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Abstract

With the rapid development of brain-computer
interfaces (BCI) in recent years, the electroen-
cephalography (EEG) to text task has drawn
increasing attention. Previous methods have
defined it as a sequence-to-sequence transla-
tion task. However, their models, trained using
teacher-forcing strategies, fail to extract and
utilize EEG information. To address this issue,
we propose a novel framework in this paper,
which innovatively treats the EEG-to-text task
as a fine-grained controllable text generation
task. Specifically, since large language models
(LLMs) have strong text generation capabilities,
we treat the LLM as a "brain" and guide it to
generate desired sentences by leveraging EEG
representations that are aligned with the seman-
tic space of text. Therefore, our approach fo-
cuses on training an EEG representation model
that can effectively align EEG representation
with text semantics, avoiding the limitations
introduced by teacher-forcing strategies. Ex-
tensive experiments on the ZuCo benchmark
demonstrate the effectiveness of our approach,
which achieves state-of-the-art performance in
multi-subject and single-subject settings. Fur-
thermore, experimental results in cross-subject
scenarios further verify that our method has a
strong generalization ability and can be applied
to unseen subjects.

1 Introduction

Devastating neurological diseases and traumatic
brain injuries can cause patients to lose the abil-
ity to communicate (Stanger and Cawley, 1996;
Pels et al., 2017), even though their language and
cognitive abilities may remain intact. Therefore,
the high expectations for brain-computer interfaces
(BCIs) have been raised. Some recent studies (Anu-
manchipalli et al., 2019; Sun et al., 2019; Willett
et al., 2021) in this field have demonstrated that we
can decode brain signals into concrete and under-
standable representations, such as speech or text.
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Figure 1: Illustration of the EEG-to-Text task. A sub-
ject reads a sentence on a screen while EEG signals are
collected and eye-tracking is performed. Eye-tracking
fixations are used to divide EEG segments correspond-
ing to different words. These word-level EEG segments
are input into the model to decode the sentences.

However, these works usually rely on intracranial
signals and require invasive neurosurgery, which is
costly and limits their application. In contrast, elec-
troencephalography (EEG) signals are non-invasive
and easy to record, so EEG-to-Text tasks have
gained much attention.

Early EEG-to-Text research was limited to de-
coding small closed vocabularies (Makin et al.,
2019; Nieto et al., 2022), which were insufficient
for natural communication. Therefore, Wang and Ji
(2021) proposed an open vocabulary EEG-to-Text
task and treated it as a sequence-to-sequence trans-
lation task. They built an encoder-decoder struc-
tured EEG-to-Text model that translates word-level
EEG feature sequences into corresponding sen-
tences (as shown in Figure 1). Subsequently, signif-
icant efforts (Zhou et al., 2023; Feng et al., 2023;
Duan et al., 2023) have followed this paradigm,
aiming to improve the decoding accuracy of EEG-
to-text translation models.

Although these methods can enhance perfor-
mance metrics, as recently discovered by Jo et al.
(2024), their experimental settings have a crucial
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Figure 2: The overall training process of our proposed EEG representation model. We obtain word-level EEG and
text semantic representations through the EEG representation model and the pre-trained BERT model, respectively.
During training, we freeze the BERT parameters and optimize the EEG representation model through dual contrastive
learning to align the EEG representation to the text semantic space.

limitation. Specifically, they still employed the
teacher-forcing strategy during evaluation, which
led to exaggerated performance. Furthermore, the
experimental results in Jo et al.’s paper show that
the EEG-to-Text model (Wang and Ji, 2021) per-
forms similarly on pure noise compared to actual
EEG data, which indicates that the model does
not really utilize EEG signals. We believe this is
due to the teacher-forcing strategy employed dur-
ing training. EEG signals contain much noise, so
compared to the context information provided by
teacher-forcing, the help supplied by EEG is neg-
ligible. Therefore, the model gradually relies only
on contextual information in the decoder to pre-
dict subsequent words while disregarding the EEG
information provided by the encoder.

To address the drawbacks of previous methods,
this paper proposes a novel approach by transform-
ing the EEG-to-Text task into a fine-grained con-
trollable text generation task based on large lan-
guage models (LLMs). LLMs have excellent text
generation capabilities and can generate fluent and
diverse texts (OpenAl, 2023; Touvron et al., 2023).
Therefore, we can think of LLM as a brain and
use EEG signals to guide it in generating corre-
sponding text. Specifically, we designed an EEG
signal representation model to extract valuable in-
formation from word-level EEG signals and gen-
erate EEG representations. Then, we obtain the
semantic representation for each word using the
pre-trained BERT model (Devlin et al., 2018) and
propose a dual contrastive learning method to align
the EEG representation with the semantic represen-
tation of the corresponding word. Finally, during
inference, we allow LLMs to generate multiple can-
didate words at each decoding step and select the
word whose semantics are closest to the current
EEG representation as the final result.

