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Abstract

With the rapid development of brain-computer001
interfaces (BCI) in recent years, the electroen-002
cephalography (EEG) to text task has drawn003
increasing attention. Previous methods have004
defined it as a sequence-to-sequence transla-005
tion task. However, their models, trained using006
teacher-forcing strategies, fail to extract and007
utilize EEG information. To address this issue,008
we propose a novel framework in this paper,009
which innovatively treats the EEG-to-text task010
as a fine-grained controllable text generation011
task. Specifically, since large language models012
(LLMs) have strong text generation capabilities,013
we treat the LLM as a "brain" and guide it to014
generate desired sentences by leveraging EEG015
representations that are aligned with the seman-016
tic space of text. Therefore, our approach fo-017
cuses on training an EEG representation model018
that can effectively align EEG representation019
with text semantics, avoiding the limitations020
introduced by teacher-forcing strategies. Ex-021
tensive experiments on the ZuCo benchmark022
demonstrate the effectiveness of our approach,023
which achieves state-of-the-art performance in024
multi-subject and single-subject settings. Fur-025
thermore, experimental results in cross-subject026
scenarios further verify that our method has a027
strong generalization ability and can be applied028
to unseen subjects.029

1 Introduction030

Devastating neurological diseases and traumatic031

brain injuries can cause patients to lose the abil-032

ity to communicate (Stanger and Cawley, 1996;033

Pels et al., 2017), even though their language and034

cognitive abilities may remain intact. Therefore,035

the high expectations for brain-computer interfaces036

(BCIs) have been raised. Some recent studies (Anu-037

manchipalli et al., 2019; Sun et al., 2019; Willett038

et al., 2021) in this field have demonstrated that we039

can decode brain signals into concrete and under-040

standable representations, such as speech or text.041
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Figure 1: Illustration of the EEG-to-Text task. A sub-
ject reads a sentence on a screen while EEG signals are
collected and eye-tracking is performed. Eye-tracking
fixations are used to divide EEG segments correspond-
ing to different words. These word-level EEG segments
are input into the model to decode the sentences.

However, these works usually rely on intracranial 042

signals and require invasive neurosurgery, which is 043

costly and limits their application. In contrast, elec- 044

troencephalography (EEG) signals are non-invasive 045

and easy to record, so EEG-to-Text tasks have 046

gained much attention. 047

Early EEG-to-Text research was limited to de- 048

coding small closed vocabularies (Makin et al., 049

2019; Nieto et al., 2022), which were insufficient 050

for natural communication. Therefore, Wang and Ji 051

(2021) proposed an open vocabulary EEG-to-Text 052

task and treated it as a sequence-to-sequence trans- 053

lation task. They built an encoder-decoder struc- 054

tured EEG-to-Text model that translates word-level 055

EEG feature sequences into corresponding sen- 056

tences (as shown in Figure 1). Subsequently, signif- 057

icant efforts (Zhou et al., 2023; Feng et al., 2023; 058

Duan et al., 2023) have followed this paradigm, 059

aiming to improve the decoding accuracy of EEG- 060

to-text translation models. 061

Although these methods can enhance perfor- 062

mance metrics, as recently discovered by Jo et al. 063

(2024), their experimental settings have a crucial 064
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Figure 2: The overall training process of our proposed EEG representation model. We obtain word-level EEG and
text semantic representations through the EEG representation model and the pre-trained BERT model, respectively.
During training, we freeze the BERT parameters and optimize the EEG representation model through dual contrastive
learning to align the EEG representation to the text semantic space.

