
Think Silently, Think Fast: Dynamic Latent
Compression of LLM Reasoning Chains

Wenhui Tan1∗ Jiaze Li2 Jianzhong Ju2 Zhenbo Luo2 Ruihua Song1B

Jian Luan2B

1Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
2MiLM Plus, Xiaomi Inc., Beijing, China

latent 1“Question: 7 spoons

cost $21, what’s the

price to buy 5?”

latent 3 latent 7

latent 1 latent 2 latent 3

…

“Answer: 15”
latent 2

CoLaR

Model

“Let’s think

2 × faster:”

“Let’s think

5 × faster:”

“Let’s think

step-by-step:”
LLM ‘{’ …‘21’ ‘/’ ‘}’

‘{’ ‘21’ … ‘=’ ‘3’ … ‘15’ ‘}’ …

‘{’ ‘21’ ‘/’ ‘7’ … ‘=’ ‘3’ ‘×’ ‘5’ … ‘=’ ‘15’ ‘}’ …

(14 tokens)

Figure 1: Our proposed Compressed Latent Reasoning Model (CoLaR) performs dynamic-speed rea-
soning by auto-regressively predicting latent variables, each compressing information from multiple
word tokens. Simply prompting to reason faster enables CoLaR to predict more informative latents.

Abstract

Large Language Models (LLMs) achieve superior performance through Chain-
of-Thought (CoT) reasoning, but these token-level reasoning chains are compu-
tationally expensive and inefficient. In this paper, we introduce Compressed La-
tent Reasoning (CoLaR), a novel framework that dynamically compresses reasoning
processes in latent space through a two-stage training approach. First, during super-
vised fine-tuning, CoLaR extends beyond next-token prediction by incorporating
an auxiliary next compressed embedding prediction objective. This process merges
embeddings of consecutive tokens using a compression factor c randomly sampled
from a predefined range, and trains a specialized latent head to predict distributions
of subsequent compressed embeddings. Second, we enhance CoLaR through rein-
forcement learning (RL) that leverages the latent head’s non-deterministic nature
to explore diverse reasoning paths and exploit more compact ones. This approach
enables CoLaR to: i) perform reasoning at a dense latent level (i.e., silently),
substantially reducing reasoning chain length, and ii) dynamically adjust reason-
ing speed at inference time by simply prompting the desired compression factor.
Extensive experiments across four mathematical reasoning datasets demonstrate
that CoLaR achieves 14.1% higher accuracy than latent-based baseline methods at
comparable compression ratios, and reduces reasoning chain length by 53.3% with
only 4.8% performance degradation compared to explicit CoT method. Moreover,
when applied to more challenging mathematical reasoning tasks, our RL-enhanced
CoLaR demonstrates performance gains of up to 5.4% while dramatically reducing
latent reasoning chain length by 82.8%.

B Corresponding authors: Ruihua Song (rsong@ruc.edu.cn) and Jian Luan (luanjian@xiaomi.com).
Project page: https://github.com/xiaomi-research/colar.

∗This Work was performed when Wenhui Tan was visiting Xiaomi as a research intern.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/xiaomi-research/colar

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities in mathematical reason-
ing, particularly when employing Chain-of-Thought (CoT) prompting techniques [29, 31]. Recent
advances have further highlighted the potential of this approach when combined with reinforcement
learning on extended reasoning sequences [16, 12, 28], revealing significant “aha-moments” in model
performance. Despite these advances, a critical limitation persists: generating lengthy reasoning
chains are computational costly, impeding efficiency and scalability. This inefficiency becomes par-
ticularly evident in real-world LLM applications, where extended reasoning chains create substantial
server load, especially under high-concurrency conditions, underscoring the urgent need for more
efficient reasoning methods.

Several approaches have emerged to address this computational challenge [26, 7]. One line of
research focuses on enhancing efficiency at the token level, primarily by identifying and skipping
less informative tokens [30], prompting models to generate more concise reasoning steps [32, 1], or
dynamically terminating reasoning when the model exhibits high confidence in a trial answer [35].
While valuable, these methods continue to operate on sparse token-based representations. A more
promising direction explores reasoning within the dense latent space. Initial efforts attempt to
“internalize” reasoning knowledge by curriculum learning [5] or knowledge distillation [6]. Some
works focus on the potential inside LLMs by looping or skipping some intermediate LLM layers [3,
2, 22] to realize efficient reasoning. Recent innovations have introduced auto-regressive prediction of
latent representations for efficient reasoning. Coconut [13] proposes to gradually replace token-level
reasoning with latent representations, while CODI [24] employs self-distillation to transfer CoT
knowledge into latent reasoning processes. However, these methods primarily utilize fixed-length
reasoning chains, resulting in suboptimal efficiency and limited adaptability. Furthermore, to the best
of our knowledge, all these latent-based methods employ deterministic latent reasoning processes,
overlooking the potential benefits of exploration-exploitation capability may bring about.

To overcome these limitations, we introduce Compressed Latent Reasoning (CoLaR), a novel
framework that dynamically compresses LLM reasoning chains into latent space while preserving
exploration-exploitation capabilities. Our approach utilizes an auxiliary next compressed embedding
prediction task in supervised fine-tuning (SFT) stage. Specifically, at each training step, CoLaR first
samples a random compression factor c ∈ [1, cmax] and merges the embeddings of c consecutive
reasoning tokens using our Embedding Compress module. A Latent Head is then trained to predict
the next compressed embeddings from the LLM’s output hidden states, which is a fully parallelized
process. During inference, CoLaR is capable to auto-regressively predict dense and informative
latents with the Latent Head, and automatically determine when to terminate the reasoning process
with LLM’s Language Head. Rather than predicting deterministic values, the Latent Head outputs a
probability distribution that produces diverse reasoning pathways for a same question input. Based
on this, we further enhance CoLaR through post-training with Group Relative Policy Optimization
(GRPO) reinforcement learning algorithm (author?) [23, 37], which enables CoLaR to explore
correct latent reasoning paths with diverse outputs and exploit those shorter ones.

Our extensive evaluations on four grade-school level mathematical reasoning datasets (GSM8k [4],
GSM8k-hard [9], SVAMP [20], and MultiArith [21]) demonstrate that CoLaR achieves a 14.1% ↑
improvement in accuracy compared to state-of-the-art baseline methods at comparable compression
ratios. Furthermore, CoLaR reduces reasoning chain length by 53.3% ↓ with only a 4.8% ↓
performance degradation relative to explicit CoT. Finally, experiments on a more challenging dataset
MATH [14] demonstrates the potential of CoLaR to reinforcement learning, gaining up to 5.36% ↑
accuracy while reducing the length of reasoning chain significantly by 82.8% ↓.

