP 43 71.59 57.94 69.37 37.70 68.00 48.27 70.70 80.60 9.23
ICON Zhuge et al. (2022) TPAMI 32 68.09 50.57 67.48 30.65 65.86 45.53 68.99 79.53 10.24
SINet-V2 Fan et al. (2021) TPAMI 27 72.96 56.16 67.21 36.06 69.50 47.47 70.20 79.58 8.83
PFNet Mei et al. (2021) CVPR 47 69.07 52.83 67.20 32.81 65.73 43.76 68.30 78.00 10.04
ZoomNet Pang et al. (2022) CVPR 33 74.11 51.12 66.79 29.69 66.43 43.28 68.35 77.72 8.88

COD

FEDER He et al. (2023) CVPR 44 74.35 58.04 67.66 32.26 68.65 46.46 70.32 81.27 10.01
PRNet Hu et al. (2024) TCSVT 13 76.10 61.54 60.10 32.16 68.68 50.88 71.87 82.89 8.40
ICEG He et al. (2024) ICLR 100 73.67 68.38 68.43 44.33 69.22 58.71 74.68 83.53 8.16
CamoDiffusion Chen et al. (2023b) AAAI 72 75.01 59.39 53.49 45.03 63.49 52.80 70.70 77.73 7.73
CamoFormer Yin et al. (2024) TPAMI 71 75.88 66.19 73.33 44.14 71.86 56.09 74.81 84.17 7.57
PGT Wang et al. (2024) CVIU 68 72.75 61.51 70.01 41.21 71.46 56.83 75.03 83.35 9.09
SAM-Adapter Chen et al. (2023a) ICCVW 4.11 78.90 67.69 68.19 27.73 70.66 52.69 73.38 83.35 10.28
SAM2-Adapter Chen et al. (2024) arXiv 4.36 78.75 70.28 69.01 38.20 71.42 56.71 74.98 84.74 9.12

Unified EVP Liu et al. (2023) CVPR 4.95 75.85 59.81 71.41 37.64 70.30 50.36 72.16 79.96 8.67
VSCode Luo et al. (2024) CVPR 60 71.43 54.64 65.26 30.58 67.09 46.91 69.78 78.92 9.72

USCOD USCNet (Ours) - 4.04 79.70 74.99 74.80 45.73 75.57 61.34 78.03 87.92 7.49

4.4 LOSS FUNCTION

We use the ground truth (GT) to supervise the final prediction and coarse prediction. The total loss
function of USCNet can be defined as:

LTotal = LCE(IGT , IPred) + LCE(IGT , ICoarse), (4)

where IGT , IPred and ICoarse respectively represent ground truth, final prediction, and the coarse
prediction, while LCE represents the Cross Entropy loss.

5 CS12K BENCHMARK

As discussed above, our CS12K dataset is characterized by existence unconstrained, meaning each
image may contain salient objects, camouflaged objects, both, or neither. Moreover, it covers cate-
gories spanning from salient to camouflaged objects. In CS12K benchmark, all models are trained
and tested on the training set of CS12K (8,400 images) and the testing set of CS12K (3,600 images).
To assess generalization, we also evaluated the model’s performance across six widely used datasets.
This includes common COD datasets such as COD10K, NC4K, and CAMO-TE, as well as popular
SOD datasets like DUT-TE, HKU-IS, and DUT-OMRON. The results and specific settings of all
generalization experiments are included in the Appendix.§C.

Metrics. Unlike the binary evaluation metrics widely used in SOD and COD (e.g.maximal F-
measure Achanta et al. (2009)), the USCOD task involves three distinct attributes: saliency, camou-
flage, and background. To assess the performance of models tackling this multifaceted challenge,
we leverage three established metrics for semantic segmentation: mean pixel accuracy of different
categories (mAcc ↑), Intersection-over-Union of different categories (IoU ↑), and mean IoU (mIoU
↑). Inspired by Li et al. (2024), we also employ metrics AUC↑, SI-AUC↑, F β

m↑, SI-F β
m↑, F β

max↑,
SI-F β

max↑, Em↑ to evaluate the model’s capability in detecting objects of varying sizes. Addition-
ally, to evaluate the ability of the model to distinguish between salient and camouflaged objects, we
propose a novel metric, the Camouflage-Saliency Confusion Score (CSCS ↓), which is formulated
as follows:

CSCS =
1

2
(

PCS

PBS + PSS + PCS
+

PSC

PBC + PSC + PCC
), (5)
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Figure 5: Qualitative comparisons of USCNet with five baselines across overall scenes. More visu-
alization can be seen in Appendix.§F.

where P = {Pλθ |λ ∈ Θ, θ ∈ Θ} , Θ = {B,C, S}, the B, C and S denotes background, camouflage
and saliency. As shown in Figure 6, PCS represents regions where camouflage is predicted as
salient, while PSC represents regions where saliency is predicted as camouflage; both are regions
of confusion. A lower CSCS indicates a stronger robustness to distinguish between salient and
camouflaged objects. More details of CSCS can be seen in Appendix.§A.

