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Abstract

Heterogeneous Graph Neural Networks (Het-001
erGNN) has been recently introduced as an002
emergent approach for many Natural Language003
Processing (NLP) tasks by enriching the com-004
plex information between word and sentence.005
In this paper, we try to improve the perfor-006
mance of Extractive Document Summarization007
(EDS) for long-form documents based on the008
concept of HeterGNN. Specifically, long docu-009
ments (e.g., Scientific Papers) are truncated for010
most neural-based models, which leads to the011
challenge in terms of information loss of inter-012
sentence relations. In this regard, we present013
a new method by exploiting the capabilities of014
HeterGNN and pre-trained language models.015
Particularly, BERT is considered for improv-016
ing the sentence information into the Heteroge-017
nous graph layer. Accordingly, two versions018
of the proposed method are presented which019
are: i) Multi Graph Neural Network (MTGNN-020
SUM), by combining both heterogeneous graph021
layer and graph attention layer; and ii) Het-022
erGNN with BERT (HeterGNN-BERT-SUM),023
by integrating BERT directly into the hetero-024
geneous graph structure. Experiments on two025
benchmark datasets of long documents such026
as PubMed and ArXiv show that our method027
outperforms state-of-the-art models in this re-028
search field.029

1 Introduction030

Document summarization aims to automatically031

extract a set of sentences, which represents infor-032

mation for whole document, by ranking the im-033

portance of sentence features. Most of previous034

algorithms require hand-crafted features for sen-035

tence representation (Yao et al., 2017). Recently,036

with the rapid development of Deep Learning (DL)037

for various Natural Language Processing (NLP)038

tasks, many DL-based models have been intro-039

duced for improving the EDS problem (El-Kassas040

et al., 2021). Zhang et al. (2016) proposed a sim-041

ple convolutional neural network (CNN) with pre-042

trained word embedding for jointly learning and 043

performing sentence features ranking. The exper- 044

imental results demonstrate the effectiveness of 045

pre-trained word embedding in DL for text summa- 046

rization comparing with traditional methods. 047

Notably, GNN, a DL-based approach which op- 048

erate on graph domain (Zhou et al., 2020a), has 049

introduced as an emergent approach for EDS prob- 050

lem. Specifically, GNN-based models are able to 051

encode the complicated pairwise relationships be- 052

tween entity tokens for better informative represen- 053

tations (Wu et al., 2021). Cui et al. (2020) uses in- 054

formation of topic-aware to change the representa- 055

tion of words to a new representation. Then, a GNN 056

model for capturing relationships efficiently via 057

graph-structured document representation between 058

sentences. Sequentially, recent works focus on Het- 059

erGNN, a special kind of GNN (Zhang et al., 2019), 060

for enriching the relationships between words and 061

sentences, which have achieved remarkable results 062

in NLP tasks. Particularly, Wang et al. (2020) pre- 063

sented a heterogeneous graph-based neural network 064

for extractive summarization (HeterSumGraph) by 065

using more fine-grained semantic units in the sum- 066

marization graph to extract the complex relation- 067

ships between words and sentences. Accordingly, 068

the model has achieved the top performance in 069

CNN/DailyMail and NYT50 datasets in terms of 070

non-BERT-based approach. In order to utilize the 071

capability of BERT-based models (Devlin et al., 072

2019), Jia et al. (2020) proposed a hierarchical 073

attentive heterogeneous graph (HAHSum) to im- 074

prove the redundant phrases problem between ex- 075

tracted sentences of the summarization. HAH- 076

Sum has achieved remarked results on news ar- 077

ticle datasets such as CNN/DailyMail, NYT, and 078

Newsroom. However, the model requires external 079

analysis for modeling long-range dependencies. 080

Observely, since transformer-based language 081

models are not able to process long pieces of texts, 082

there is not much remarkable achievements for 083
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the EDS problem on long documents. Several084