Our main contribution are three-fold:

• We introduce Compressed Latent Reasoning (CoLaR), a novel framework enabling dynamic-
speed reasoning by auto-regressively predicting latent variables that encapsulate the com-
pressed semantics of multiple word tokens. This allows for more efficient reasoning by
operating in a compressed latent space.

• We design CoLaR with a probabilistic Latent Head and demonstrate the effectiveness of
reinforcement learning on latent reasoning. This combination improves performance and
reduces the length of reasoning chains by encouraging exploration of diverse reasoning
paths and exploitation of the shorter ones.

2

• Extensive experiments show that CoLaR achieves a 14.1% accuracy improvement over
existing latent-based methods. Furthermore, reinforcement learning enhances performance
by up to 5.36% while simultaneously reducing reasoning chain dramatically length by
82.8%, demonstrating significant efficiency gains.

2 Related Work

2.1 Explicit LLM reasoning

Recent advances have demonstrated the strong reasoning capabilities of large language models
(LLMs). The explicit reasoning approach, exemplified by Chain-of-Thought (CoT) reasoning [29],
propose to prompt LLMs to generate intermediate reasoning steps through sequential token prediction
before generating answers [36, 31, 27, 39, 17]. Subsequent work demonstrated that reinforcement
learning techniques [23, 37, 38] can further improve performance on verifiable reasoning tasks
like mathematical problem-solving, revealing an “aha-moment” that significantly boosts model’s
performances with longer thinking process [16, 12, 28].

However, the computational cost of processing these lengthy reasoning chains remains a significant
bottleneck, motivating research into efficiency optimizations. Current solutions focus on identifying
and skipping redundant tokens [30, 35] or encouraging more compact reasoning patterns using
mathematical notations and programming language-like expressions [1, 32]. While these methods
reduce reasoning chain length, they are fundamentally limited by the sequential token prediction.

2.2 Latent LLM reasoning

Latent reasoning approaches operate in a denser, continuous space, abstracting away from indi-
vidual word tokens. These methods can be broadly categorized into three directions: knowledge
internalization, architectural modifications, and auto-regressive latent reasoning.

The first direction, knowledge internalization, aims to embed reasoning capabilities directly into
the model. iCoT-SI [5] attempts to internalize reasoning knowledge by progressively removing
explicit reasoning steps during training, while Pause [10] proposes training models to reason within
specialized token embeddings.

The second direction exploits the hierarchical structure of transformer layers, with proposals to
dynamically skip or repeat layer computations [22, 2, 3, 25, 19]. These methods aim to reduce
computational cost by selectively processing different layers.

The third direction, and most relevant to our work, explores auto-regressive latent reasoning [33].
Coconut [13] pioneered this approach by replacing token sampling with hidden state concatenation
for breadth-first reasoning, while CODI [24] introduces an auto-regressive latent variable model
through self-distillation. However, existing methods like Coconut and CODI are limited by their
reliance on fixed-length reasoning chains due to the implicit nature of latent variables. Furthermore,
they employ a deterministic approach to auto-regressive latent generation, neglecting the potential
for exploration-exploitation strategies to further enhance model performance, particularly within a
reinforcement learning framework.

In contrast, CoLaR advances auto-regressive latent reasoning by introducing a novel next com-
pressed embedding objective. This allows the model to capture the semantics of multiple word tokens
within a single latent variable and reason with dynamic chain lengths, leading to improved efficiency
and performance. Moreover, CoLaR achieves significant performance gains and a dramatic reduction
in latent reasoning length through reinforcement learning with a probabilistic latent prediction head.

3 Method

In this section, we introduce our task, notations, and our proposed method CoLaR. We focus on
mathematical reasoning tasks using a dataset D, which consists of a question tq = t

1:Lq
q , a reasoning

chain tr = t1:Lr
r , and an answer ar = t1:La

a , where Lq, Lr, and La denote the respective token
lengths. A representative example entry would be: "Question: A set of 7 spoons costs $21. If each

3

Compressed Latent Reasoning Model (CoLaR)

LLM Token Embed

𝑒𝑞
1 𝑒𝑞

2 𝑒𝑞
3 𝑒𝑞

4

“Question: .. Let’s

think 𝑐 = 2 × faster:

𝑒𝑞
𝐿𝑞

Latent Head

𝑒𝑟
1 𝑒𝑟

2 𝑒𝑟
3 𝑒𝑟

4

Ƹ𝑒𝑐
1 Ƹ𝑒𝑐

2 Ƹ𝑒𝑐
𝐿𝑐

Language Head

“Answer: 15”

𝑒𝑟
𝐿𝑟

𝑒𝑎
2 𝑒𝑎

3 𝑒𝑎
𝐿𝑎𝑒𝑐

1 𝑒𝑐
2 𝑒𝑐

𝐿𝑐

NLL

𝑒𝑎
1

CE
“21 7 3 × 15

Answer: 15”

LLM Token Embed

LLM Token Embed

CoLaR-RL

“Question: .. Let’s think 𝑐 = 2 × faster:

⋯

⋯

penalize

reinforce

Ƹ𝑒𝑐
1 Ƹ𝑒𝑐

2 Ƹ𝑒𝑐
𝟐𝟐 “Answer: 24”⋯ ത𝑎1 =

−1

𝟐𝟐
𝑜1:

Ƹ𝑒𝑐
1 Ƹ𝑒𝑐

2 Ƹ𝑒𝑐
𝟒𝟔 “Answer: 16”⋯𝑜2:

Ƹ𝑒𝑐
1 Ƹ𝑒𝑐

2 Ƹ𝑒𝑐
𝟒𝟗 “Answer: 15”⋯𝑜3:

Ƹ𝑒𝑐
1 Ƹ𝑒𝑐

2 Ƹ𝑒𝑐
𝟐𝟕 “Answer: 15”⋯𝑜4:

“{21 / 7 = 3}{3 × 5 = 15}”

⋯

⋯ ⋯

Embed Compress

ത𝑎2 =
−1

𝟒𝟔

ത𝑎3 =
1

𝟒𝟗

ത𝑎4 =
1

𝟐𝟕

Figure 2: Our proposed method CoLaR consisting an LLM backbone and a Latent Head. During
the SFT stage (left), for each training step, CoLaR first compresses embeddings er of the original
reasoning chain into compressed embeddings ec with a compression factor c randomly selected from
the range [1, cmax]. Then, CoLaR is trained to predict: i) the compressed reasoning embeddings via
the Latent Head, and ii) the compressed reasoning tokens and answer tokens through the Language
Head. During the RL stage (right), for every question input, CoLaR samples a group of G outputs
o1:G consisting of the latent reasoning chain and the predicted answer. We then calculate the relative
rewards a1:G for each output, and the rewards are averaged on each token (āi), encouraging CoLaR to
explore diverse latent reasoning pathways and exploit those more compact ones.

spoon would be sold separately, how much would 5 spoons cost?", "Reasoning chain: « 21 / 7 = 3 » «
5 * 3 = 15 » <end>", and "Answer: 15".

