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Abstract

Generative models in medical imaging offer significant potential for data augmenta-1

tion and privacy preservation, but they also pose risks of patient data memorization.2

This study presents a comprehensive, data-driven approach to evaluate and charac-3

terize the memorization behavior of generative models. We systematically compare4

various network architectures, loss functions, pretraining datasets, and distance5

metrics to identify optimal configurations for detecting potential privacy concerns6

in synthetic images. Our analysis reveals that self-supervised contrastive networks7

using Triplet Margin loss in models like DinoV2, DenseNet121, and ResNet50,8

when paired with Bray-Curtis or Standardized Euclidean distance metrics, demon-9

strate superior performance in detecting augmented copies of training images. We10

further apply our methodology to characterize the memorization behavior of a con-11

ditional diffusion image transformer model trained on mammography data. This12

work contributes a robust framework for evaluating generative models in medical13

imaging, offering a crucial tool for assessing the risk of patient data leakage in14

synthetic datasets.115

1 Introduction16

The advent of generative models has a lot of potential in healthcare and medical imaging initiatives,17

promising enhanced data sharing, expanded datasets, and improved training data diversity [1].18

However, these advancements come with significant privacy implications, especially given the19

sensitive nature of patient information. A key concern is the phenomenon of model memorization20

[2, 3], where generative models inadvertently reproduce specific details from their training data,21

potentially compromising patient confidentiality and undermining the core purpose of synthetic data22

generation.23

Recent research has demonstrated that a wide range of generative models, including GANs, VAEs,24

and diffusion models, are vulnerable to memorization [4, 5, 6, 7]. Of particular note, diffusion models25

[8], despite their impressive image quality, have shown a higher propensity for memorization [6].26

This finding underscores the intricate interplay between model sophistication, output quality, and data27

privacy. Furthermore, conventional evaluation metrics such as Inception Score (IS) [9] and Fréchet28

Inception Distance (FID) [10] fall short in detecting these memorization issues, potentially masking29

critical privacy vulnerabilities in emerging image generation techniques.30

A common misconception is that memorization can be effectively addressed by simply monitoring31

validation errors and preventing overfitting. However, this approach overlooks the fundamental32

differences between these two phenomena [11]. While overfitting manifests as a global issue where33

1The code for this study is available at https://github.com/molinamarcvdb/
ImageFeatureExtractionBenchmark
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models excel on training data at the expense of generalization, memorization is a more nuanced34

problem. It involves the model assigning disproportionately high probabilities to specific training35

instances. Intriguingly, a model’s tendency to memorize can actually increase even as its validation36

performance improves, particularly during the initial stages of training [11]. This paradoxical37

relationship highlights the need for specialized strategies to identify and mitigate memorization,38

distinct from traditional overfitting prevention techniques.39

Our research builds upon recent advances in self-supervised contrastive learning for memorization40

detection [5, 12], offering a comprehensive benchmark. We propose a novel approach to evaluate41

the efficacy and resilience of self-supervised networks through systematic image augmentations.42

Our study compares the performance of various state-of-the-art pretrained network architectures,43

including ResNet50 [13] and DinoV2 [14]. We also investigate the influence of different loss44

functions, including distance-based and entropy-based formulations, and examine the impact of45

pretraining on natural versus medical image datasets. By comparing a range of similarity, distance,46

and information-theoretic metrics, we aim to identify the most sensitive indicators for detecting and47

characterizing training data memorization. To demonstrate the practical application of our findings,48

we employ the best-performing method to analyze the memorization patterns in a diffusion model.49

2 Related work50

2.1 Model Memorization51

The phenomenon of model memorization has been extensively studied in machine learning, particu-52

larly in supervised learning contexts. Neural networks have demonstrated the capacity to memorize53

entire datasets, including those with random labels [15]. This memorization is not uniform across all54

data points; outliers and mislabeled samples are more likely to be memorized [16]. Memorization and55

generalization might also depend on network architecture and optimization procedure, but also on the56

data itself [17]. Moreover, some level of memorization in supervised learning has been shown to be57

important for generalization in several standard benchmarks [18]. In generative models, memorization58

presents unique challenges, as models that closely replicate training data may still achieve favorable59

scores on standard quality and diversity metrics. Recent work has demonstrated that GANs, VAEs,60

and diffusion models as well as vision language models are all susceptible to memorizing training61

data [4, 5, 6, 7, 19]. Therefore, creating a memorization metric to be monitored during training would62

enable a more comprehensive assessment of the generative model performance.63

2.2 Memorization Detection Methods64

Various approaches have been proposed to detect and quantify memorization in generative image65

models. Correlation-based methods, such as the structural similarity index measure (SSIM) employed66

by [20, 21, 22], offer a straightforward approach to assessing similarity between generated and training67

images. However, these methods were initially developed to measure diversity not memorization68

behaviour, and may be sub-optimal to detect generated samples which are mere augmented versions69

of the training data (e.g., rotation or flipping).70

More sophisticated approaches leverage self-supervised learning and contrastive methods. In [5] the71

authors introduced a framework that uses contrastive learning to map images to a lower-dimensional72

embedding space, allowing for the detection of copies that may include rotated or flipped variants of73

training images. This method was further explored in [12], which investigated the effects of various74

hyperparameters and training setups on memorization as well as mitigation strategies.75

2.3 Mitigation Strategies76

Various approaches have been proposed to mitigate memorization in generative models. These77

include using exclusively augmented images during training [5], implementing Differentially Private78