works have provided promising results (Cui and085

Hu, 2021), however, the input length limitation and086

encoding long texts are still open challenges in this087

research field (Zhong et al., 2020). In this study, we088

take an investigation on improving the performance089

of EDS problem for long documents in which the090

core idea is to exploit the complex relationship of091

sentences connection. Specifically, based on the092

advantages of HeterGNN for extracting semantic093

information between word and sentences, we em-094

ploy a homogeneous GNN (i.e., Graph Attention095

Network (GAT)) with BERT for sentence represen-096

tation to extract the relationship between sentences.097

In this regard, the proposed combined model is able098

to capture the semantic information for both inter099

and intra sentence connections. To the best of our100

knowledge, this paper is the first study to combine101

both types of graph structure for the NLP tasks.102

Specifically, the main contribution of our study is103

threefold as follows:104

• We propose a new approach for learning the105

complex relationship of sentence connections.106

Accordingly, two versions of the proposed107

method are presented for the long document108

summarization.109

• We evaluated the proposed method with two110

benchmark long documents datasets such as111

PubMed and ArXiv. The experiential results112

show that our method outperforms state-of-113

the-art models for the EDS problem.114

• The proposed method is able to extract the115

complex relationship for both intra and inter116

sentence relations, which can be easily ex-117

tended for other NLP tasks (e.g., keyphrases118

extraction). Our source code is available on 1119

for further investigations.120

The rest of this paper is organized as follows:121

Section 2 is a brief review of document extraction122

and graph neural network models. We present our123

method with two versions in Section 3. Section 4124

reports the evaluation results on two well-known125

benchmark datasets of long-form documents. The126

discussions and future works are concluded in Sec-127

tion 5.128

1Code will be released at https://github.com/

2 Related work 129

2.1 Extractive Summarization 130

TextRank (Mihalcea and Tarau, 2004) and LexRank 131

(Erkan and Radev, 2004) was two of traditional 132

methods for extractive summarization. The core 133

idea is to calculate the similar scores between sen- 134

tences in order to extract the summary sentences. 135

With the rapid growth of DL-based models, neural 136

networks have achieved great success in many NLP 137

tasks, including extractive summarization (Zhang 138

et al., 2018; Dong et al., 2018; Narayan et al., 2018; 139

Cohan et al., 2018; Xiao and Carenini, 2019, 2020). 140

In recent years, pre-trained language model has 141

become an advanced method in text summariza- 142

tion. Liu and Lapata (2019) proposed a transformer 143

network on BERT representation (BERTSUM) as 144

pretrained encoders to express the semantics of a 145

document. Specifically, the architecture of BERT- 146

SUM is illustrated in the Figure 1. Subsequently,

Figure 1: BERTSUM archiecture extends BERT with
multiple [CLS] symbols to learn sentence representa-
tions and segmentation embeddings.

147
Zhong et al. (2020) construct Siamese-BERT archi- 148

tecture to match document and candidate summary, 149

which achieve remarked results on CNN/DailyMail 150

dataset. Xu et al. (2020) used discourse infor- 151

mation encoded with graph convolution network 152

(GCN) to reduce summarization redundancy and in- 153

tegrate with document encoder by BERT to capture 154

long-range dependencies among discourse units. 155

Yuan et al. (2020) integrated dependency parsing to 156

extract important phrases and present a hierarchi- 157

cal transformer network for improving the perfor- 158

mance. Zhou et al. (2020b) proposed an analysis 159

sentence by adopting constituency parsing and us- 160

ing BERT for representing extracted phrases. Then, 161

a transformer network is adopted to extract sum- 162

mary from documents. 163
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2.2 Graph Neural Network164

GNN-based models with their variants (e.g., GCN165

and GAT) have provided the capability for exploit-166

ing the sentence relation information encoded in167

graph representations (Yasunaga et al., 2017; Fer-168

nandes et al., 2018). However, the whole graph is169

assumed to share the same type of nodes, which170

is not appropriate to exploit the hierarchical prob-171

lems in many real-word applications. Therefore,172

Zhang et al. (2019) presents HeterGNN by defining173

the problem of heterogeneous graph representation174

learning. Sequentially, HeterGNN-based models175

have been applied for various downstream appli-176

cations such as recommendation (Fan et al., 2019)177

and link prediction (Zheng et al., 2020).178

Regarding EDS problem, HeterSumGraph179

(Wang et al., 2020) is a state-of-the-art model of180

non-BERT-based summarization. In particular, the181

model expands the relationship between sentences182

by introducing word nodes. Figure 2 demonstrates183

the architecture of HeterSumGraph, which includes184

three main components such as graph initialization,185

heterogeneous graph layer, and sentence selection186

module. However, the complex relationship be-187

tween sentences, especially the redundant phrases188

between extracted sentences is not taken into ac-189

count (Huang and Kurohashi, 2021).