limitation. Specifically, they still employed the065

teacher-forcing strategy during evaluation, which066

led to exaggerated performance. Furthermore, the067

experimental results in Jo et al.’s paper show that068

the EEG-to-Text model (Wang and Ji, 2021) per-069

forms similarly on pure noise compared to actual070

EEG data, which indicates that the model does071

not really utilize EEG signals. We believe this is072

due to the teacher-forcing strategy employed dur-073

ing training. EEG signals contain much noise, so074

compared to the context information provided by075

teacher-forcing, the help supplied by EEG is neg-076

ligible. Therefore, the model gradually relies only077

on contextual information in the decoder to pre-078

dict subsequent words while disregarding the EEG079

information provided by the encoder.080

To address the drawbacks of previous methods,081

this paper proposes a novel approach by transform-082

ing the EEG-to-Text task into a fine-grained con-083

trollable text generation task based on large lan-084

guage models (LLMs). LLMs have excellent text085

generation capabilities and can generate fluent and086

diverse texts (OpenAI, 2023; Touvron et al., 2023).087

Therefore, we can think of LLM as a brain and088

use EEG signals to guide it in generating corre-089

sponding text. Specifically, we designed an EEG090

signal representation model to extract valuable in-091

formation from word-level EEG signals and gen-092

erate EEG representations. Then, we obtain the093

semantic representation for each word using the094

pre-trained BERT model (Devlin et al., 2018) and095

propose a dual contrastive learning method to align096

the EEG representation with the semantic represen-097

tation of the corresponding word. Finally, during098

inference, we allow LLMs to generate multiple can-099

didate words at each decoding step and select the100

word whose semantics are closest to the current101

EEG representation as the final result.102

To the best of our knowledge, this is the first103

paper that treats the EEG-to-Text task as a control- 104

lable text generation task and proposes a compre- 105

hensive solution. By aligning semantics in EEG 106

signals and language, our method allows the EEG 107

representation model to thoroughly learn how to 108

effectively extract and utilize the information con- 109

tained in EEG signals, avoiding the training col- 110

lapse caused by teacher-forcing. Furthermore, dur- 111

ing the decoding stage, our method uses EEG sig- 112

nals to stimulate the "brain" to continuously gen- 113

erate corresponding text, making full use of the 114

powerful capabilities of LLMs. 115

Extensive experiments on the ZuCo (Hollenstein 116

et al., 2018) benchmark demonstrate the effective- 117

ness of our method. In multi-subject and single- 118

subject scenarios, our method performs signifi- 119

cantly better than the previous method, indicating 120

that our method can effectively align EEG signals 121

with text semantics and guide the LLMs to gener- 122

ate correct text. More encouragingly, our method 123

achieves superior performance in the cross-subject 124

setting, demonstrating excellent generalization and 125

applicability to unseen subjects. In summary: 126

• This paper addresses the shortcomings of pre- 127

vious methods and first regards the EEG-to- 128

Text task as a fine-grained controllable genera- 129

tion task, enabling the model to better capture 130

and utilize the information in EEG. 131

• We propose an innovative framework to ac- 132

complish the EEG-to-Text task. We treat the 133

LLM as a brain and guide it in generating cor- 134

rect and fluent text by leveraging EEG signals 135

aligned with the text semantics. 136

• We evaluate our approach on the ZuCo bench- 137

mark. Our method achieves state-of-the-art 138

performance in various settings and demon- 139

strates excellent generalizability, which veri- 140

fies the strong potential of our approach. 141

2



2 Method142

In this section, we provide a comprehensive in-143

troduction to our method. First, we highlight the144

shortcomings of the previous EEG-to-Text task def-145

inition and propose a new solution in Section 2.1.146

Then, in Section 2.2, we describe the training pro-147

cess of our EEG representation model. Finally,148

in Section 2.3, we present the decoding algorithm149

that uses word-level EEG signals to guide LLMs150

in generating desired sentences.151

2.1 Task Definition152

As shown in Figure 1, the EEG signals are col-153

lected during natural reading, and eye-tracking154

fixations are used to divide word-level EEG seg-155

ments for the EEG-to-Text task. Similar to previ-156

ous works (Wang and Ji, 2021; Feng et al., 2023),157

we use the statistical results of each word-level158

EEG segment in eight frequency band filters, theta1159

(4–6Hz), theta2 (6.5–8 Hz), alpha1 (8.5–10 Hz),160

alpha2 (10.5–13 Hz), beta1 (13.5–18Hz), beta2161

(18.5–30Hz), gamma1 (30.5–40 Hz) and gamma2162

(40–49.5 Hz), as its feature vector. Although differ-163

ent word-level segments may have different EEG164

window sizes, the final feature vector dimensions165

remain the same. Therefore, the input of the EEG-166

to-Text model is a word-level EEG feature vector167

sequence E = [e1, e2, ..., em], which may contain168

m feature vectors. Our goal is to decode its corre-169

sponding text sequence T = [t1, t2, ..., tm].170

Previous studies (Wang and Ji, 2021; Feng et al.,171

2023; Duan et al., 2023; Zhou et al., 2023; Xi172

et al., 2023) have defined this task as a sequence-to-173

sequence translation task, where the EEG sequence174

E is the source sentence and the text sequence T is175

the target sentence, and maximize the probability176

of the decoded sentence:177

p(T | E) =

m∏
i=1

p (ti | E, t<i) (1)178

Similar to traditional machine translation models,179

these methods employ the teacher-forcing strategy180

during training, inputting the ground truth sequence181

into the decoder. As a result, the model predicts the182

current token based on all previous ground truth183

tokens t<i and the EEG sequence E. However,184

due to the low signal-to-noise ratio of EEG sig-185

nals, the encoder of the EEG-to-text translation186

model cannot effectively extract valuable informa-187

tion. Consequently, the contribution of the EEG188

sequence to prediction is much smaller than that189

of the previous ground truth tokens. Therefore, 190

previous models are prone to degenerate into lan- 191

guage models during training, focusing solely on 192

language modeling in the decoder and failing to 193

complete the EEG-to-text task. 194