Competitors. We compared our USCNet with 19 recent related models, including (I) SOD models:
GateNet Zhao et al. (2020), F3Net Wei et al. (2020), MSFNet Zhang et al. (2021), VST Liu et al.
(2021a), EDN Wu et al. (2022), ICON Zhuge et al. (2022); (II) COD models: SINet-V2 Fan et al.
(2021), PFNet Mei et al. (2021), ZoomNet Pang et al. (2022),FEDER He et al. (2023), ICEG He
et al. (2024), PRNet Hu et al. (2024), CamoDiffusion Chen et al. (2023b), CamoFormer Yin et al.
(2024), PGT Wang et al. (2024), SAM-Adapter Chen et al. (2023a) and SAM2-Adapter Chen et al.
(2024); (III) Unified methods: VSCode Luo et al. (2024) and EVP Liu et al. (2023).

Technical Details. All models are retrained using the training set of CS12K with an input image
resolution of 352×352. Horizontal flipping and random cropping are applied for data augmentation.
The experiments are conducted in PyTorch on one NVIDIA L40 GPU. The number of parameters
fine-tuned for all models is detailed in Table 2. For our model, we use hiera-large version of SAM2
following the SAM2-Adapter Chen et al. (2024). AdamW optimizer is used a warm-up strategy and
linear decay strategy. The initial learning rate is set to 0.0001. The batch size is set to 24, and the
maximum number of epochs is set to 90. The technical details of all other comparison methods can
be found in the Appendix.§D.

5.1 QUANTITATIVE EVALUATION

We present in Table 2 the performance of compared models on USCOD benchmark. Comparing
the results of the models in single-attribute scenes (refer to Scene A and Scene B) with those in
multi-attribute scenes (refer to Scene C) reveals that all models achieve lower scores in Scene C
than in Scene A and Scene B. This indicates that the simultaneous presence of both salient objects
and camouflaged objects increases the difficulty for the models to recognize both. Our method also
achieves a greater lead in Scene C, e.g., 74.80% on the IoUS and 45.73% on the IoUC , demonstrating
that our model is more adaptable when faced with more challenging scenarios. Furthermore, USC-
Net achieves the best performance in all scenarios compared to all other compared methods. Addi-
tionally, the evaluation results for other metrics, including AUC↑, SI-AUC↑, F β

m↑, SI-F β
m↑, F β

max↑,
SI-F β

max↑, and Em↑, can be found in Table 4 and Table 5 in Appendix.§B.

5.2 QUALITATIVE EVALUATION

In Figure 5, we compare our qualitative results with SOD models (ICON Zhuge et al. (2022),
EDN Wu et al. (2022)), COD model (ICEG He et al. (2024) , PFNet Mei et al. (2021) and SAM2-
Adapter Chen et al. (2024)). In the Scene A and Scene B of Figure 5, our method exhibited a better
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Table 3: Left: Performance of different base model. *In the original SAM or SAM2, we only
fine-tune the mask decoder. Right: Effectiveness of different components in APG. DPQ: dynamic
prompt query. SPQ: static prompt query. Q2I: query-to-image attention. I2Q: image-to-query
attention. Para.: update parameter (M). All metrics tested on the overall scenes test set and presented
in the table are expressed as percentages (%).

Method Base Para. IoUS IoUC mIoU mAcc CSCS

SAM* SAM 3.92 51.07 33.00 59.56 68.73 18.66

USCNet SAM 4.08 73.93 56.50 75.87 83.86 8.24

SAM2* SAM2 4.22 66.42 44.02 68.78 77.65 11.58

USCNet SAM2 4.04 75.57 61.34 78.03 87.92 7.49

Encoder Decoder DPQ SPQ Q2I I2Q Para. IoUS IoUC mIoU mAcc CSCS

Frozen Tuning % % % % 4.22 66.42 44.02 68.78 77.65 11.58
Tuning Tuning % % % % 4.36 71.42 56.71 74.98 84.74 9.12
Tuning Frozen % " " " 3.44 71.68 57.53 75.31 85.15 9.07
Tuning Frozen " % " " 4.03 74.32 58.91 76.96 85.80 7.98
Tuning Frozen " " % % 0.75 70.97 56.56 74.77 84.43 9.85
Tuning Frozen " " " % 2.40 73.08 58.45 76.73 85.63 8.52
Tuning Frozen " " " " 4.04 75.57 61.34 78.03 87.92 7.49

detection capability for salient objects or camouflaged objects. Benefiting from the APG module,
our method better distinguished salient objects and camouflaged objects in the same image within
Scene C of Figure 5. For Scene D, SOD and COD methods become confused when encountering
backgrounds, resulting in poor performance and unstable robustness, whereas our model demon-
strates better performance in this scenario. More qualitative evaluation can be seen in Appendix.§F.

