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ABSTRACT

Most of the existing offline reinforcement learning (RL) studies assume the avail-
able dataset is sampled directly from the target task. However, in some practical
applications, the available data are often coming from several related but hetero-
geneous environments. A theoretical understanding of efficient learning from het-
erogeneous offline datasets remains lacking. In this work, we study the problem
of offline RL based on multiple data sources that are randomly perturbed ver-
sions of the target Markov decision process (MDP). A novel HetPEVI algorithm
is first proposed, which simultaneously considers two types of uncertainties: sam-
ple uncertainties from a finite number of data samples per data source, and source
uncertainties due to a finite number of data sources. In particular, the sample un-
certainties from all data sources are jointly aggregated, while an additional penalty
term is specially constructed to compensate for the source uncertainties. Theoret-
ical analysis demonstrates the near-optimal performance of HetPEVI. More im-
portantly, the costs and benefits of learning with randomly perturbed data sources
are explicitly characterized: on one hand, an unavoidable performance loss occurs
due to the indirect access to the target MDP; on the other hand, efficient learning
is achievable as long as the sources collectively (instead of individually) provides
a good data coverage. Finally, we extend the study to linear function approxima-
tion and propose the HetPEVI-Lin algorithm that provides additional efficiency
guarantees beyond the tabular cases.

1 INTRODUCTION

Offline reinforcement learning (RL) (Levine et al., 2020), a.k.a. batch RL (Lange et al., 2012), has
received growing interest in the recent years. It aims at training RL agents using accessible datasets
collected a priori and thus avoids expensive online interactions. Along with its tremendous empirical
successes (Kidambi et al., 2020), recent studies have also established theoretical understandings of
offline RL (Rashidinejad et al., 2021; Jin et al., 2021b; Duan et al., 2021; Uehara & Sun, 2021).

Despite these advances, the majority of offline RL research focuses on learning via data collected
exactly from the target task environment (Kumar et al., 2020). However, in practice, it is difficult
to ensure that all such data are perfectly from one source environment. Instead, in many cases, it is
more reasonable to assume that data are collected from different sources that are perturbed versions
of the target task. For example, when training a chatbot (Jaques et al., 2020), the offline dialogue
datasets typically consist of short conversations between different people, who naturally have vary-
ing language habits. The training objective is the common underlying language structure, e.g., basic
grammar, which however cannot be reflected in any individual dialogue but must be holistically
learned from the aggregation of them. More examples can be found in healthcare (Tang & Wiens,
2021), autonomous driving (Sallab et al., 2017) and others. While a few empirical investigations
under the offline meta-RL framework have been reported (Dorfman et al., 2021; Lin et al., 2022;
Mitchell et al., 2021), theoretical understandings of effectively and efficiently learning the underly-
ing task using datasets from multiple heterogeneous sources are largely lacking.

Motivated by both practical and theoretical limitations, this work makes progress in the under-
explored RL problem of learning the target task using data from heterogeneously perturbed data
sources. In particular, we study the problem of learning a target Markov decision process (MDP)
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from offline datasets sampled from multiple heterogeneously realized source MDPs. Several prov-
ably efficient designs are proposed, targeting both tabular and linear MDPs. To the best of our
knowledge, this is the first work that proposes provably efficient offline RL algorithms to handle
perturbed data sources, which can benefit relevant applications and further shed light on the theoret-
ical understanding of offline meta-RL. The contributions are summarized as follows:

•We study a new offline RL problem where the datasets are collected from multiple heterogeneous
source MDPs, with possibly different reward and transition dynamics, instead of directly from the
target MDP. Motivated by practical applications, the data source MDPs are modeled as random
perturbations of the target MDP. Compared with studies of offline RL using data directly from the
target MDP (Rashidinejad et al., 2021; Jin et al., 2021b), we face new challenges of jointly consid-
ering uncertainties caused by the finite number of data samples per source (referred to as the sample
uncertainties) and by the finite number of data sources (referred to as the source uncertainties).

• A novel HetPEVI algorithm is proposed, which generalizes the idea of pessimistic value iteration
(Jin et al., 2021b) and uses carefully crafted penalty terms to address the sample and source uncer-
tainties simultaneously. Specifically, in the HetPEVI, the specially designed penalty term contains
two parts: one aggregating the sample uncertainties associated with each dataset, and the other term
compensating the source uncertainties. The combination of these two parts jointly characterizes the
uncertainty associated with the collected datasets.

• Theoretical analysis proves the effectiveness of HetPEVI with a corresponding lower bound, which
first demonstrates that even with finite randomly perturbed MDPs and finite data samples from each
of them, it is feasible to efficiently learn the target MDP. More importantly, the analysis reveals that
learning with multiple perturbed data sources brings both costs and benefits. On one hand, due to
indirect access to the target MDP, an unavoidable learning cost occurs. This cost scales only with the
number of data sources and cannot be reduced by increasing the size of datasets, which highlights
the importance of the diversity of data sources. On the other hand, effective learning only requires
that the datasets collectively (instead of individually) provide a good coverage of the optimal policy,
which may provide additional insights for practical data collections.

• Moreover, we extend the study to linear function approximation where offline data are collected
from linear MDPs with a shared feature mapping but heterogeneously realized system dynamics.
The HetPEVI-Lin algorithm is developed to jointly consider the sample and source uncertainties
while incorporating the linear structure. Theoretical analysis demonstrates the effectiveness of
HetPEVI-Lin and verifies the sufficiency of a good collective coverage.

Related Works. With the empirical success of offline RL (Levine et al., 2020), its theoretical under-
standings have been gradually established in recent years. In particular, the principle of “pessimism”
is incorporated and proved efficient for offline RL (Jin et al., 2021b; Rashidinejad et al., 2021). Fol-
lowing this line, Xie et al. (2021b); Li et al. (2022); Shi et al. (2022) further fine-tune the designs for
the tabular setting and Zanette et al. (2021); Min et al. (2021); Yin et al. (2022); Xiong et al. (2022)
for linear MDPs (Jin et al., 2020). These theoretical advances are mainly focused on learning with
data directly from the target task. However, in the practical studies of RL, growing interests have
been made to utilize data from heterogeneous sources, e.g., offline meta-RL (Mitchell et al., 2021;
Dorfman et al., 2021; Lin et al., 2022; Li et al., 2020b). This work is thus motivated to provide a
theoretical understanding of how to extract information about the target task from multiple sources.
A more detailed literature review regarding both online and offline RL with single or heterogeneous
environments is provided in Appendix A.1.

2 PROBLEM FORMULATION

Preliminaries of RL. We consider an RL problem characterized by an episodic MDP M :=
(H,S,A,P, r). In this tuple, H is the length of each episode, S is the state space, A is the ac-
tion space, P is the transition matrix so that Ph(s

′|s, a) gives the probability of transiting to state s′
if action a is taken for state s at step h, and rh(s, a) is the deterministic reward in the interval of
[0, 1] of taking action a for state s at step h.1 Specifically, in each episode, starting from an initial
state s1, at each step h ∈ [H], the agent observes state sh ∈ S, picks action ah ∈ A, receives reward

1The assumption of deterministic rewards is standard in theoretical analysis of RL (Jin et al., 2018; 2020)
as the uncertainties in estimating rewards are dominated by those in estimating transitions.
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rh(sh, ah), and then transits to a next state sh+1 ∼ Ph(·|sh, ah). The episode ends after H steps. In
the tabular RL setting, the state and action spaces are finite with S := |S| and A := |A|.
A policy π := {πh(·|s) : (s, h) ∈ S × [H]} consists of distributions πh(·|s) over the action space
A, whose value functions can be defined as V π

h (s) := Eπ,M[
∑H

h′=h rh′(sh′ , ah′)|sh = s] and
Qπ

h(s, a) := Eπ,M[
∑H

h′=h rh′(sh′ , ah′)|sh = s, ah = a] for each (s, a, h) ∈ S × A × [H], where
the expectation Eπ,M[·] is with respect to (w.r.t.) the random trajectory induced by policy π on
MDPM. The optimal policy π∗ maximizes the value function, i.e., π∗ := argmaxπ V

π
1 (s). For

convenience, we denote V ∗
h (s) := V π∗

h (s) andQ∗
h(s, a) := Qπ∗

h (s, a) for all (s, a, h) ∈ S×A×[H],
and use πh(s) to refer to the chosen action for state s at step h for a deterministic policy π.

2.1 THE LEARNING TARGET AND OFFLINE DATASETS

The Target Task. This work considers a target task modeled by an MDP M = (H,S,A,P, r),
which can be any task of interest (e.g., chatbot training in Sec. 1). The goal is to find a good output
policy π̂ with a small sub-optimality gap on the target MDPM, which is measured as:

Gap(π̂;M) := V ∗
1 (s1)− V π̂

1 (s1).

Note that an output policy π̂ is called ε-optimal if Gap(π̂;M) ≤ ε.
Multiple Data Sources. The agent has access to datasets from L sources, i.e., D := {Dl,∀l ∈ [L]}.
Each dataset Dl := {(skh,l, akh,l, rkh,l, skh+1,l) : k ∈ [K], h ∈ [H]} consists of K tuples for each step
h ∈ [H] sampled by a (possibly different) unknown behavior policy ρl on a unknown data source
MDP denoted asMl = (H,S,A,Pl, rl). In particular, for each step h ∈ [H], the behavior policy
ρl performs K times sampling over the state-action space S × A following a distribution denoted
as dρl

h,l(·), i.e., for each k ∈ [K], (skh,l, a
k
h,l) ∼ dρl

h,l(·). Then, for a sampled pair (skh,l, a
k
h,l), the

reward rkh,l = rh,l(s
k
h,l, a

k
h,l) and skh+1,l ∼ Ph,l(·|skh,l, akh,l) realized from the date source MDP

Ml is collected and aggregated as a tuple (skh,l, a
k
h,l, r

k
h,l, s

k
h+1,l) for the dataset Dl. To ease the

presentation, all the sampled tuples are assumed to be independent of each other. Such independence
can be ensured by applying the sub-sampling technique in Li et al. (2022) to trajectories induced by
behavior policies while maintaining the order of the dataset size.

2.2 THE TASK–SOURCE RELATIONSHIP

On one hand, motivated by Sec. 1, each data source MDPMl may not exactly match the target task
M. Concretely, while having the same episodic length, state space, and action space, their transition
and reward dynamics are not necessarily aligned, i.e., Ph,l(·|s, a) ̸= Ph(·|s, a), rh,l(s, a) ̸= rh(s, a).