Figure 2: Model overview of HeterGNN model for EDS
problem

190
Therefore, inspired of the work in Wang et al.191

(2020), this study tries to improve the perfor-192

mance of HeterGNN model by enriching the inter-193

sentences information for the sentence represen-194

tation. Specifically, we utilize the capabilities of 195

HeterGNN and BERT for exploiting the complex 196

relationship of sentences connections. The main 197

components of our method are sequentially pre- 198

sented in the following sections. 199

3 Methodology 200

Given an arbitrary document D = {s1, .., sn} con- 201

sisting n sentences, the objective of EDS problem 202

is to predict a sequence of a set of binary label 203

{y1, .., yn}. Specifically, yj ∈ [0, 1] represents the 204

j − th sentence, which should be included in the 205

summary. Our proposed model for EDS problem 206

includes two learning layers, which execute simul- 207

taneously, such as heterogeneous graph layer and 208

graph attention layer. More details of our proposed 209

method is described in Section 3.3. Furthermore, 210

a new version by directly integrating BERT into 211

HeterGNN is also taken into account, which is pre- 212

sented in Section 3.4. Specifically, the architecture 213

of Homogeneous and Heterogeneous GNNs are 214

sequentially presented in following Sections. 215

3.1 Homogeneous Graph Neural Network 216

Graph Construction: Let G1 = {V1, E1} denotes 217

an arbitrary graph, where V1 and E1 represent the 218

set of node and edge, respectively. Consequentially, 219

the homogeneous graph an input document can be 220

defined as a set of node V1 = s1, ..., sn where n is 221

the number of sentence in the document. 222

For the document encoder process, BERT (De- 223

vlin et al., 2019) is adopted to generate the local 224

hidden representations between sentences. Specifi- 225

cally, we adopt the concept of BERTSUM(Liu and 226

Lapata, 2019) with multiple CLS for sentence rep- 227

resentation. Sequentially, CLS and SEP tokens are 228

inserted at the beginning and end of each sentence. 229

Then, all tokens are fed into BERT to learn the 230

hidden state, which can be denoted as follows: 231

h1,0, h1,1, ..., hn,0, ..., hn,∗ =

BERT (w1,0, w1,1, ..., wn,0, ..., wn,∗)
(1) 232

where wi,j represents the i-th sentence, and j-th 233

word. wi,0 and wi,∗ represents the CLS and SEP 234

tokens of the i-th sentence, hi,j stands for the hid- 235

den state of the corresponding token. After BERT 236

encoding, we select the hidden state of CLS to rep- 237

resent sentence contextual representations, which 238

is demonstrated as follows: 239

HB = h1,0, ..., hN,0 (2) 240
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Sequentially, the document encoder is put into a241

GAT model for enriching the sentence connections.242

Figure 3 illustrates the process of the Homoge-243

neous GNN for extraction the sentence-to-sentence244

relationship. Notably, our method is able to signifi-

Figure 3: Homogeneous GNN architecture for extract-
ing inter-sentence relations

245
cantly reduce the computational complexity since246

we do not need to connect all node sentences as in247

BERTSUM architecture.248

Graph Propagation: Regarding the message249

passing process, we adopt GAT model (Velickovic250

et al., 2018) to learn hidden representation of each251

node by aggregating the information from its neigh-252

bors. Specifically, the updated node representation253

with GAT can be calculated as follows:254

zij = LeakyReLU(Wa[Wqhi;Wehj ]) (3)255

where hi is the i-th node representation, σ denotes256

an activation function, and Ni stand for neighbor257

nodes. Wa, Wq, We, and Wv are trainable weights.258

Subsequently, the attention score between two sen-259

tence node is formulated as follows:260

αij = softmax(zij) =
exp(zij)∑
l∈Ni

exp(zil)