5.3 ABLATION STUDY

Performance of Different Base Models. We conducted ablation experiments to evaluate the per-
formance of different base models, as presented in Table 3.(Left). First, as shown in the first two
and last two rows of the table, our model demonstrates significant performance improvements on the
USCOD benchmark, regardless of whether SAM Kirillov et al. (2023) (default vit-huge version) or
SAM2 Ravi et al. (2024) (default hiera-large version) is used as the base model. For instance, when
using SAM as the base model, our method achieves a 16.31% gain in mIoU compared to the origi-
nal SAM, while utilizing SAM2 results in a 9.25% improvement in mIoU over the original SAM2.
Additionally, transitioning from SAM to SAM2 (as shown in rows 2 and 4) results in performance
gains across all metrics with fewer fine-tuned parameters.

Effectiveness of Different Components in APG. As we shown in Table 3. (Right), ablation exper-
iments were conducted to validate the effectiveness of the proposed components in APG module.
From the third, fourth, and seventh rows, it is evident that both DPQ and SPQ improve the per-
formance of model, with DPQ providing a greater performance enhancement than SPQ when used
together, achieving optimal results. The fifth, sixth, and seventh rows demonstrate that Q2I and
I2Q also facilitate the distinction of salient camouflaged objects, leading to reductions in CSCS of
2.36% and 1.08%, respectively. Additionally, compared to the original SAM2 (refer to line 1) and
SAM2-Adapter (refer to line 2), the proposed USCNet enhances performance on the USCOD task
across all metrics through a more efficient fine-tuning approach by incorporating the APG module
and freezing the mask decoder.

6 CONCLUSION

We analyze and address the limitations of classical SOD and COD tasks, which restrict research to
scenarios with only salient or only camouflaged objects. Based on that, a new benchmark called
Unconstrained Salient and Camouflaged Object Detection (USCOD), is defined to allow for the
unrestricted presence of both salient and camouflaged objects within images. We propose a new
evaluation metric, i.e., the Camouflage-Saliency Confusion Score (CSCS), to assess the confusion
of the model between camouflaged and salient objects. To support research on USCOD, we have
constructed a large-scale dataset, CS12K, that features a diverse range of scenes and categories.
We introduce a baseline method, USCNet, which decouples mask reconstruction from attribute dis-
tinction to focus on learning the differences between saliency and camouflage patterns, achieving
state-of-the-art performance on the USCOD task. The proposed USCOD reduces reliance on spe-
cific scenarios, increasing the representation of scenes where both salient and camouflaged objects
coexist, as well as scenes where neither is present, thus enhancing generalizability across diverse
natural environments.
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APPENDIX
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• §A: CSCS Metric

• §B:Performance of Models in Detecting Objects of Varying Sizes

• §C: Results on COD and SOD Datasets

• §D: More Technical Details

• §E: More CS12K Dataset Examples

• §F: Additional Qualitative Results

• §G: Practical Applications of USCOD

• §H: Difficulty of USCOD

• §I: Limitations

A CSCS METRIC

Contrary to the Intersection over Union (IoU) that measures accuracy for a single class, the
Camouflage-Saliency Confusion Score (CSCS) assesses the misclassification between two distinct
classes. The CSCS, designed to evaluate the confusion between camouflaged and salient objects, is
calculated as follows:

CSCS =
1

2
(

PCS

PBS + PSS + PCS
+

PSC

PBC + PSC + PCC
), (6)

where P = {Pλθ |λ ∈ Θ, θ ∈ Θ} , Θ = {B,C, S}, the B, C and S denote background, camouflage
and saliency. A lower CSCS value indicates a stronger ability of the network to discriminate between
salient and camouflaged objects. PCS represents the label as camouflage but is predicted as saliency.
We aim to minimize the misclassification of camouflaged pixels as salient, ensuring the network
correctly distinguishes between camouflaged and salient objects. The same applies to PSC . As
shown in Figure 7, we present the confusion matrix of the proposed USCNet on the CS12K test set.
Our model balances improvements across all metrics, achieving a mIoU of 0.775 and a CSCS of
0.0749 (see Table 2 in the manuscript).

PCS PSC

PSS

PCC PBS

PBC

Image GT Prediction

Figure 6: The illustration of PBS , PSS , PCS , PBC , PSC , and PCC in the CSCS metric. The red
mask represents the salient regions, and the green mask denotes the camouflaged regions.