On the other hand, in practical applications, while being heterogeneous, the data source MDPs are
often still related to the target task (e.g., dialogue datasets in Sec. 1). In particular, data sources in
offline meta-RL are often assumed to be sampled from a certain distribution (Mitchell et al., 2021).
Thus, the following relationship between the target MDP and the data source MDPs is assumed.

Assumption 1 (Task–source Relationship). Data source MDPs {Ml : l ∈ [L]} are independently
sampled from an unknown distribution g such that for each (l, s, a, h) ∈ [L] × S × A × [H], the
reward rh,l(s, a) is a random variable with mean rh(s, a), and the transition vector Ph,l(·|s, a)
is a random vector with mean Ph(·|s, a). In particular, random variables and random vectors
{rh,l(s, a),Ph,l(·|s, a) : (s, a, h, l) ∈ S ×A× [H]× [L]} are independent with each other.

The requirement that rewards are random samples with the expectation as the target model is com-
monly adopted in bandits literature (Shi & Shen, 2021; Zhu & Kveton, 2022), and the same require-
ment on the transition vectors is a natural extension, where one representative example is to have
them follow a Dirichlet distribution (Marchal & Arbel, 2017).

Miscellaneous. Notations without subscripts l generally refer to the target MDP M, while sub-
scripts l are always added when discussing each individual sourceMl. For a clear presentation, the
notation c is used throughout the paper with varing values to represent a poly-logarithmic term of or-
der O(poly(log(LHSA/δ))) for the tabular setting and O(poly(log(LH/δ))) for the linear setting,
where δ ∈ (0, 1) is a confidence parameter. Additionally, for x ∈ R, x+ denotes max{x, 0}.
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For any function f : S → R, the transition operator and Bellman operator of the target MDPM
at each step h ∈ [H] are defined, respectively, as (Phf)(s, a) := E[f(s′)|s, a] and (Bhf)(s, a) :=
rh(s, a) + (Phf)(s, a), where the expectation is w.r.t. the transition s′ ∼ Ph(·|s, a). Expectation
Eπ,M[·] is over the trajectory induced by π on the MDPM starting from s1, and dπh(s, a) denotes
the probability of visiting state-action pair (s, a) at step h with policy π onM starting from s1.

Algorithm 1 HetPEVI

Input: Dataset D = {Dl : l ∈ [L]}; V̂H+1(s) = 0,∀s ∈ S
1: For each (l, s, a, h) ∈ [L] × S × A × [H], estimate r̂h,l(s, a) = rh,l(s, a)1{Nh,l(s, a) ̸= 0}

and P̂h,l(s
′|s, a) = Nh,l(s,a,s

′)
Nh,l(s,a)∨1

2: For each (s, a, h) ∈ S × A × [H], aggregate r̂h(s, a) = 1
L

∑
l∈[L] r̂h,l(s, a) and P̂h(s

′|s, a) =
1
L

∑
l∈[L] P̂h,l(s

′|s, a)
3: for h = H,H − 1, · · · , 1 do
4: Perform updates for all (s, a) ∈ S × A as Eqn. (1) with (B̂hV̂h+1)(s, a) := r̂h(s, a) +

(P̂hV̂h+1)(s, a) and Γh(s, a) = c
√∑

l∈[L]
H2

(L2Nh,l(s,a))∨L + c
√

H2

L

5: end for
Output: policy π̂ = {π̂h(s) : (s, h) ∈ S × [H]}

3 THE HETPEVI ALGORITHM

In this section, the HetPEVI algorithm is introduced for the tabular MDP setting (presented in Algo-
rithm 1). HetPEVI follows the principle of pessimistic value iterations (PEVI) (Rashidinejad et al.,
2021; Jin et al., 2021b), which is first briefly introduced, while the key challenges and our novel
design in learning the target MDP from randomly perturbed data sources are then illustrated.

The HetPEVI algorithm begins by counting the number of visitations for each tuple (s, a, h, s′) ∈
S ×A× [H]× S in each dataset l ∈ [L]. Especially, we denote Nh,l(s, a) and Nh,l(s, a, s

′) as the
amount of visitations on (s, a, h) and (s, a, h, s′) in dataset Dl, respectively. Empirical estimations
of rewards and transitions are then given for all (l, s, a, h) ∈ [L]× S ×A× [H] as

r̂h,l(s, a) = rh,l(s, a)1{Nh,l(s, a) ̸= 0}; P̂h,l(s
′|s, a) = Nh,l(s, a, s

′)

Nh,l(s, a) ∨ 1
.

These individual estimates are then aggregated into overall estimates as:

r̂h(s, a) =
1

L

∑
l∈[L]

r̂h,l(s, a); P̂h(s
′|s, a) = 1

L

∑
l∈[L]

P̂h,l(s
′|s, a).

With these estimations, HetPEVI iterates backward from the last step to the first step as

Q̂h(s, a) = min
{(

B̂hV̂h+1

)
(s, a)− Γh(s, a), H − h+ 1

}+
,

V̂h(s) = maxa∈A Q̂h(s, a), π̂h(s) = argmaxa∈A Q̂h(s, a),
(1)

with V̂H+1(s) = 0,∀s ∈ S, and the empirical Bellman operator B̂h is defined as(
B̂hV̂h+1

)
(s, a) := r̂h(s, a) +

(
P̂hV̂h+1

)
(s, a),

where (P̂hV̂h+1)(s, a) is the empirical version of (PhV̂h+1)(s, a) using the estimated P̂h(·|s, a).

The essence of the above procedure is that instead of directly setting Q̂h(s, a) as (B̂hV̂h+1)(s, a)
(as in the standard value iteration), a penalty term Γh(s, a) is subtracted, which serves the important
role of keeping the estimations V̂h(s) and Q̂h(s, a) pessimistic. Especially, the penalty term Γh(s, a)
should be carefully designed such that with a high probability, it holds that∣∣(B̂hV̂h+1

)
(s, a)−

(
BhV̂h+1

)
(s, a)

∣∣ ≤ Γh(s, a), ∀(s, a, h) ∈ S ×A× [H]. (2)

Technical Challenges. Previous offline RL studies (Jin et al., 2021b; Rashidinejad et al., 2021;
Yin et al., 2022; Xie et al., 2021b) only deal with one single target data source and only one type
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of uncertainties (finite data samples) to ensure Eqn. (2). In this work, the agent needs to process
multiple heterogeneous datasets, while none of them individually characterizes the learning target.
As a result, the agent faces two coupled challenges. First, the uncertainties due to the finite sample
sizes still needs to be considered. This is referred to as the sample uncertainties, but the key
difference is that now the agent needs to jointly consider and aggregate uncertainties associated with
all data sources. Second, even with perfect knowledge of each data source, the target MDP may not
be fully revealed. Thus, the agent also needs to consider the uncertainties from the limited number
of data sources, which are referred to as the source uncertainties.

To address the two uncertainties, the penalty term is designed to have two parts as follows:

Γh(s, a) = Γα
h(s, a) + Γβ

h(s, a),

where Γα
h(s, a) aggregates the sample uncertainties from each data source while Γβ

h(s, a) accounts
for the source uncertainties. Both of them are further elaborated on in the following.

Penalties to Aggregate Sample Uncertainties. For the first part of the penalty, i.e., Γα
h(s, a), since

the agent faces data from multiple heterogeneous sources, the penalty term needs to jointly consider
the individual uncertainties from all sources. In HetPEVI, the following penalty term is proposed,
which originates from the Hoeffding inequality:

Γα
h(s, a) = c

√√√√∑
l∈[L]

H2

(L2Nh,l(s, a)) ∨ L
+ c

√
H2

L
.

Note that instead of treating each source individually and directly summing up their sample uncer-
tainties (as c

∑
l∈[L]

1
L

√
H2

Nh,l(s,a)∨1 ), the adopted penalty term is a joint measure of sample uncer-

tainties from all sources. This would lead to a O(
√
L) speed-up in the performance guarantees.

Penalties to Account for Source Uncertainties. The second part of the penalty Γβ
h(s, a) serves the

important role of measuring the uncertainties due to the limited amount of data sources. With the
observation that (Bh,lV̂h+1)(s, a) is a bounded random variable with mean of (BhV̂h+1)(s, a), the
following penalty term is proposed:

Γβ
h(s, a) = c

√
H2

L
.

Intuitively, it shrinks with the number of datasets, i.e., L, as more sources provide more information
about the target task.
Remark 1. With the two-part penalty term, with high probability, for all (s, a, h) ∈ S × A × [H],
it simultaneously holds that |(B̂hV̂h+1)(s, a)− (B̄hV̂h+1)(s, a)| ≤ Γα

h(s, a) and |(B̄hV̂h+1)(s, a)−
(BhV̂h+1)(s, a)| ≤ Γβ

h(s, a), which jointly ensure Eqn. (2).

Remark 2. The adopted source uncertainty penalty Γβ
h(s, a) is intended to accommodate any un-

known variance between sources. However, if there is prior knowledge of the variance, it is feasible
to incorporate such information. In particular, if the rewards and transition vectors are generated via
σ-sub-Gaussian distributions, the penalty can be designed as Γβ

h(s, a) = c
√
σ2H2/L.

4 THEORETICAL ANALYSIS

4.1 INDIVIDUALLY GOOD COVERAGE

Previous offline RL studies typically require that the behavior policy should provide information
for all the state-action pairs that may be visited by the optimal policy on the target MDP, e.g.,
Rashidinejad et al. (2021); Xie et al. (2021b). Particularizing this requirement to each individual data
source considered in this work leads to the following assumption, which requires each individual
dataset covers the optimal policy on the target MDP.
Assumption 2 (Individual Coverage). There exists a constantC∗ <∞ such that for all (s, a, h, l) ∈
S ×A× [H]× [L], it holds that dπ

∗

h (s, a) ≤ C∗dρl

h,l(s, a).
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Under this assumption, a minimax lower bound is first established as follows.

Theorem 1 (Lower Bound; Individual Coverage). For any C∗ ≥ 2, S ≥ 2, A ≥ 2, it holds that

inf
π̂

sup
M∈M,g∈G,{ρl:l∈[L]}∈B(C∗)

E{Ml,Dl:l∈[L]} [Gap(π̂;M)] = Ω

(√
C∗H3S

LK
∨
√
H2

L

)
,

where M := {M(H,S,A,P, r)} is the family of all possible target MDPs, G :=
{g: {Ml ∼ g : l ∈ [L]} satisfies Assumption 1} is a family of data source generation distributions,
and B(C) := {{ρl : l ∈ [L]} : Assumption 2 holds with C∗ = C} is a family of behavior policies.

