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Abstract

Machine learning is a key component of precision agricul-
ture, by allowing plant-level insights to be inferred at scale.
However, the labelled data necessary to train these algo-
rithms is expensive to acquire, making methods that lever-
age unlabelled data — such as semi-supervised object detec-
tion (SSOD) — of particular interest. Current SSOD meth-
ods have been designed specifically for Flickr-based datasets
and may not be appropriate for the unique challenges en-
countered in agricultural contexts, limiting their usefulness
in practice. In this paper, we offer innovations in designing,
testing, and deploying SSOD in the real world. We com-
pile a challenging new dataset of semi-supervised agricultural
images, on which existing SSOD methods largely fail. We
present a Python package to more easily test SSOD methods
in such real-world domains. Finally, we introduce two com-
ponents to the standard SSOD pipeline which demonstrably
improve performance on our dataset. All code is available at
https://github.com/SmallRobotCompany.

Introduction

Precision agriculture is an important tool for sustainability
as well as productivity. It can reduce farmer inputs, such as
nitrogen fertilizer (Waldrop et al. 2004; Plant et al. 2000),
and allow soil to better operate as a carbon stock reserve by
reducing tillage (Angers and Eriksen-Hamel 2008). While
machine learning plays a critical role in precision agricul-
ture (Sharma et al. 2020), labelled data can be difficult and
expensive to acquire, making semi-supervised learning tech-
niques particularly relevant to this domain.
Semi-Supervised Object-Detection consists of learning to
identify objects from a training set consisting of labelled
and unlabelled images. SSOD research is typically evaluated
against the COCO (Lin et al. 2014a) and Pascal VOC (Ever-
ingham et al. 2010) datasets where only a randomly sampled
subset of the images have labels provided (Sohn et al. 2020).
While the COCO and Pascal VOC datasets both use im-
ages from Flickr and are similar in many respects, real-
world agricultural datasets often present a very different set
of challenges and attributes. These include: i) relatively few
classes (much less than Flickr-based datasets), with many
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agricultural datasets consisting of a single class (Assung¢do
et al. 2022; Bargoti and Underwood 2017; Roy and Bhaduri
2022; David et al. 2021), ii) a restricted geographic area,
with some datasets covering a single field (Assuncio et al.
2022) or a small number of them (Bargoti and Underwood
2017), iii) unique challenges, including high levels of oc-
clusion (Lawal 2021) intra-class variance (Roy and Bhaduri
2022) and poor image quality, and iv) a higher object den-
sity; for example, the Global Wheat Head Dataset (David
etal. 2021) has 39.1 objects per image on average, compared
to 7.3 objects per image in COCO (Zhou et al. 2021b).

The small size of labelled object detection datasets in agri-
cultural contexts make SSOD methods tailored for agricul-
tural contexts especially important to investigate. The main
contributions of this paper are:
¢ The introduction of the smallSSD dataset, a semi-

supervised object detection dataset for agriculture consist-

ing of over 100,000 images.

* Calibrated Teacher-Student Learning, a semi-supervised
object detection method tailored for agriculture.

* Python packages for the smallSSD dataset and for
real-world SSOD research more broadly, moving beyond

Flickr-based datasets.

Related Work

Semi Supervised Object Detection Pseudo-labelling
methods — where a trained model is used to generate la-
bels for otherwise unlabelled images — are commonly used
in semi-supervised object detection (Sohn et al. 2020; Liu
et al. 2021; Xu et al. 2021). Research in this area heav-
ily builds on the pseudo-labelling framework introduced by
(Sohn et al. 2020); subsequent work has investigated how
the teacher-model may be improved (Liu et al. 2021; Zhou
et al. 2021a), how the pseudo-labels can be better selected
before being passed to the student (Li et al. 2021; Xu et al.
2021) and how alternative architectures may perform (Wang
et al. 2022). However, we note again that these methods are
evaluated only on Flickr-based datasets, and do not consider
the nuances of agricultural contexts.

Object Detection in Agriculture Current approaches to
object detection in agricultural contexts (Sa et al. 2016;
Bargoti and Underwood 2017) focus on fully-supervised
learning, specifically by finetuning models pretrained on



Figure 1: Sample annotated images. Orange boxes represent wheat & purple boxes represent weeds.

ImageNet (Deng et al. 2009a). A drawback of this fully-
supervised approach is that — particularly in the case of grain
crops, which we are considering — annotation is challenging
even when the annotators have received extensive training,
and (as a result) obtaining high quality annotations is diffi-
cult and time consuming (Patricio and Rieder 2018).