B PERFORMANCE OF MODELS IN DETECTING OBJECTS OF VARYING SIZES

To evaluate the model’s ability to detect objects of varying sizes, we employ several metrics: AUC↑,
SI-AUC↑, F β

m↑, SI-F β
m↑, F β

max↑, SI-F β
max↑, Em↑. From Table 4 and Table 5, it can be observed

that, compared to the size-sensitive(e.g., AUC↑ and F β
m↑) and size-invariance metrics(e.g., SI-AUC↑

and SI-F β
m↑), our method exhibits smaller performance fluctuations, demonstrating its robustness to

variations in object size and number in the scene.
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(a) Illustration (b) USCNet

Figure 7: Confusion matrix of our USCNet on the CS12K test set. The units of the values in the
confusion matrix are in tens of thousands (1E+04).

Table 4: Performance of different models detecting salient objects on CS12K testing set.

Task Model
Update CS12K-SOD

Params(M) AUC↑ SI-AUC↑ Fβ
m↑ SI-Fβ

m↑ Fβ
max↑ SI-Fβ

max↑ Em↑

SOD

GateNet Zhao et al. (2020) 128 .810 .812 .696 .754 .706 .764 .775
F3Net Wei et al. (2020) 26 .828 .826 .722 .765 .734 .777 .803
MSFNet Zhang et al. (2021) 28 .832 .831 .726 .772 .735 .782 .805
VST Liu et al. (2021a) 43 .777 .777 .642 .732 .650 .741 .742
EDN Wu et al. (2022) 43 .831 .830 .726 .769 .736 .780 .804
ICON Zhuge et al. (2022) 32 .821 .832 .702 .764 .711 .774 .795

COD

SINetV2 Fan et al. (2021) 27 .843 .842 .755 .783 .765 .793 .827
PFNet Mei et al. (2021) 47 .820 .822 .712 .756 .724 .767 .799
ZoomNet Pang et al. (2022) 33 .821 .823 .710 .765 .720 .774 .791
FEDER He et al. (2023) 44 .841 .842 .742 .784 .750 .796 .820
ICEG He et al. (2024) 100 .830 .825 734 .762 .743 .770 .831
PRNet Hu et al. (2024) 13 .851 .845 .742 .779 .750 .792 .832
CamoFormer Yin et al. (2024) 71 .844 .843 .750 .782 .758 .790 .821
PGT Wang et al. (2024) 68 .831 .828 .717 .773 .727 .784 .791
SAM2-Adapter Chen et al. (2024) 4.36 .847 .847 .741 .783 .751 .794 .816

Unified
VSCode Luo et al. (2024) 60 .826 .830 .720 .769 .731 .790 .802
EVP Liu et al. (2023) 4.95 .850 .847 .751 .782 .771 .792 .830

USCOD USCNet(ours) 4.04 .853 .850 .761 .787 .772 .798 .833

Table 5: Performance of different models detecting camouflaged objects on CS12K testing set.

Task Model
Update CS12K-COD

Params(M) AUC↑ SI-AUC↑ Fβ
m↑ SI-Fβ

m↑ Fβ
max↑ SI-Fβ

max↑ Em↑

SOD

GateNet Zhao et al. (2020) 128 .692 .687 .443 .558 .453 .569 .651
F3Net Wei et al. (2020) 26 .695 .687 .449 .564 .458 .574 .649
MSFNet Zhang et al. (2021) 28 .698 .691 .455 .565 .465 .576 .659
VST Liu et al. (2021a) 43 .626 .625 .303 .536 .312 .546 .524
EDN Wu et al. (2022) 43 .709 .703 .476 .575 .485 .585 .670
ICON Zhuge et al. (2022) 32 .663 .663 .384 .549 .394 .560 .587

COD

SINetV2 Fan et al. (2021) 27 .715 .705 .505 .588 .514 .598 .690
PFNet Mei et al. (2021) 47 .678 .672 .429 .544 .440 .555 .630
ZoomNet Pang et al. (2022) 33 .657 .653 .394 .545 .405 .556 .588
FEDER He et al. (2023) 44 .710 .703 .486 .567 .497 .578 .689
ICEG He et al. (2024) 100 .730 .717 .525 .601 .532 .609 .719
PRNet Hu et al. (2024) 13 .705 .695 .454 .569 .464 .579 .652
CamoFormer Yin et al. (2024) 71 .756 .745 .565 .626 .575 .636 .743
PGT Wang et al. (2024) 68 .746 .734 .527 .596 .539 .607 .715
SAM2-Adapter Chen et al. (2024) 4.36 .770 .761 .575 .637 .585 .647 .746

Unified
VSCode Luo et al. (2024) 60 .735 .727 .519 .601 .525 .597 .722
EVP Liu et al. (2023) 4.95 .695 .684 .485 .577 .494 .587 .650

USCOD USCNet(ours) 4.04 .801 .794 .610 .658 .619 .667 .795

C RESULTS ON COD AND SOD DATASETS

To further validate the effectiveness and robustness of our method regarding generalizability, we
conduct tests on popular SOD datasets (DUTS Wang et al. (2017a), HKU-IS Li & Yu (2015), and
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Table 6: Quantitative comparisons with related methods on the DUTS, HKU-IS, and DUT-OMRON
test sets. ↑ / ↓ represents the higher/lower the score, the better.