µi = σ(
∑
j∈Ni

αijWvhj)
(4)261

Consequentially, the output with multi-head atten-262

tion can be calculated as follows:263

h′i = ||Kk=1σ(
∑
j∈Ni

αk
ijW

k
v hj) (5)264

where ||∗ represents multi-heads concatenation.265

Furthermore, a residual connection is adopted to266

avoid gradient vanishing after iterations. Conse- 267

quentially, the final output can be updated as fol- 268

lows: 269

HG1
s = h′i + hi (6) 270

In a nutshell, we use GAT for HB to learn relation- 271

ship between sentences in document. The output 272

is a representation of sentences, which is concate- 273

nated with the output of heterogeneous graph layer 274

for the final representation of a sentence. 275

3.2 Heterogeneous Graph Neural Network 276

Graph Construction: Let G2 = {V2, E2} de- 277

notes an undirected graph for representing the input 278

document. The heterogeneous graph for an input 279

document can be defined as V2 = Vw ∪ Vs and 280

E2 = {e11, ..., emn}, where Vw = {w1, ..., wm} 281

and Vs = {s1, ..., sn} represents m unique words 282

and n sentences of a document, respectively. eij 283

denotes the edge between the i-th word and j-th sen- 284

tence. Following the concept of HeterSumGraph 285

(Wang et al., 2020), sentence node features are cal- 286

culated by combining CNN for extracting the local 287

n-gram feature of each sentence and bidirectional 288

Long Short-Term Memory (BiLSTM) for extract- 289

ing the sentence-level feature. In this regard, the 290

feature of the sentence sj can be obtained as fol- 291

lows: 292

Xsj = CNN(x1:p)⊕BiLSTM(x1:p) (7) 293

where p denotes number of word in the sentence. 294

Furthermore, TFIDF is adopted for further approval 295

information of the relationships between word and 296

sentence, as shown in Figure 1. 297

Graph Propagation: The heterogeneous graph 298

layer is also updated using GAT, which is defined 299

from Equation 3 to Equation 6. However, the 300

vanilla GAT has designed for homogeneous graphs. 301

Therefore, Wang et al. (2020) has presented a mod- 302

ified GAT and an iterative updating mechanism for 303

heterogeneous graph updated layer. Specifically, 304

the Equation 3 can be re-formulated as follows: 305

zij = LeakyReLU(Wa[Wqhi;Wehj ; eij ]) (8) 306

where eij denotes the multi-dimensional embed- 307

ding space (eij ∈ Rmn×de), which is mapped from 308

edge weight eij . Sequentially, an iterative updating 309

mechanism is adopted for obtain a new of word 310

node and sentence node. In particular, in order to 311

pass messages between word and sentence nodes, 312

the sentences with their neighbor word nodes are 313
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Figure 4: Overview pipeline of the proposed model. Specifically, the model executes simultaneously two phases. In
the first phase, the word and sentence nodes were encoded and input to a heterogeneous graph layer (Wang et al.,
2020). The other phase encodes the document with pre-trained BERT and inputs in a graph attention layer. The
output of two phases is concatenated and put into a MLP layer in order to classify label for each sentence in the
document.

updated via modified-GAT and Position-Wise Feed-314

Forward (FFN) layer, which can be formulated as315

follows:316

U1
s←w = GAT (H0

s , H
0
w, H

0
w)

H1
s = FFN(U1

s←w +H0
s )

(9)317

where H0
w (H1

w) and H0
s are the node features318

of word Xw (Xw ∈ Rm×dw ) and sentence Xs319

(Xs ∈ Rn×ds), respectively. Note that H0
s is used320

as the attention query and H0
w are regarded as key321

and value. Sequentially, the new representations of322

word node can be obtained using the updated sen-323

tence nodes and further updated sentence or query324

nodes, iteratively. Specifically, each iteration con-325

tains a sentence-to-word and a word-to-sentence326

update process, which is formulated as follows:327

U t+1
w←s = GAT (Ht

w, H
t
s, H

t
s)

Ht+1
w = FFN(U t+1

w←s +Ht
w)

U t+1
s←w = GAT (Ht

s, H
t+1
w , Ht+1

w )