Different from previous approaches, in this pa- 195

per, we define the EEG-to-Text task as a fine- 196

grained controllable text generation task. Since 197

LLMs have powerful text generation capabilities, 198

we can regard them as human brains. Therefore, 199

the key to completing the EEG-to-Text task is con- 200

trolling LLMs to generate correct text T through 201

EEG sequences E. Since fine-tuning LLMs is 202

expensive, we adopt an efficient post-processing 203

paradigm (Zhang et al., 2022) to guide LLMs in 204

generating specific content. Specifically, we align 205

each word-level EEG representation with the cor- 206

responding text semantics. Then, at each decoding 207

step, the LLM generates multiple candidate words, 208

and we select the word closest to the current EEG 209

representation as the final output. Consequently, 210

instead of using the teacher-forcing strategy to train 211

a translation model, we focus on training a robust 212

EEG representation model that can effectively ex- 213

tract and utilize information from EEG signals. 214

2.2 Model Training 215

Model Architecture We constructed an effective 216

EEG representation model to extract valuable se- 217

mantic information from word-level EEG features 218

and output the corresponding word-level EEG rep- 219

resentation vector sequence R = [r1, r2, ..., rm]. 220

Specifically, our EEG representation model con- 221

sists of three main modules: embedding layer, 222

Transformer encoder (Vaswani et al., 2017), and 223

output layer. In particular, the embedding layer 224

consists of an MLP layer and a learnable positional 225

encoding, which transforms the dimension of the 226

input word-level EEG features and incorporates 227

position information. The Transformer encoder is 228

used to capture contextual dependencies between 229

word-level EEG features within the same sentence 230

through the attention mechanism. The ablation 231

study (Appendix C.1) shows that the representation, 232

in conjunction with contextual information, is sig- 233

nificantly better than independent representations. 234

The output layer consists of an MLP layer, which 235

controls the dimension of the final representation 236

vector to match the text semantic vector. Formally, 237

the overall model is formulated as follows: 238

R = MLP2(Tansformer(MLP1(E)+P ) (2) 239
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LLM predict candidate words based on the previous result. Then, we calculate the cosine similarity between the
candidate’s semantics and the t-th word-level EEG representation rt to select the best candidate as the final result.

where P ∈ Rm×dmodel consists of learnable position240

vectors.241

Training Details Figure 2 shows the overall train-242

ing process. To enable EEG signals to guide LLMs243

in generating correct text, we need to align each244

word-level representation with the semantics of its245

corresponding word. We input the EEG sequence246

E into our representation model to obtain the word-247

level EEG representation sequence. We use the248

pre-trained BERT (Devlin et al., 2018) model to249

generate the semantic representation for each word.250

Moreover, since the same word can have differ-251

ent meanings in different contexts, we input the252

word and its previous context into the BERT model253

to obtain a more accurate semantic representation.254

The output from the last input token of the BERT255

model is used as the representation of the current256

word. Meanwhile, we obtain representations of257

unrelated words by randomly replacing the input258

to the BERT model. Specifically, we replace the259

current word and randomly replace the previous260

context with 50% probability. Note that text se-261

mantic representations can be reused to improve262

training efficiency.263

After obtaining the EEG representation se-264

quence R = [r1, r2, ..., rm], the correspond-265

ing text semantic representation sequence W =266

[w1, w2, ..., wm], and the unrelated representations267

W
′
= [w

′
1, w

′
2, ..., w

′
m], we apply contrastive learn-268

ing (Hadsell et al., 2006; Schroff et al., 2015) to269

align the EEG to the text semantic space:270

loss1 = α ∗ d(R,W )− β ∗ d(R,W
′
) (3)271

where α and β are hyperparameters used to balance272

the impact of positive and negative pairs. We use273

cosine similarity to measure the distance between274

representation vectors. We treat W as a positive 275

sample and bring the EEG representation closer to 276

it, while considering W
′

as a negative sample and 277

increasing the distance between the EEG represen- 278

tation and it. In this way, our EEG representation 279

model can better distinguish subtle semantic differ- 280

ences between different words, thereby generating 281

more accurate representations. 282

Additionally, we find that focusing solely on 283

aligning EEG with text semantics makes all word- 284

level EEG representations very similar, which leads 285

to poor decoding quality. To address this, we fur- 286

ther employ self-supervised InfoNCE loss (van den 287

Oord et al., 2018) to improve the discrimination 288

between each EEG representation vector and en- 289

hance the robustness of our model. Specifically, 290

we randomly add noise values sampled from the 291

N(0,1) distribution into the EEG feature sequence 292

E to obtain E
′
, and then input it into our EEG rep- 293

resentation model to obtain R
′
= [r

′
1, r

′
2, ..., r

′
m]. 294

We regard ri and r′i as positive sample pairs while 295

treating the other perturbed vectors in the same 296

batch as negative samples: 297

loss2 = − log
exp

(
sim

(
ri, r

′
i

)
/τ

)
∑N

k=1 exp
(
sim

(
ri, r

′
k

)
/τ

) (4) 298

where τ is the temperature, which controls the con- 299

trast strength. We sum these two contrastive learn- 300

ing losses to obtain the final training loss: 301

loss = α ∗ d(R,W )− β ∗ d(R,W
′
)+ loss2 (5) 302

Through our proposed dual contrastive learning 303

training method, we can train a superior EEG rep- 304

resentation model that effectively aligns word-level 305

EEG features with the corresponding text seman- 306

tics and distinguishes EEG signals corresponding 307

to different words (as shown in Figure 7). 308
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Model BLEU-N (%) ROUGE-1 (%)
N=1 N=2 N=3 R P F

EEG-to-Text 17.4 9.2 5.3 17.5 17.7 17.4
Random LLM 14.2 8.8 6.1 15.1 18.3 16.3
Ours 21.1 11.7 7.6 19.8 19.6 19.7
Oracle LLM 41.2 31.7 25.6 43.2 45.9 44.3

Table 1: Performance of our method and baseline mod-
els in the multi-subject setting. To evaluate model per-
formance accurately, we do not employ teacher-forcing
strategies during evaluation.