Given an LLM backbone M, the input tokens are first mapped to embedding vectors eq = e
1:Lq
q ,

er = e1:Lr
r , and ea = e1:La

a . These embeddings are processed by M to produce the hidden states
of the final layer, denoted hq = h

1:Lq
q , hr = h1:Lr

r , and ha = h1:La
a . M then predicts distributions

a.k.a. logits of next tokens using a Language Head.

To address this issue of lengthy reasoning chains, we propose compressing reasoning processes
into a denser latent space, facilitating more efficient LLM reasoning. This requires our method to
i) compress reasoning tokens into latent space and understand these dense representations, ii)
predict subsequent dense latent representations and determine when to terminate reasoning, and iii)
maintain the ability to explore diverse latent reasoning paths and exploit shorter latent solutions.
CoLaR is designed with these three objectives in mind.

3.1 Reasoning token compression and understanding

As illustrated in Figure 2, the input to CoLaR can be represented as e = [eq, ec, ea], where [·, ·]
denotes concatenation. Here, ec represents the compressed embeddings derived from er, the em-
beddings of the original reasoning steps, and the length of compressed embeddings Lc = ⌈Lr

c ⌉. To
achieve a dynamic test-time compression factor c, we begin each training step by randomly sampling
c ∈ [1, rmax]. For every r consecutive reasoning token embeddings ek:k+r

r , the Embedding Compress
module generates a compressed embedding ekc .

A straightforward approach is to apply mean pooling directly to these embeddings. However, due to
the high dimensionality of the embedding space (e.g., 2048 dimensions), embeddings from different
tokens may be highly uncorrelated. Simply averaging these embeddings can distort the original
distribution. For instance, consider two uncorrelated distributions A ∼ N (µ, σ2) and B ∼ N (µ, σ2);
mean pooling would alter the original distribution to A+B

2 ∼ N (µ, σ2

2), effectively scaling the
variance by 1

2 . We found that, for most pre-trained LLMs, the distributions of embeddings are
centered at µ ≈ 0. Thus, to prevent distortion of the original embedding distribution of LLMs, the
Embedding Compress module only scales the sum of the c embeddings by 1√

c
.

Intuitively, it could be difficult for LLMs to understand these compressed embeddings. A simple
approach is to supervise M to predict answers with a language modeling loss, which enforces M to
model answers with compressed embedding inputs. However, this objective provides supervision
signals that are too sparse to converge to near-optimal performance. To address this issue, we train

4

CoLaR to predict the compressed reasoning tokens. Ideally, when using a compression factor c,
CoLaR should be able to read and predict tokens in groups of c. This means that for each compressed
embedding input, CoLaR should be trained to predict all c corresponding tokens. To approximate
this multi-label classification task using the single-label prediction capability of LLM’s language
model head, we randomly sample one token from each group of c reasoning tokens tk×c:(k+1)×c

r

as the ground-truth label. This approach trains the predicted logits to approximate a multimodal
distribution that represents all potential tokens in each compressed group. This process could be
formally represented as:

Lcomp = − 1

La + Lc

La+Lc∑
i=1

log p([tc, ta]
i|[ec, ea]1:i−1, eq), (1)

where tc are sampled from tr.

3.2 Next compressed embedding prediction

To enable auto-regressive latent reasoning, we train a Latent Head E (analogous to the Language
Head in LLMs) to predict the next compressed embedding, where E is a two-headed MLP. Given the
current hidden states hi

c output by M, the Latent Head E predicts both the mean µi+1
c and standard

deviation σi+1
c of the next embedding’s distribution.

Unlike previous works that predict deterministic values—which limits exploration of alternative
reasoning pathways—our approach generates a probabilistic distribution. During inference, we
employ the re-parameterization trick to sample the next embedding: êi+1

c = µ̂i+1
c + σ̂i+1

c ϵ, where ϵ
is random noise sampled from a standard Gaussian distribution N (0, 1).

The Latent Head E is primarily trained using the negative log-likelihood (NLL) loss. For a prediction
at position i, this can be formulated as:

Llatent(i) = − log p(eic | µ̂i
c, σ̂

i
c) =

(eic − µ̂i
c)

2

2σ̂i
c

+ log σ̂i
c (2)

This probabilistic formulation enables the model to capture uncertainty in the latent reasoning process
and allows for diverse reasoning pathways during generation. The total loss is computed by averaging
over all positions in the compressed embedding sequence.

However, we empirically found that CoLaR with NLL loss tends to under-fit on simpler math
reasoning datasets that require less exploration. To address this, we propose a soft-MSE loss that
combines Mean Squared Error with an entropy regularization term:

Llatent(i) = Eϵ

[
(µ̂i

c + σ̂i
cϵ− eic)

2
]︸ ︷︷ ︸

MSE term

−α

(
1

2
log(2πe

(
σ̂i
c

)2
)

)
︸ ︷︷ ︸

entropy term

, (3)

where α is a positive hyperparameter that encourages the model to predict more diverse latents with
larger σ̂ values. This approach enables CoLaR to better fit simpler datasets while maintaining its
exploration capability. We evaluate both the two forms of latent loss in our experiments. We sum up
Lcomp and Llatent as the final loss to optimize CoLaRin the SFT stage.

3.3 Exploration with reinforcement learning

The next-compressed embedding prediction training enables latent reasoning chains to mimic original
chain of thoughts. However, this paradigm inevitably limits the performance of latent reasoning
models to their CoT teachers. To further explore the potential of CoLaR, we apply a reinforcement
learning stage to our proposed method.

With the Latent Head trained to predict distributions, we can sample diverse latent reasoning pathways
and final answers for the same question q. We then apply Group Relative Policy Optimization (GRPO)
algorithm [23] to reinforce correct reasoning chains and answers while penalizing incorrect ones.

Specifically, for each question q, GRPO first samples a group of outputs {o1, o2, . . . , oG} from the
old policy πθold , where G is the group size. Each output oi consists of a latent reasoning chain and a
final answer. Then, GRPO optimizes the policy πθ by minimizing the following objective:

5

LGRPO = − 1

G

G∑
i=1

(
min

(
πθ (oi|q)
πθold (oi|q)

Ai, clip
(

πθ (oi|q)
πθold (oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

))
, (4)

where ϵ is a hyperparameter, and Ai is calculated as a group-normalized reward:

Ai =
ri − mean (r1, r2, . . . , rG)

std (r1, r2, . . . , rG)
. (5)

We simply set ri to 1 when an answer is correctly predicted and to 0 otherwise. Following DAPO [37],
we remove the KL-regularization term from original GRPO implementation for efficient training.