To the best of our knowledge, this is the first

paper that treats the EEG-to-Text task as a control-
lable text generation task and proposes a compre-
hensive solution. By aligning semantics in EEG
signals and language, our method allows the EEG
representation model to thoroughly learn how to
effectively extract and utilize the information con-
tained in EEG signals, avoiding the training col-
lapse caused by teacher-forcing. Furthermore, dur-
ing the decoding stage, our method uses EEG sig-
nals to stimulate the "brain" to continuously gen-
erate corresponding text, making full use of the
powerful capabilities of LLMs.

Extensive experiments on the ZuCo (Hollenstein
et al., 2018) benchmark demonstrate the effective-
ness of our method. In multi-subject and single-
subject scenarios, our method performs signifi-
cantly better than the previous method, indicating
that our method can effectively align EEG signals
with text semantics and guide the LLMs to gener-
ate correct text. More encouragingly, our method
achieves superior performance in the cross-subject
setting, demonstrating excellent generalization and
applicability to unseen subjects. In summary:

* This paper addresses the shortcomings of pre-
vious methods and first regards the EEG-to-
Text task as a fine-grained controllable genera-
tion task, enabling the model to better capture
and utilize the information in EEG.

* We propose an innovative framework to ac-
complish the EEG-to-Text task. We treat the
LLM as a brain and guide it in generating cor-
rect and fluent text by leveraging EEG signals
aligned with the text semantics.

* We evaluate our approach on the ZuCo bench-
mark. Our method achieves state-of-the-art
performance in various settings and demon-
strates excellent generalizability, which veri-
fies the strong potential of our approach.



2 Method

In this section, we provide a comprehensive in-
troduction to our method. First, we highlight the
shortcomings of the previous EEG-to-Text task def-
inition and propose a new solution in Section 2.1.
Then, in Section 2.2, we describe the training pro-
cess of our EEG representation model. Finally,
in Section 2.3, we present the decoding algorithm
that uses word-level EEG signals to guide LLMs
in generating desired sentences.

2.1 Task Definition

As shown in Figure 1, the EEG signals are col-
lected during natural reading, and eye-tracking
fixations are used to divide word-level EEG seg-
ments for the EEG-to-Text task. Similar to previ-
ous works (Wang and Ji, 2021; Feng et al., 2023),
we use the statistical results of each word-level
EEG segment in eight frequency band filters, thetal
(4-6Hz), theta2 (6.5-8 Hz), alphal (8.5-10 Hz),
alpha2 (10.5-13 Hz), betal (13.5-18Hz), beta2
(18.5-30Hz), gammal (30.5-40 Hz) and gamma?2
(40—49.5 Hz), as its feature vector. Although differ-
ent word-level segments may have different EEG
window sizes, the final feature vector dimensions
remain the same. Therefore, the input of the EEG-
to-Text model is a word-level EEG feature vector
sequence F = [ey, ea, ..., €5, which may contain
m feature vectors. Our goal is to decode its corre-
sponding text sequence T' = [t1, Lo, ..., L]

Previous studies (Wang and Ji, 2021; Feng et al.,
2023; Duan et al., 2023; Zhou et al., 2023; Xi
et al., 2023) have defined this task as a sequence-to-
sequence translation task, where the EEG sequence
F is the source sentence and the text sequence 7' is
the target sentence, and maximize the probability
of the decoded sentence:

p(T|E)=]]pt:| E tz) (1)
=1

Similar to traditional machine translation models,
these methods employ the teacher-forcing strategy
during training, inputting the ground truth sequence
into the decoder. As a result, the model predicts the
current token based on all previous ground truth
tokens t.; and the EEG sequence EX. However,
due to the low signal-to-noise ratio of EEG sig-
nals, the encoder of the EEG-to-text translation
model cannot effectively extract valuable informa-
tion. Consequently, the contribution of the EEG
sequence to prediction is much smaller than that

of the previous ground truth tokens. Therefore,
previous models are prone to degenerate into lan-
guage models during training, focusing solely on
language modeling in the decoder and failing to
complete the EEG-to-text task.