The first term in this lower bound is the same as the lower bound of standard offline RL with LK
data samples directly from the target MDP (Rashidinejad et al., 2021), which represents the perfor-
mance loss originating from finite data samples. The second term is unique for the setting studied in
this work, as it represents the loss caused by learning with finite randomly perturbed data sources.
Especially, it can be observed that the second term only scales with the number of data sources,
i.e., L, and cannot be mitigated via sampling more data from each data source, i.e., increasing K.
On one hand, this observation verifies the intuition that using data sampled from multiple randomly
perturbed data sources poses additional learning difficulties. On the other hand, it also highlights
the importance of the diversity of data sources, i.e., it is more important to involve more sources
instead of more data from each source. This is reasonable as involving more data sources provides
additional population coverage while also adding more data.

With the information-theoretic lower bound established, the performance guarantee of HetPEVI is
also provided in the following theorem, which highlights its effectiveness and efficiency.

Theorem 2 (HetPEVI; Individual Coverage). Under Assumptions 1, 2, w.p. at least 1−δ, the output
policy π̂ of HetPEVI satisfies

Gap(π̂;M) = Õ

(√
C∗H4S

LK
+

√
H4

L

)
.

This result first illustrates that even with finite randomly perturbed MDPs and finite data samples
from each of them, it is still feasible to efficiently learn the target. Compared with the lower bound in
Theorem 1, it can be observed that HetPEVI is optimal (up to logarithmic factors) on the dependency
of L,K,C∗ and S. The additional

√
H factor in the first term (from the sample uncertainties) can be

removed by invoking a carefully designed Bernstein-type penalty term to incorporate the variance
information, which is deferred to Appendix E due to the space limitation. However, it is currently
unclear how to alleviate the additional H factor in the second term (from the source uncertainties),
which is left open to be further investigated.

Additionally, Thm. 2 indicates that to obtain an ε-optimal policy, HetPEVI requires the overall num-
ber of samples T = LK to be of order Õ(C∗H4S/ε2) and the available number of data sources L
to be of order Õ(H4/ε2). Note that the first requirement can be viewed as on the sample complexity
while the second one is on the source diversity.

4.2 COLLECTIVELY GOOD COVERAGE

It can be noticed that Assumption 2 requires each data source to provide good coverage. With access
to only one data source in previous offline RL studies, this requirement is intuitive as information
about the optimal policy needs to be obtained. However, the multiple available datasets in this
work provide opportunities to avoid this strong assumption via their aggregated information. In
this section, the scenario where the datasets collectively provide a good coverage is discussed. In
particular, to characterize the collective coverage, the following assumption is proposed.

Assumption 3 (Collective Coverage). There exist constants L† > 0 and C† < ∞ such that for all
(s, a, h) ∈ S ×A× [H], it holds that |{l ∈ [L] : dπ

∗

h (s, a) ≤ C†dρl

h,l(s, a)| ≥ L†.

It can be observed that Assumption 3 is weaker than Assumption 2 as the latter implies the former
with L† = L and C† = C∗. Moreover, instead of requiring each data source individually covers the
optimal policy, Assumption 3 leverages their collective coverage. In particular, for each different
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state-action pair possibly visited by the optimal policy (i.e., dπ
∗

h (s, a) > 0), it is sufficient to have
potentially varying datasets cover it. In other words, different parts of the optimal policy can be
covered by different datasets, which is a highly practical consideration. Under Assumption 3, the
following performance guarantee of HetPEVI can be further obtained.
Theorem 3 (HetPEVI; Collective Coverage). Under Assumptions 1, 3, w.p. at least 1−δ, the output
policy π̂ of HetPEVI satisfies

Gap(π̂;M) = Õ

(√
C†H4S

LK
+

√
(L+ 1− L†)H4

L

)
.

Compared with Theorem 2, Theorem 3 is more general and also more practically useful as it implies
the former and indicates that good collective coverage is sufficient for efficient learning. Moreover,
from another perspective, the performance dependence on L† also highlights the importance of
collecting high-quality datasets.

As a summary of the obtained observations, learning via randomly perturbed datasets brings both
costs and benefits. Especially, an unavoidable performance loss occurs due to the indirect access
to the target MDP. This loss can only be reduced by increasing the diversity of data sources, i.e., a
larger L, but cannot be mitigated by collecting a larger dataset from each data source, i.e., a larger
K. Despite bringing the additional loss, the access to multiple heterogeneous datasets provides
an opportunity to leverage their aggregated information, which is concretely reflected that efficient
learning only requires a good collective (instead of individual) coverage.

5 EXTENSION TO OFFLINE LINEAR MDP

Lastly, we extend the study from tabular RL to incorporating function approximations. Especially,
the following linear MDP model is considered.
Definition 1 (Linear MDP (Jin et al., 2020; 2021b)). An MDPM = (H,S,A,P, r) is a linear MDP
with a feature map ϕ : S × A → Rd if there exist d unknown measures µh = (µ

(1)
h , · · · , µ(d)

h ) over
S and an unknown vector θh ∈ Rd s.t. Ph(s

′|s, a) = ⟨ϕ(s, a), µh(s
′)⟩ and rh(s, a) = ⟨ϕ(s, a), θh⟩

for all (s, a, s′) ∈ S × A × S at each step h ∈ [H]. Without loss of generality, it is assumed that
∥ϕ(s, a)∥2 ≤ 1 for all (s, a) ∈ S × A and max{∥µh(S)∥2, ∥θh∥2} ≤

√
d for all h ∈ [H], where

∥µh(S)∥2 :=
∫
S ∥µh(s)∥2 ds. For simplicity, we denoteM = (H,S,A, µ, ϕ, θ).

With this definition, we consider the problem that the target MDPM is a linear MDP, i.e., M =
(H,S,A, ϕ, µ, θ). Correspondingly, the data source MDPs {Ml : l ∈ [L]} are also assumed to
be linear MDPs, which are denoted as {Ml = (H,S,A, ϕ, µl, θl) : l ∈ [L]}. In particular, the
data source MDPs are assumed to share the same feature dimension d and feature mapping ϕ as
the target MDP; however, their system dynamics may be different. We note that this shared feature
mapping is commonly adopted in federated linear bandits (Huang et al., 2021; Li & Wang, 2022),
which naturally extends to linear MDP. Then, similarly as Assumption 1 in the tabular MDP, the
following task-source relationship is assumed for the linear MDP to model that the data sources are
randomly perturbed versions of the target MDP.
Assumption 4 (Task–source Relationship; Linear MDP). Data source MDPs {Ml : l ∈ [L]} are
independently sampled from unknown distributions g such that for each (l, i, h) ∈ [L] × [d] × [H],
the vector θh,l is a random vector with mean θh, and the measure µ(i)

h,l is a random measure with

mean µ(i)
h . In particular, random vectors and measures {θh,l, µ(i)

h,l : (h, i, l) ∈ [H]× [d]× [L]} are
independent with each other.

Note that when treating the tabular setting as d = SA and ϕ(s, a) = e(s,a), where e(s,a) denotes a
canonical basis in Rd, Assumption 4 returns to Assumption 1.

5.1 HETPEVI-LIN FOR LINEAR MDPS

From the linear MDP definition, it can be shown that the Bellman operators of each data source
MDP and the target MDP are all linear (but with different weights).

7
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Algorithm 2 HetPEVI-Lin

Input: Dataset D = {Dl : l ∈ [L]}; V̂H+1(s) = 0,∀s ∈ S
1: Estimate ŵh,l ← Λ−1

h,l

[∑
k∈[K] ϕ(s

k
h,l, a

k
h,l)
(
rkh,l + V̂h+1(s

k
h+1,l)

)]
, ∀(h, l) ∈ [H]× [L]

2: Set ŵh ←
∑

l∈[L] ŵh,l/L, ∀h ∈ [H]

3: for h = H,H − 1, · · · , 1 do
4: Perform updates for all (s, a) ∈ S × A as Eqn. (1) with (B̂hV̂h+1)(s, a) = ŵ⊤

h ϕ(s, a) and

Γh(s, a) = c
√

dH2

L2

√∑
l∈[L] ∥ϕ(s, a)∥2Λ−1

h,l

+ c
√

dH2

L

5: end for
Output: policy π̂ = {π̂h(s) : (s, h) ∈ S × [H]}

Lemma 1. With any function f : S → R, there exists {wf
h,l ∈ Rd : h ∈ [H], l ∈ [L]} and {wf

h ∈
Rd : h ∈ [H]} such that for any (s, a, h) ∈ S×A×[H], it holds that (Bh,lf)(s, a) = ⟨ϕ(s, a), wf

h,l⟩
for each l ∈ [L] and (Bhf)(s, a) = ⟨ϕ(s, a), wf

h⟩.

Furthermore, the following lemma can be established for the sample average MDP M̄ =
(H,S,A, P̄, r), where P̄h(·|s, a) = 1

L

∑
l∈[L] Ph,l(·|s, a) and r̄h(s, a) = 1

L

∑
l∈[L] rh,l(s, a). It

states that M̄ is also a linear MDP and the weights associated with its Bellman operator are the
average of weights from each individual data source MDP.
Lemma 2. The average MDP M̄ is a linear MDP of dimension d with feature mapping ϕ. Also, for
any function f : S → R and any (s, a, h) ∈ S ×A× [H], it holds that (B̄hf)(s, a) = ⟨ϕ(s, a), w̄f

h⟩
with weights {w̄f

h =
∑

l∈[L] w
f
h,l/L : h ∈ [H]}.

With the above observations, the HetPEVI-Lin algorithm is proposed (presented in Algorithm 2).
First, for each step h ∈ [H] and each data source l ∈ [L], the weight ŵh,l is estimated via a ridge
regression:

ŵh,l = argminw∈Rd

∑
k∈[K]

[
rkh,l + V̂h+1(s

k
h+1,l)− ϕ(skh,l, akh,l)⊤w

]2
+

1

L
∥w∥22

= Λ−1
h,l

[∑
k∈[K]

ϕ(skh,l, a
k
h,l)
(
rkh,l + V̂h+1(s

k
h+1,l)

)]
,

with Λh,l :=
∑

k∈[K] ϕ(s
k
h,l, a

k
h,l)ϕ(s

k
h,l, a

k
h,l)

⊤+I/L. The agent aggregates ŵh =
∑

l∈[L] ŵh,l/L,
which provides an estimation of the weight w̄h associated with the average MDP M̄. The PEVI
in Eqn. (1) is then performed with the empirical Bellman operator defined as (B̂hV̂h+1)(s, a) =

⟨ϕ(s, a), ŵh⟩ and a two-part penalty term Γh(s, a) = Γα
h(s, a)+Γβ

h(s, a) illustrated in the following.

Penalties to Aggregate Sample Uncertainties. The first part of the penalty term aggregates the
sample uncertainties from each data source, which is designed as

Γα
h(s, a) = c

√
dH2

L2

√∑
l∈[L]

∥ϕ(s, a)∥2
Λ−1

h,l

.