Focusing on the task of object-detection of grains, the
largest scale public dataset — the Global Wheat Detection
dataset — consists of fewer than 5,000 labelled images. For
comparison, this is less than 3% the size of the COCO object
detection dataset, which consists of over 200,000 labelled
images (Lin et al. 2014a). Therefore, the creation of large
scale open source agricultural semi-supervised object detec-
tion datasets — and the development of methods on top of
such datasets — is critical.

The smallSSD dataset

We introduce the smallSSD dataset' — a semi-supervised
object detection dataset for agriculture. This dataset consists
of images taken from above, of which a subset have been la-
belled with bounding boxes, collected by the Small Robot
Company’s “Tom” autonomous field survey robot during
winter wheat surveys on a farm in South of England. The
images were taken in 8 trial plots in a field with varying drill
rates and fertilizer and herbicide application, thus capturing
a diversity of field conditions. All images are RGB and are
1200 x 600 pixels.

Annotation was conducted by a team of annotators trained
by agronomists to recognize and mark up individual crops
and weeds across different growth stages of plants. The an-
notation process includes a regular feedback loop from a
field specialist. The quality of labels has been validated by
the agronomists. Figure 1 shows examples of images with
“wheat” and “weed” annotations.

This dataset is split into three parts: i) a labelled training
set, ii) a labelled test set and iii) an unlabelled training set.
The unlabelled dataset consists of 100,032 unlabelled im-
ages. The labelled dataset consists of 960 images, with the
crops and the weeds in the images labelled using bounding
boxes. We split this labelled dataset into a training set con-
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sisting of 804 (84 %) images, and an evaluation set consist-
ing of 156 (16 %) images.

Calibrated Teacher-Student Learning

In keeping with standard practice in SSOD, we consider
models trained with a student-teacher training scheme. We
begin by training a model in a fully supervised fashion, af-
ter (Liu et al. 2021) (“burn-in”). We then use the weights
learned in a fully-supervised fashion to initialize a teacher
and student model. We use the predictions of the teacher
model to supplement the real labels in the dataset, and jointly
train the student model on these pseudo-labels and on the
true labels. The teacher is updated using exponential mean
averaging (EMA), as in (Liu et al. 2021; Xu et al. 2021).
We now highlight some of the key aspects of our method
and how they differ from other common ingredients in
teacher-student methods for object detection:
Augmentations: We find that certain augmentations —
which are otherwise commonly used in semi-supervised ob-
ject detection — can be extremely detrimental in agricul-
tural contexts. Motivated by (Balestriero, Bottou, and Le-
Cun 2022), we hypothesize that properties of agricultural
datasets (including smallSSD) — such as the homogeneous
colour of positive classes (green wheat leaves and green
broad leaf weeds) and the very high resolution of the images
mean that colour and scale-altering augmentations penalize
the model. We therefore only apply two sets of augmenta-
tions to the model: i) mosaicing (Bochkovskiy, Wang, and
Liao 2020), which consists of combining 4 images into a
single one, and ii) random horizontal and vertical flips.

Weak teacher-ensembling Although previous work has
proposed ensembling teacher models to improve teacher
predictions (Zhou et al. 2021a), this has required training
multiple student models. We propose using test-time aug-
mentations to create ensembles of predictions with a sin-
gle teacher-student model. Specifically, we use 3 augmenta-
tions (in addition to no augmentation) when generating the
pseudo-labels for each unlabelled image: i) a horizontal flip,
ii) a vertical flip, iii) both a vertical and horizontal flip.

We combine the predictions for each augmentation us-
ing Weighted Boxes Fusion (WBF) (Solovyev, Wang, and
Gabruseva 2021), yielding the pseudo-labels ultimately used
to train the student model. Specifically, for each box pre-



Fully Supervised

Semi-Supervised

Model Backbone | mAP mAP;q mAP75 \ mAP mAP;y mAP;;
SSD VGG-16 | 0.133 0.383 0.062 | 0.151 0.420 0.075
RetinaNet ResNet-50 | 0.295 0.630 0.239 | 0.302 0.630 0.253

YOLOv4  CSPDarknet53 | 0.322
FasterRCNN ResNet-50 | 0.355

0.645 0.296 | 0.347 0.649 0.335
0.689 0.334 | 0.365 0.697 0.347

Table 1: Baseline results for fully-supervised and semi-supervised benchmarks.

dicted by a single model in the ensemble, WBF iterates
through boxes predicted by other models and finds those
with an IOU above a threshold (in our case, 0.7). The ul-
timate model predictions are an average of each of those
boxes, weighted by the model’s confidence. This is similar
to the co-rectify method described in (Zhou et al. 2021a), but
does not require index-alignment in the proposals (allowing
for geometric augmentations).