2.3 Decoding Process309

In the decoding stage, we use EEG signals to310

guide the LLM in generating the corresponding311

text. First, we input the word-level EEG feature312

sequence E into the trained EEG representation313

model to obtain the corresponding representation314

sequence R. Then, we use R to re-rank the results315

generated at each step by the LLM, controlling316

them to produce the desired output. Precisely, as317

shown in Figure 3, at the t-th decoding step, LLM318

predicts a set of word candidates based on the pre-319

viously decoded results. Similar to the training320

stage, we concatenate the previous context with321

the candidate words and input them into the pre-322

trained BERT model to obtain the semantic repre-323

sentation vector for each candidate. Finally, we324

re-rank the candidates according to the cosine sim-325

ilarity between the candidate representation vector326

and the t-th word-level EEG representation vector327

rt, selecting the candidate with the highest cosine328

similarity as the result of the t-th decoding step.329

Therefore, after m steps, our method can decode330

the entire sentence corresponding to E.331

In addition, the word-level EEG segments, di-332

vided by eye-tracking fixations, may correspond333

to multiple words. To address this issue, we allow334

the LLM to generate candidate sets based on differ-335

ent segment lengths using beam search. We then336

merge these candidates of various lengths to form337

a final candidate set, which has a higher probabil-338

ity of containing candidates that align well with339

the corresponding EEG segments. In summary,340

our proposed decoding algorithm leverages LLM’s341

powerful text generation capabilities, treating them342

as brains and using EEG signals to guide them step343

by step to generate the desired text, providing a344

novel and feasible solution to the EEG-to-text task.345

346

3 Experiments 347

3.1 Experimental Setup 348

We conduct experiments on ZuCo (Hollenstein 349

et al., 2018), a large-scale public benchmark that 350

records eye-tracking and EEG data during natural 351

reading tasks. ZuCo consists of 12 subjects reading 352

the same material, collected from movie reviews 353

(Socher et al., 2013) and Wikipedia articles, seg- 354

mented into 1,107 sentences. During the reading 355

process, EEG signals were collected using a 128- 356

channel EEG Geodesic Hydrocel system with a 357

sampling rate of 500 Hz and a frequency band fil- 358

ter ranging from 0.1 Hz to 100 Hz. Nine EOG 359

channels were used for artifact removal, and the 360

channels lying mainly on the neck and face were 361

discarded before data analysis. Finally, 105 EEG 362

channels were used for scalp recordings. 363

Similar to the previous methods (Wang and Ji, 364

2021; Feng et al., 2023), we concatenate the sta- 365

tistical results of each word-level EEG segment 366

across eight frequency band filters into a feature 367

vector with a dimension of 840 (e ∈ R840). For 368

both single-subject and multi-subject settings, we 369

split data into the training (80%), validation (10%), 370

and test (10%) sets by unique sentences, i.e., the 371

sentences in the test set are totally unseen. For the 372

cross-subject setting, we use leave-one-out cross- 373

validation based on different subjects. Specifically, 374

each time, we select the data of one subject as the 375

test set, the data of another subject as the validation 376

set, and the data of the remaining 10 subjects as 377

the training set. Additionally, we filter out samples 378

where the number of word-level EEG segments di- 379

vided by eye-tracking fixations is less than half the 380

total number of words.1 We adopt BLEU (Papineni 381

et al., 2002) and ROUGE (Lin, 2004) as evaluation 382

metrics to measure the quality of the decoded text. 383

The implementation details and baselines can be 384

found in Appendix A and Appendix B. 385

3.2 Main Results 386

Multi-Subject Setting Similar to previous ap- 387

proaches (Wang and Ji, 2021; Duan et al., 2023), 388

we first conduct experiments in the multi-subject 389

setting, where the data from all subjects are mixed. 390

As shown in Table 1, our method achieves excellent 391

performance in multi-subject scenarios compared 392

to the previous method. Specifically, without us- 393

1This indicates that the subjects have skipping issues while
reading, which makes it challenging to align the collected
EEG signals with the text accurately.
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Figure 4: Performance of our method and baselines in the single-subject setting. Each scatter point represents a
subject, and we use violin plots to show the distribution of metrics for different methods across the 12 subjects.