Stochastic Gradient Descent (DP-SGD) [23], and applying standard regularization techniques like79

dropout and weight decay. Additionally, novel methods such as Privacy Distillation have been80

introduced [24]. This two-step approach involves training an initial diffusion model on real data,81

generating and refining synthetic samples to exclude identifiable information, and then using these82

refined samples to train a second model. This method aims to reduce re-identification risk while83

maintaining downstream performance.84
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However, these mitigation strategies often involve trade-offs. DP-SGD can compromise image quality85

or lead to model divergence [25], while data augmentation may complicate similarity assessments86

between synthetic and original images. The Privacy Distillation approach, while promising, may87

result in reduced quality of the final synthetic samples. Finally, factors such as over-training, dataset88

size, and augmentation techniques also significantly influence memorization and should be carefully89

addressed [5, 6, 12].90

3 Methods91

3.1 Problem Formulation92

Let X = {x1, . . . , xN} represent a set of N training images, Xv = {v1, . . . , vK} denote a set of K93

validation images, and G = {g1, . . . , gM} be a set of M generated images. We train a Self-Supervised94

Contrastive Network (SSCN) to learn an embedding function ϕ : I → Rd, where I is the image95

space and d is the embedding dimension, by minimizing a contrastive loss function L(ϕ;X ).96

Given a similarity metric s : Rd×Rd → R, we compute the similarity between training and generated97

images as S(x, g) = s(ϕ(x), ϕ(g)) for x ∈ X , g ∈ G, and baseline similarities between training and98

validation images as Sbase(x, v) = s(ϕ(x), ϕ(v)) for x ∈ X , v ∈ Xv. To prevent memorization of99

synthetic data, we set a threshold τ as the p-th percentile of the Sbase distribution.100

For evaluation, we define a set of severely augmented images Xa = {a1, . . . , aL}, where each ai is101

derived from X using strong augmentations. We monitor the percentage of augmented images that102

match their corresponding original images in X according to the similarity threshold τ .103

3.2 Self-Supervised Contrastive Network104

3.2.1 Architecture105

The SSCN comprises a backbone network fθ : I → Rd, followed by a projection head gϕ : Rd → Rk.106

The backbone extracts features from the input images, while the projection head maps these features107

to a lower-dimensional embedding space. The complete network is represented as:108

hθ,ϕ(x) = gϕ(fθ(x)) (1)

We experiment with several backbone architectures, including ResNet50 [13], DenseNet121 [26],109

Inception V3 [27], CLIP Image Encoder [28] , and DinoV2 [14]. The projection head is a linear layer110

defined as gϕ(z) = Wz + b, where W ∈ Rk×d and b ∈ Rk.111

To explore the impact of domain-specific knowledge, we use backbones pretrained on both natural112

images (ImageNet [29]) and medical images (RadImageNet [30]). This comparison allows us to113

evaluate the transfer learning benefits of using medical-domain-specific pretraining.114

3.2.2 Loss Functions115

To structure the embedding space, we employ and compare two popular contrastive losses: the Triplet116

Margin Loss [31] and InfoNCE Loss[32]. Both losses aim to pull semantically similar data points117

closer while pushing dissimilar points farther apart.118

Triplet Margin Loss. This loss function ensures that the distance between an anchor-positive pair119

is smaller than the distance between the anchor-negative pair, with a margin m. Specifically, for an120

anchor a, a positive example p, and a negative example n, the loss is defined as:121

Ltriplet(a, p, n) = max(0,m+ d(a, p)− d(a, n)) (2)

where d(·, ·) is the Euclidean distance and m is the margin parameter. This encourages positive pairs122

to be closer together while keeping negatives farther apart in the embedding space.123
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InfoNCE Loss. InfoNCE (Information Noise-Contrastive Estimation) compares each anchor repre-124

sentation zi with one positive sample z+j and N − 1 negative samples {z−j }, using Cosine similarity125

between the embeddings. The objective is to maximize the probability that the positive pair is more126

similar than the negative ones. This probability is expressed as:127

P (i|j) =
exp(s(zi, z

+
j )/τ)

exp(s(zi, z
+
j )/τ) +

∑
z−
j
exp(s(zi, z

−
j )/τ)

(3)

where τ is a temperature parameter that controls the smoothness of the distribution, and s(zi, zj) is128

the Cosine similarity between anchor zi and positive or negative samples.129

The InfoNCE loss is computed as the negative log-likelihood of the positive pair:130

LInfoNCE(zi, z
+
j , {z

−
j }) = − logP (i|j) (4)

3.2.3 Training Procedure131

The training process is conducted over 100 epochs. For each epoch, mini-batches are sampled from132

the training set. Each batch undergoes a series of stochastic augmentations, including rotation, scaling,133

flipping, affine transformations, bias field distortion, gamma correction, noise addition, and blurring.134

These augmentations enhance the network’s ability to learn invariant features and generalize better.135

The model computes embeddings for both the original and augmented batches, then calculates the136

loss (either Triplet or InfoNCE) based on these embeddings. Network parameters are updated using137

the AdamW optimizer with an initial learning rate of 10−4, which is decayed exponentially with a138

factor of 0.99 after each epoch.139

We implemented the model using PyTorch and distributed the training across two NVIDIA RTX 4090140

GPUs. A batch size of 128 was used for most experiments, except for CLIP and DinoV2 models,141

where it was reduced to 64 due to memory constraints. For the InfoNCE loss, we set the temperature142

τ = 0.5, while for the triplet margin loss, we used a margin m = 0.05 with hard negative mining.143

The backbone was frozen during the first 5 epochs to ensure proper warm-up of the linear layer.144