Task Model
Update DUTS HKU-IS DUT-OMRON

Params(M) Fmax
β ↑Fω

β ↑M ↓Sα ↑Em
ϕ ↑ Fmax

β ↑Fω
β ↑M ↓Sα ↑Em

ϕ ↑ Fmax
β ↑Fω

β ↑M ↓Sα ↑Em
ϕ ↑

SOD

GateNet Zhao et al. (2020) 128 .666 .644 .062 .755 .765 .804 .785 .049 .841 .857 .634 .603 .079 .747 .751
F3Net Wei et al. (2020) 26 .703 .683 .055 .783 .794 .832 .816 .044 .853 .881 .638 .615 .073 .747 .758
MSFNet Zhang et al. (2021) 28 .651 .638 .063 .749 .758 .824 .806 .045 .853 .877 .641 .611 .076 .751 .764
VST Liu et al. (2021a) 43 .630 .610 .061 .744 .749 .777 .760 .052 .820 .851 .580 .560 .073 .720 .715
EDN Wu et al. (2022) 43 .692 .676 .053 .784 .785 .820 .806 .043 .852 .873 .616 .597 .071 .742 .735
ICON Zhuge et al. (2022) 32 .679 .647 .069 .769 .785 .814 .787 .051 .843 .874 .615 .576 .099 .728 .738

COD

SINetV2 Fan et al. (2021) 27 .732 .710 .052 .801 .821 .838 .822 .046 .847 .884 .665 .642 .068 .763 .786
PFNet Mei et al. (2021) 47 .691 .668 .060 .775 .790 .818 .801 .048 .843 .876 .643 .614 .075 .747 .764
ZoomNet Pang et al. (2022) 33 .729 .709 .053 .801 .813 .785 .774 .051 .830 .842 .623 .601 .075 .742 .735
FEDER He et al. (2023) 44 .736 .714 .052 .808 .821 .839 .827 .045 .869 .881 .645 .615 .077 .755 .760
PRNet Hu et al. (2024) 13 .773 .756 .043 .830 .849 .840 .833 .044 .857 .880 .708 .685 .057 .796 .808
ICEG He et al. (2024) 100 .719 .700 .050 .789 .820 .832 .815 .045 .848 .896 .664 .645 .061 .762 .785
CamoFormer Yin et al. (2024) 71 .733 .715 .049 .813 .819 .838 .817 .046 .857 .884 .687 .661 .066 .783 .793
PGT Wang et al. (2024) 68 .686 .670 .053 .786 .779 .819 .802 .044 .855 .871 .642 .619 .068 .758 .754
SAM-Adapter Chen et al. (2023a) 4.11 .761 .746 .048 .834 .796 .822 .806 .043 .836 .869 .708 .685 .059 .793 .802
SAM2-Adapter Chen et al. (2024) 4.36 .776 .762 .041 .831 .848 .831 .828 .042 .849 .881 .706 .692 .056 .790 .810

Unified
VSCode Luo et al. (2024) 60 .724 .706 .060 .795 .812 .834 .830 .043 .851 .885 .636 .608 .075 .748 .753
EVP Liu et al. (2023) 4.95 .769 .750 .045 .833 .836 .835 .832 .043 .852 .878 .710 .692 .057 .794 .810

USCOD USCNet(ours) 4.04 .784 .780 .040 .835 .852 .844 .840 .042 .860 .886 .710 .697 .056 .796 .814

Table 7: Quantitative comparisons with ten related methods on CAMO , COD10K , and NC4K test
set. ↑ / ↓ represents the higher/lower the score, the better.

Task Model
Update CAMO NC4K COD10K

Params(M) Fmax
β ↑Fω

β ↑M ↓Sα ↑Em
ϕ ↑ Fmax

β ↑Fω
β ↑M ↓Sα ↑Em

ϕ ↑ Fmax
β ↑Fω

β ↑M ↓Sα ↑Em
ϕ ↑

SOD

GateNet Zhao et al. (2020) 128 .573 .542 .109 .666 .680 .562 .529 .047 .707 .724 .675 .645 .066 .752 .777
F3Net Wei et al. (2020) 26 .538 .506 .117 .643 .657 .576 .539 .047 .712 .744 .661 .633 .070 .738 .773
MSFNet Zhang et al. (2021) 28 .568 .535 .113 .661 .682 .543 .534 .052 .692 .719 .671 .645 .067 .747 .778
VST Liu et al. (2021a) 43 .484 .455 .109 .636 .631 .468 .430 .055 .661 .670 .597 .567 .072 .710 .732
EDN Wu et al. (2022) 43 .573 .542 .109 .666 .680 .595 .562 .044 .727 .756 .688 .660 .063 .761 .795
ICON Zhuge et al. (2022) 32 .520 .481 .125 .641 .648 .540 .502 .053 .695 .715 .631 .596 .076 .724 .752