ing teacher-forcing, the performance of the EEG-394

to-Text translation model is similar to that of the395

Random LLM across most metrics. This suggests396

that the EEG-to-Text model ignores the EEG in-397

formation on the encoder side during training and398

degenerates into a language model, highlighting399

the shortcomings of previous methods. In contrast,400

our method achieves a significant performance im-401

provement compared to the Random LLM, increas-402

ing the BLEU-{1, 2, 3} scores by 6.9 (+48.6%),403

2.9 (+33.0%), and 1.5 (+24.6%), respectively, and404

the ROUGE1-{R, P, F} scores by 4.7 (+31.1%),405

1.3 (+7.1%), and 3.4 (+20.9%).406

These experimental results demonstrate that our407

proposed method effectively learns how to extract408

semantic information from EEG signals, thereby409

guiding the LLM to generate accurate results. We410

attribute this success to our approach’s ability to411

eliminate the distraction of the teacher-forcing strat-412

egy during training, allowing the model to focus413

on EEG representation and alignment. However,414

since this is the first paper to complete the EEG-415

to-text task in the form of fine-grained controlled416

text generation, there remains a significant gap be-417

tween the performance of our method and that of418

the Oracle LLM. This indicates that our proposed419

paradigm holds great potential, and further efforts420

are required to develop more powerful EEG repre-421

sentation models in the future.422

Single-Subject Setting We also validated the per-423

formance of our method in the single-subject sce-424

nario, where we trained and evaluated the model 425

for each subject independently. The experimental 426

results for 12 subjects are shown in Figure 4. Since 427

the EEG-to-text model essentially performs lan- 428

guage modeling without exploiting the information 429

provided by the EEG signal, its performance is sim- 430

ilar to that of the Random LLM. In contrast, our 431

method achieves statistically better performance 432

(paired t-test with P < 0.01) than the Random LLM 433

in the single-subject setting. Since there are differ- 434

ences between subjects, the model’s performance 435

fluctuations are observed across subjects. How- 436

ever, our method outperforms both the EEG-to- 437

Text model and the Random LLM on each subject. 438

These experimental results demonstrate the robust- 439

ness of our approach, which applies to different 440

subjects and can be effectively trained with only a 441

small amount of data. 442

Cross-Subject Setting In real-world applica- 443

tions, the model is likely to encounter data from 444

unknown subjects, so its ability to generalize to un- 445

seen subjects is crucial. To assess the cross-subject 446

generalization ability of our method, we perform 447

leave-one-out cross-validation based on 12 subjects. 448

The experimental results are presented in Figure 449

5. As we can see, our method still outperforms the 450

EEG-to-Text model on unseen subjects. Specifi- 451

cally, the performance of the EEG-to-Text model is 452

similar to that of the above two settings because it 453

does not utilize EEG information. In contrast, our 454

method achieves an average of 20.9 BLEU-1 scores 455
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Figure 5: Performance of our method and baselines in the cross-subject setting. To effectively evaluate the
generalization ability of our method, we performed leave-one-out cross-validation on all 12 subjects.

Hyperparameters β = 1 β = 2 β = 3 β = 4

α = 1 18.9 / 17.2 15.8 / 18.4 13.0 / 16.0 8.6 / 16.5
α = 2 20.5 / 17.8 19.8 / 18.3 16.0 / 16.9 12.8 / 16.3
α = 3 21.0 / 19.0 20.8 / 18.7 19.1 / 18.7 14.9 / 17.0
α = 4 21.8 / 18.9 21.9 / 19.3 20.5 / 18.4 16.9 / 18.4

Table 2: Evaluation metrics (BLEU-1 / ROUGE1-F) of
our method on the validation set with different training
hyperparameters. Since α and β are strongly correlated,
we use the grid search method to find the best setting.