Different from previous approaches, in this pa-
per, we define the EEG-to-Text task as a fine-
grained controllable text generation task. Since
LLMs have powerful text generation capabilities,
we can regard them as human brains. Therefore,
the key to completing the EEG-to-Text task is con-
trolling LL.Ms to generate correct text I’ through
EEG sequences E. Since fine-tuning LLMs is
expensive, we adopt an efficient post-processing
paradigm (Zhang et al., 2022) to guide LLMs in
generating specific content. Specifically, we align
each word-level EEG representation with the cor-
responding text semantics. Then, at each decoding
step, the LLM generates multiple candidate words,
and we select the word closest to the current EEG
representation as the final output. Consequently,
instead of using the teacher-forcing strategy to train
a translation model, we focus on training a robust
EEG representation model that can effectively ex-
tract and utilize information from EEG signals.

2.2 Model Training

Model Architecture We constructed an effective
EEG representation model to extract valuable se-
mantic information from word-level EEG features
and output the corresponding word-level EEG rep-
resentation vector sequence R = [r1, 79, ..., 7).
Specifically, our EEG representation model con-
sists of three main modules: embedding layer,
Transformer encoder (Vaswani et al., 2017), and
output layer. In particular, the embedding layer
consists of an MLP layer and a learnable positional
encoding, which transforms the dimension of the
input word-level EEG features and incorporates
position information. The Transformer encoder is
used to capture contextual dependencies between
word-level EEG features within the same sentence
through the attention mechanism. The ablation
study (Appendix C.1) shows that the representation,
in conjunction with contextual information, is sig-
nificantly better than independent representations.
The output layer consists of an MLP layer, which
controls the dimension of the final representation
vector to match the text semantic vector. Formally,
the overall model is formulated as follows:

R = MLPy(Tansformer(MLP,(E)+P) (2)
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Figure 3: Implementation details of the decoding process. When generating the result of step t, we first let the
LLM predict candidate words based on the previous result. Then, we calculate the cosine similarity between the
candidate’s semantics and the t-th word-level EEG representation r; to select the best candidate as the final result.

where P € R"™*dmoel consists of learnable position
vectors.

Training Details Figure 2 shows the overall train-
ing process. To enable EEG signals to guide LLMs
in generating correct text, we need to align each
word-level representation with the semantics of its
corresponding word. We input the EEG sequence
E into our representation model to obtain the word-
level EEG representation sequence. We use the
pre-trained BERT (Devlin et al., 2018) model to
generate the semantic representation for each word.
Moreover, since the same word can have differ-
ent meanings in different contexts, we input the
word and its previous context into the BERT model
to obtain a more accurate semantic representation.
The output from the last input token of the BERT
model is used as the representation of the current
word. Meanwhile, we obtain representations of
unrelated words by randomly replacing the input
to the BERT model. Specifically, we replace the
current word and randomly replace the previous
context with 50% probability. Note that text se-
mantic representations can be reused to improve
training efficiency.

After obtaining the EEG representation se-
quence R = |[ri,7r2,...,Ty), the correspond-
ing text semantic representation sequence W =
[w1, w3, ..., wp], and the unrelated representations
W' = [wy,w,, ..., w,,], we apply contrastive learn-
ing (Hadsell et al., 2006; Schroff et al., 2015) to
align the EEG to the text semantic space:

loss; = axd(R,W) — Bxd(R,W') (3)

where o and 3 are hyperparameters used to balance
the impact of positive and negative pairs. We use
cosine similarity to measure the distance between

representation vectors. We treat W as a positive
sample and bring the EEG representation closer to
it, while considering W asa negative sample and
increasing the distance between the EEG represen-
tation and it. In this way, our EEG representation
model can better distinguish subtle semantic differ-
ences between different words, thereby generating
more accurate representations.

Additionally, we find that focusing solely on
aligning EEG with text semantics makes all word-
level EEG representations very similar, which leads
to poor decoding quality. To address this, we fur-
ther employ self-supervised InfoNCE loss (van den
Oord et al., 2018) to improve the discrimination
between each EEG representation vector and en-
hance the robustness of our model. Specifically,
we randomly add noise values sampled from the
N(0, 1) distribution into the EEG feature sequence
F to obtain E’, and then input it into our EEG rep-

/7

resentation model to obtain R = [r}, 75, ..., 7).
We regard r; and r’; as positive sample pairs while
treating the other perturbed vectors in the same

batch as negative samples:

. /
exp (sun (ri, Ti> /7')
N . /
Y je1€Xp (snn (ri, rk) /7')
where 7 is the temperature, which controls the con-

trast strength. We sum these two contrastive learn-
ing losses to obtain the final training loss:

loss = axd(R,W) — Bxd(R,W') +lossa (5)

lossg = —log

“

Through our proposed dual contrastive learning
training method, we can train a superior EEG rep-
resentation model that effectively aligns word-level
EEG features with the corresponding text seman-
tics and distinguishes EEG signals corresponding
to different words (as shown in Figure 7).