COD

SINetV2 Fan et al. (2021) 27 .590 .562 .102 .681 .694 .609 .577 .043 .729 .763 .662 .639 .066 .740 .769
PFNet Mei et al. (2021) 47 .535 .505 .110 .652 .661 .556 .524 .049 .699 .730 .660 .633 .068 .737 .769
ZoomNet Pang et al. (2022) 33 .494 .472 .113 .635 .612 .520 .496 .048 .488 .671 .596 .576 .074 .708 .706
FEDER He et al. (2023) 44 .567 .538 .106 .669 .687 .636 .598 .042 .749 .793 .688 .664 .063 .758 .790
PRNet Hu et al. (2024) 13 .648 .607 .096 .716 .766 .709 .672 .059 .772 .820 .650 .603 .038 .756 .815
ICEG He et al. (2024) 100 .728 .697 .066 .769 .820 .735 .708 .051 .786 .840 .645 .610 .035 .753 .807
CamoFormer Yin et al. (2024) 71 .645 .618 .078 .732 .750 .729 .707 .054 .789 .822 .668 .639 .035 .770 .811
PGT Wang et al. (2024) 68 .635 .612 .089 .718 .730 .729 .706 .052 .791 .819 .642 .612 .036 .758 .786
SAM-Adapter Chen et al. (2023a) 4.11 .661 .638 .080 .744 .753 .688 .667 .037 .788 .808 .727 .710 .051 .794 .809
SAM2-Adapter Chen et al. (2024) 4.36 .717 .692 .074 .779 .807 .724 .694 .044 .809 .847 .735 .694 .045 .819 .845

Unified
VSCode Luo et al. (2024) 60 .562 .532 .109 .658 .678 .626 .591 .043 .744 .787 .684 .662 .067 .753 .783
EVP Liu et al. (2023) 4.95 .636 .637 .085 .701 .718 .693 .694 .040 .742 .775 .615 .614 .069 .724 .749

USCOD USCNet(ours) 4.04 .829 .790 .049 .845 .886 .794 .768 .039 .839 .877 .743 .700 .030 .821 .869

DUT-OMRON Yang et al. (2013)) and COD datasets (CAMO Le et al. (2019), COD10K Fan et al.
(2020), and NC4K Lv et al. (2021)), with all methods uniformly trained using our CS12k dataset.
We adopt five metrics that are widely used in COD and SOD tasks Wang et al. (2021); Fan et al.
(2021). These metrics include maximal F-measure (Fmax

β ↑) Achanta et al. (2009), weighted F-
measure (Fω

β ↑) Margolin et al. (2014), Mean Absolute Error (MAE, M ↓) Perazzi et al. (2012),
Structural measure (S-measure, Sα ↑) Fan et al. (2017), and mean Enhanced alignment measure
(E-measure, Em

ϕ ↑) Fan et al. (2018b). As shown in Table 6 and Table 7, our USCNet achieves
state-of-the-art performance on these datasets through parameter-efficient fine-tuning. This further
confirms the strong capability of our method to accurately identify both salient and camouflaged
objects in unconstrained environments. This achievement is attributed to the exceptional versatility
of SAM in class-agnostic segmentation tasks and the discriminative ability of our specially designed
APG for distinguishing between salient and camouflaged objects.
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D MORE TECHNICAL DETAILS

Backbone of models. The models compared can be divided into two categories based on their
papers: one is full-tuning models, and the other is parameter-efficient fine-tuning (PEFT) mod-
els.(i)Full Tuning models: Include all SOD and COD methods and VSCode in the Unified Method.
For fairness, the models compared are all trained according to the configurations specified in their
original papers. (ii)PEFT models: SAM-Adapter, SAM2-Adapter, EVP in the Unified Method and
our model. The backbone architectures across various models consist of several types. For full
tuning, VST employs a transformer encoder based on T2T-ViT Yuan et al. (2021), while SINet-
V2utilizes Res2Net-50 Gao et al. (2019). VSCode uses Swin-T Liu et al. (2021b), and ICEG adopts
Swin-B Liu et al. (2021b). PRNet is based on the SMT backbone Lin et al. (2023), and both CamoD-
iffusion, CamoFormer, and PGT use PVTv2-b4 Wang et al. (2022). Other models generally rely on
ResNet-50 He et al. (2016) with pre-trained weights from ImageNet Deng et al. (2009). In the case
of PEFT models, EVP uses SegFormer-B4 Xie et al. (2021) as its base, SAM-Adapter uses the de-
fault ViT-H version of SAM Kirillov et al. (2023), and both SAM2-Adapter and our model employ
the hiera-large version of SAM2 Ravi et al. (2024).