Ht+1
s = FFN(U t+1

s←w +Ht
s)

(10)328

3.3 Multi Graph Neural Network for EDS329

Figure 4 illustrates the pipeline of our multi GNN330

models. Specifically, the outputs of sentence fea-331

tures from two aforementioned layers are then con-332

catenated for the final representation, which is for-333

mulated as follows:334

H = HHomo
s ⊕HHeter

s (11)335

Observably, by concatenating the outputs of two336

aforementioned graph layers, final representation337

includes the information of both intra and inter-338

sentence relations. Sequentially, the output of the339

concatenation is put into a sentence classier for340

ranking the classification.341

3.4 Hetergogeneous GNN with BERT 342

As mentioned above, we consider another version 343

of the proposed method by integrating sentence 344

representations from BERT into Heterogeneous 345

GNN. Accordingly, the selected hidden state of 346

CLS are integrated for extract sentence features. 347

The architecture of the integrated Hetergogeneous 348

GNN with BERT is illustrated in Figure 5. In this 349

regard, the feature of a sentence (Equation 12) can 350

be re-formulated as follows: 351

Xsj = CNN(x1:p)⊕BiLSTM(x1:p)⊕HB(sj)
(12) 352

Sequentially, the new feature sentence is input into 353

HeterGNN model for leaning the complex relation- 354

ship between word and sentences. 355

3.5 Sentence Classifier 356

We execute node classification method for sen- 357

tences, which are ranked by the scores. Sequen- 358

tially, cross-entropy loss is used for classifying 359

sentences, which is formulated as follows: 360

L =
n∑

i=1

yilog(ŷi) + (1− yi)log(1− ŷi) (13) 361

4 Experiments 362

4.1 Experimental Setup 363

Dataset: Extracting summarization of news arti- 364

cles has been widely explored during recent years, 365

however, longer documents are still challenge is- 366

sues due to the accurately encoding problem of 367

long texts for the summarization. In this regard, we 368

focus on evaluating the proposed method with vari- 369

ous length of the documents. Specifically, two long 370

document datasets are taken into account for the 371
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Figure 5: Overview of the integrated Heterogeneous GNN model with BERT.

evaluation. The statistics of benchmark datasets are372

illustrated in Table 1. Accordingly, PubMed2 and

Dataset PubMed arXiv

Docs
Train 119,924 203,037
Val 6,633 6,436
Test 6,658 6,440

Tokens
Doc. 3,016 4,938
Sum. 203 220

Table 1: Statistics of evaluated datasets.

373
arXiv3 are standard datasets for long documents,374

which are scientific papers. For the data processing,375

we use the same split as the work in Cohan et al.376

(2018) to process arXiv and PubMed dataset for377

the evaluation and follow Liu and Lapata (2019) to378

get ground-truth labels.379

Evaluated Models: We evaluate our method380

on two well-known long document datasets (i.e.,381

scientific papers) and compare with previous state-382

of-the-art EDS models, which are classified into383

different approaches such as approaches without384

pre-trained language models, BERT-based mod-385

els, and Graph-based models. Specifically, results386

of evaluated models are obtained from respective387

papers. More detail of those aforementioned evalu-388

ated models are presented in the following section.389

Notably, with referring as a part of our model, we390

re-execute the HeterSumGraph model following391

the guidelines of the original paper 4. Furthermore,392

each proposed model is executed three-time and393

2https://pubmed.ncbi.nlm.nih.gov/
3https://arxiv.org/
4Source: https://github.com/brxx122/HeterSumGraph