BLEU-N (%) ROUGE-1 (%)

Model
N=1 N=2 N=3 R P F

EEG-to-Text 174 9.2 53 175 177 174
Random LLM 142 8.8 6.1 15.1 183 163
Ours 211 117 7.6 198 196 19.7
Oracle LLM 412 317 256 432 459 443

Table 1: Performance of our method and baseline mod-
els in the multi-subject setting. To evaluate model per-
formance accurately, we do not employ teacher-forcing
strategies during evaluation.

2.3 Decoding Process

In the decoding stage, we use EEG signals to
guide the LLM in generating the corresponding
text. First, we input the word-level EEG feature
sequence F into the trained EEG representation
model to obtain the corresponding representation
sequence R. Then, we use R to re-rank the results
generated at each step by the LLM, controlling
them to produce the desired output. Precisely, as
shown in Figure 3, at the t-th decoding step, LLM
predicts a set of word candidates based on the pre-
viously decoded results. Similar to the training
stage, we concatenate the previous context with
the candidate words and input them into the pre-
trained BERT model to obtain the semantic repre-
sentation vector for each candidate. Finally, we
re-rank the candidates according to the cosine sim-
ilarity between the candidate representation vector
and the t-th word-level EEG representation vector
¢, selecting the candidate with the highest cosine
similarity as the result of the t-th decoding step.
Therefore, after m steps, our method can decode
the entire sentence corresponding to E.

In addition, the word-level EEG segments, di-
vided by eye-tracking fixations, may correspond
to multiple words. To address this issue, we allow
the LLM to generate candidate sets based on differ-
ent segment lengths using beam search. We then
merge these candidates of various lengths to form
a final candidate set, which has a higher probabil-
ity of containing candidates that align well with
the corresponding EEG segments. In summary,
our proposed decoding algorithm leverages LLM’s
powerful text generation capabilities, treating them
as brains and using EEG signals to guide them step
by step to generate the desired text, providing a
novel and feasible solution to the EEG-to-text task.

3 Experiments

3.1 Experimental Setup

We conduct experiments on ZuCo (Hollenstein
et al., 2018), a large-scale public benchmark that
records eye-tracking and EEG data during natural
reading tasks. ZuCo consists of 12 subjects reading
the same material, collected from movie reviews
(Socher et al., 2013) and Wikipedia articles, seg-
mented into 1,107 sentences. During the reading
process, EEG signals were collected using a 128-
channel EEG Geodesic Hydrocel system with a
sampling rate of 500 Hz and a frequency band fil-
ter ranging from 0.1 Hz to 100 Hz. Nine EOG
channels were used for artifact removal, and the
channels lying mainly on the neck and face were
discarded before data analysis. Finally, 105 EEG
channels were used for scalp recordings.

Similar to the previous methods (Wang and Ji,
2021; Feng et al., 2023), we concatenate the sta-
tistical results of each word-level EEG segment
across eight frequency band filters into a feature
vector with a dimension of 840 (e € R®). For
both single-subject and multi-subject settings, we
split data into the training (80%), validation (10%),
and test (10%) sets by unique sentences, i.e., the
sentences in the test set are totally unseen. For the
cross-subject setting, we use leave-one-out cross-
validation based on different subjects. Specifically,
each time, we select the data of one subject as the
test set, the data of another subject as the validation
set, and the data of the remaining 10 subjects as
the training set. Additionally, we filter out samples
where the number of word-level EEG segments di-
vided by eye-tracking fixations is less than half the
total number of words.! We adopt BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) as evaluation
metrics to measure the quality of the decoded text.
The implementation details and baselines can be
found in Appendix A and Appendix B.

3.2 Main Results

Multi-Subject Setting Similar to previous ap-
proaches (Wang and Ji, 2021; Duan et al., 2023),
we first conduct experiments in the multi-subject
setting, where the data from all subjects are mixed.
As shown in Table 1, our method achieves excellent
performance in multi-subject scenarios compared
to the previous method. Specifically, without us-

'This indicates that the subjects have skipping issues while
reading, which makes it challenging to align the collected
EEG signals with the text accurately.
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Figure 4: Performance of our method and baselines in the single-subject setting. Each scatter point represents a
subject, and we use violin plots to show the distribution of metrics for different methods across the 12 subjects.

ing teacher-forcing, the performance of the EEG-
to-Text translation model is similar to that of the
Random LLM across most metrics. This suggests
that the EEG-to-Text model ignores the EEG in-
formation on the encoder side during training and
degenerates into a language model, highlighting
the shortcomings of previous methods. In contrast,
our method achieves a significant performance im-
provement compared to the Random LLM, increas-
ing the BLEU-{1, 2, 3} scores by 6.9 (+48.6%),
2.9 (+33.0%), and 1.5 (+24.6 %), respectively, and
the ROUGEI1-{R, P, F} scores by 4.7 (+31.1%),
1.3 (+7.1%), and 3.4 (+20.9%).