and 19.8 ROUGE1-F scores, which surpasses the456

EEG-to-Text model by margins of 3.2 (+18.1%)457

and 3.1 (+18.6%). These results show that our458

model can capture the common knowledge between459

data from different subjects and generalize its rep-460

resentation ability to unseen subjects. We believe461

this is because we introduced EEG self-supervised462

contrastive learning (van den Oord et al., 2018) dur-463

ing the training phase, enabling our model to learn464

a distinguishable and robust representation space,465

thereby enhancing its generalization ability.466

3.3 Analysis467

3.3.1 Impact of Hyperparameters468

We conduct experiments on the validation set in the469

multi-subject setting to explore the impact of the470

hyperparameters on our approach.471

Impact of Training Hyperparameters As472

shown in Equation (5), the primary hyperparame-473

ters in the training process include α and β. The474

experimental results in Table 2 show that different475

hyperparameter settings can impact model perfor- 476

mance, and the trade-off between α and β must 477

be carefully considered. Specifically, when both 478

α and β are small, the self-supervised InfoNCE 479

loss dominates the training process. In this case, 480

although the EEG representation model can effec- 481

tively distinguish different word-level EEG fea- 482

tures, the generated representation vector is not 483

aligned with the text semantic space. As a result, 484

during the decoding stage, EEG representations 485

cannot provide accurate guidance for LLMs, lead- 486

ing to poor model performance. On the other hand, 487

if α and β are too large, the model fails to distin- 488

guish the EEG signals corresponding to different 489

words. Furthermore, when β is greater than α, the 490

EEG representation model tends to generate repre- 491

sentations that are far from the negative samples, 492

regardless of whether the generated representations 493

are close to the text semantics of the ground truth. 494

This also leads to a decrease in decoding quality. 495

Based on these experimental results, we set α to 4 496

and β to 2 to ensure that the EEG representation 497

is effectively aligned with the text semantics while 498

maintaining good discrimination. 499

Impact of Inference Hyperparameters During 500

inference, we need to choose the appropriate candi- 501

date length and beam size. First, we fix the beam 502

size to 300 and analyze the effects of various can- 503

didate lengths on decoding quality. As shown in 504

Figure 6, different candidate lengths significantly 505

impact final performance. In particular, generating 506

7



Figure 6: The impact of different candidate lengths
(left) and beam sizes (right) on the performance of our
method. 1-3 means that we let LLMs generate candi-
dates of length 1, 2, and 3 at each decoding step and
merge them to form the final candidate set.

only a candidate set of length 1 at each decoding507

step results in inferior performance, indicating that508

most word-level EEG features correspond to more509

than one token. Therefore, our method for gener-510

ating candidate sets based on multiple lengths is511

necessary and can effectively improve alignment512

accuracy during decoding.513

Next, we fix the candidate length to 1-4 and514

analyze the impact of different beam sizes. As515

shown in Figure 6, when the beam size is small, the516

ground truth may be excluded from the candidate517

set, resulting in poor decoding quality. On the other518

hand, a large beam size leads to a larger candidate519

set, which increases the difficulty of guiding the520

generation of LLMs using EEG representations.521

Additionally, memory usage and inference latency522

increase as the beam size grows. Therefore, we523

finally set the candidate length to 1-4 and the beam524

size to 300. Due to space constraints, more analysis525

is presented in Appendix C.526

4 Related Works527

Decoding brain signals into text is an active re-528

search direction at the intersection of artificial intel-529

ligence and neuroscience, with high research value530

and a wide range of application scenarios. There531

are many types of brain signals, such as electro-532

corticography (ECoG) and stereotactic electroen-533

cephalography (sEEG) for intracranial recordings534

and functional magnetic resonance imaging (fMRI)535

and EEG for non-invasive recordings. Intracranial536

recordings offer high temporal and spatial resolu-537

tion, as well as a high signal-to-noise ratio, en-538

abling the decoding of high-quality text from them539

(Herff et al., 2015; Willett et al., 2021). However,540

their acquisition requires expensive invasive neuro-541

surgery, which cannot be effectively promoted.542

Therefore, researchers began to explore how to543

use non-invasive recordings for Brain-to-Text de- 544

coding. For example, Tang et al. (Tang et al., 545

2022) tried to reconstruct continuous language us- 546

ing fMRI. Similar to our method, they introduced 547

a language model to generate candidates and select 548

the best based on fMRI. However, due to the low 549

temporal resolution of fMRI, each brain image can 550

be affected by over 20 words, so it is difficult to 551

give accurate guidance during decoding. In con- 552

trast, we employ high temporal resolution EEG sig- 553

nals, which can provide fine-grained guidance for 554

LLMs at each decoding step. Additionally, EEG 555

acquisition is more portable and cost-effective than 556

fMRI, enhancing its practical value. 557

Recently, Wang and Ji (2021) proposed an open 558

vocabulary EEG-to-Text task and regarded it as 559

a translation task to solve it. A series of subse- 560

quent works have followed this idea and improved 561

upon it (Zhou et al., 2023; Xi et al., 2023; Duan 562

et al., 2023; Feng et al., 2023; Liu et al., 2024). For 563

example, DeWave (Duan et al., 2023) uses a quan- 564

tized variational encoder to derive discrete codex 565

encoding, which reduces the interference caused 566

by individual differences in EEG signals. 567

However, Jo et al. (2024) found that this series of 568

works employed teacher-forcing during the evalua- 569

tion, which caused their performance to be inflated. 570

Moreover, the experimental results show that the 571

EEG-to-Text translation model performs similarly 572

on pure noise compared to actual EEG data, mean- 573

ing it does not utilize the EEG information. Unlike 574

previous methods, we only focused on aligning 575

the word-level EEG representations with the corre- 576

sponding text semantics without using the teacher- 577

forcing strategy. Therefore, we could effectively 578

build an EEG representation model to extract se- 579

mantic information and guide LLMs in generating 580

correct sentences. 581

5 Conclusion 582

This paper proposes a novel framework for the 583

EEG-to-Text task. Our approach regards the LLM 584

as a brain and guides it in generating correct text 585

by leveraging aligned EEG signals. Experimen- 586

tal results on the ZuCo benchmark demonstrate 587

the effectiveness of our method, which not only 588

achieves significantly better performance than pre- 589

vious methods in both multi-subject and single- 590

subject settings but also shows strong generaliza- 591

tion capabilities in cross-subject scenarios. 592
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6 Limitations593