Per-class calibration: In teacher-student setups, a criti-
cal hyperparameter is the threshold 7 used to decide which
of the teacher’s predictions will be used to train the student.
Previous works use a fixed threshold (Liu et al. 2021; Sohn
et al. 2020). However, in an agricultural context, the calibra-
tion of the model is critical; specifically, the ability of the
model to output a correct average plant count over the entire
field (or over sub-regions of the field). We therefore dynam-
ically select this parameter 7 on a per-class basis, so that the
average number of class-predictions by the teacher reflect
the distribution of labels in the training data.

For each class ¢; € C, we compute the average number of
objects with the label ¢; in the labelled training set, n.,. We
then select a class specific threshold 7, such that the number
of objects detected by the ensembled teacher-models, 7., =
f(7e,), for a sample of unlabelled images is close to n.,:

) ey

Te, = arg min |)\’ﬂci - f(TCi)

Te,

for some scaling factor A. In our experiments, we set A = %.
We use an unlabelled random sample with the same size as
the labelled trainig set when calculating 7., and recalculate
this threshold every epoch. We use 7, to filter boxes during

the WBF ensembling described above.

Experimental Results
Baselines

As baselines, we evaluate a variety of model architec-
tures, encompassing both single-stage and multi-stage ob-
ject detectors (described in Table 1). For all models except
YOLOV4 (Bochkovskiy, Wang, and Liao 2020) we fine-tune
models pre-trained on ImageNet (Deng et al. 2009b) and im-
plemented in the torchvision framework. For YOLOv4
we used a CSPDarknet53 (Wang et al. 2020) backbone pre-
trained on COCO(Lin et al. 2014b).

We evaluate all models by measuring the Mean Aver-
age Precicision (mAP) (Everingham and Winn 2011) on the
evaluation set. Specifically, we consider mAP with an IOU
threshold of 0.5 (mAP5), 0.75 (mAP~5) and using a stepped
range [0.50, ..., 0.95] with intervals of size 0.05.

Fully Supervised Models For fully supervised training,
we ignored all unlabelled data (and only used the labelled
training set). We split the training dataset into a training
and validation set (using an 80:20 ratio), and used the val-
idation set for early stopping with a patience of 10 (moni-
tored against validation mAP). We used an Adam optimizer
(Kingma and Ba 2015) and reduced the learning rate by a
factor of 10 when the validation mAP did not decrease for
2 epochs. Models were trained for between 21 (YOLOv4)
and 64 epochs (SSD). For this baseline, we apply the ran-
dom flip augmentation but not the mosaicing. The results of
the fully-supervised models are shown in Table 1.

Semi-Supervised Pseudo-Labelling To measure the
change in performance when the unlabelled data is con-
sidered, we additionally implement a pseudo-labelling
(Lee et al. 2013) baseline. This pseudo-labelling baseline
consists of taking a trained-fully supervised model (trained
as described above), and using it to generate predictions on
2000 randomly sampled unlabelled images. This baseline is
similar to the approach introduced in (Sohn et al. 2020).

We then added these 2000 images to the labelled dataset,
and finetuned the model on the aggregate dataset. The re-
sults of these pseudo-labelling experiments are also shared
in Table 1.

Calibrated Teacher-Student Learning

We evaluate our proposed algorithm by testing whether it
improves the best-performing baseline model — Faster R-
CNN. We train the fully supervised model in the same man-
ner as the baselines described above, with the addition of the
mosaicing augmentation.

Our results — comparing the proposed method to the base-
lines — are presented in Table 2. Overall, this method outper-
forms the baselines across all three metrics (mAP, mAP;5
and mAP75), with a particular increase in mAP75.

Ablations To better understand the contributions of differ-
ent parts of the algorithm, we conduct an ablation study in
Table 3. Specifically, we run the algorithm without the cal-
ibrated threshold (“T”) and without an ensembled teacher
(“E”), reporting the % change between the fully and semi-
supervised methods without these components. When we do
not calibrate the threshold, we use a fixed threshold of 0.7 as
in Liu et al. (2021). We find that while each component in
isolation yields an improvement over the baseline it is the
combination of both components which leads to the overall
improvement.