These experimental results demonstrate that our
proposed method effectively learns how to extract
semantic information from EEG signals, thereby
guiding the LLM to generate accurate results. We
attribute this success to our approach’s ability to
eliminate the distraction of the teacher-forcing strat-
egy during training, allowing the model to focus
on EEG representation and alignment. However,
since this is the first paper to complete the EEG-
to-text task in the form of fine-grained controlled
text generation, there remains a significant gap be-
tween the performance of our method and that of
the Oracle LLM. This indicates that our proposed
paradigm holds great potential, and further efforts
are required to develop more powerful EEG repre-
sentation models in the future.

Single-Subject Setting We also validated the per-
formance of our method in the single-subject sce-

nario, where we trained and evaluated the model
for each subject independently. The experimental
results for 12 subjects are shown in Figure 4. Since
the EEG-to-text model essentially performs lan-
guage modeling without exploiting the information
provided by the EEG signal, its performance is sim-
ilar to that of the Random LLM. In contrast, our
method achieves statistically better performance
(paired t-test with P < 0.01) than the Random LLM
in the single-subject setting. Since there are differ-
ences between subjects, the model’s performance
fluctuations are observed across subjects. How-
ever, our method outperforms both the EEG-to-
Text model and the Random LLM on each subject.
These experimental results demonstrate the robust-
ness of our approach, which applies to different
subjects and can be effectively trained with only a
small amount of data.

Cross-Subject Setting In real-world applica-
tions, the model is likely to encounter data from
unknown subjects, so its ability to generalize to un-
seen subjects is crucial. To assess the cross-subject
generalization ability of our method, we perform
leave-one-out cross-validation based on 12 subjects.
The experimental results are presented in Figure
5. As we can see, our method still outperforms the
EEG-to-Text model on unseen subjects. Specifi-
cally, the performance of the EEG-to-Text model is
similar to that of the above two settings because it
does not utilize EEG information. In contrast, our
method achieves an average of 20.9 BLEU-1 scores
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Figure 5: Performance of our method and baselines in the cross-subject setting. To effectively evaluate the
generalization ability of our method, we performed leave-one-out cross-validation on all 12 subjects.

Hyperparameters ‘ B=1 B=2 B=3 B=4
a=1 189/17.2 158/184 13.0/160 8.6/16.5
a=2 205/17.8 19.8/183 16.0/169 12.8/16.3
a=3 21.0/19.0 20.8/18.7 19.1/18.7 149/17.0
a=14 21.8/189 219/193 205/184 169/184

Table 2: Evaluation metrics (BLEU-1/ ROUGEI1-F) of
our method on the validation set with different training
hyperparameters. Since « and 3 are strongly correlated,
we use the grid search method to find the best setting.

and 19.8 ROUGEI1-F scores, which surpasses the
EEG-to-Text model by margins of 3.2 (+18.1%)
and 3.1 (+18.6%). These results show that our
model can capture the common knowledge between
data from different subjects and generalize its rep-
resentation ability to unseen subjects. We believe
this is because we introduced EEG self-supervised
contrastive learning (van den Oord et al., 2018) dur-
ing the training phase, enabling our model to learn
a distinguishable and robust representation space,
thereby enhancing its generalization ability.

3.3 Analysis
3.3.1 Impact of Hyperparameters

We conduct experiments on the validation set in the
multi-subject setting to explore the impact of the
hyperparameters on our approach.

Impact of Training Hyperparameters As
shown in Equation (5), the primary hyperparame-
ters in the training process include « and 3. The
experimental results in Table 2 show that different

hyperparameter settings can impact model perfor-
mance, and the trade-off between « and 5 must
be carefully considered. Specifically, when both
« and (B are small, the self-supervised InfoNCE
loss dominates the training process. In this case,
although the EEG representation model can effec-
tively distinguish different word-level EEG fea-
tures, the generated representation vector is not
aligned with the text semantic space. As a result,
during the decoding stage, EEG representations
cannot provide accurate guidance for LLMs, lead-
ing to poor model performance. On the other hand,
if o and 3 are too large, the model fails to distin-
guish the EEG signals corresponding to different
words. Furthermore, when (3 is greater than «, the
EEG representation model tends to generate repre-
sentations that are far from the negative samples,
regardless of whether the generated representations
are close to the text semantics of the ground truth.
This also leads to a decrease in decoding quality.
Based on these experimental results, we set o to 4
and (5 to 2 to ensure that the EEG representation
is effectively aligned with the text semantics while
maintaining good discrimination.