calculated mean values for final reports. 394

Hyperparameter Setting: Regarding the encod- 395

ing, the vocabulary is limited to 50,000 and the 396

tokens are initialized with 300-dimensional with 397

Glove embedding. The dimension of sentence node 398

and edge features are set to 128 and 50, respec- 399

tively. The number of multi-head in each GAT 400

layer is set to 8. For document encoder, we use 401

bert-base-uncased version of BERT and fine-tune 402

for the experiments. In case of decoding process, 403

we select top-6 and top-5 for PubMed and arXiv 404

datasets, respectively, according to the best per- 405

formance of validation set. The maximum num- 406

ber of sentences in each document is set to 150, 407

which is suitable with our limited computational 408

resource. More analysis of the length of sentences 409

are presented in the following section. The model 410

is trained with Adam optimizer. The learning rate 411

is set to 1e-3 and use early stop with each three 412

epochs. Moreover, learning rate decay is used af- 413

ter each epoch to improve the performance. All 414

models are trained on a single Tesla V100 32GB 415

GPU, which have completed the training process 416

with around 10 epochs. The total time for each 417

epoch with the best model is around 6 hours and 3 418

hours for PubMed and arXiv datasets, respectively. 419

Note that, since we focus on long documents, the 420

computational time is quite high. Therefore, we do 421

not use hyperparameter optimization for improving 422

the performance. 423

4.2 Experimental Results 424

The comparison models are divided into different 425

parts. The first part reports the Lead-3 and Ora- 426
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Model PubMed arXiv
R-1 R-2 R-L R-1 R-2 R-L

SumBasic∗ 37.15 11.36 33.43 29.47 6.95 26.30
LexRank∗ 39.19 13.89 34.59 33.85 10.73 28.99
LSA∗ 33.89 9.93 29.70 29.91 7.42 25.67
Oracle (Xiao and Carenini, 2020) 55.05 27.48 49.11 53.89 23.07 46.54
SummaRuNNer+ 43.89 18.78 30.36 42.91 16.65 28.53
Seq2seq-attentive+ 44.81 19.74 31.48 43.58 17.37 29.30
Seq2seq-cancat+ 44.85 19.70 31.43 43.62 17.36 29.14
Cheng&Lapata (2016)+ 43.89 18.53 30.17 42.24 15.97 27.88
Attn-Seq2Seq∗ 31.55 8.52 27.38 29.30 6.00 25.56
Pntr-Gen-Seq2Seq∗ 35.86 10.22 29.69 32.06 9.04 25.16
Discourse-aware∗ 38.93 15.37 35.21 35.80 11.05 31.80
ExtSum-LG (Xiao and Carenini, 2020) 45.39 20.37 40.99 44.01 17.79 39.09
MATCHSUM (Zhong et al., 2020) 41.21 19.41 36.75 40.59 12.98 32.64
Topic-graphSum (Cui and Hu, 2021) 45.95 20.81 33.97 44.03 18.52 32.41
SSN-DM (Cui and Hu, 2021) 46.73 21.00 34.10 45.03 19.03 32.58
MTGNN-SUM 48.42 22.26 43.66 46.39 18.58 40.50
HeterGNN-BERT-SUM 47.85 21.64 43.13 46.52 18.62 40.68

Table 2: Results on PubMed and arXiv datasets. Report results with * are from Cohan et al. (2018), and results with
+ are from Xiao and Carenini (2019). Other results are obtained from respective papers.