3.3 Embedding Similarity Analysis145

To comprehensively evaluate the similarity between the learned embeddings, we employed and146

comapared the following distance and similarity metrics: Bray-Curtis distance, Canberra distance,147

Chebyshev distance, City Block (Manhattan) distance, Correlation distance, Cosine similarity, Dice148

similarity coefficient, Euclidean distance, Jensen-Shannon divergence, Mahalanobis distance, Match-149

ing distance, Minkowski distance, Standardized Euclidean distance (SEuclidean), and Squared150

Euclidean distance.151

3.3.1 Similarity Distributions152

For each trained model, we compute the similarity metrics between the training set and its adversarial153

(augmented) counterpart, the validation set and its adversarial counterpart, and for baseline similarity154

level assessment between the training and validation sets. These result in a distribution of the highest155

similarity score for each image enabling to test whether the contrastive model is capable of detecting156

augmented image copies and assess quantitatively the memorization degree by comparing with the157

train-val distribution. When aggregating over networks, losses, pretrainign and/or metrics we report158

the mean validation (augmented) detection with error bars representing 95 % confidence intervals,159

and significance test are calculated using two-tailed t-test.160

Detection of Augmented Copies To evaluate the effectiveness of our similarity metrics in identify-161

ing augmented copies, we implement a threshold-based detection method. Let Xaug = {x′
1, . . . , x

′
N}162

and Xv,aug = {v′1, . . . , v′K} represent the augmented versions of the training and validation sets,163

respectively. Given our similarity metric s and embedding function ϕ, we compute the similarity164

S(x, x′) = s(ϕ(x), ϕ(x′)) between each original image x ∈ X and its augmented version x′ ∈ Xaug .165
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We flag x′ as a potential copy if S(x, x′) > τ for any x ∈ X , where τ is set as the p-th percentile of166

the baseline similarity distribution Sbase(x, v) = s(ϕ(x), ϕ(v)) for x ∈ X , v ∈ Xv .167

Our benchmark aims to detect all images in Xaug and Xv,aug as copies of their original counterparts168

when using a τ equal to the 5-th percentile of Sbase(x, v). By comparing the detection rates between169

Xaug and Xv,aug , the model’s generalizability and robustness of our similarity metrics in identifying170

augmented copies can be assessed.171

3.4 Dataset172

Our study utilized an anonymized X-ray mammography dataset comprising 7,184 scans from 1,718173

unique patients. The images were obtained and stored in DICOM format with a median shape of174

2800 x 2082 pixels and median spacing of 0.065 x 0.065 mm.175

The dataset includes two primary classes of mammography scans: normal scans and scans with176

calcification. To ensure the integrity of our evaluation, we performed a patient-aware train-validation177

split, ensuring that scans from the same patient were not distributed across different sets.178

For preprocessing, all images were resized to square resolutions. During model training, images179

were further resized to match the natural input resolution of the backbone networks, typically 224 x180

224 pixels. This dataset provides a robust foundation for training and evaluating our self-supervised181

contrastive network and conditional diffusion model for medical image synthesis.182

3.5 Conditional Diffusion Model for Medical Image Synthesis183

To enhance our dataset and evaluate the potential of generative models in medical imaging, we trained184

a class-conditional diffusion model using our medical imaging data. This model was designed to185

generate high-quality, synthetic medical images while preserving class-specific features.186

Training Process We utilized a Diffusion Image Transformer (DiT) architecture [33], specifically187

the DiT XL/2 variant (670M), comprising 28 Transformer layers with a hidden size dimension of188

1152 and 16 attention heads. The model, was initially pretrained on ImageNet and then fine-tuned189

on our medical imaging dataset for 100.000 steps with a learning rate of 1e-4, batch size of 2, with190

horizontal flip as the only augmentation.191

Inference and Dataset Augmentation At inference time, we used the trained model to upsample192

our original dataset, effectively doubling its size. The resulting images were later processed via193

the best performing SSCN to showcase the usability of such privacy detector methods and their194

memorization characterization performance.195

4 Results196

In this study, we evaluated the performance of various deep learning models for a detection task,197

comparing different network architectures, pretraining datasets (ImageNet and RadImageNet), and198

loss functions (InfoNCE and Triplet). Our results reveal significant variations in performance across199

these factors, with some clear trends emerging.200

4.1 Network, Pretraining and Loss201

The performance of self-supervised networks varied significantly across different architectures, loss202

functions, and pretraining datasets (Figure 1). Consistently across all network architectures, the203

Triplet loss outperformed InfoNCE, often by a substantial margin. This superiority of Triplet loss204

over InfoNCE was found to be statistically significant (p < 0.05) for all tested network architectures205

and pretraining datasets, with many comparisons showing highly significant differences (p < 0.001).206

When comparing the best configurations of different network architectures, several significant207

differences emerged. DinoV2 with ImageNet pretraining and Triplet loss achieved the highest overall208

performance (0.722), closely followed by DenseNet121 (0.710) and ResNet50 with RadImageNet209

pretraining (0.660). The differences between these top-performing models were not statistically210

significant (p > 0.05), suggesting that they perform comparably well.211
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Figure 1: Comparison of network architectures performance with their best configurations.