While this penalty term shares a similar format as those in linear bandits (Li et al., 2010; Abbasi-
Yadkori et al., 2011) and linear MDPs (Jin et al., 2020; 2021b), its novelty comes from jointly
considering the uncertainties of different sources. Especially, this design avoids applying the self-
normalized concentration (Abbasi-Yadkori et al., 2011) to each data source (which leads to an infe-
rior dependency on L) by leveraging the statistical independence among the split datasets.

Penalties to Account for Source Uncertainties. Besides the sample uncertainties, the following
penalty is designed to measure the source uncertainties:

Γβ
h(s, a) = c

√
dH2

L
.

Note that compared with the tabular design, an additional d factor appears, which is from the cover-
ing argument over the d-dimensional feature space.
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5.2 THEORETICAL ANALYSIS

Similar to the tabular setting, previous offline RL studies with linear MDPs often requires the be-
havior policy to cover the optimal policy (Jin et al., 2021b; Xiong et al., 2022) (or even stronger, to
cover the entire feature space (Yin et al., 2022; Min et al., 2021)). Hence, following Sec. 4, we first
discuss the scenario with good individual coverage characterized by the following assumption.
Assumption 5 (Individual Coverage; Linear MDP). There exists a constant D∗ < ∞
such that for all (h, l) ∈ [H] × [L], it holds that Eπ∗,M[ϕ(sh, ah)ϕ(sh, ah)

⊤] ⪯
D∗Eρl,Ml

[ϕ(sh, ah)ϕ(sh, ah)
⊤].

Theorem 4 (HetPEVI-Lin; Individual Coverage). Under Assumptions 4, 5 and assuming the matri-
ces {

∑
l∈[L] Λ

−1
h,l : h ∈ [H]} are invertible, w.p. at least 1− δ, the output policy π̂ of HetPEVI-Lin

satisfies

Gap(π̂;M) = Õ

(√
D∗d2H4

KL
+

√
dH4

L

)
.

Similar to Thm. 2, the two terms in Thm. 4 originate from the finite data samples and the limited data
sources, respectively. However, note that the gap guarantee in Thm. 4 does not have a dependency on
the number of states S (which appears in the tabular analysis), instead it depends on the feature di-
mension d, thanks to the careful design that incorporates linear function approximation. As a result,
to output an ε-optimal policy, the sample complexity requirement is T = KL = Õ(D∗d2H4/ε2)

while the source diversity requirement is L = Õ(dH4/ε2).

One important observation from the tabular setting is that efficient learning only requires a good
collective (instead of individual) coverage. To further verify this claim, the following collective
coverage assumption is considered for linear MDPs, which shares a similar format as Assumption 3.
Assumption 6 (Collective Coverage; Linear MDP). There exist constants L† > 0 and D† <
∞ such that for all h ∈ [H], it holds that |l ∈ [L] : Eπ∗,M[ϕ(sh, ah)ϕ(sh, ah)

⊤] ⪯
D∗Eρl,Ml

[ϕ(sh, ah)ϕ(sh, ah)
⊤]| ≥ L†.

It can be observed that Assumption 5 implies Assumption 6 with L† = L and D† = D∗. With this
relatively weaker collective coverage assumption, the following theorem can be established.
Theorem 5 (HetPEVI-Lin; Collective Coverage). Under Assumptions 4, 6 and assuming the matri-
ces {

∑
l∈[L] Λ

−1
h,l : h ∈ [H]} are invertible, w.p. at least 1− δ, the output policy π̂ of HetPEVI-Lin

satisfies

Gap(π̂;M) = Õ

(√
D†d2H4

KL
+

√
d(L+ 1− L†)H4

L

)
.

It can be observed that Thm. 3 shares a similar form as Thm. 3, both of which illustrate that as long
as the datasets collectively cover the optimal policy, efficient learning is achievable.

6 CONCLUSIONS

This work studied a novel problem of efficient offline RL with randomly perturbed data sources.
In particular, motivated by practical applications, the available offline datasets are assumed to be
collected from multiple randomly perturbed versions of the target MDP. The HetPEVI algorithm is
proposed, where novel penalty terms were designed to jointly consider the uncertainties from the
finite data samples and the limited amount of data sources. Theoretical analyses proved its near-
optimal performance. More importantly, the costs and benefits of offline RL via randomly perturbed
data sources are explicitly characterized. On one hand, an additional unavoidable performance loss
occurs due to the finite data sources, which cannot be reduced by involving more data samples
from each source. On the other hand, as long as the datasets collectively (instead of individually)
provide a good data coverage, efficient learning is achievable. Lastly, linear function approximation
was considered, and the HetPEVI-Lin algorithm was developed with penalties carefully designed
to consider both uncertainties and incorporate the linear structure. Its analysis again verifies the
importance of source diversity and the sufficiency of collective coverage.

9



Under review as a conference paper at ICLR 2023

REFERENCES
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A ADDITIONAL DISCUSSIONS

A.1 RELATED WORKS

RL has seen much progress over the past few years, particularly in its theoretical understanding (see
the recent monograph (Agarwal et al., 2019) for an overview). We will discuss the most related
papers in the following, with a particular focus on the theoretical aspect as well as the offline setting.

Online RL with One Environment. The majority of RL studies focus on the online setting (Sutton
& Barto, 2018), where the agent consistently improves her algorithm via online interactions with
the environment. In recent years, many advances have deepened the theoretical understandings of
online RL in interacting with a fixed and stable environment, with provably efficient designs (Azar
et al., 2017; Jin et al., 2018; 2020; 2021a; Zhang et al., 2020; Jiang et al., 2017; Dann et al., 2021).

Online RL with Heterogeneous Environments. The importance of handling heterogeneous envi-
ronments is well recognized. Especially, federated RL (Zhuo et al., 2019) and the general multi-
agent RL (Zhang et al., 2021) study the setting with multiple agents in the system, while each of
them may view an agent-depend environment (Jin et al., 2022). In contrast, meta-RL (Sæmundsson
et al., 2018; Gupta et al., 2018; Fallah et al., 2021; Chua et al., 2021) focuses on extracting knowl-
edge from previous tasks and adapting them to new (potentially different) tasks. Also, multi-task
RL (Teh et al., 2017) attempts to handle multiple tasks together via information shared among tasks
(Brunskill & Li, 2013; Zhang & Wang, 2021; Lu et al., 2021; Yang et al., 2020; 2022) or distinguish-
ing the latent structure associated with each task via past observations (Hallak et al., 2015; Kwon
et al., 2021a;b).

Offline RL with Single-source Datasets. Offline RL (Levine et al., 2020) attempts to avoid poten-
tially expensive interactions with the environment as in online RL but instead use available offline
datasets collected previously. Inspired by empirical advances (Yu et al., 2020; Kumar et al., 2020),
the principle of “pessimism” is incorporated and proved efficient for offline RL (Jin et al., 2021b;
Rashidinejad et al., 2021). Especially, it is illustrated that a nearly optimal policy can be learned via
a dataset collected by a behavior policy that covers the trajectories of the optimal policy.

Following this line, Xie et al. (2021b); Li et al. (2022); Shi et al. (2022) further fine-tune the designs
for the tabular setting, and Jin et al. (2021b); Zanette et al. (2021); Min et al. (2021); Yin et al.
(2022); Xiong et al. (2022) for the linear MDP. For the general function approximation, additional
attempts are reported in Xie et al. (2021a); Uehara & Sun (2021). However, these results are mostly
information-theoretical as computational intractable optimizations are required in general.

Besides the above discussions, one particular line of research that relates to this work is under the
category of offline robust RL (Zhou et al., 2021; Yang et al., 2021; Panaganti et al., 2022; Panaganti
& Kalathil, 2022; Si et al., 2020; Shi & Chi, 2022). Especially, offline robust RL learns via data
sampled from one MDP and tries to output a policy that is robustly good for a family of MDPs;
however, our work attempts at learning the hidden task from data sampled from a family of MDPs.
Nevertheless, we note that it would be an interesting question to investigate whether having access
to multiple data source MDPs in the target family would make offline robust RL easier.

Another conceptually relative work is Shrestha et al. (2020). In particular, it looks for similar state-
action pairs with small distances in the dataset, which can be thought of as available data sources in
this work. Then, the Lipschitz continuity assumption is posed, which serves a similar role as As-
sumption 1 to establish the connection between desired task information with the available datasets.
From this perspective, the first term in Theorem 3.1 (Shrestha et al., 2020) can be interpreted as
coming from the source uncertainty while the second term is from the sample uncertainty. How-
ever, we also note that the Lipschitz continuity assumption is a worst-case consideration that would
not characterize the concentration of involving more data sources, which however is the key of this
work.

Offline RL with Multi-source Datasets. The aforementioned advances on offline RL are mainly
focused on learning from a single data source, which limits their applicability. In the offline domain,
growing interests have been made to utilize data from heterogeneous sources. The most related
literature falls under the framework of “offline meta-RL” or “offline multi-task RL” (Mitchell et al.,
2021; Dorfman et al., 2021; Lin et al., 2022; Li et al., 2020b;a; Yu et al., 2021). Especially, the
target MDP can be viewed as a learning target for the “meta-training” process of offline meta-
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RL (Mitchell et al., 2021), which aims to extract information from the available data (of multiple
sources). In addition to “meta-training”, the empirically studied offline meta-RL systems often
feature another step of “meta-testing”, which further utilizes the learned information and applies
them to a specific task. Thus, we believe this work may contribute the (currently lacking) theoretical
understanding of offline meta-RL systems, especially the meta-training process, which may also
serve as the foundation for studies on the meta-testing process.

A.2 FUTURE WORKS

Coverage Assumptions. While the collective coverage assumption of Assumptions 3 and 6 is rela-
tively weak, it is still of major interest to further explore how to perform offline RL (especially with
heterogeneous data sources) under weaker assumptions. This direction is particularly interesting
with multiple data sources since the heterogeneous sources naturally enrich the data diversity.

Unknown Source Identities. This work considers the scenario where each data sample is known to
belong to a particular source. One interesting direction is to investigate the scenarios without such
information, i.e., unknown source identities. A potential solution is to first cluster the data samples
and then adopt the algorithms proposed in this work. However, it is challenging to design provable
clustering algorithms. One candidate clustering technique is developed in Kwon et al. (2021b) for
the study of latent MDP, which however relies on strong assumptions of prior knowledge about the
source MDPs.