Notably, LGRPO is calculated at the output level, i.e., across the entire latent reasoning chain and
predicted answer, but is then averaged when applied to each latent/token. This design encourages
CoLaR to balance exploration and exploitation. For instance, in Figure 2, although both a1 = a2 =
−1, GRPO penalizes the latents/tokens in o1 more, as there are fewer reasoning steps. This encourages
CoLaR to think more deeply to explore correct reasoning paths. Likewise, the latents/tokens in o4
are reinforced more as the reward is averaged less, which encourages CoLaR to exploit those more
compact latent reasoning paths.

4 Experiments

In this section, we evaluate our proposed method CoLaR against strong baselines, analyze the
contributions of different components, and explore the impact of key parameters.

4.1 Experimental setup

Datasets and tasks. Our method is mainly trained and evaluated on GSM8k-Aug [6], an augmented
version of the Grade-School level Math reasoning dataset GSM8k [4]. GSM8k-Aug comprises
approximately 385k training samples and 1k test samples. We also evaluate the trained methods on
three out-of-domain math reasoning datasets: (1) GSM-Hard [9], a modified version of GSM8K
with approximately 1k test samples featuring larger magnitude numbers, (2) SVAMP [20] and (3)
MultiArith [21], two simpler math reasoning datasets with 1k and 600 test samples, respectively.
Moreover, we train and evaluate our method on a more challenging dataset MATH [14], which
consists of 7.5k training samples and 5k test samples, covering algebra, calculus, statistics, geometry,
linear algebra and number theory. Following [13], we use two metrics: (1) Accuracy (Acc.), which
measures the effectiveness of correctly predicting answers and (2) Reasoning chain length (# L),
which measures efficiency by averaging the number of tokens/latents predicted in reasoning chains.

Baseline methods. We primarily compare against the following baselines: (1) CoT [29], which is
fine-tuned on complete reasoning chains and answers, and performs token-level reasoning before
predicting answers during inference; (2) iCoT [5], which internalizes reasoning knowledge by
gradually removing reasoning steps, and directly predicts answers during inference; (3) Coconut [13],
which is fine-tuned with a curriculum process to gradually replace token-level reasoning steps with
latent reasoning steps, and performs six steps of latent reasoning before predicting answers; and (4)
Distill, is our reproduced version of CODI [24] based on their implementation details as the code and
model are not released. It self-distills token-level CoT into fixed-length latent reasoning steps, with
an inference stage same to Coconut.

Implementation details. (1) Base model: unless otherwise specified, all experiments use a frozen
Llama-3.2-1B-Instruct [11] backbone with a trainable LoRA module [15]. Following Coconut, all
methods are initialized with weights from CoT-SFT to accelerate training. (2) Model checkpointing:
for fair comparison, all models are trained for up to 50 epochs or 12 hours, whichever is reached first,
and we choose the checkpoint that achieves the best accuracy on the validation set as the final model.
(3) Hyper-parameters: we use the AdamW [18] optimizer with a fixed learning rate of 1e-4 and a
weight decay of 1e-2 in SFT stage, and set the learning rate to 1e-6 in RL stage. We set rmax = 5 to
train CoLaR. During inference, we configure the LLM generation with a temperature of 1 and top-p
of 0.9. All SFT training processes are conducted a total batch size of 256. For more implementation
details, please refer to Appendix Section A.

6

Table 1: Experiment results of baseline methods and CoLaR on four grade-school math reasoning
datasets. We test the methods for five times with different random seeds to report the averaged
number and 95% confidence interval (±) on accuracy (Acc. %) and reasoning chain length (# L).
CoLaR-c denotes a same CoLaR model tested with different compression factors c. For ablation
methods (marked in gray), suffixes DL, OC, MP and NLL denote CoLaR with a Deterministic Latent
head, training withOut Compressed reasoning chain in cross entropy labels, using Mean Pooling to
compress embeddings, and training with NLL loss, respectively.

GSM8k-Aug GSM-Hard SVAMP MultiArith Average
Acc. # L Acc. # L Acc. # L Acc. # L Acc. # L

CoT 49.4±.72 25.6±.11 11.9±.16 34.2±.11 59.8±.29 12.1±.03 93.2±.49 13.7±.09 53.6 21.4

iCoT 19.8±.23 0.00±.00 3.87±.16 0.00±.00 36.4±.51 0.00±.00 38.2±.66 0.00±.00 24.6 0.00
Coconut 23.1±.28 6.00±.00 5.49±.33 6.00±.00 40.7±.65 6.00±.00 41.1±.24 6.00±.00 27.6 6.00
Distill 13.3±.62 6.00±.00 2.97±.24 6.00±.00 21.7±.73 6.00±.00 19.2±.83 6.00±.00 14.3 6.00

CoLaR-5 26.8±.17 5.57±.02 5.87±.10 6.53±.01 48.4±.45 2.95±.02 86.4±.35 3.21±.01 41.7 4.57
- DL 26.7±.11 5.74±.01 5.53±.11 8.20±.04 48.3±.05 2.90±.01 84.5±.19 3.22±.01 41.3 5.02
- OC 24.8±.27 5.14±.12 6.46±.11 5.49±.06 46.5±.18 2.85±.01 85.9±.22 3.13±.01 40.1 4.15
- MP 20.6±.22 5.61±.02 4.20±.07 6.18±.02 47.7±.41 2.96±.01 80.7±.59 3.20±.01 38.3 4.49
- NLL 20.3±.64 5.99±.06 4.52±.39 16.6±.25 43.9±.43 3.06±.03 81.6±.23 3.20±.02 37.6 8.01

CoLaR-2 40.1±.20 12.7±.02 9.08±.03 14.0±.07 54.9±.20 6.11±.01 91.3±.12 7.35±.01 48.8 10.0
- DL 39.7±.18 12.8±.01 8.84±.06 17.2±.09 54.3±.23 6.10±.01 90.1±.17 7.46±.01 48.2 10.9
- OC 39.1±.33 12.3±.04 8.96±.01 16.9±.13 54.7±.18 6.08±.02 90.1±.25 7.36±.01 48.2 10.6
- MP 36.9±.30 12.4±.02 8.46±.19 12.0±.05 54.1±.42 6.14±.01 86.8±.20 7.43±.01 46.6 9.49
- NLL 32.3±.51 12.2±.04 7.57±.16 16.6±.25 51.0±.24 5.50±.03 88.3±.41 7.09±.02 44.8 10.3

4.2 Comparison to baseline methods on GSM datasets

Table 1 presents a comparison of CoLaR against state-of-the-art baseline methods on four grade-
school level math reasoning datasets. CoLaR demonstrates consistent performance gains over existing
latent-based reasoning approaches. Notably, CoLaR with a test-time compression factor of 5 (CoLaR-
5) achieves a 14.1% improvement in average accuracy compared to Coconut, and does so with fewer
reasoning steps (4.57 vs. 6.00). This advantage stems from our effective next-compressed embedding
prediction objective, which efficiently compresses the reasoning process into compact and informative
latent variables. This allows for superior performance while maintaining a high compression ratio.