However, significant differences were observed between the top-performing models and the Inception212

architecture. Inception, even in its best configuration (ImageNet, Triplet), performed significantly213

worse than ResNet50 (p = 0.030), DinoV2 (p = 0.014), and DenseNet121 (p = 0.015). The CLIP214

model, with its best configuration (RadImageNet, Triplet), showed intermediate performance (0.600)215

that was not significantly different from the top models but was marginally better than Inception216

(p = 0.059).217

Interestingly, when focusing on the Triplet loss, the choice of pretraining dataset (ImageNet vs.218

RadImageNet) did not lead to statistically significant differences in performance for most architectures.219

This lack of significant difference in pretraining datasets for Triplet loss was consistent across all220

models, including ResNet50 (p = 0.540), CLIP (p = 0.953), Inception (p = 0.875), DinoV2221

(p = 0.323), and DenseNet121 (p = 0.060).222

These findings indicate that while the choice of network architecture and loss function (Triplet223

vs. InfoNCE) has a significant impact on performance, the effect of pretraining dataset is more224

nuanced, particularly when using Triplet loss. The top-performing models (DinoV2, DenseNet121,225

and ResNet50) show comparable performance, significantly outperforming Inception, with CLIP226

falling in between. The robustness of Triplet loss to variations in pretraining data suggests it may227

offer more flexibility in the choice of pretraining dataset for self-supervised learning tasks across228

different network architectures.229

4.2 Impact of Distance Metrics on Triplet Loss Performance230

In addition to comparing network architectures and pretraining datasets, we also evaluated the231

performance of various distance metrics when using the Triplet loss function. The results, as232

illustrated in Figure 2, reveal substantial variations in performance across metrics, with the mean233

validation detection ratios and their respective confidence intervals showing clear differences.234

The Bray-Curtis distance metric demonstrated the highest mean validation detection ratio of 0.8094235

(±0.1036 CI), positioning it as the best performer. It was closely followed by the Jensen-Shannon236

divergence (0.7882 ±0.1107 CI) and a group of Euclidean-based metrics, including Euclidean,237

Minkowski, and Squared Euclidean, which all achieved 0.7871 (±0.1235 CI). These metrics consis-238

tently performed well across various configurations, highlighting their robustness when applied with239

models trained on Triplet Margin loss.240

A slightly lower performance was observed with metrics such as the City Block (Manhattan) distance241

(0.7813 ±0.1269 CI), the Canberra distance (0.7810 ±0.1101 CI), and the Standardized Euclidean242

distance (0.7708 ±0.1349 CI). Although these metrics exhibited detection ratios slightly below243

the top group, they still maintained strong performance, with detection ratios above 0.77. These244

6



Figure 2: Comparison of distance metrics performance with Triplet loss in terms of mean validation
detection ratio. Error bars represent confidence intervals.

results indicate that they are viable alternatives, particularly in situations where domain-specific245

considerations or computational efficiency play a role in metric selection.246

On the other hand, the Chebyshev distance (0.7599 ±0.1213 CI) and the Mahalanobis distance247

(0.6099 ±0.1257 CI) displayed notably lower performance. The lower mean detection ratios for248

these metrics suggest that they may not be as effective in this task when paired with the Triplet249

loss function. Furthermore, the correlation-based metrics, including Correlation, Cosine, Dice, and250

Matching, performed significantly worse, with detection ratios falling below 0.06. Notably, the251

Matching distance exhibited extremely poor performance (0.0073 ±0.0025 CI), suggesting that252

correlation-based metrics are ill-suited for this particular detection task when using Triplet loss.253

The statistical analysis of pairwise comparisons further reinforced these findings. The differences254

between the top-performing metrics—Bray-Curtis, Jensen-Shannon, and Euclidean-based—were not255

statistically significant (p > 0.05), indicating that their performances are comparable. However, these256

top-performing metrics were significantly superior to the lower-performing and poor-performing257

metrics, with highly significant differences observed when compared to Mahalanobis and correlation-258

based metrics (p < 0.001).259

4.3 Best Combinations for Each Network Architecture260

We present the best-performing combinations of network architecture, pretraining dataset, loss261

function and metric. Table 1 highlights the maximum validation detection achieved and the distance262

metric that produced this maximum value for each network configuration.263

Table 1: Best combinations for each network architecture

Model Pretraining Loss Val. Detection Metric
DinoV2 ImageNet Triplet 0.9971 Bray-Curtis
DenseNet121 ImageNet Triplet 0.9842 SEuclidean
ResNet50 RadImageNet Triplet 0.9568 Bray-Curtis
ResNet50 ImageNet Triplet 0.8863 Bray-Curtis
CLIP RadImageNet Triplet 0.8806 City Block
CLIP ImageNet Triplet 0.8791 Euclidean
DinoV2 RadImageNet Triplet 0.8604 Euclidean
DenseNet121 RadImageNet Triplet 0.7281 Bray-Curtis
Inception ImageNet Triplet 0.5813 Canberra
ResNet50 RadImageNet InfoNCE 0.5496 Euclidean
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As shown in Table 1, the DinoV2 model pre-trained on ImageNet using the Triplet loss achieved264

the highest validation detection score (0.9971), with the Bray-Curtis distance metric. Similar trends265

are observed across other architectures, with DenseNet121 and ResNet50 also performing well with266

SEuclidean and Bray-Curtis metrics, respectively.267

4.4 Memorization Characterization of Diffusion Models268

Using the best-performing combinations identified for our dataset, the fine-tuned DinoV2 model was269

employed to analyze the memorization behavior of a DiT trained to generate synthetic mammography270

images (Figure 3). The augmented images are easily distinguishable from the training data, while271

the generated samples exhibit a slight shift towards the left of the training distribution. This shift272

suggests a degree of memorization, as the synthetic samples appear to be closer to the training data273

than the training data is to the validation images.274

Figure 3: Memorization characterization by the two best-performing self-supervised contrastive
networks, DinoV2 (left) and DenseNet121 (right), for generated samples by a DiT model.