\ mAP

mAP50 mAP 75

Baseline Full | 3458740004  _ = 6828740006 . 3352040004
; Semi | 36.1574+0.002 % 69.723+0.002 TU°  33523+0.003 77
. Full | 35.180 4 0.001 67.367 + 0.013 31.983 + 0.003

Calibrated Teacher Student Semi | 37.033 + 0.001 +5.27% 69.983 + 0.000 +3.88% 35.197 + 0.001 +10.05%

Table 2: Results for the fully supervised and semi-supervised Faster R-CNN models. These results are averaged from 3 runs
with different random seeds, with standard error reported and the best results highlighted.

T E ‘ mAP mAP50 mAP75
v’ 4.61+0.13 1.89+0.24 6.82 +£0.23

v' | 4874014 —043+£0.44 11.1240.22
v’ Vv | 5.27T£0.04 3.88+1.31 10.04+£0.25

Table 3: Ablations for the calibrated teacher-student
method. This table reports % increases in the semi-
supervised model over the fully supervised model. Re-
sults are an average of 3 runs with standard error reported.

Accessibility of the method and data

A significant goal of this work is to encourage semi-
supervised object detection research beyond Flickr-based
datasets. To this end, we release two python packages along-
side this work, one to encourage exploration and utilization
of the dataset and one for broader semi-supervised object
detection research.

The smallSSD python package

The pip-installabe smallSSD python package exposes the
smallSSD dataset as a Dataset object inspired by the
torchvision datasets, allowing a straightforward inte-
gration of the smallSSD data into the PyTorch (Paszke
et al. 2019) computer-vision ecosystem:

1  from torch.utils.data import Dataloader

2 | from smallssd.data import LabelledData

3 | from smallssd.data import UnlabelledData
4

5 | loader = Dataloader (LabelledData())

6 'u_loader = Dataloader (UnlabelledData())

These datasets return images as PyTorch tensors and (in
the labelled case) annotations as dictionaries of bounding
boxes and labels (as expected by PyTorch object detection
models). Returning datasets in a torchvision compat-
ible format means all torchvision tools (e.g. for visu-
alization) can be leveraged. Finally, the dataset automati-
cally downloads the data if it isn’t already present.

A python package for SSOD research

We additionally introduce smallteacher, a pip instal-
lable python package built on top of PyTorch-Lightning
(Falcon et al. 2020) to encourage easily-adoptable research
in real-world semi-supervised object detection. In particu-
lar, this code-base aims to decouple semi-supervised object
detection code from the COCO and Pascal VOC datasets.

Unlike other codebases which require data to be stored
in a certain format, this codebase only requires torchvision-
like object-detection Dataset objects to be provided by
the user. Given this dataset object, three main classes are
exposed by the codebase:

A DataModule which upon initialization accepts la-
belled and unlabelled datasets. This data module checks that
the provided datasets have the right outputs.
dm DataModule (
train_ds, val_ds, test_ds,
unlabelled_train_ds

EENNUSIN S R

A Fully Supervised Object Detection pipeline which
can be used to train a variety of model architectures (cur-
rently, Faster-RCNN, SSD, YOLO and RetinaNet) to iden-
tify objects from a dataset:

1 model
2

3 )

FullySupervised(

model_base="FRCNN", num_classes=2

A Teacher Student pipeline which implements the best
practices described above (as well as additional options mo-
tivated by prior research):
1 |model
2
3)

Where both models can be fit using a PyTorch-Lightning
Trainer:
1 |trainer.fit (model,

SemiSupervised (

model_base="FRCNN", num_classes=2

dm)

This codebase is highly configurable, allowing different
practices to be quickly tested against datasets. Our hope is
that the simplicity of this library — which allows a teacher-
student model to be trained on any dataset in only a few
lines of code — will allow for research into student-teacher
methods for object detection beyond Flickr datasets.

Conclusion

In conclusion, we present a novel agricultural semi-
supervised object detection dataset, smallSSD, and a semi-
supervised object detection algorithm tailored to this agri-
cultural use case. We additionally present two python pack-
ages, one to explore the dataset and one for general semi-
supervised object detection research, in the hope that future
semi-supervised object detection research will look beyond
the currently investigated Flickr-based datasets.
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