Personalization. As mentioned in the discussions of related work, this work can be viewed as
targeting at the “meta-training” process of offline meta-RL (Mitchell et al., 2021), which extracts
common knowledge from available data of multiple sources. While the extracted common knowl-
edge have individual values, in many applications, an additional step of personalization is performed
to further use such knowledge to benefit a specific task, which is called the “meta-testing” process
of offline meta-RL (Mitchell et al., 2021). Based on this work, it would be valuable to further study
how to perform such a personalization step with theoretical guarantees.

B LOWER BOUND ANALYSIS

Lemma 3. For any C∗ ≥ 2, it holds that

inf
π̂

sup
M∈M,g∈G,{ρl:l∈[L]}∈B(C∗)

E{Ml,Dl:l∈[L]} [Gap(π̂;M)] = Ω

(√
C∗SH3

LK

)
.

Proof. We consider the case where g always generatesMl =M, and ρ1 = · · · = ρL = ρ. Then,
the problem degenerates to offline RL with one dataset directly from the target. Thus, results from
the case of C∗ ≥ 2 in Theorem 7 of Rashidinejad et al. (2021) can be applied to obtain the final
result.

Lemma 4. For any C∗ ≥ 2, it holds that

inf
π̂

sup
M∈M,g∈G,{ρl:l∈[L]}∈B(C∗)

E{Ml,Dl:l∈[L]} [Gap(π̂;M)] = Ω

(√
H2

L

)
.

Proof. This lemma is established with the following construction.

Target MDPM. We design the following family of target MDPs with two states denoted as S =
{sg, sb} and two actions denotes as A = {ag, ab} for all steps (s1 can be fixed to be sg), which can
be easily generalized to accommodate any number of states and actions:

M =
{
P1(sg|sg, ag) = p,Ph(sb|sg, ag) = 1− p
P1(sg|sg, ab) = P1(sb|sg, ab) = 0.5,∀h ∈ [H];

Ph(s|s, a) = 1,∀(s, a, h) ∈ S ×A× [2, H];

rh(sg, a) = 1, rh(sb, a) = 0,∀(a, h) ∈ A× [H]
}
.

A target MDPM with parameter p in M is referred to asM(p).
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Data source generation distribution g. For target M(p), the data source generation, denoted
as g(p), is designed as follows: with probability p, the generated MDP has P1(sg|sg, ag) =
1,P1(sb|sg, ag) = 0; otherwise it has P1(sg|sg, ag) = 0,P1(sb|sg, ag) = 1. The other parame-
ters of the generated MDP are the same asM.

Behavior policy ρl. For all l ∈ [L], the behavior policy ρl is specified as follows: ρh,l(a|s) =

dπ
∗

h (a|s),∀(s, a, h) ∈ S ×A× [H], which ensures Assumption 2 with any C∗ ≥ 1.

Then, with p1 := 1
2 + δ and p2 = 1

2 − δ, it can be obtained that

E{Ml∼g(p1),Dl∼Ml:l∈[L]} [Gap(π̂;M(p1))] = (H − 1)δE{Ml∼g(p1),Dl∼Ml:l∈[L]} [π1(ab)] ;

E{Ml∼g(p2),Dl∼Ml:l∈[L]} [Gap(π̂;M(p2))] = (H − 1)δE{Ml∼g(p2),Dl∼Ml:l∈[L]} [πh(ag)] ,

which leads to

E{Ml∼g(p1),Dl∼Ml:l∈[L]} [Gap(π̂;M(p1))] + E{Ml∼g(p2),Dl∼Ml:l∈[L]} [Gap(π̂;M(p2))]

= (H − 1)δ
(
E{Ml∼g(p1),Dl∼Ml:l∈[L]} [π1(ab)] + E{Ml∼g(p2),Dl∼Ml:l∈[L]} [1− π1(ag)]

)
Furthermore, it holds that

E{Ml∼g(p1),Dl∼Ml:l∈[L]} [π1(ab)] + E{Ml∼g(p2),Dl∼Ml:l∈[L]} [1− π1(ag)]
≥ 1− TV(P{Ml∼g(p1),Dl∼Ml:l∈[L]},P{Ml∼g(p2);Dl∼Ml:l∈[L]})

≥ 1−
√

KL
(
P{Ml∼g(p1),Dl∼Ml:l∈[L]}||P{Ml∼g(p2),Dl∼Ml:l∈[L]}

)
/2.

We can explicitly write down the ratio between the two desired probabilities as

P{Ml∼g(p1),Dl∼Ml:l∈[L]}({Ml,Dl : l ∈ [L]})
P{Ml∼g(p2),Dl∼Ml:l∈[L]}({Ml,Dl : l ∈ [L]})

=
(p1)

κ
(1− p1)L−κ

(p2)
κ
(1− p2)L−κ

where κ =
∑

l∈[L] 1{P1,l(sg|s, ag) = 1}.

As a result, with pβh ∈ [ 14 ,
3
4 ],∀h ∈ [H] it holds that

KL
(
P{Ml∼g(p1),Dl∼Ml:l∈[L]}||P{Ml∼g(p2),Dl∼Ml:l∈[L]}

)
= E{Ml∼g(p1),Dl∼Ml:l∈[L]}

[
κ log

(
p1
p2

)
+ (L− κ) log

(
1− p1
1− p2

)]
= Lp1 log

(
p1
p2

)
+ (L− Lp1) log

(
1− p1
1− p2

)
≤ L(p1 − p2)2

p2(1− p2)
≤ 16L(p1 − p2)2

Finally, with δ = 1
16

√
2
L , it holds that

E{Ml∼g(pα),Dl∼Ml:l∈[L]} [πh(ab)] + E{Ml∼g(pβ),Dl∼Ml:l∈[L]} [1− πh(ag)]

≥ 1−
√

KL
(
P{Ml∼g(pα),Dl∼Ml:l∈[L]}||P{Ml∼g(pβ),Dl∼Ml:l∈[L]}

)
/2

≥ 1

2

which concludes the proof as

E{Ml∼g(p1),Dl∼Ml:l∈[L]} [Gap(π̂;M(p1))] + E{Ml∼g(p2),Dl∼Ml:l∈[L]} [Gap(π̂;M(p2))]

≥ (H − 1)
1

2
· 1
16

√
2

L
= Ω

(
H2

L

)
.
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C UPPER BOUND ANALYSIS: OVERVIEW

In this section, we provide an overview with the steps shared in the proofs of each proposed algo-
rithm. In other words, the following results are stated for all three proposed algorithms in general.
The more challenging and specific proofs for our designs are illustrated in the following sections.
The basic logistics here follow the seminal work of Jin et al. (2021b) in provably efficient offline
RL.

The first step is to establish the validness of the pessimism. For different settings, various styles
of pessimism are incorporated. Specifically, in this work, three penalty constructions are adopted
in HetPEVI, HetPEVI-Adv and HetPEVI-Lin, respectively. As an abstraction, the validness of
pessimism induced by penalties {Γh(s, a) : (s, a, h) ∈ S ×A× [H]} is defined in the following.

Definition 2 (Validness of Pessimism). For pessimistic value iterations using an estimated Bellman
operator B̂h and penalties {Γh(s, a) : (s, a, h) ∈ S ×A× [H]}, a valid pessimism is induced if the
following event happens

E :=
{∣∣∣(B̂hV̂h+1

)
(s, a)−

(
BhV̂h+1

)
(s, a)

∣∣∣ ≤ Γh(s, a),∀(s, a, h) ∈ S ×A× [H]
}
.

With a valid pessimism, we can obtain the following lemma.

Lemma 5. Suppose that event E in Definition 2 happens, it holds that

ζh(s, a) :=
(
BhV̂h+1

)
(s, a)− Q̂h(s, a) ∈ [0, 2Γh(s, a)] , ∀(s, a, h) ∈ S ×A× [H].

Proof. We can observe that for any (s, a, h) ∈ S × A × [H], with the adopted pessimistic value
iteration, it holds that

ζh(s, a) =
(
BhV̂h+1

)
(s, a)− Q̂h(s, a)

=
(
BhV̂h+1

)
(s, a)−min

{(
B̂hV̂h+1

)
(s, a)− Γh(s, a), H − h+ 1

}+

≥ min
{(

BhV̂h+1

)
(s, a)−

(
B̂hV̂h+1

)
(s, a) + Γh(s, a),

(
BhV̂h+1

)
(s, a)

}
≥ 0,

where the last inequality is due to event E . Similar, for the other direction, it holds that

ζh(s, a) =
(
BhV̂h+1

)
(s, a)− Q̂h(s, a)

=
(
BhV̂h+1

)
(s, a)−min

{(
B̂hV̂h+1

)
(s, a)− Γh(s, a), H − h+ 1

}+

≤ max
{(

BhV̂h+1

)
(s, a)−

(
B̂hV̂h+1

)
(s, a) + Γh(s, a),

(
BhV̂h+1

)
(s, a)− (H − h+ 1)

}
≤ 2Γh(s, a),

where the last inequality is due to event E and the fact that (BhV̂h+1)(s, a) ≤ H − h+ 1.

Furthermore, the suboptimality gap on the target MDP M between the output policy π̂ and the
optimal policy π∗ can be generally bounded via the following lemma.

Lemma 6. Suppose that event E in Definition 2 happens, it holds that

Gap(π̂;M) ≤ 2
∑

h∈[H]

Eπ∗,M [Γh(sh, ah)] .

Proof. It holds that

Gap(π̂;M)
(a)
= −

∑
h∈[H]

Eπ̂,M [ζh(sh, ah)] +
∑

h∈[H]

Eπ∗,M [ζh(sh, ah)]
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+
∑

h∈[H]

Eπ∗,M

[
Q̂h(sh, π

∗(sh))− Q̂h(sh, π̂h(sh))
]

(b)

≤ 2
∑

h∈[H]

Eπ∗,M [Γh(sh, ah)] ,

where equation (a) is from Lemma 3.1 in (Jin et al., 2021b) (provided as Lemma 23), and inequality
(b) is due to Lemma 5 together with the fact that Q̂h(sh, ·) takes maximum at π̂h(sh) in the proposed
algorithms.

In other words, Gap(π̂;M) is bounded via the sum of penalties Γh(sh, ah) along the expected
trajectory of optimal policy π∗ on the target MDPM.

D THE HETPEVI ALGORITHM

D.1 GOOD EVENT

Lemma 7. The following event holds with probability at least 1− δ for HetPEVI

G :=

{
(i) The penalties {Γh(s, a)} induce a valid pessimism;

(ii) Nh,l(s, a) ≥ cKdρl

h,l(s, a),∀(l, s, a, h) ∈ [L]× S ×A× [H]

}
.

Proof. Part (I) is from Lemma 8 and part (II) obtained via Lemma 9.