5 Discussion275

Our study presents a comprehensive, data-driven approach to evaluating and characterizing the276

memorization behavior of generative models in medical imaging. By systematically comparing277

various network architectures, loss functions, pretraining datasets, and distance metrics, we have278

identified optimal configurations for detecting potential privacy concerns in synthetic images. The279

results demonstrate that the developed method can identify all augmented images when using Triplet280

Margin loss with models like DinoV2, DenseNet121, and ResNet50, particularly when paired with281

the Bray-Curtis or Standardized Euclidean distance metrics. The ability to quantify the degree of282

memorization in generated images offers a method to assess the risk of patient data leakage in283

synthetic datasets. This approach can be integrated into the training pipeline of generative models,284

serving as an early warning system for memorization and potential privacy breaches.285

Limitations As for limitations, our study is based on a private mammography dataset from various286

institutions. Although this dataset is substantial and diverse, the generalizability of our findings to287

other medical imaging modalities or natural image datasets remains to be validated. Future work288

should address these limitations by generating a foudnational model that serves for both 2D and 3D289

data, multi-institutional and multi-modality datasets to avoid having to fine-tune the model for each290

dataset. A comparative analysis of various generative model architectures and stronger conditioning291

forms (text or segmentation) would provide a more comprehensive understanding of memorization292

behavior across generative models.293
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A Appendix391

A.1 Backbone Comparison p-values392

Table 2 shows the p-values for the comparison between ImageNet and RadImageNet pretraining393

across different model backbones and loss functions.394

Table 2: P-values for Backbone Comparison (ImageNet vs RadImageNet)

Model Loss p-value
ResNet50 InfoNCE 0.0205
ResNet50 Triplet 0.5401
Inception InfoNCE 0.0428
Inception Triplet 0.8749
DINO InfoNCE 0.0147
DINO Triplet 0.3230
DenseNet121 InfoNCE 0.0498
DenseNet121 Triplet 0.0599
CLIP InfoNCE 0.1731
CLIP Triplet 0.9528

The results indicate varying levels of statistical significance in the performance difference between395

ImageNet and RadImageNet pretraining across different model architectures and loss functions.396

P-values below 0.05 suggest a statistically significant difference:397

• ResNet50, Inception, DINO, and DenseNet121 show statistically significant differences (p <398

0.05) when using InfoNCE loss.399

• The Triplet loss generally shows no significant difference between ImageNet and RadIma-400

geNet pretraining across all models.401

• CLIP shows no significant difference for either loss function.402

These results suggest that the choice of pretraining dataset (ImageNet vs RadImageNet) may have a403

more pronounced effect when using InfoNCE loss, particularly for certain model architectures.404

A.2 Loss Function Comparison Results405

Table 3 presents the comparison between Triplet and InfoNCE loss functions across different model406

backbones and pretraining datasets.407

Table 3: Comparison of Triplet and InfoNCE Loss Functions

Model Pretrain p-value Triplet Mean InfoNCE Mean
ResNet50 ImageNet 0.0008 0.5694 0.1934
ResNet50 RadImageNet 0.0249 0.6604 0.3572
Inception ImageNet <0.0001 0.3705 0.0929
Inception RadImageNet <0.0001 0.3576 0.0645
DINO ImageNet <0.0001 0.7216 0.1051
DINO RadImageNet 0.0006 0.5671 0.1826
DenseNet121 ImageNet 0.0016 0.7102 0.2733
DenseNet121 RadImageNet 0.0019 0.4396 0.1720
CLIP ImageNet <0.0001 0.5919 0.0533
CLIP RadImageNet <0.0001 0.6004 0.0642

The results show a consistent and statistically significant difference between the performance of408

Triplet and InfoNCE loss functions across all model architectures and pretraining datasets. Key409

observations include:410

• All comparisons show p-values well below 0.05, indicating strong statistical significance in411

the difference between Triplet and InfoNCE loss performance.412
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• Triplet loss consistently outperforms InfoNCE loss across all models and pretraining datasets,413

as evidenced by the higher mean values.414

• The performance gap between Triplet and InfoNCE loss appears to be more pronounced for415

some models (e.g., DINO, CLIP) compared to others.416

• The choice of pretraining dataset (ImageNet vs RadImageNet) seems to influence the417

magnitude of the difference between the two loss functions, though the trend of Triplet loss418

outperforming InfoNCE remains consistent.419

These findings suggest that the choice of loss function has a substantial impact on model performance,420

with Triplet loss demonstrating superior results across various model architectures and pretraining421

scenarios. This consistent pattern underscores the importance of loss function selection in the design422

of contrastive learning frameworks for image analysis tasks.423

A.3 Network Architecture Comparison Results424

Table 4 presents the pairwise comparisons between different network architectures, considering their425

performance with specific pretraining datasets and loss functions.426

Table 4: Pairwise Comparison of Network Architectures

Model 1 Model 2 p-value Model 1 Mean Model 2 Mean
ResNet50 (RadImageNet, Triplet) Inception (ImageNet, Triplet) 0.0298 0.6604 0.3705
ResNet50 (RadImageNet, Triplet) DINO (ImageNet, Triplet) 0.7125 0.6604 0.7216
ResNet50 (RadImageNet, Triplet) DenseNet121 (ImageNet, Triplet) 0.7606 0.6604 0.7102
ResNet50 (RadImageNet, Triplet) CLIP (RadImageNet, Triplet) 0.6940 0.6604 0.6004
Inception (ImageNet, Triplet) DINO (ImageNet, Triplet) 0.0139 0.3705 0.7216
Inception (ImageNet, Triplet) DenseNet121 (ImageNet, Triplet) 0.0147 0.3705 0.7102
Inception (ImageNet, Triplet) CLIP (RadImageNet, Triplet) 0.0588 0.3705 0.6004
DINO (ImageNet, Triplet) DenseNet121 (ImageNet, Triplet) 0.9461 0.7216 0.7102
DINO (ImageNet, Triplet) CLIP (RadImageNet, Triplet) 0.4465 0.7216 0.6004
DenseNet121 (ImageNet, Triplet) CLIP (RadImageNet, Triplet) 0.4825 0.7102 0.6004