cle. The second part shows results of the approach427

without pre-trained language models. The third ap-428

proach includes BERT-based models. The next sec-429

tion presents the result of graph-based approach in-430

cluding the models with document-level approach,431

which requires different levels of information such432

as words, sentences, topic, and spotlights redun-433

dancy dependencies between sentences. The last434

section is our proposed models, which include two435

versions such as the multi GNN (MTGNN-SUM)436

and the integrated Heterogeneous GNN model with437

BERT representation (HeterGNN-BERT-SUM).438

Table 2 shows the results of our method compar-439

ing with state-of-the-art models on PubMed and440

arXiv, respectively. Accordingly, our results are441

mostly outperforms state-of-the-art models in this442

research field. In particular, only R-2 of SSN-443

DM, the lasted state-of-the-art model is slightly444

better than our method in case of arXiv datasets.445

However, the R-L metric of our method is signifi-446

cantly improved comparing with SSN-DM model.447

Specifically, our method is significant effective448

with Pubmed datasets using MTGNN-SUM model.449

Meanwhile, HeterGNN-BERT-SUM are slight bet-450

ter than MTGNN-SUM in terms of arXiv dataset.451

This result indicates the important of exploiting452

the relationship between sentences for improve the453

performance of long document summarization. Fur-454

thermore, the issue of data dependence may require 455

different configurations. We leave this issue in 456

other study regarding this study. 457

4.3 Quality Analysis 458

Ablation Study. In our model, we enrich the com- 459

plex relationships by exploring both heterogeneous 460

graph and homogeneous graph operation for the 461

sentence connection. In order to explore the effect 462

of each component, we design different variants of 463

our method as follows: 464

• HomoGraph-SUM: only uses the graph at- 465

tention layer for document encoding to extract 466

inter-sentence relationships. The model is de- 467

signed following the description in Section 3.1 468

of Homogeneous Graph Neural Network. 469

• HeterGraph-SUM: only use heterogeneous 470

graph layer which contains semantic nodes to 471

enrich the cross-sentence relations. Specifi- 472

cally, HeterGrap-Sum is designed following 473

the description in Section 3.2. 474

The results of those aforementioned variants of 475

our model on benchmark datasets are presented tin 476

Tab. 3. Accordingly, using only GAT layer with 477

BERT encoder gets worse results. Furthermore, 478

integrating document encoder inside the heteroge- 479

neous graph is not better than only using only using 480
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Dataset Model R-1 R-2 R-L
PubMed HomoGraph-SUM 39.29 13.74 34.49

HeterGraph-SUM 46.03 19.79 41.48
MTGNN-SUM 48.42 22.26 43.66

arXiv
HomoGraph-SUM 41.13 13.11 35.84
HeterGraph-SUM 45.06 16.97 39.38
MTGNN-SUM 46.39 18.58 40.50

Table 3: Ablation study on benchmark datasets.

heterogeneous graph layer. Consequentially, exe-481

cuting message passing across sentences in our pro-482

posed model by combining both graph structures483

operation is able to to achieve better results.484

Length of Document. In this study, we set the485

maximum number of sentences in each document486

equals 150 due to our limited computational re-487

sources. Though, we are able to improve the per-488

formance by learning whole length sentences of489

the datasets, which include many documents with490

more than 200 sentences. In order to evaluate the491

importance of the document length value, we tested492

our model with the maximum number of sentences493

are 50 and 100 sentences, respectively. The results494

of the test models on different values of maximum495

document sizes are shown in Table 4. Accordingly,

Dataset Model R-1 R-2 R-L

PubMed
MTGNN-SUM-50 46.20 20.04 41.58
MTGNN-SUM-100 47.85 21.64 43.13
MTGNN-SUM-150 48.42 22.26 43.66

arXiv MTGNN-SUM-50 44.91 16.89 39.14
MTGNN-SUM-100 46.09 17.98 40.29
MTGNN-SUM-150 46.39 18.58 40.50

Table 4: Results of proposed model with different length
of sentences on benchmark datasets.

496
by increasing the maximum length of sentences,497

the performances are significantly improved. Con-498

sequentially, the results indicated that tuning max499

length of sentence value is able to enhance the500

performance. Specifically, we take this issue into501

account for the future work of this study by ex-502

ecuting our model with longer maximum size of503

documents.504

Case Study Figure 6 demonstrates an example505

of a document with 40 sentences. Accordingly,506

our model is able to extract the sentences for the507

in all the positions of the whole document, which508

indicates the advantage of our method for capturing509

the long-form texts.510

Figure 6: An example document and gold summary
in the PubMed dataset. The words in italics refer to
the sentences selected by the greedy algorithm and the
underlines sentences are our model-selected summary.

5 Conclusion 511

This paper presents a novel graph-based method for 512

EDS problem which focuses on exploiting the com- 513

plex relationship for both inter and intra sentence 514

connection of the long documents. Specifically, 515

long documents mostly are truncated by using neu- 516

ral models, which is the cause of loss information, 517

especially for extractive models. Therefore, we 518

take pretrained models (i.e., BERT) into account 519

for generating the local hidden representations be- 520

tween sentences and put into heterogeneous graph 521

layer for learning the complex relationship of sen- 522

tences connections. Specifically, two versions of 523

the proposed method are presented and evaluate on 524

two benchmark datasets of long documents (e.g., 525

PubMed and arXiv). The experiments on two well- 526

known long document datasets show promising 527

results of our method. 528
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