Lemma 8. The penalty

Γh(s, a) = c

√√√√∑
l∈[L]

H2

(L2Nh,l(s, a)) ∨ L
+ c

√
H2

L

in HetPEVI induces a valid pessimism with probability at least 1− δ.

Proof. For a fixed (s, a, h), it holds that(
B̂hV̂h+1

)
(s, a)−

(
BhV̂h+1

)
(s, a)

= r̂h(s, a) +
(
P̂hV̂h+1

)
(s, a)− rh(s, a)−

(
PhV̂h+1

)
(s, a)

=
∑
l∈[L]

1

L

(
rh,l(s, a) +

(
P̂h,lV̂h+1

)
(s, a)

)
−
∑
l∈[L]

1

L

(
rh,l(s, a) +

(
Ph,lV̂h+1

)
(s, a)

)
+
∑
l∈[L]

1

L

(
rh,l(s, a) +

(
Ph,lV̂h+1

)
(s, a)

)
−
(
rh(s, a) + PhV̂h+1(s, a)

)

=
∑

l∈[L]:Nh,l(s,a)>0

1

L

rh,l(s, a) + ∑
k∈[K]:(skh,l,a

k
h,l)=(s,a)

V̂h+1(s
k
h+1,l)

Nh,l(s, a)


−
∑
l∈[L]

1

L

(
rh,l(s, a) +

(
Ph,lV̂h+1

)
(s, a)

)
+
∑
l∈[L]

1

L

(
rh,l(s, a) +

(
Ph,lV̂h+1

)
(s, a)

)
−
(
rh(s, a) + PhV̂h+1(s, a)

)

=
∑

l∈[L]:Nh,l(s,a)>0

1

L

 ∑
k∈[K]:(skh,l,a

k
h,l)=(s,a)

V̂h+1(s
k
h+1,l)

Nh,l(s, a)
−
(
Ph,lV̂h+1

)
(s, a)
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+
∑
l∈[L]

1

L

(
rh,l(s, a) +

(
Ph,lV̂h+1

)
(s, a)

)
−
(
rh(s, a) + PhV̂h+1(s, a)

)
−

∑
l∈[L]:Nh,l(s,a)=0

1

L

(
rh,l(s, a) +

(
Ph,lV̂h+1

)
(s, a)

)
Then, via Hoeffding inequality, it can be recognized that with probability at least 1− δ,∣∣∣(B̂hV̂h+1

)
(s, a)−

(
BhV̂h+1

)
(s, a)

∣∣∣
≤ c

√√√√ ∑
l∈[L]:Nh,l(s,a)>0

H2

L2Nh,l(s, a)
+ c

√
H2

L
+

∑
l∈[L]:Nh,l(s,a)=0

H

L

= c

√√√√√ ∑
l∈[L]:Nh,l(s,a)>0

H2

L2Nh,l(s, a)
+

 ∑
l∈[L]:Nh,l(s,a)=0

H

L

2

+ c

√
H2

L

= c

√√√√ ∑
l∈[L]:Nh,l(s,a)>0

H2

L2Nh,l(s, a)
+

∑
l∈[L]:Nh,l(s,a)=0

H2

L
+ c

√
H2

L

= c

√√√√∑
l∈[L]

H2

(L2Nh,l(s, a)) ∨ L
+ c

√
H2

L

Lemma 9. With probability at least 1− δ, it holds that,

Nh,l(s, a) ≥ cKdρl

h,l(s, a), ∀(l, s, a, h) ∈ [L]× S ×A× [H].

Proof. The proof can be done similarly as in Lemma B.3 of (Xie et al., 2021b).

D.2 SUBOPTIMAITY GAP

Proof of Theorems 2 and 3. By Lemma 6 and 7, with probability at least 1− δ, it holds that

Gap(π̂;M) ≤ 2
∑

h∈[H]

Eπ∗,M [Γh(sh, ah)] .

With the individual coverage assumption (i.e., Assumption 2), it holds that

∑
h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)


√√√√∑

l∈[L]

H2

(L2Nh,l(s, a)) ∨ L
+

√
H2

L


(a)

≤
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)

√√√√∑
l∈[L]

H2(
L2Kdρl

h,l(s, a)
)
∨ L

+

√
H2

L


(b)
= Õ

(√
C∗H4S

LK
+

√
H4

L

)
,

where inequality (a) is from (ii) of event G in Lemma 7, and equality (b) uses Assumption 2 and
Cauchy-Schwarz inequality.

With the overall coverage assumption (i.e., Assumption 3), it can be similarly obtained that

∑
h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)


√√√√∑

l∈[L]

H2

(L2Nh,l(s, a)) ∨ L
+

√
H2

L
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≤
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)

√√√√ ∑
l∈[L]:d

ρl
h,l(s,a)>0

H2

L2Kdρl

h,l(s, a)
+

√√√√ ∑
l∈[L]:d

ρl
h,l(s,a)=0

H2

L
+

√
H2

L


(c)

≤
√
C†H2

LK

∑
h∈[H]

∑
(s,a)∈S×A

√
1{a = π∗

h(s)}dπ
∗

h (s, a) +

√
(L− L†)H4

L
+

√
H4

L

= Õ

(√
C†H4S

LK
+

√
(L+ 1− L†)H4

L

)
,

where inequality (c) is from Assumption 3.

E THE HETPEVI-ADV ALGORITHM

E.1 ALGORITHM DESIGN

HetPEVI-Adv is designed as an enhanced version of HetPEVI with a Bernstein-type penalty term
for the sample uncertainties. Especially, it shares the same procedure as HetPEVI except that the
adopted penalty is

Γα
h(s, a) = c

√√√√∑
l∈[L]

(
V̂h,lV̂h+1

)
(s, a)

L2Nh,l(s, a)
+ c

√√√√∑
l∈[L]

H2

L2(Nh,l(s, a))2
,

where
(
V̂h,lV̂h+1

)
(s, a) is the empirical variance of V̂h+1(s

′) with s′ ∼ P̂h,l(·|s, a). Note that
compared with HetPEVI, the variance information is incorporated in HetPEVI-Adv.

E.2 THEORETICAL ANALYSIS

Theorem 6. Under Assumptions 1, 2, w.p. at least 1 − δ, the output policy π̂ of HetPEVI-Adv
satisfies

Gap(π̂;M) = Õ

(√
C∗H3S

LK
+
C∗H3S√
LK

+

√
C∗H7S

L2K
+

√
H4

L

)
. (3)

It is noted that the first three terms come from finite samples and the last term from finite sources.
Furthermore, when LK is sufficiently larger, the first term dominates the other second and third
terms; thus, in this regime, it can be observed that HetPEVI-Adv has a tight performance loss to
finite samples. However, the performance loss due to finite data sources still has an additional H
factor, which is left open for further investigations.

E.3 GOOD EVENT

Lemma 10. Under Assumptions 1, 2, with probability at least 1 − δ, the following good event G
happens, where

G :=

{
(i) The penalties {Γh(s, a) : ∀(s, a, h) ∈ S ×A× [H]} induce a valid pessimism;

(ii) V ∗
h (s)− V̂h(s) = Õ

(√
C∗H4S

KL
+

√
H4

L

)
,∀(s, h) ∈ S × [H];

(iii) Nh,l(s, a) ≥ cKdρl

h,l(s, a),∀(l, s, a, h) ∈ [L]× S ×A× [H];

(iv)
(
V̂h,lf

)
(s, a) ≤ (Vh,lf) (s, a) + c

√
H4

Nh,l(s, a)
,∀(l, s, a, h) ∈ [L]× S ×A× [H];

(vii)
(
V̄hf

)
(s, a) ≤ (Vhf) (s, a) +

√
H4

L
,∀(s, a, h) ∈ S ×A× [H]

}
,

where f is any fixed function: S ×A → [−H,H].
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Proof. Part (i) can be obtained similarly as Lemma 8 using the enhanced Bernstein inequality proved
in Lemma 26, and the rest parts are established in the following lemmas.

Lemma 11. Under Assumptions 1, 2, with a probability of at least 1− δ, the following crude bound
of the output value of HetPEVI-Adv holds

V ∗
h (s)− V̂h(s) = Õ

(√
C∗H4S

KL
+

√
H4

L

)
, ∀(s, a) ∈ S × [H]

Proof. It can be observed that

Γα
h(s, a) = c

√√√√∑
l∈[L]

(
V̂h,lV̂h+1

)
(s, a)

L2Nh,l(s, a)
+ c

√√√√∑
l∈[L]

H2

L2(Nh,l(s, a))2
≤ c

√√√√∑
l∈[L]

H2

L2Nh,l(s, a)

Using the above upper bound of Γh(s, a), the lemma can be obtained via similar steps of Theorem 2.

Lemma 12. With probability at least 1− δ, the following events happen,

Nh,l(s, a) ≥ cKdρl

h,l(s, a), ∀(l, s, a, h) ∈ [L]× S ×A× [H]

Proof. The proof can be done similarly as in Lemma B.3 of (Xie et al., 2021b).

Lemma 13. With probability at least 1− δ, for a fix functions f : S ×A → [−H,H], the following
events happen(

V̂h,lf
)
(s, a) ≤ (Vh,lf) (s, a) + c

√
H4

Nh,l(s, a)
, ∀(l, s, a, h) ∈ [L]× S ×A× [H].

Proof. With a union bound over (s, a, h) ∈ S × A × [H], according to Hoeffding inequality, with
probability at least 1− δ, it holds that(

V̂h,lf
)
(s, a)− (Vh,lf) (s, a)

=
[(

P̂h,l − Ph,l

)
f2
]
(s, a) +

[(
Ph,l − P̂h,l

)
f
]
(s, a) ·

[(
Ph,l + P̂h,l

)
f
]
(s, a)

≤ c

√
H4

Nh,l(s, a)
,

which concludes the proof.

Lemma 14. With probability at least 1− δ, for a fix functions f : S ×A → [−H,H], the following
events happen

(
V̄hf

)
(s, a) ≤ (Vhf) (s, a) + c

√
H4

L
, ∀(s, a, h) ∈ S ×A× [H].

Proof. With a union bound over (s, a, h) ∈ S × A × [H], according to Hoeffding inequality, with
probability at least 1− δ, it holds that(

V̄h,lf
)
(s, a)− (Vh,lf) (s, a)

=
[(
P̄h − Ph

)
f2
]
(s, a) +

[(
P̄h − Ph

)
f
]
(s, a) ·

[(
P̄h + Ph

)
f
]
(s, a)

≤ c
√
H4

L
,

which concludes the proof.
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E.4 SUBOPTIMAITY GAP

Lemma 15. It holds that ∑
h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)[VhV
∗
h+1](s, a) ≤ H2.

Proof. The proof can be found in Lemma C.4 in Xie et al. (2021b).