The results reveal interesting patterns in the performance of different network architectures:427

• ResNet50 (RadImageNet, Triplet) shows significantly better performance than Inception428

(ImageNet, Triplet) with a p-value of 0.0298.429

• There is no statistically significant difference between ResNet50 (RadImageNet, Triplet)430

and DINO, DenseNet121, or CLIP, as evidenced by high p-values (>0.05).431

• Inception (ImageNet, Triplet) consistently underperforms compared to other architectures,432

with statistically significant differences against DINO and DenseNet121 (p-values < 0.05).433

• DinoV2, DenseNet121, and CLIP show comparable performance, with no statistically434

significant differences among them (p-values > 0.05).435

• The choice of pretraining dataset (ImageNet vs RadImageNet) appears to influence perfor-436

mance, but the effect varies across architectures.437

These findings suggest that:438

1. ResNet50, DinoV2, DenseNet121, and CLIP demonstrate robust performance across differ-439

ent pretraining scenarios when using Triplet loss.440

2. Inception architecture may not be optimal for this particular task, consistently showing lower441

performance.442

3. The impact of pretraining dataset choice (ImageNet vs RadImageNet) may be architecture-443

dependent and warrants further investigation.444

Overall, these results underscore the importance of carefully selecting network architectures and445

pretraining strategies in contrastive learning frameworks for image analysis tasks. The comparable446

performance of several architectures (ResNet50, DINO, DenseNet121, CLIP) suggests that factors447

beyond architecture, such as loss function and pretraining data, play crucial roles in determining448

overall system performance.449
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A.4 InfoNCE Loss Metric Results450

In this section we show the results on metric comparison for the models trained with InfoNCE loss451

(Table 4). We observe that on average the reults are much lower than when using Triplet Margin loss,452

and distance metrics like Euclidean are preferred over correlation, Mahalanobis or Cosine similarity.453

Figure 4: Comparison of distance metrics performance with InfoNCE loss in terms of mean validation
detection ratio. Error bars represent confidence intervals.

A.5 Class conditional Performance Metrics DiT vs StyleGAN2454

The generative imaging results, shown in Figure ??, indicate that the class-conditional DiT model455

performs better or at least comparably across all relevant metrics to the unconditional StyleGAN2s.456

DiT models learns more comprehensively the real image distribution and is less affected by mode-457

collapse. Both models exhibit a tendency for memorization, as the generated data closely resembles458

the training data more than the training data resembles the validation data. However, the degree of459

memorization observed is not excessive after manually inspection.460
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Figure 5: High-Resolution Image Synthesis Comparison Between StyleGAN and Diffusion Models
(2048 x 2048 pixels).

NeurIPS Paper Checklist461

1. Claims462

Question: Do the main claims made in the abstract and introduction accurately reflect the463

paper’s contributions and scope?464

Answer: [Yes]465

Justification: The main goals and scope are specified at the abstract and introduction by466

acknowledging we build upon a previous work on the memorization topic and we focus on467

the optimization of it via a thorough benchmark to ensure that non-trivial decisions about468

the method configuration (Backbone, Loss, Pretraining, Similarity metric) are backed with469

experiments.470

Guidelines:471

• The answer NA means that the abstract and introduction do not include the claims472

made in the paper.473

• The abstract and/or introduction should clearly state the claims made, including the474

contributions made in the paper and important assumptions and limitations. A No or475

NA answer to this question will not be perceived well by the reviewers.476

• The claims made should match theoretical and experimental results, and reflect how477

much the results can be expected to generalize to other settings.478

• It is fine to include aspirational goals as motivation as long as it is clear that these goals479

are not attained by the paper.480

2. Limitations481
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Question: Does the paper discuss the limitations of the work performed by the authors?482

Answer: [Yes]483

Justification: The paper comment on the limitations of our work in the last section of the484

paper where we acknowledge the generalization aspect of our method remains unclear and485

fine-tuning to each individual dataset might be required. And we propose as future work486

to create a multi-modality medical imaging dataset to develop a contrastive foundational487

model capable of generalize to unseen data and avoid the fine-tuning step.488

Guidelines:489

• The answer NA means that the paper has no limitation while the answer No means that490

the paper has limitations, but those are not discussed in the paper.491

• The authors are encouraged to create a separate "Limitations" section in their paper.492

• The paper should point out any strong assumptions and how robust the results are to493

violations of these assumptions (e.g., independence assumptions, noiseless settings,494

model well-specification, asymptotic approximations only holding locally). The authors495

should reflect on how these assumptions might be violated in practice and what the496

implications would be.497

• The authors should reflect on the scope of the claims made, e.g., if the approach was498

only tested on a few datasets or with a few runs. In general, empirical results often499

depend on implicit assumptions, which should be articulated.500

• The authors should reflect on the factors that influence the performance of the approach.501