Impact of Inference Hyperparameters During
inference, we need to choose the appropriate candi-
date length and beam size. First, we fix the beam
size to 300 and analyze the effects of various can-
didate lengths on decoding quality. As shown in
Figure 6, different candidate lengths significantly
impact final performance. In particular, generating
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Figure 6: The impact of different candidate lengths
(left) and beam sizes (right) on the performance of our
method. 1-3 means that we let LLMs generate candi-
dates of length 1, 2, and 3 at each decoding step and
merge them to form the final candidate set.

only a candidate set of length 1 at each decoding
step results in inferior performance, indicating that
most word-level EEG features correspond to more
than one token. Therefore, our method for gener-
ating candidate sets based on multiple lengths is
necessary and can effectively improve alignment
accuracy during decoding.

Next, we fix the candidate length to 1-4 and
analyze the impact of different beam sizes. As
shown in Figure 6, when the beam size is small, the
ground truth may be excluded from the candidate
set, resulting in poor decoding quality. On the other
hand, a large beam size leads to a larger candidate
set, which increases the difficulty of guiding the
generation of LLMs using EEG representations.
Additionally, memory usage and inference latency
increase as the beam size grows. Therefore, we
finally set the candidate length to 1-4 and the beam
size to 300. Due to space constraints, more analysis
is presented in Appendix C.

4 Related Works

Decoding brain signals into text is an active re-
search direction at the intersection of artificial intel-
ligence and neuroscience, with high research value
and a wide range of application scenarios. There
are many types of brain signals, such as electro-
corticography (ECoG) and stereotactic electroen-
cephalography (sEEG) for intracranial recordings
and functional magnetic resonance imaging (fMRI)
and EEG for non-invasive recordings. Intracranial
recordings offer high temporal and spatial resolu-
tion, as well as a high signal-to-noise ratio, en-
abling the decoding of high-quality text from them
(Herff et al., 2015; Willett et al., 2021). However,
their acquisition requires expensive invasive neuro-
surgery, which cannot be effectively promoted.
Therefore, researchers began to explore how to

use non-invasive recordings for Brain-to-Text de-
coding. For example, Tang et al. (Tang et al.,
2022) tried to reconstruct continuous language us-
ing fMRI. Similar to our method, they introduced
a language model to generate candidates and select
the best based on fMRI. However, due to the low
temporal resolution of fMRI, each brain image can
be affected by over 20 words, so it is difficult to
give accurate guidance during decoding. In con-
trast, we employ high temporal resolution EEG sig-
nals, which can provide fine-grained guidance for
LLMs at each decoding step. Additionally, EEG
acquisition is more portable and cost-effective than
fMRI, enhancing its practical value.

Recently, Wang and Ji (2021) proposed an open
vocabulary EEG-to-Text task and regarded it as
a translation task to solve it. A series of subse-
quent works have followed this idea and improved
upon it (Zhou et al., 2023; Xi et al., 2023; Duan
et al., 2023; Feng et al., 2023; Liu et al., 2024). For
example, DeWave (Duan et al., 2023) uses a quan-
tized variational encoder to derive discrete codex
encoding, which reduces the interference caused
by individual differences in EEG signals.

However, Jo et al. (2024) found that this series of
works employed teacher-forcing during the evalua-
tion, which caused their performance to be inflated.
Moreover, the experimental results show that the
EEG-to-Text translation model performs similarly
on pure noise compared to actual EEG data, mean-
ing it does not utilize the EEG information. Unlike
previous methods, we only focused on aligning
the word-level EEG representations with the corre-
sponding text semantics without using the teacher-
forcing strategy. Therefore, we could effectively
build an EEG representation model to extract se-
mantic information and guide LLMs in generating
correct sentences.

5 Conclusion

This paper proposes a novel framework for the
EEG-to-Text task. Our approach regards the LLM
as a brain and guides it in generating correct text
by leveraging aligned EEG signals. Experimen-
tal results on the ZuCo benchmark demonstrate
the effectiveness of our method, which not only
achieves significantly better performance than pre-
vious methods in both multi-subject and single-
subject settings but also shows strong generaliza-
tion capabilities in cross-subject scenarios.



6 Limitations

Although the new paradigm for the EEG-to-Text
task proposed in this paper addresses the shortcom-
ings of previous methods and achieves significant
performance improvements, some issues still re-
quire further exploration.