Leveraging the dynamic compression design, we evaluated the same trained model with a different
test-time compression factor of 2 (CoLaR-2). The resulting accuracy of 48.8% represents only a 4.8%
decrease compared to explicit CoT, but with a significant 53% reduction in reasoning chain length.

Furthermore, CoLaR exhibits robust out-of-domain generalization capabilities compared to other
latent-based baselines, particularly on the MultiArith dataset, where CoLaR shows minimal perfor-
mance degradation compared to CoT, while other latent-based methods suffer significant drops.

4.3 Ablation studies of on GSM datasets

We conduct ablation studies with four experimental settings on the GSM datasets, with results
illustrated in the gray areas of Table 1. Three key findings emerge:

(1) Simple math questions require balanced exploration capability. Comparing CoLaR with
CoLaR-DL (trained with a deterministic latent head) and CoLaR-NLL (trained with NLL loss), we
find that a deterministic latent head fits well on simple math datasets but lacks test-time exploration
potential, leading to suboptimal performance. Conversely, training CoLaR with NLL loss introduces
excessive randomness, resulting in poor fit on the training data and worse overall performance.

(2) Dense reasoning supervision signals are crucial. When comparing CoLaR with CoLaR-OC,
where we remove the tokens of compressed reasoning chain tc and use only the final answer tokens ta
as the language modeling supervision signal, performance degrades by 1.6% and 0.6% at compression
factors c = 5 and c = 2, respectively. This confirms the importance of dense supervision signals
when training latent-based reasoning methods.

(3) Latents under different compression factors should share the same space. CoLaR-MP,
which applies Mean Pooling on the compression embeddings, shows 3.4% and 2.2% performance
degradation compared to our method. This decline is primarily attributed to distribution shifts caused
by the compression process, which introduces confusion during model training.

7

Table 2: Experimental results on the challenging MATH dataset. We evaluate our proposed method
CoLaR on two base models and three settings: -DL denotes using a Deterministic Latent head,
-NLL denotes CoLaR trained with NLL Loss as Llatent, which is our main method, and - /w GRPO
denotes the post-trained CoLaR-NLL with GRPO reinforcement learning process. We calculate
the performance gain between CoLaR-NLL and CoLaR-NLL-RL to highlight the effectiveness of
reinforcement learning. Compression factor c and # Lmax are set to 2 and 128, respectively.

DeepSeek-R1-Distill-Qwen-1.5B Llama-3.2-1B-Instruct
Acc. #L Acc. #L

CoT 23.5±.29 209±1.6 9.71±.33 210±1.4

CoLaR-DL 9.04±.12 99.4±.25 3.07±.28 134±.46

CoLaR-NLL 8.94±.21 56.8±.14 5.28±.16 83.1±.52

CoLaR-NLL-RL 14.3±.25 (5.36% ↑) 9.79±.40 (82.8% ↓) 7.08±.07 (1.80% ↑) 16.1±.14 (80.6% ↓)
- w/o average 13.8±.14 128±.00 0.00±.00 128.0±.00

Ƹ𝑒𝑐
1

‘<<’

‘21’

‘ <<’

‘22’

‘20’

Ƹ𝑒𝑐
2

‘/’

‘7’

‘8’

‘6’

‘5’

Ƹ𝑒𝑐
3

‘3’

‘=’

‘2’

‘4’

‘1’

Ƹ𝑒𝑐
4

‘<<’

‘>>’

‘ <<’

‘>> ’

‘>>\n’

Ƹ𝑒𝑐
5

‘*’

‘5’

‘3’

‘4’

‘2’

Ƹ𝑒𝑐
6

‘3’

‘=’

‘2’

‘4’

‘1’

Ƹ𝑒𝑐
7

‘>>’

‘15’

‘ >>’

‘14’

‘16’

Ƹ𝑒𝑐
1

‘=’

‘/’

‘7’

‘21’

‘2’

Ƹ𝑒𝑐
2

‘3’

‘5’

‘4’

‘2’

‘<<’

Ƹ𝑒𝑐
3

‘3’

‘=’

‘15’

‘2’

‘4’

CoLaR Model

Most

Similar

Less

Similar

𝑐 = 2 𝑐 = 5

Question: “A set of 7 spoons costs $21. If each spoon would be sold separately, how much would 5 spoons cost?”

Ground-truth reasoning chain (not input to model): “<<21/7=3>>\n<<5*3=15>>”

Embedding retrieval (top-5/128k)

Figure 3: A case study on the GSM-8k validation set. We set the compression factor c to 2 and 5,
which produce two latent reasoning chains in length 7 and 3, respectively. We then retrieve tokens
with the predicted latents by embedding cosine similarity, and underscore those informative tokens.

4.4 Reinforcement learning results on the MATH dataset

We train and evaluate CoLaR with RL on the challenging MATH dataset, using two base models [12,
34, 11]. The results are presented in Table 2. Our analysis of the results yields three key conclusions:

(1) Exploration is crucial for difficult problems. The deterministic latent reasoning process of
CoLaR-DL exhibits accuracy comparable to or worse than CoLaR-NLL despite longer reasoning
chains. This suggests that challenging math problems necessitate exploration of multiple potential
solutions, rather than deterministic, step-by-step reasoning. Furthermore, post-training CoLaR-NLL
with RL yields significant gains, achieving up to 5.36% higher accuracy and an 82.8% reduction in
reasoning length. This highlights the potential of RL and the importance of balancing exploration
and exploitation for latent reasoning models.

(2) Averaged rewards promote exploitation. When training without this averaging (i.e., simply
dividing the loss by a constant to normalize the loss scale), we observed that while Qwen-1.5B
exhibited a performance increase (from 8.94% to 13.8%) similar to averaging the loss, the reasoning
length rapidly converged to the pre-defined upper limit. Moreover, Llama-1B’s performance tend
towards collapse. This suggests the averaged design encourages CoLaR to exploit more efficient
reasoning pathways.