Lemma 16. It holds that ∑
l∈[L]

(
Vh,lV

∗
h+1

)
(s, a) ≤ L

(
V̄hV

∗
h+1

)
(s, a).

Proof. This lemma is a direct consequence of Lemma 28.

Lemma 17. With event G happening, it holds that∑
h∈[H]

∑
(s,a)∈S×A

∑
l∈[L]

dπ
∗

h (s, a)
(
Vh,lV̂h+1

)
(s, a) ≤ LH2 + c

√
C∗H8SL

K
+ c
√
H8L.

Proof. First, the left-hand side can be decomposed as∑
h∈[H]

∑
(s,a)∈S×A

∑
l∈[L]

dπ
∗

h (s, a)
(
Vh,lV̂h+1

)
(s, a)

=
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)L
(
VhV

∗
h+1

)
(s, a)

︸ ︷︷ ︸
:=term (I)

+
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)L
((
V̄hV

∗
h+1

)
(s, a)−

(
VhV

∗
h+1

)
(s, a)

)
︸ ︷︷ ︸

:=term (II)

+
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)

∑
l∈[L]

(
Vh,lV

∗
h+1

)
(s, a)− L

(
V̄hV

∗
h+1

)
(s, a)


︸ ︷︷ ︸

:=term (III)

+
∑

h∈[H]

∑
(s,a)∈S×A

∑
l∈[L]

dπ
∗

h (s, a)
[(

Vh,lV̂h+1

)
(s, a)−

(
Vh,lV

∗
h+1

)
(s, a)

]
︸ ︷︷ ︸

:=term (IV)

Then, for term (I), with Lemma 15, it holds that

term (I) ≤ LH2.

For term (II), with event (vii) in Lemma 10 it holds that

term (II) =
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)L
((
V̄hV

∗
h+1

)
(s, a)−

(
VhV

∗
h+1

)
(s, a)

)
≤ c

∑
h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)L

√
H4

L

= c
√
H6L

For term (III), with Lemma 16, it holds that

term (III) ≤ 0.
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For term (IV), we can obtain that

term (IV) =
∑

h∈[H]

∑
(s,a)∈S×A

∑
l∈[L]

dπ
∗

h (s, a)
[(

Vh,lV̂h+1

)
(s, a)−

(
Vh,lV

∗
h+1

)
(s, a)

]
(a)

≤ 4H
∑

h∈[H]

∑
(s,a)∈S×A

∑
l∈[L]

dπ
∗

h (s, a)
∥∥∥V̂h+1(·)− V ∗

h+1(·)
∥∥∥
∞

(b)

≤ cH
∑

h∈[H]

∑
(s,a)∈S×A

∑
l∈[L]

dπ
∗

h (s, a) ·

(√
C∗H4S

LK
+

√
H4

L

)

= c

√
C∗H8SL

K
+ c
√
H8L,

where inequality (a) is from simple algebraic based on the definition of variance and inequality (b)
is from part (ii) of even G in Lemma 10.

Proof of Theorem 6. By Lemma 6 and 10, with probability at least 1− δ, it holds that

Gap(π̂;M) ≤ 2
∑

h∈[H]

Eπ∗,M [Γh(sh, ah)] .

Furthermore, it can be obtained that

Γα
h(sh, ah) = c

√√√√√∑
l∈[L]

(
V̂h,lV̂h+1

)
(s, a)

L2Nh,l(s, a)
+ c

√√√√∑
l∈[L]

H2

L2(Nh,l(s, a))2

(a)

≤ c

√√√√√∑
l∈[L]

(
Vh,lV̂h+1

)
(s, a)

L2Nh,l(s, a)
+ c

√√√√∑
l∈[L]

H2

L2(Nh,l(s, a))3/2
+

√√√√∑
l∈[L]

H2

L2(Nh,l(s, a))2

≤ c

√√√√√∑
l∈[L]

(
Vh,lV̂

ref
h+1

)
(s, a)

L2Nh,l(s, a)
+

√√√√∑
l∈[L]

1

L2Nh,l(s, a)
+

√√√√∑
l∈[L]

H4

L2(Nh,l(s, a))2
,

where inequality (a) is from event (iv) of Lemma 10. Then, for each separate term, it holds that

term (I) := c
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)

√√√√√∑
l∈[L]

(
Vh,lV̂

)
(s, a)

L2Nh,l(s, a)

(a)

≤ c
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)

√√√√√∑
l∈[L]

(
Vh,lV̂h+1

)
(s, a)

L2Kdρl

h,l(s, a)

≤ c
√
C∗HS

L2K

√∑
h∈[H]

∑
(s,a)∈S×A

∑
l∈[L]

dπ
∗

h (s, a)1{a = π∗
h(s)}

(
Vh,lV̂h+1

)
(s, a)

(b)

≤ c

√
C∗HS

L2K

√
LH2 +

√
C∗H8SL

K
+
√
H8L

≤ c
√
C∗HS

L2K

√
LH2 +

C∗H2SL

K
+H6

≤ c
√
C∗H3S

LK
+ c

C∗H2S√
LK

+ c

√
C∗H7S

L2K
;

term (II) := c
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)

√√√√∑
l∈[L]

1

L2Nh,l(s, a)
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(c)

≤ c
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)

√√√√∑
l∈[L]

1

KL2dρl

h,l(s, a)

≤ c
√
C∗

KL

∑
h∈[H]

∑
(s,a)∈S×A

√
dπ

∗
h (s, a)1{a = π∗

h(s)}

≤ c
√
C∗H2S

LK
;

term (I.c) := c
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)

√√√√∑
l∈[L]

H4

L2(Nh,l(s, a))2

(d)

≤ c
∑

h∈[H]

∑
(s,a)∈S×A

dπ
∗

h (s, a)

√√√√∑
l∈[L]

H4

L2(Kdρl

h,l(s, a))
2

≤ c
∑

h∈[H]

∑
(s,a)∈S×A

1{π∗
h(s) = a}

√√√√∑
l∈[L]

(C∗)2H4

L2K2

≤ cC
∗SH3

√
LK

,

where inequalities (a), (c) and (d) are from event (iv) of Lemma 10 and inequality (b) is from
Lemma 17.

By aggregating these three terms together and adding the sum of source uncertainties, it can be
observed that

Gap(π̂;M) := Õ

(√
C∗H3S

LK
+
C∗H3S√
LK

+

√
C∗H7S

L2K
+

√
H4

L

)
.

F THE HETPEVI-LIN ALGORITHM

F.1 PROPERTIES OF LINEAR MDPS

Proof of Lemma 1. This proof is standard for studies in linear MDPs (Jin et al., 2020; 2021b). We
include it here for completeness and to facilitate the analysis of the next lemma. Based on the
Bellman equation, it holds that

(Bh,lf)(s, a) = rh,l(s, a) + (Ph,lf)(s, a) = ⟨ϕ(s, a), θh,l⟩+
∫
S
f(s′) · ⟨ϕ(s, a),dµh(s

′)⟩,

where means that (Bh,lf)(s, a) = ⟨ϕ(s, a), wf
h,l⟩ with wf

h,l = θh,l +
∫
S f(s

′) dµh,l(s
′). Similar

arguments hold for (Bhf)(s, a) = ⟨ϕ(s, a), wf
h⟩ with wf

h = θh +
∫
S f(s

′) dµh(s
′).

Proof of Lemma 2. First, it can be observed that the transition and reward of the sample average
MDP M̄ is linear since

P̄h(s
′|s, a) =

∑
l∈[L]

Ph,l(s
′|s, a)/L =

∑
l∈[L]

⟨ϕ(s, a), µh,l(s
′)⟩/L = ⟨ϕ(s, a), µ̄h(s

′)⟩;

r̄h(s, a) =
∑
l∈[L]

rh,l(s, a)/L =
∑
l∈[L]

⟨ϕ(s, a), θh,l⟩/L = ⟨ϕ(s, a), θ̄h⟩,

where

µ̄h(s
′) :=

∑
l∈[L]

µh,l(s
′)/L; θ̄h :=

∑
l∈[L]

θh,l/L.
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Then, we can verify the constraints in Definition 1 as

∥ϕ(s, a)∥2 ≤ 1, ∀(s, a) ∈ S ×A,

and

max{∥µ̄h(S)∥2, ∥θ̄h∥2} = max


∥∥∥∥∥∥
∑
l∈[L]

µh,l(S)/L

∥∥∥∥∥∥
2

,

∥∥∥∥∥∥
∑
l∈[L]

θh,l/L

∥∥∥∥∥∥
2


≤ max

∑
l∈[L]

∥µh,l(S)∥2 /L,
∑
l∈[L]

∥θh,l∥2 /L


≤
√
d, ∀h ∈ [H].

Moreover, it holds that

(B̄hf)(s, a) = r̄h(s, a) + (P̄hf)(s, a)

= ⟨ϕ(s, a), θ̄h⟩+
∫
S
f(s′) · ⟨ϕ(s, a),dµ̄h(s

′)⟩

=

〈
ϕ(s, a),

∑
l∈[L]

θh,l/L

〉
+

∫
S
f(s′) ·

〈
ϕ(s, a),

∑
l∈[L]

dµh,l(s
′)/L

〉

=

〈
ϕ(s, a),

∑
l∈[L]

(
θh,l +

∫
S
f(s′) dµh,l(s

′)

)
/L

〉

=

〈
ϕ(s, a),

∑
l∈[L]

wf
h,l/L

〉

=
〈
ϕ(s, a), w̄f

h

〉
,

which proves the claim.

F.2 GOOD EVENT

Lemma 18. The following event holds with probability at least 1− δ for HetPEVI-Lin

G :=

{
(i) The penalties {Γh(s, a)} induce a valid pessimism;

(ii)
∥∥∥Ξh,l − Ξ̂h,l

∥∥∥
2
≤ c
√

1

K
,∀(l, h) ∈ [L]× [H]

}
,

where

Ξh,l := Eρl,Ml

[
ϕ(sh, ah)ϕ(sh, ah)

⊤]
Ξ̂h,l :=

1

K

∑
k∈[K]

ϕ(skh,l, a
k
h,l)ϕ(s

k
h,l, a

k
h,l)

⊤.

Proof. The part (i) holds according to Lemma 22 and the part (ii) can be observed via the Lemma 30.

In the following, for all h ∈ [H], based on the assumption that the matrix
∑

l∈[L] Λ
−1
h,l is invertible,

we denote that

Υh :=

(∑
l∈[L]

Λ−1
h,l

)−1

; Υ−1
h :=

∑
l∈[L]

Λ−1
h,l .
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Lemma 19. With the penalties Γα
h(s, a) = cH

(√
d
L2 +

√
dλ
L

)
∥ϕ(s, a)∥Υ−1

h
in HetPEVI-Lin,

with probability at least 1− δ, it holds that for all (s, a, h) ∈ S ×A× [H]∣∣∣(B̂hV̂h+1

)
(s, a)−

(
B̄hV̂h+1

)
(s, a)

∣∣∣ ≤ Γα
h(s, a).