Although the new paradigm for the EEG-to-Text594

task proposed in this paper addresses the shortcom-595

ings of previous methods and achieves significant596

performance improvements, some issues still re-597

quire further exploration.598

First, our method treats the LLM as a brain and599

uses EEG signals to guide it in generating the de-600

sired text. It is curious whether this decoding pro-601

cess resembles brain activity during human think-602

ing and whether the LLM shares similarities with603

the human brain. We believe that with the continu-604

ous development of neuroscience, these questions605

can be answered more clearly, which will further606

guide us in designing better methods.607

Second, there is a significant performance gap608

between our method and the Oracle LLM, indi-609

cating that our EEG representation model can be610

further improved. We believe better handling the611

low signal-to-noise ratio in EEG signals is key to612

improving model performance.613

Third, our method relies on eye-tracking fixa-614

tions to divide EEG signals into word-level seg-615

ments, which limits its practical application. Fur-616

thermore, the word-level EEG segments divided617

by eye-tracking fixations are not always strictly618

aligned with the text, presenting challenges for619

training EEG representation models and generat-620

ing candidate words during decoding. Therefore,621

research on text decoding methods based on raw622

EEG signals is crucial.623
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A Implementation Details 758

We conducted experiments on NVIDIA RTX 759

A6000 48GB GPUs. The hidden dimension of the 760

two MLP layers in our EEG representation model is 761

1536, and the output dimension is 768. Our Trans- 762

former encoder consists of 3 layers, each with 8 763

attention heads and a hidden dimension of 2048. 764

The pre-trained BERT-base model (Devlin et al., 765

2018) is used to generate text semantic representa- 766

tions. During training, we set the hyperparameters 767

α = 4, β = 2, and τ = 0.3. We use the Adam opti- 768

mizer with a learning rate of 5× 10−4, a batch size 769

of 128, and a dropout rate of 0.3. We train for 30 770

epochs and select the checkpoints with the best per- 771

formance on the validation set as the final model. 772

During the decoding process, we adopt Llama2- 773

7b (Touvron et al., 2023) for inference, using the 774

ground truth corresponding to the first word-level 775

EEG feature as the prompt and the subsequent EEG 776

feature sequence to guide it in decoding text. We 777

set the candidate lengths to [1, 2, 3, 4] and the beam 778

size to 300 for Llama2-7B, generating a total of 779

1200 candidate words and selecting the best result 780

from them. 781

B Baselines 782

To verify the effectiveness of our method, we com- 783

pare our method primarily with three baselines: 784

1. EEG-to-Text Model (Wang and Ji, 2021): 785

This model treats the EEG-to-Text task as a 786

translation task and extends the pre-trained 787

BART (Lewis et al., 2019) model to construct 788

an EEG translation model. For a fair compari- 789

son, the same prompts used in our method are 790

input to its decoder during decoding. 791

2. Random LLM: During the decoding process, 792

this baseline randomly selects results from the 793

candidate set, with the rest of the process iden- 794

tical to our method. By comparing with this 795

baseline, we can assess whether our method 796
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effectively extracts and utilizes information797

from EEG signals to guide LLMs correctly.798

3. Oracle LLM: This model selects the best799

candidate using the semantic representation800

of the ground truth, representing the ideal801

case where EEG representations are perfectly802

aligned with text semantics.803

C More Analysis804

C.1 Ablation Study805

To verify the effectiveness of each proposed mod-806

ule, we conduct detailed ablation experiments in807

the multi-subject setting. Specifically, we compare808

our approach with several variants:809

• w/o InfoNCE loss: Directly aligning EEG rep-810

resentations and text semantics using a con-811

trastive learning method similar to CLIP (Rad-812

ford et al., 2021).813

• w/o text negative samples: Focusing only814

on narrowing the distance between EEG rep-815

resentations and the ground truth semantics816

without constructing negative samples by ran-817

domly replacing words.818

• w/o adding noise: Using only the original819

word-level EEG features to compute the self-820

supervised InfoNCE loss.821

• w/o previous context: Excluding previous con-822

text when obtaining the text semantics.823

• w/o Transformer Encoder: Removing the824

Transformer Encoder module from our EEG825

representation model so that each word-level826

EEG feature is encoded independently. To827

prevent a significant change in the number828

of model parameters, we replaced the Trans-829

former Encoder with a three-layer MLP of830

similar size.831

As shown in Table 3, removing any module leads832

to performance degradation of our method. First,833

the w/o InfoNCE loss variant performs poorly, in-834

dicating that directly aligning EEG representations835

with text semantic representations is not feasible.836

Therefore, we propose a dual contrastive learning837

method, which effectively trains the EEG represen-838

tation model through modal alignment of EEG sig-839

nals and text semantics, as well as self-supervised840

learning with noise, achieving excellent perfor-841

mance. Second, when obtaining text semantics,842

Method BLEU-1 ROUGE1-F

Ours 21.1 19.7

w/o InfoNCE loss 15.8 16.4
w/o adding noise to EEG 19.1 17.9
w/o previous context 18.4 17.1
w/o text negative samples 18.5 18.5
w/o Transformer Encoder 18.5 18.1