(3) Base model quality impacts RL effectiveness. Supervised fine-tuning on CoT resulted in varying
performance across the two base LLMs. Meanwhile, CoLaR also demonstrates a significantly larger
performance gain on RL when using the higher-quality Qwen-1.5B compared to Llama-1B. This

8

1 2 3 4 5
Compression Factor (c)

20

25

30

35

40

45

50

A
cc

ur
ac

y
(%

)

0

5

10

15

20

25

30

#L

Figure 4: Accuracy and reasoning chain length
(# L) of CoLaR on GSM8k dataset when trained
with random c ∈ [1, 5] (the lines) or trained
solely on specific c (the bars).

1 2 3 4 5 6 7
Compression Factor (c)

10

20

30

40

A
cc

ur
ac

y
(%

)

5

10

15

20

25

#L

Figure 5: Accuracy and reasoning chain length
(# L) of CoLaR on GSM8k dataset when trained
with c ∈ {1, 3, 5, 7} and tested with extra c ∈
{2, 4, 6} (under gray bars).

Table 3: Experimental results of CoLaR-2 and TokenSkip on GSM-8k, MATH-500, and GPQA.

Acc. (%)/#L CoT-1B CoLaR-1B CoT-8B CoLaR-8B CoLaR-8B-RL TokenSkip-8B

GSM-8k 47.5/92.6 40.4/49.2 76.5/93.6 70.8/47.3 71.9/13.3 78.2/113
MATH-500 28.6/176 19.8/84.6 54.6/168 45.8/67.7 52.4/17.6 40.2/292
GPQA 26.4/232 26.4/84.1 35.7/216 32.4/101 37.5/66.7 -

observation aligns with the findings of [8], which suggests that RL substantially activates inherent
reasoning capabilities, indicating the importance of base model quality.

We also observed that during the RL training process, CoLaR tends to think longer initially with a
rapid rise in accuracy, followed by a phase of thinking shorter accompanied by a more stable increase
in accuracy, aligning with the discussion in Section 3.3. Due to space constraints, the detailed training
curves are provided in Appendix C.

4.5 Scaling CoLaR on larger base model

We scale CoLaR to the 1-Billion and 8-Billion parameter Llama checkpoints to verify that its
compression and accuracy gains grow with model capacity. The 8B model also matches the backbone
used by TokenSkip, allowing a direct comparison under its published protocol. Experiments are
run on GSM-8k, MATH-500 which are slightly different to Section 4.1 to align with TokenSkip’s
settings) and the out-of-domain GPQA benchmark (chemistry, biology and physics). The results are
shown in Table 3. Moving from 1 B to 8 B parameters raises CoLaR’s accuracy on every dataset
while keeping the reasoning chain roughly half the length of the CoT teacher. Reinforcement learning
delivers further improvements: +1.1% on GSM-8k, +6.6% on MATH-500 and +5.1% on GPQA,
again with large additional compression. Most notably, CoLaR-8B-RL reaches 37.5% on GPQA,
surpassing its 35.7% CoT teacher and shortening the reasoning chain by 69%, confirming that latent
RL remains effective as models grow.

4.6 Interpreting chains of latent thoughts

To quantatively illustate the effectiveness of our proposed CoLaR, and make the latent reasoning
process more transparent, we conduct a case study of CoLaR on the GSM8k validation set. The
results are illlustrated in Figure 3.

As latent variables are fundamentally scaled sum of word token embeddings, we could directly
calculate the cosine simility between latent variables and the enitre LLM embedding matrix:

• When prompted with compression factor c = 2, CoLaR auto-regressively produces seven
latent variables, and then automatically terminates reasoning process. By calculating
similarity scores, each latent variable is capable of retrieving meaningful words such as “«”,

9

“21”, and the entire chain of latent thoughts could be interpretered as “«21/7=3> «5*3=15>”,
which exactly matches the correct calculation process.

• When prompted with higher compression factor c = 5, less informative tokens such as “«”
are ignored, demonstrating both the effectiveness and efficiency of our proposed dynamic
compression mechanism.

4.7 Analyses on dynamic compression factors

We investigate the generalization capability of CoLaR across different compression factors c. Two
key findings emerge from our analyses:

First, as illustrated in Figure 4, for each test-time compression factor (except from c = 5), Co-
LaR trained with random c ∈ [1, 5] consistently outperforms models trained on a single compression
factor. These results demonstrate that exposure to diverse training-time compression factors produces
complementary benefits for generalization. For example, training with c = 2 also improves the
performance of testing with c = 4, highlighting the effectiveness of our dynamic training process.

Second, as shown in Figure 5, we train CoLaR with c ∈ {1, 3, 5, 7} and evaluate it with previously
unseen compression factors c ∈ {2, 4, 6}. We find that CoLaR successfully generalizes to these
unseen compression factors, maintaining expected actual compression rates. Moreover, though worse
in absolute values, the slope of the performance curve on out-of-domain compression factors closely
resembles that of in-domain factors, suggesting robust interpolation capabilities.

5 Limitations

While CoLaR demonstrates superior effectiveness and efficiency in latent reasoning, we acknowledge
two important limitations: (1) Though CoLaR surpassing its CoT teacher on GPQA, on the remaining
benchmarks, the overall performance of CoLaR currently approximates explicit CoT reasoning
without surpassing it. (2) We observe that CoLaR struggles to generalize to non-integer compression
factors (e.g., c = 1.5) or to values greater than the maximum training compression factor rmax. This
limitation stems primarily from the discrete tokenization constraints inherent to large language models,
which restrict the continuous representation of compression factors. (3) Beyond technical limitations,
our work on enhancing reasoning capabilities in LLMs has significant societal implications. On the
positive side, CoLaR could significantly boost the efficiency of existing LLM services. However,
potential negative impacts include the risk of amplifying existing biases in reasoning processes
and possible misuse for generating more convincing misinformation. To mitigate these risks, we
recommend careful monitoring of downstream applications.