Training and Inference. For traditional SOD and COD models: The task of USCOD is defined by
three attributes: saliency, camouflage, and background. Conventional methods for COD and SOD
are crafted for dichotomous mapping tasks and don’t seamlessly transition to the nuanced demands
of USCOD. Inspired by seminal works in semantic segmentations Long et al. (2015); Strudel et al.
(2021), we retool the output layers of our models to yield a tripartite representation for saliency,
camouflage, and background. This is achieved by harnessing a softmax layer to generate a predictive
mapping. We employ a cross-entropy loss function to refine the model, which is congruent with our
overarching methodological framework. For unified models: VSCode and EVP, which require task-
specific prompts for each dataset, we create two copies of the CS12K training set. One copy is
used for SOD, with the ground truth being the SOD-only mask, and is used to train the prompts
corresponding to the SOD task. The other copy is used for COD, with the ground truth being the
COD-only mask, and is used to train the prompts corresponding to the COD task.VSCode is trained
once using all 16,800 images (two copies of 8,400 images), while EVP is trained twice on the
two separate training sets (each containing 8,400 images) to obtain the two task-specific prompts.
During Inference, all unified models perform inference on the testing set of CS12K twice, with the
corresponding prompt enabled for each task. The first inference run generates the SOD results, and
the second inference run generates the COD results. The final prediction is obtained by merging the
SOD and COD predictions. For overlapping pixels, the attribute with the higher prediction value
between the two tasks is chosen as the final attribute for that pixel.

E MORE CS12K DATASET DETAIL AND EXAMPLES

Object number distribution. Our CS12K dataset contains images with different numbers of ob-
jects. To show it more clearly, we have counted the distribution of images with different numbers of
objects in CS12K, as shown in the following Table 8.

Table 8: Distribution of Images with Different Numbers of Objects in CS12K.
Number of objects 0 1 2 >2

Number of images 3000 4197 2335 2468

Detail of annotation process. For Scene A and B, we retained their original annotations, while
Scene D did not require additional annotation. Therefore, we focus here on detailing the annotation
process for Scene C.

• Initial Determination of Object Attributes: We invited 7 observers to perform the initial
identification of salient and camouflaged objects in the images. A voting process was used
to determine the salient and camouflaged objects in each image, with objects and their
attributes receiving more than half of the votes being retained. We then used Photoshop to
apply red boxes for salient objects and green boxes for camouflaged objects, which served
as the reference for the subsequent mask annotation step.
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• Mask Annotation: We invited 9 volunteers to perform detailed mask annotation for the
dataset using the ISAT interactive annotation tool Ji & Zhang (2023), which supports SAM
semi-automatic labeling.

• Annotation Quality Control: After annotation, we invited an additional 3 observers to
review and refine the results. Masks with imprecise or incorrect annotations were manually
corrected.

More CS12K examples. In Figure 8, we illustrate a selection of images from the CS12K dataset,
each featuring both salient and camouflaged objects. The main difference between our CS12K
dataset and existing SOD and COD datasets is that it includes a curated subset of 3,000 images,
each featuring both salient and camouflaged objects. We invest significant time and effort in finding
and annotating these images. Our dataset spans an extensive variety of environments, including, but
not limited to, terrestrial, aquatic, alpine, sylvan, and urban ecosystems, and encompasses a broad
spectrum of categories, such as lion, flower and various fruit species. This dataset is designed to
assist the SOD and COD research communities in advancing the state-of-the-art in discerning more
sophisticated saliency and camouflage patterns.
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Figure 8: Additional Example images where exist both camouflaged and salient objects from the
CS12K dataset. Our collection comprises 3,000 carefully curated and annotated images, encom-
passing a diverse range of scenes and categories. Please zoom in for an enhanced view.

F ADDITIONAL QUALITATIVE RESULTS

We present additional predictive results of our USCNet model compared to other COD and SOD
models in the CS12K test set. As illustrated in Figure 11, our model outperforms its competitors.
Specifically, across four different scenes, our model demonstrates a high degree of consistency with
the ground truth, especially in distinguishing between salient and camouflaged objects. Our model
is adept at learning distinctive features of saliency and camouflage. For instance, it can accurately
identify patterns such as camouflaged humans (refer to the fifth column of Figure 11). Moreover,
in scenes devoid of salient or camouflaged objects, our model remains unaffected by complex back-
grounds (refer to the sixth column of Figure 11). This further underscores the robustness and accu-
racy of our USCNet model.
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G PRACTICAL APPLICATIONS OF USCOD

Military Surveillance and Enemy Reconnaissance. In a military environment, salient objects
might include large military equipment such as vehicles, tanks, helicopters, etc., while camouflaged
objects could be soldiers or equipment hidden in vegetation or camouflage materials. The simultane-
ous detection of both salient and camouflaged objects helps enhance battlefield situational awareness
and prevents overlooking potential threats.