Table 3: Ablation experiments of our method in the
multi-subject setting.

concatenating the previous context to the word can 843

effectively reduce ambiguity, allowing EEG rep- 844

resentations to be better aligned with the corre- 845

sponding semantics. In addition, it is necessary 846

to construct negative text examples by randomly 847

replacing words. Finally, independently encoding 848

each word-level EEG results in a significant de- 849

crease in decoding quality. This shows that the 850

Transformer Encoder in our EEG representation 851

model can effectively capture and utilize contex- 852

tual dependencies in word-level EEG sequences, 853

thereby improving representation capabilities. 854

C.2 Representation Visualization 855

To verify whether our EEG representation model 856

can effectively distinguish different word-level 857

EEG features, we use t-SNE (van der Maaten and 858

Hinton, 2008) to visualize the EEG representations 859

of both the EEG-to-Text translation model and our 860

model. As shown in Figure 7, the representations 861

of the EEG-to-Text model are disorganized and can- 862

not distinguish between different word-level EEG 863

signals. Consequently, the EEG-to-Text model 864

struggles to utilize EEG signals for decoding effec- 865

tively. In contrast, our model enables word-level 866

EEG representations corresponding to the same 867

word to form clear clusters, even when sourced 868

from different subjects. These experimental results 869

demonstrate that our method allows the EEG repre- 870

sentation model to learn to identify semantic infor- 871

mation across various EEG signals during training 872

and to acquire robust representation capabilities. 873

Based on these distinct EEG representations, our 874

approach can provide more accurate guidance to 875

LLMs during the decoding stage. 876

C.3 Case Study 877

We present a case study in Table 4 to specifically an- 878

alyze the decoding results of different methods. As 879

we can see, even though the open vocabulary EEG- 880

to-text task is very challenging, our model can still 881
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Figure 7: T-SNE visualization of word-level EEG representations of the EEG-to-Text model (left) and our model
(right). Different colors mean different subjects. Each dot represents a word-level EEG representation. The red or
blue box dots represent EEG representations corresponding to the same word.

(1)

Ground Truth: I did go back and check out the last 10 minutes, but these were more repulsive than the first 30 or 40 minutes.

EEG-to-Text: I am born in New York City, and graduated from Yale University.

Random LLM: I made another one but this time j couldnt sit still so added photos of him along the way thanks for looking and any
swizzers out there pls tell us how you managed to

Ours: I also went back and watched the last part of the movie, but it was very bad for me that I don’t want to watch.

Oracle LLM: I did go back and check out the last 10 minutes, but these were rushed in comparison to the the first 30 or more minutes.

(2)

Ground Truth: A strong script, powerful direction and splendid production design allows us to be transported into the life of wladyslaw
szpilman, who is not only a pianist, but a good human being.

EEG-to-Text: A thinly veiled layer of fog settled over the quiet town, casting an eerie glow in the early morning light.

Random LLM: A network of partners and suppliers that have been tested in the real world. What brought you...Building a successful
brand involves a lot of effort other than...Building Smarter CitiesHardware is just the beginningWhat excites you most about P

Ours: A strong influence on his career. He once told us that bruce was the nephew of William Bruce, Jr., who is a pianist, but also
a person with a good temper.

Oracle LLM: A strong foundation, powerful direction, excellent production presentation makes it easy to be transported away into the
life of Jacob Jensen, who is not only a pianist, but is a good human being, too.

Table 4: Examples of EEG-to-text decoding results using different methods in the multi-subject setting. Bold words
indicate exact matches. Underlined words denote fuzzy matches with similar semantics.

decode some meaningful results corresponding to882

the EEG signals, achieving better performance than883

previous methods.884

First, although the EEG-to-Text model can gener-885

ate fluent sentences, the content is unrelated to the886

ground truth. This outcome indicates that the EEG-887

to-Text model collapsed into a language model dur-888

ing training and failed to learn how to extract and889

utilize information from the EEG. In contrast, our890

method successfully decodes some words that ex-891

actly match the ground truth or phrases with similar892

semantics. This result demonstrates that our EEG893

representation model can align word-level EEG894

features with the corresponding text semantics, ef-895

fectively guiding LLMs to generate accurate text.896

Second, our approach is better at matching simple897

nouns or adjectives but has difficulty generating the 898

correct named entities, such as ’wladyslaw szpil- 899

man’ in example (2). We believe this is because the 900

model cannot distinguish semantic differences be- 901

tween various entities of the same type. In addition, 902

the correct entity may be rare and not necessarily 903

included in the candidate set predicted by LLMs. 904

Third, there is a decoding quality gap between our 905

method and Oracle LLM. Oracle LLM can gener- 906

ate results that are mostly the same as the ground 907

truth. These results show that it is reasonable to 908

consider the EEG-to-Text task as a fine-grained 909

controllable text generation task. There remains 910

significant room for improvement in our EEG rep- 911

resentation model, and exploring ways to enhance 912

its performance warrants further investigation. 913
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