6 Conclusion

In this paper, we introduce Compressed Latent Reasoning (CoLaR), a framework that dynamically
compresses LLM reasoning chains into latent space while maintaining exploration-exploitation
capabilities. Our method centers on three key innovations: (1) compressed latent reasoning through
an auxiliary next compressed embedding prediction task that encapsulates the semantics of multiple
tokens, (2) dynamic training and inference with variable compression factors that allows for flexible
reasoning chain lengths and fully parallelized processing, and (3) a probabilistic latent head for
reinforcement learning that enables exploration of diverse reasoning pathways for higher accuracy
while exploiting shorter reasoning chains for efficiency. Our experimental results demonstrate that
CoLaR achieves a 14.1% improvement in accuracy compared to state-of-the-art latent-based reasoning
methods, while reducing reasoning chain length by 53.3% with only a 4.8% performance degradation
relative to explicit CoT. On the challenging MATH dataset, reinforcement learning techniques further
boost CoLaR’s performance by 5.36% while dramatically reducing reasoning chain length by 82.8%.
Future work will focus on addressing non-integer compression factors, exploring more sophisticated
reinforcement learning approaches, and extending our dynamic compression mechanism to more
diverse reasoning tasks beyond mathematics.

Acknowledgements. This work is supported by the Beijing Natural Science Foundation (L233008)
and Xiaomi Inc. We acknowledge the anonymous reviewers for their helpful comments.

10

References
[1] Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning

with adaptive cognitive-inspired sketching. arXiv preprint arXiv:2503.05179, 2025.

[2] Yilong Chen, Junyuan Shang, Zhenyu Zhang, Yanxi Xie, Jiawei Sheng, Tingwen Liu, Shuohuan
Wang, Yu Sun, Hua Wu, and Haifeng Wang. Inner thinking transformer: Leveraging dynamic
depth scaling to foster adaptive internal thinking. arXiv preprint arXiv:2502.13842, 2025.

[3] Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning
through dense representations. arXiv preprint arXiv:2412.13171, 2024.

[4] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[5] Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to
internalize cot step by step. arXiv preprint arXiv:2405.14838, 2024.

[6] Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and
Stuart Shieber. Implicit chain of thought reasoning via knowledge distillation. arXiv preprint
arXiv:2311.01460, 2023.

[7] Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao Wang. Efficient reasoning models: A
survey. arXiv preprint arXiv:2504.10903, 2025.

[8] Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman.
Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective
stars. arXiv preprint arXiv:2503.01307, 2025.

[9] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference on
Machine Learning, pages 10764–10799. PMLR, 2023.

[10] Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and
Vaishnavh Nagarajan. Think before you speak: Training language models with pause tokens.
arXiv preprint arXiv:2310.02226, 2023.

[11] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[12] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[13] Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

[14] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[15] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

[16] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

[17] Zongzhao Li, Zongyang Ma, Mingze Li, Songyou Li, Yu Rong, Tingyang Xu, Ziqi Zhang,
Deli Zhao, and Wenbing Huang. Star-r1: Spacial transformation reasoning by reinforcing
multimodal llms. arXiv preprint arXiv:2505.15804, 2025.

11

[18] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[19] Amirkeivan Mohtashami, Matteo Pagliardini, and Martin Jaggi. Cotformer: More tokens
with attention make up for less depth. In Workshop on Advancing Neural Network Training:
Computational Efficiency, Scalability, and Resource Optimization (WANT@ NeurIPS 2023),
2023.

[20] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? arXiv preprint arXiv:2103.07191, 2021.

[21] Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages 1743–1752,
2015.

[22] Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

[23] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[24] Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi:
Compressing chain-of-thought into continuous space via self-distillation. arXiv preprint
arXiv:2502.21074, 2025.

[25] DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning. arXiv preprint
arXiv:2502.03275, 2025.

[26] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi
Liu, Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on
efficient reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

[27] Wenhui Tan, Boyuan Li, Chuhao Jin, Wenbing Huang, Xiting Wang, and Ruihua Song. Think
then react: Towards unconstrained action-to-reaction motion generation. In The Thirteenth
International Conference on Learning Representations, 2025.

[28] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement
learning with llms. arXiv preprint arXiv:2501.12599, 2025.

[29] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[30] Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

[31] Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden,
Duy Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, et al. Towards system 2 reasoning
in llms: Learning how to think with meta chain-of-though. arXiv preprint arXiv:2501.04682,
2025.

[32] Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by
writing less. arXiv preprint arXiv:2502.18600, 2025.

[33] Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with llms. arXiv preprint arXiv:2502.12134, 2025.

[34] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

12

[35] Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and
Weiping Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895,
2025.

[36] Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is
more for reasoning. arXiv preprint arXiv:2502.03387, 2025.

[37] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning
system at scale. arXiv preprint arXiv:2503.14476, 2025.

[38] Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang,
TianTian Fan, Zhengyin Du, Xiangpeng Wei, et al. Vapo: Efficient and reliable reinforcement
learning for advanced reasoning tasks. arXiv preprint arXiv:2504.05118, 2025.

[39] Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

13

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly articulate our main contribution of
developing a novel approach for compressing explicit reasoning chains into latent space,
accurately reflecting the scope of theoretical foundations and empirical results across the
mathematical reasoning benchmarks evaluated in our experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a separate “Limitations” section discussion the main limitations on
performance compared to explicit CoT methods, and worse generalization capability on
certain compression factors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

14

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper presents a framework for latent reasoning compression but does not
include formal theorems with proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper provides comprehensive implementation details necessary for repro-
ducing the proposed method. We include detailed descriptions of the model architecture,
training procedure, hyperparameters, and evaluation methodology. Additionally, we will
open source our complete codebase, including the environment setup, model implemen-
tation, training pipeline, and evaluation framework, to facilitate direct replication of our
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

15

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We provide comprehensive implementation details to reproduce our method,
but we have chosen not to include anonymous URLs to our code repository at the submission
stage, to balance scientific transparency with the appropriate protection of intellectual
property. We make a strong commitment to release our complete codebase immediately upon
acceptance of the paper, including model implementation, training procedures, evaluation
framework, and necessary scripts to reproduce all experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide comprehensive methodological details, hyperparameter specifica-
tions, and experimental protocols for implementation in the manuscript and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: All experimental results in our paper are reported as averages across five
independent runs with different random seeds. We include 95% confidence intervals for all
numerical results, calculated using the standard error of the mean multiplied by 1.96. These
confidence intervals are visually represented in our figures as error bars and explicitly stated
with ± in our tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide complete information about the computational resources used in
our experiments in the Appendix, including hardware setup, virtual environment confugura-
tion, and total training hours.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully complies with the NeurIPS Code of Ethics through our
transparent methodology, proper acknowledgment of prior work, and responsible data usage.
We have documented our approach thoroughly, and maintained scientific integrity throughout
our work on enhancing reasoning capabilities in Large Language Models.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper discusses both positive societal impacts (improved reasoning capa-
bilities that could enhance decision support systems and educational tools) and potential
negative implications (risks of amplifying existing biases in reasoning processes and possible
misuse for generating misleading content). We outline mitigation strategies including careful
monitoring of downstream applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper is primarily analytical in nature, focusing on methods to enhance
and evaluate reasoning capabilities within existing models rather than releasing new models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

18

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The pre-trained LLMs and datasets we use are fully open-sourced and correctly
cited in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We conduct experiments using existing pre-trained LLMs and datasets, but do
not create new assets as part of this publication.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Since LLMs form the core subject of our research, we have thoroughly
documented all aspects of their usage in our methodology section.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A More implementation details

In this section, we provide comprehensive details regarding our model architecture, training hyperpa-
rameters, and dataset specifications.