For example, a facial recognition algorithm may perform poorly when image resolution502

is low or images are taken in low lighting. Or a speech-to-text system might not be503

used reliably to provide closed captions for online lectures because it fails to handle504

technical jargon.505

• The authors should discuss the computational efficiency of the proposed algorithms506

and how they scale with dataset size.507

• If applicable, the authors should discuss possible limitations of their approach to508

address problems of privacy and fairness.509

• While the authors might fear that complete honesty about limitations might be used by510

reviewers as grounds for rejection, a worse outcome might be that reviewers discover511

limitations that aren’t acknowledged in the paper. The authors should use their best512

judgment and recognize that individual actions in favor of transparency play an impor-513

tant role in developing norms that preserve the integrity of the community. Reviewers514

will be specifically instructed to not penalize honesty concerning limitations.515

3. Theory Assumptions and Proofs516

Question: For each theoretical result, does the paper provide the full set of assumptions and517

a complete (and correct) proof?518

Answer: [Yes]519

Justification: We do define the problem in a closed format so that all assumptions and criteria520

are clear, specifically for our detection benchmark via adversarial augmentations.521

Guidelines:522

• The answer NA means that the paper does not include theoretical results.523

• All the theorems, formulas, and proofs in the paper should be numbered and cross-524

referenced.525

• All assumptions should be clearly stated or referenced in the statement of any theorems.526

• The proofs can either appear in the main paper or the supplemental material, but if527

they appear in the supplemental material, the authors are encouraged to provide a short528

proof sketch to provide intuition.529

• Inversely, any informal proof provided in the core of the paper should be complemented530

by formal proofs provided in appendix or supplemental material.531

• Theorems and Lemmas that the proof relies upon should be properly referenced.532

4. Experimental Result Reproducibility533
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-534

perimental results of the paper to the extent that it affects the main claims and/or conclusions535

of the paper (regardless of whether the code and data are provided or not)?536

Answer: [Yes]537

Justification: The paper provides a complete definition of the attained problem, a definition538

of the networks, losses, pretraining, hyperparameters and metrics employed as well as the539

resources needed to run all the experiments (Methods section).540

Guidelines:541

• The answer NA means that the paper does not include experiments.542

• If the paper includes experiments, a No answer to this question will not be perceived543

well by the reviewers: Making the paper reproducible is important, regardless of544

whether the code and data are provided or not.545

• If the contribution is a dataset and/or model, the authors should describe the steps taken546

to make their results reproducible or verifiable.547

• Depending on the contribution, reproducibility can be accomplished in various ways.548

For example, if the contribution is a novel architecture, describing the architecture fully549

might suffice, or if the contribution is a specific model and empirical evaluation, it may550

be necessary to either make it possible for others to replicate the model with the same551

dataset, or provide access to the model. In general. releasing code and data is often552

one good way to accomplish this, but reproducibility can also be provided via detailed553

instructions for how to replicate the results, access to a hosted model (e.g., in the case554

of a large language model), releasing of a model checkpoint, or other means that are555

appropriate to the research performed.556

• While NeurIPS does not require releasing code, the conference does require all submis-557

sions to provide some reasonable avenue for reproducibility, which may depend on the558

nature of the contribution. For example559

(a) If the contribution is primarily a new algorithm, the paper should make it clear how560

to reproduce that algorithm.561

(b) If the contribution is primarily a new model architecture, the paper should describe562

the architecture clearly and fully.563

(c) If the contribution is a new model (e.g., a large language model), then there should564

either be a way to access this model for reproducing the results or a way to reproduce565

the model (e.g., with an open-source dataset or instructions for how to construct566

the dataset).567

(d) We recognize that reproducibility may be tricky in some cases, in which case568

authors are welcome to describe the particular way they provide for reproducibility.569

In the case of closed-source models, it may be that access to the model is limited in570

some way (e.g., to registered users), but it should be possible for other researchers571

to have some path to reproducing or verifying the results.572

5. Open access to data and code573

Question: Does the paper provide open access to the data and code, with sufficient instruc-574

tions to faithfully reproduce the main experimental results, as described in supplemental575

material?576

Answer: [No]577

Justification We do provide access to the code that enables to reproduce the results with any578

dataset in a flexible manner. However, we do not disclose the dataset employed due to the579

sensitivity of the medical images which although anonymized we are not allowed to share580

openly.581

Guidelines:582

• The answer NA means that paper does not include experiments requiring code.583

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/584

public/guides/CodeSubmissionPolicy) for more details.585

• While we encourage the release of code and data, we understand that this might not be586

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not587
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including code, unless this is central to the contribution (e.g., for a new open-source588

benchmark).589

• The instructions should contain the exact command and environment needed to run to590

reproduce the results. See the NeurIPS code and data submission guidelines (https:591

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.592

• The authors should provide instructions on data access and preparation, including how593

to access the raw data, preprocessed data, intermediate data, and generated data, etc.594