First, our method treats the LLM as a brain and
uses EEG signals to guide it in generating the de-
sired text. It is curious whether this decoding pro-
cess resembles brain activity during human think-
ing and whether the LLM shares similarities with
the human brain. We believe that with the continu-
ous development of neuroscience, these questions
can be answered more clearly, which will further
guide us in designing better methods.

Second, there is a significant performance gap
between our method and the Oracle LLM, indi-
cating that our EEG representation model can be
further improved. We believe better handling the
low signal-to-noise ratio in EEG signals is key to
improving model performance.

Third, our method relies on eye-tracking fixa-
tions to divide EEG signals into word-level seg-
ments, which limits its practical application. Fur-
thermore, the word-level EEG segments divided
by eye-tracking fixations are not always strictly
aligned with the text, presenting challenges for
training EEG representation models and generat-
ing candidate words during decoding. Therefore,
research on text decoding methods based on raw
EEG signals is crucial.
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A Implementation Details

We conducted experiments on NVIDIA RTX
A6000 48GB GPUs. The hidden dimension of the
two MLP layers in our EEG representation model is
1536, and the output dimension is 768. Our Trans-
former encoder consists of 3 layers, each with 8
attention heads and a hidden dimension of 2048.
The pre-trained BERT-base model (Devlin et al.,
2018) is used to generate text semantic representa-
tions. During training, we set the hyperparameters
a =4, =2,and 7 = 0.3. We use the Adam opti-
mizer with a learning rate of 5 x 10™*, a batch size
of 128, and a dropout rate of 0.3. We train for 30
epochs and select the checkpoints with the best per-
formance on the validation set as the final model.
During the decoding process, we adopt Llama2-
7b (Touvron et al., 2023) for inference, using the
ground truth corresponding to the first word-level
EEG feature as the prompt and the subsequent EEG
feature sequence to guide it in decoding text. We
set the candidate lengths to [1, 2, 3, 4] and the beam
size to 300 for Llama2-7B, generating a total of
1200 candidate words and selecting the best result
from them.

B Baselines

To verify the effectiveness of our method, we com-
pare our method primarily with three baselines:

1. EEG-to-Text Model (Wang and Ji, 2021):
This model treats the EEG-to-Text task as a
translation task and extends the pre-trained
BART (Lewis et al., 2019) model to construct
an EEG translation model. For a fair compari-
son, the same prompts used in our method are
input to its decoder during decoding.

Random LLM: During the decoding process,
this baseline randomly selects results from the
candidate set, with the rest of the process iden-
tical to our method. By comparing with this
baseline, we can assess whether our method
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effectively extracts and utilizes information
from EEG signals to guide LLMs correctly.

. Oracle LLM: This model selects the best
candidate using the semantic representation
of the ground truth, representing the ideal
case where EEG representations are perfectly
aligned with text semantics.

C
C.1 Ablation Study

To verify the effectiveness of each proposed mod-
ule, we conduct detailed ablation experiments in
the multi-subject setting. Specifically, we compare
our approach with several variants:

More Analysis

* w/o InfoNCE loss: Directly aligning EEG rep-
resentations and text semantics using a con-
trastive learning method similar to CLIP (Rad-
ford et al., 2021).

w/o text negative samples: Focusing only
on narrowing the distance between EEG rep-
resentations and the ground truth semantics
without constructing negative samples by ran-
domly replacing words.

w/o adding noise: Using only the original
word-level EEG features to compute the self-
supervised InfoNCE loss.

w/o previous context: Excluding previous con-
text when obtaining the text semantics.

w/o Transformer Encoder: Removing the
Transformer Encoder module from our EEG
representation model so that each word-level
EEG feature is encoded independently. To
prevent a significant change in the number
of model parameters, we replaced the Trans-
former Encoder with a three-layer MLP of
similar size.

As shown in Table 3, removing any module leads
to performance degradation of our method. First,
the w/o InfoNCE loss variant performs poorly, in-
dicating that directly aligning EEG representations
with text semantic representations is not feasible.
Therefore, we propose a dual contrastive learning
method, which effectively trains the EEG represen-
tation model through modal alignment of EEG sig-
nals and text semantics, as well as self-supervised
learning with noise, achieving excellent perfor-
mance. Second, when obtaining text semantics,
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Method BLEU-1 ROUGEI1-F
Ours 21.1 19.7
w/o InfoNCE loss 15.8 16.4
w/o adding noise to EEG 19.1 17.9
w/o previous context 18.4 17.1
w/o text negative samples 18.5 18.5
w/o Transformer Encoder 18.5 18.1

Table 3: Ablation experiments of our method in the
multi-subject setting.

concatenating the previous context to the word can
effectively reduce ambiguity, allowing EEG rep-
resentations to be better aligned with the corre-
sponding semantics. In addition, it is necessary
to construct negative text examples by randomly
replacing words. Finally, independently encoding
each word-level EEG results in a significant de-
crease in decoding quality. This shows that the
Transformer Encoder in our EEG representation
model can effectively capture and utilize contex-
tual dependencies in word-level EEG sequences,
thereby improving representation capabilities.