Model hyperparameters. For our experiments, we employ either a frozen LLama-3.2-1B-Instruct or
DeepSeek-distill-Qwen-1.5B as our LLM backbone, augmented with a tunable LoRA module. All
LoRA modules are configured with α = 32 and r = 128 consistently across all experiments. Our
method incorporates a Latent Head, implemented as a three-layered MLP with hidden dimensions
corresponding to the LLM backbone’s dimension (d = 2048).

Training hyperparameters. We utilize the AdamW optimizer with a weight decay of 1e-2 throughout
our experiments. The learning rate is set at 1e-4 for supervised fine-tuning (SFT) and 1e-6 for
reinforcement learning (RL). For SFT experiments, we leverage Distributed Data Parallel across eight
A100 GPUs with a total batch size of 256. The RL experiments are conducted on a single A100 GPU
with a rollout batch size of 8, optimizer step batch size of 4, group size G of 8, and clip ϵ of 0.2. To
ensure reproducibility, we fix the random seed of all libraries (Python, CUDA, PyTorch, and NumPy)
to 0 for training processes. For evaluation, we use five distinct runs with random seeds sequentially
set from 0 to 4.

Notably, when training the Latent Head, we normalize the target (i.e., the ground-truth compressed
embeddings) to ensure training stability. This normalization is implemented by dividing the target by
the standard deviation σe of the embeddings. Since the embedding distributions are already centered
at approximately zero (µ ≈ 0), we do not apply any shift during normalization. During inference, we
multiply the predicted embeddings by the standard deviation to rescale them to match the LLM’s
original embedding distribution. These statistics can be either learned during training or calculated
in advance; we opt for the latter approach for simplicity. We observe model-specific values, with
σe ≈ 0.02 for Llama-3.2-1B-Instruct and σe ≈ 0.03 for Qwen-1.5B. This normalization process
is critical for maintaining numerical stability while preserving the relative relationships between
embedding dimensions.

Dataset information. We evaluate our method on four grade-school mathematics datasets—GSM8K-
Aug, GSM8k-Hard, SVAMP, and MultiArith—as well as the more challenging MATH dataset for
advanced mathematical reasoning. Since the original MATH dataset does not provide an official
validation set, we randomly shuffle the training set and allocate 10% of the samples for validation
purposes.

0 2 4 6 8 10 12 14
LLM layer index

0.6

0.7

0.8

0.9

1.0

La
ye

rw
is

e
no

rm
 d

iff
er

en
ce

c=1
c=2
c=3
c=4
c=5

Figure 6: Layer-wise norm differences from CoLaR-1 to CoLaR-5.

21

B Layer-wise analyses on compression factors

We further investigate how the compression factor c influences activation patterns across LLM layers,
with results shown in Figure 6. Specifically, we tested CoLaR on the same sample as in Section 4.6
with compression factors ranging from 1 to 5, calculating the relative activation norm differences
between consecutive LLM layers.

Our analysis reveals distinct patterns across different network depths:

• Shallow layers (0-3, near input): CoLaR shows higher activation on smaller compression
factors with more pronounced layer-wise changes in magnitude.

• Intermediate layers (3-9): Models with different compression factors exhibit similar
behavior.

• Deeper layers (9-15, near output): Higher compression factors maintain stronger activation
patterns.

This phenomenon can be explained as follows: when predicting less informative tokens (e.g., “«”) with
lower compression factors (especially with c = 1, which uses no compression), the model requires
minimal “thinking” and can determine the next token using primarily shallow layers. Consequently,
computation in deeper layers is largely underutilized.

In contrast, higher compression factors enable CoLaR to process information more densely, with
each latent representation carrying richer semantic content. This requires deeper layers to remain
actively engaged in analyzing the condensed information and predicting subsequent compressed
latents, thereby making more efficient use of the model’s computational capacity. These findings
align with observations from previous work on internal thinking processes in transformer models
[2, 22].

Figure 7: The validation accuracy and latent reasoning chain length curve on MATH dataset.

C RL training curves

Figure 7 presents the training curves from our reinforcement learning phase. The accuracy on
the validation set exhibits a distinct three-phase pattern. In the initial exploration phase, accuracy
increases rapidly from 9% to 14%, accompanied by an expansion of latent reasoning steps from 40 to
60. During this phase, the GRPO algorithm primarily encourages CoLaR to explore more extensively
to discover correct reasoning pathways.

In the subsequent exploitation phase, validation accuracy fluctuates between 14% and 16%, while the
latent reasoning length decreases from 60 to 20. With the per-token averaged reward/loss, the GRPO
algorithm reinforces CoLaR to exploit shorter yet effective reasoning pathways.

Finally, as CoLaR begins to overfit, our early-stopping strategy is triggered to preserve the best-
performing checkpoint at approximately 4k steps.

D Scaling properties of CoLaR

Figure 8 illustrates the performance characteristics of CoLaR when implemented with foundation
models of varying parameter counts, ranging from 1 billion to 8 billion parameters. Our results

22

1 2 3 4 5
Compression Factor (c)

30

40

50

60

70

A
cc

ur
ac

y
(%

)

Llama3-1B
Llama3-3B
Llama3-8B

Figure 8: Performance of CoLaR when implemented with base LLMs ranging from 1B to 8B
parameters.

demonstrate that CoLaR follows established neural scaling laws, with performance improvements
correlating predictably with increases in the underlying model size. This consistent scaling behavior
suggests that the benefits of our approach extend proportionally across different model scales,
indicating CoLaR’s architectural effectiveness is not limited to specific parameter regimes.

23

	Introduction
	Related Work
	Explicit LLM reasoning
	Latent LLM reasoning

	Method
	Reasoning token compression and understanding
	Next compressed embedding prediction
	Exploration with reinforcement learning

	Experiments
	Experimental setup
	Comparison to baseline methods on GSM datasets
	Ablation studies of on GSM datasets
	Reinforcement learning results on the MATH dataset
	Scaling CoLaR on larger base model
	Interpreting chains of latent thoughts
	Analyses on dynamic compression factors

	Limitations
	Conclusion
	More implementation details
	Layer-wise analyses on compression factors
	RL training curves
	Scaling properties of CoLaR