• The authors should provide scripts to reproduce all experimental results for the new595

proposed method and baselines. If only a subset of experiments are reproducible, they596

should state which ones are omitted from the script and why.597

• At submission time, to preserve anonymity, the authors should release anonymized598

versions (if applicable).599

• Providing as much information as possible in supplemental material (appended to the600

paper) is recommended, but including URLs to data and code is permitted.601

6. Experimental Setting/Details602

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-603

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the604

results?605

Answer: [Yes]606

Justification: We do describe all the hyper-parameters employed and how they were selected607

as well as the optimizer and other training details selected via manual tunning in the methods608

section.609

Guidelines:610

• The answer NA means that the paper does not include experiments.611

• The experimental setting should be presented in the core of the paper to a level of detail612

that is necessary to appreciate the results and make sense of them.613

• The full details can be provided either with the code, in appendix, or as supplemental614

material.615

7. Experiment Statistical Significance616

Question: Does the paper report error bars suitably and correctly defined or other appropriate617

information about the statistical significance of the experiments?618

Answer: [Yes]619

Justification: We describe the statistical tests employed the meaning of the error bars which620

support the main claims of our paper (Methods and results section, figure 1 2 and Tables in621

supplementary)622

Guidelines:623

• The answer NA means that the paper does not include experiments.624

• The authors should answer "Yes" if the results are accompanied by error bars, confi-625

dence intervals, or statistical significance tests, at least for the experiments that support626

the main claims of the paper.627

• The factors of variability that the error bars are capturing should be clearly stated (for628

example, train/test split, initialization, random drawing of some parameter, or overall629

run with given experimental conditions).630

• The method for calculating the error bars should be explained (closed form formula,631

call to a library function, bootstrap, etc.)632

• The assumptions made should be given (e.g., Normally distributed errors).633

• It should be clear whether the error bar is the standard deviation or the standard error634

of the mean.635

• It is OK to report 1-sigma error bars, but one should state it. The authors should636

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis637

of Normality of errors is not verified.638
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• For asymmetric distributions, the authors should be careful not to show in tables or639

figures symmetric error bars that would yield results that are out of range (e.g. negative640

error rates).641

• If error bars are reported in tables or plots, The authors should explain in the text how642

they were calculated and reference the corresponding figures or tables in the text.643

8. Experiments Compute Resources644

Question: For each experiment, does the paper provide sufficient information on the com-645

puter resources (type of compute workers, memory, time of execution) needed to reproduce646

the experiments?647

Answer: [Yes]648

Justification: We specify the hardware used to run all the experiments in the implementation649

details of the methods section.650

Guidelines:651

• The answer NA means that the paper does not include experiments.652

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,653

or cloud provider, including relevant memory and storage.654

• The paper should provide the amount of compute required for each of the individual655

experimental runs as well as estimate the total compute.656

• The paper should disclose whether the full research project required more compute657

than the experiments reported in the paper (e.g., preliminary or failed experiments that658

didn’t make it into the paper).659

9. Code Of Ethics660

Question: Does the research conducted in the paper conform, in every respect, with the661

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?662

Answer: [Yes]663

Justification: We have read and checked that we conform with the code of ethics of NeurIPS664

and we preserve anonymity in the current submission for a fair and unbiased review process.665

Guidelines:666

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.667

• If the authors answer No, they should explain the special circumstances that require a668

deviation from the Code of Ethics.669

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-670

eration due to laws or regulations in their jurisdiction).671

10. Broader Impacts672

Question: Does the paper discuss both potential positive societal impacts and negative673

societal impacts of the work performed?674

Answer: [Yes]675

Justification: We discuss the different aspects to consider about generative models memo-676

rization in medical imaging and how by not implementing aafety measure patient data could677

be leaked into the generated datasets which would violate privacy regulations (Introduction,678

Related work and Discussion)679

Guidelines:680

• The answer NA means that there is no societal impact of the work performed.681

• If the authors answer NA or No, they should explain why their work has no societal682

impact or why the paper does not address societal impact.683

• Examples of negative societal impacts include potential malicious or unintended uses684

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations685

(e.g., deployment of technologies that could make decisions that unfairly impact specific686
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• The conference expects that many papers will be foundational research and not tied688

to particular applications, let alone deployments. However, if there is a direct path to689

any negative applications, the authors should point it out. For example, it is legitimate690

to point out that an improvement in the quality of generative models could be used to691
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that a generic algorithm for optimizing neural networks could enable people to train693
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Answer: [Yes]707

Justification:708
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not require this, but we encourage authors to take this into account and make a best718
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• If this information is not available online, the authors are encouraged to reach out to741

the asset’s creators.742

13. New Assets743
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• At submission time, remember to anonymize your assets (if applicable). You can either756

create an anonymized URL or include an anonymized zip file.757

14. Crowdsourcing and Research with Human Subjects758

Question: For crowdsourcing experiments and research with human subjects, does the paper759

include the full text of instructions given to participants and screenshots, if applicable, as760

well as details about compensation (if any)?761

Answer: [NA]762

Justification: Human subjects were not use in an instructive manner, no instructions to763

specify.764

Guidelines:765

• The answer NA means that the paper does not involve crowdsourcing nor research with766

human subjects.767

• Including this information in the supplemental material is fine, but if the main contribu-768

tion of the paper involves human subjects, then as much detail as possible should be769

included in the main paper.770

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,771

or other labor should be paid at least the minimum wage in the country of the data772

collector.773

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human774

Subjects775

Question: Does the paper describe potential risks incurred by study participants, whether776

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)777

approvals (or an equivalent approval/review based on the requirements of your country or778

institution) were obtained?779

Answer: [Yes]780

Justification: The study contains retropecitve fully anonymized data based and all subjects781

gave their consent to use their health data (images) for further research and was conducted782

based on a IRB approval783

Guidelines:784

• The answer NA means that the paper does not involve crowdsourcing nor research with785

human subjects.786

• Depending on the country in which research is conducted, IRB approval (or equivalent)787

may be required for any human subjects research. If you obtained IRB approval, you788

should clearly state this in the paper.789

• We recognize that the procedures for this may vary significantly between institutions790

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the791

guidelines for their institution.792
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• For initial submissions, do not include any information that would break anonymity (if793

applicable), such as the institution conducting the review.794
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