Post-Disaster Search and Rescue. After a disaster, salient objects might include obvious signs
of life in rubble (such as clearly visible trapped individuals), while camouflaged objects could be
life signs that are difficult to detect due to obstruction or chaotic environments (such as partially
buried survivors). The simultaneous detection of both salient and camouflaged objects is crucial for
improving search and rescue efficiency.

Ecological Protection and Wildlife Monitoring. In natural environments, salient objects might be
easily visible animals (such as birds in open areas), while camouflaged objects could be animals
hidden in vegetation (such as insects with protective coloration). The simultaneous detection of
both salient and camouflaged objects allows for more comprehensive wildlife population surveys
and ecological research.

Multi-Level Lesion Detection. In medical imaging, detecting both salient lesions (such as obvious
tumors or organ damage) and camouflaged lesions (such as those blurred by background textures or
early-stage lesions) helps doctors more thoroughly assess a patient’s health condition.

Diving Hazard Warnings. During diving, salient objects might include coral or schools of fish that
attract the diver’s attention, while camouflaged objects could be hidden dangerous creatures (such as
stonefish or moray eels). The simultaneous detection of both salient and camouflaged objects helps
guide divers in more comprehensively avoiding dangers.

H DIFFICULTY OF USCOD

As illustrated in Figure 11, most methods encounter difficulties in distinguishing salient objects from
camouflaged on CS12K benchmark. The essence of the challenge in USCOD lies in differentiating
between salient and camouflaged objects within unconstrained scenes, mirroring the capabilities of
human vision. Moving beyond the simplicity of traditional classification tasks, distinguishing be-
tween visual saliency and camouflage requires a deeper semantic insight. Our observation indicates
that when a vanilla network architecture is used for the USCOD task, a decoder responsible for dif-
ferentiating, localizing, and segmenting both salient and camouflaged objects encounters challenges
in acquiring highly discriminative visual features. To address this, our approach leverages a spe-
cialized decoder focused on precise localization and segmentation. This allows for more effective
learning of the subtle distinctions between saliency and camouflage patterns, enhancing the ability to
discern and differentiate these complex visual cues. Figure 9 showcases our architectural innovation,
incorporating a frozen, pre-trained SAM mask decoder and an APG representing our venture into
mining highly discriminative features. This design separates feature analysis from object segmenta-
tion, enabling our model to focus on and extract distinct attributes crucial for differentiating saliency
from camouflage patterns, thereby improving its performance in complex visual environments.

Encoder Decoder

APG

Encoder Mask
DecoderImageImage Camouflage mask 

Salient mask 

Background mask 
Camouflaged object
Salient object

Background
Salient prompt
Camouflage prompt
Background prompt

(a) Vanilla (b) Proposed

Figure 9: (a) In Vanilla network architecture, a decoder is used for both localization and segmen-
tation. (b) In our proposed architecture, the APG is used for localizing salient and camouflaged
objects, while the mask decoder is used for segmentation.
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Image USCOD-GT USCIS-GT

Figure 10: An illustration of the USCOD and USCIS tasks: In contrast to USCOD, USCIS requires
not only the identification of salient versus camouflaged objects but also the discrimination between
individual instances of saliency and camouflage.

I LIMITATIONS

USCOD aims to adaptively identify salient and camouflaged objects in unconstrained open scenar-
ios, where each image may exist salient object, camouflaged object, both, or neither of them. Al-
though our proposed CS12K dataset encompasses a wide array of scenarios and object categories,
thereby enriching the learning experience for salient and camouflaged feature detection within un-
constrained scenes for the COD and SOD communities, USCOD falls short in one critical aspect: it
lacks the capability to differentiate between individual instances of salient and camouflaged objects.
Specifically, USCOD is limited in recognizing the quantity of such instances and in distinguishing
among different objects. This limitation undermines the effectiveness of algorithm in accurately dis-
cerning the unique camouflage and saliency patterns of each object. Moving forward, our research
will venture into the domain of Unconstrained Salient and Camouflaged Instance Segmentation
(USCIS), which strives to identify and segment each individual instance of salient and camouflaged
objects. Figure 10 illustrates the label differences between USCOD and USCIS within the same
image.
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Figure 11: Additional visualizations of the proposed USCNet and other state-of-the-art methods on
the CS12K test set. Zoom-in for better view.
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