C.2 Representation Visualization

To verify whether our EEG representation model
can effectively distinguish different word-level
EEG features, we use t-SNE (van der Maaten and
Hinton, 2008) to visualize the EEG representations
of both the EEG-to-Text translation model and our
model. As shown in Figure 7, the representations
of the EEG-to-Text model are disorganized and can-
not distinguish between different word-level EEG
signals. Consequently, the EEG-to-Text model
struggles to utilize EEG signals for decoding effec-
tively. In contrast, our model enables word-level
EEG representations corresponding to the same
word to form clear clusters, even when sourced
from different subjects. These experimental results
demonstrate that our method allows the EEG repre-
sentation model to learn to identify semantic infor-
mation across various EEG signals during training
and to acquire robust representation capabilities.
Based on these distinct EEG representations, our
approach can provide more accurate guidance to
LLMs during the decoding stage.

C.3 Case Study

We present a case study in Table 4 to specifically an-
alyze the decoding results of different methods. As
we can see, even though the open vocabulary EEG-
to-text task is very challenging, our model can still
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Figure 7: T-SNE visualization of word-level EEG representations of the EEG-to-Text model (left) and our model
(right). Different colors mean different subjects. Each dot represents a word-level EEG representation. The red or
blue box dots represent EEG representations corresponding to the same word.

Ground Truth: I did go back and check out the last 10 minutes, but these were more repulsive than the first 30 or 40 minutes.

EEG-to-Text: I am born in New York City, and graduated from Yale University.

Random LLM: I made another one but this time j couldnt sit still so added photos of him along the way thanks for looking and any

swizzers out there pls tell us how you managed to

(6]

Ours: I also went back and watched the last part of the movie, but it was very bad for me that I don’t want to watch.

Oracle LLM: I did go back and check out the last 10 minutes, but these were rushed in comparison to the the first 30 or more minutes.

Ground Truth: A strong script, powerful direction and splendid production design allows us to be transported into the life of wladyslaw
szpilman, who is not only a pianist, but a good human being.

EEG-to-Text: A thinly veiled layer of fog settled over the quiet town, casting an eerie glow in the early morning light.

Random LLM: A network of partners and suppliers that have been tested in the real world. What brought you...Building a successful

brand involves a lot of effort other than...Building Smarter CitiesHardware is just the beginningWhat excites you most about P

@

Ours: A strong influence on his career. He once told us that bruce was the nephew of William Bruce, Jr., who is a pianist, but also

a person with a good temper.

Oracle LLM: A strong foundation, powerful direction, excellent production presentation makes it easy to be transported away into the
life of Jacob Jensen, who is not only a pianist, but is a good human being, too.

Table 4: Examples of EEG-to-text decoding results using different methods in the multi-subject setting. Bold words
indicate exact matches. Underlined words denote fuzzy matches with similar semantics.

decode some meaningful results corresponding to
the EEG signals, achieving better performance than
previous methods.

First, although the EEG-to-Text model can gener-
ate fluent sentences, the content is unrelated to the
ground truth. This outcome indicates that the EEG-
to-Text model collapsed into a language model dur-
ing training and failed to learn how to extract and
utilize information from the EEG. In contrast, our
method successfully decodes some words that ex-
actly match the ground truth or phrases with similar
semantics. This result demonstrates that our EEG
representation model can align word-level EEG
features with the corresponding text semantics, ef-
fectively guiding LLMs to generate accurate text.
Second, our approach is better at matching simple
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nouns or adjectives but has difficulty generating the
correct named entities, such as *wladyslaw szpil-
man’ in example (2). We believe this is because the
model cannot distinguish semantic differences be-
tween various entities of the same type. In addition,
the correct entity may be rare and not necessarily
included in the candidate set predicted by LLMs.
Third, there is a decoding quality gap between our
method and Oracle LLM. Oracle LLM can gener-
ate results that are mostly the same as the ground
truth. These results show that it is reasonable to
consider the EEG-to-Text task as a fine-grained
controllable text generation task. There remains
significant room for improvement in our EEG rep-
resentation model, and exploring ways to enhance
its performance warrants further investigation.