Proof. For a fixed h and a fixed function V̂h+1(·) : S → R, with Lemma 2, there exists wh ∈ Rd

such that (
B̄hV̂h+1

)
(s, a) = ⟨ϕ(s, a), w̄h⟩, ∀(s, a) ∈ S ×A.

With (B̂hV̂h+1)(s, a) := ⟨ϕ(s, a), ŵh⟩, it holds that∣∣∣(B̄hV̂h+1

)
(s, a)−

(
B̂hV̂h+1

)
(s, a)

∣∣∣ = |⟨ϕ(s, a), w̄h − ŵh⟩| ≤ ∥ϕ(s, a)∥Υ−1
h
∥w̄h − ŵh∥Υh

,

and thus we can instead control ∥w̄h − ŵh∥Υh
. For this purpose, we can observe that

∥w̄h − ŵh∥Υh
= ⟨w̄h − ŵh, (Υh)

1/2X⟩,

where

X :=
(Υh)

1/2 (w̄h − ŵh)

∥w̄h − ŵh∥Υh

∈ Sd−1.

With Lemma 29, we can find a ε-covering Cε over Sd−1 with |Cε| ≤ (3/ε)d. Using Lemma 20 and
a union bound, we can have that with probability 1− δ, ∀(y, h) ∈ Cε × [H], it holds that∣∣∣⟨(Υh)

1/2y, w̄h − ŵh⟩
∣∣∣ ≤ cH (√ log(H|Cε|/δ)

L2
+

√
dλ

L

)∥∥∥(Υh)
1/2y

∥∥∥
(Υh)−1

≤ cH

(√
d log(H/(εδ))

L2
+

√
dλ

L

)
.

With this event happening, for any x ∈ Sd−1, there exists y ∈ Cε such that ∥x− y∥2 ≤ ε and further
it holds that

∥w̄h − ŵh∥Υh
= max

x∈Sd−1
⟨w̄h − ŵh, (Υh)

1/2x⟩

= max
x∈Sd−1

min
y∈Cε

[
⟨w̄h − ŵh, (Υh)

1/2y⟩+ ⟨w̄h − ŵh, (Υh)
1/2(x− y)⟩

]
≤ max

x∈Sd−1
min
y∈Cε

[
cH

(√
d log(H/(εδ))

L2
+

√
dλ

L

)
+ ∥w̄h − ŵh∥Υh

∥x− y∥2

]

≤ cH

(√
d log(H/(εδ))

L2
+

√
dλ

L

)
+ ε ∥w̄h − ŵh∥Υh

.

Thus, with ε = 1/2, with probability at least 1− δ, ∀h ∈ [H], it holds that

∥wh − ŵh∥Υh
≤ cH

(√
d

L2
+

√
dλ

L

)
.

Thus, for any (s, a) ∈ S ×A, it holds that∣∣∣(BhV̂h+1

)
(s, a)−

(
B̂hV̂h+1

)
(s, a)

∣∣∣ ≤ ∥ϕ(s, a)∥Υ−1
h
∥wh − ŵh∥Υh

≤ cH

(√
d

L2
+

√
dλ

L

)
∥ϕ(s, a)∥Υ−1

h
.

With a union bound over h ∈ [H], the lemma is proved.
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Lemma 20. For a fixed vector x ∈ Rd and a fixed h ∈ [H], with probability at least 1− δ, it holds
that

|⟨x, w̄h − ŵh⟩| ≤

(√
2 log(2/δ)

L2
+

√
dH2λ

L

)
∥x∥Υ−1

h
.

Proof. It holds that

x⊤ (w̄h − ŵh) = x⊤

∑
l∈[L]

wh,l/L−
∑
l∈[L]

ŵh,l/L


(a)
= x⊤

∑
l∈[L]

1

L
Λ−1
h,l

 ∑
k∈[K]

ϕ(skh,l, a
k
h,l)ϕ(s

k
h,l, a

k
h,l)

⊤ + λI

wh,l

− x⊤
∑
l∈[L]

1

L
Λ−1
h,l

 ∑
k∈[K]

ϕ(skh,l, a
k
h,l)
(
rkh,l + V̂h+1(s

k
h+1,l)

)
= λx⊤

∑
l∈[L]

1

L
Λ−1
h,lwh,l︸ ︷︷ ︸

term (I)

+ x⊤
∑
l∈[L]

1

L
Λ−1
h,l

 ∑
k∈[K]

ϕ(skh,l, a
k
h,l)
(
ϕ(skh,l, a

k
h,l)

⊤wh,l −
(
rkh,l + V̂h+1(s

k
h+1,l)

))
︸ ︷︷ ︸

term (II)

,

where the definition of Λh,l and ŵh,l is used in equation (a).

For term (I), we have

λ

∣∣∣∣∣∣x⊤
∑
l∈[L]

1

L
Λ−1
h,lwh,l

∣∣∣∣∣∣ = λ

∣∣∣∣∣∣
∑
l∈[L]

x⊤Λ−1
h,lwh,l/L

∣∣∣∣∣∣ ≤ λ

L
∥x∥Υ−1

h

√∑
l∈[L]

w⊤
h,lΛ

−1
h,lwh,l

(a)

≤ λ

L
∥x∥Υ−1

h

√
4H2Ld/λ = c

√
dH2λ

L
∥x∥Υ−1

h
,

where inequality (a) is based on the fact that ∥wh,l∥2 ≤ 2H
√
d,∀(l, h) ∈ [L] × [H] (which can be

proved similarly to Lemma B.1 in Jin et al. (2020)) and the following observation:

w⊤
h,lΛ

−1
h,lwh,l ≤ ∥wh∥22∥Λ−1

h,l∥2 ≤ 4dH2/λ.

For term (II), with

t :=
H

L

√
2x⊤Υ−1

h x log(2/δ),

conditioned on the state-action pairs at step h, we have

P

∣∣∣∣∣∣x⊤
∑
l∈[L]

1

L
Λ−1
h,l

 ∑
k∈[K]

ϕ(skh,l, a
k
h,l)
(
ϕ(skh,l, a

k
h,l)

⊤wh,l −
(
rkh,l + V̂h+1(s

k
h+1,l)

))∣∣∣∣∣∣ ≥ t


≤ 2 exp

− 2t2

4H2
∑

l∈[L]

∑
k∈[K]

1
L2

(
x⊤Λ−1

h,lϕ(s
k
h,l, a

k
h,l)
)2


≤ 2 exp

(
−

x⊤Υ−1
h x log(2/δ)∑

l∈[L]

∑
k∈[K] x

⊤Λ−1
h,lϕ(s

k
h,l, a

k
h,l)ϕ(s

k
h,l, a

k
h,l)

⊤Λ−1
h,lx

)
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≤ 2 exp

− x⊤Υ−1
h x log(2/δ)∑

l∈[L]

∑
k∈[K] x

⊤Λ−1
h,l

(
ϕ(skh,l, a

k
h,l)ϕ(s

k
h,l, a

k
h,l)

⊤ + λI
)
Λ−1
h,lx


≤ 2 exp

(
−
x⊤Υ−1

h x log(2/δ)

x⊤Υ−1
h x

)
= δ,

which leads to the claim.

Lemma 21. For the penalties Γβ
h(s, a) = c

√
dH2

L in HetPEVI, with probability at least 1 − δ, it
holds that for all (s, a, h) ∈ S ×A× [H],∣∣∣(B̄hV̂h+1

)
(s, a)−

(
BhV̂h+1

)
(s, a)

∣∣∣ ≤ Γβ
h(s, a).

Proof. For a fixed ϕ(s, a) ∈ Rd and a fixed V̂h+1, since (Bh,lV̂h+1)(s, a) is bounded between [0, H]

and has an expectation of (BhV̂h+1)(s, a), it is then a H-sub-Gaussian random variable (Vershynin,
2018). Thus, it holds that

P

(∣∣∣(B̄hV̂h+1

)
(s, a)−

(
BhV̂h+1

)
(s, a)

∣∣∣ ≥ c√H2 log(2H/δ)

L

)
≤ δ, ∀h ∈ [H].

Similarly as in Lemma 19, using a covering argument, it holds that

P

(∣∣∣(B̄hV̂h+1

)
(s, a)−

(
BhV̂h+1

)
(s, a)

∣∣∣ ≥ c√dH2

L

)
≤ δ, ∀(s, a, h) ∈ S ×A× [H],

which concludes the proof.

Lemma 22. The penalties {Γh(s, a) = Γα
h(s, a) + Γβ

h(s, a) : (s, a, h) : (s, a, h) ∈ S × A × [H]}
in HetPEVI induce a valid pessimism with probability at least 1 − δ with respect to the estimated
Bellman operator B̂h as (B̂hV̂h+1)(s, a) := ⟨ϕ(s, a), ŵh⟩.

Proof. This result can be obtained by combining Lemmas 19 and 21.

F.3 SUBOPTIMALITY GAP

Proof of Theorems 4. By Lemma 6 and 18, with probability at least 1− δ, it holds that

Gap(π̂;M) ≤ 2
∑

h∈[H]

Eπ∗,M [Γh(sh, ah)] .

We denote

Σh = Eπ∗,M
[
ϕ(sh, ah)ϕ(sh, ah)

⊤] ,
which is positive semi-definite as Ξh,l and Ξ̂h,l for all h ∈ [H]. Correspondingly, we denote
Rankh = Rank(Σh) for all h ∈ [H]. Also, for a positive semi-definite matrix Σ ∈ Rd×d, we
denote its ordered eigenvalues as

γ1(Σ) ≥ γ1(Σ) · · · ≥ γd(Σ) ≥ 0.

With Assumption 5, when K ≥ cmaxh,l

{
(D∗)2

(γRankh (Σh))2

}
and λ = 1/L, it holds that

∑
h∈[H]

Eπ∗,M

[√
dH2

L2
∥ϕ(sh, ah)∥Υ−1

h
+

√
dH2

L

]
(a)

≤
√
dH2

L2

∑
h∈[H]

√∑
l∈[L]

Tr
(
Eπ∗,M [ϕ(sh, ah)ϕ(sh, ah)⊤] Λ

−1
h,l

)
+

√
dH4

L
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(b)

≤ c

√
dH2

L2

∑
h∈[H]

√√√√∑
l∈[L]

∑
i∈[d]

γi(Σh)

γi(Λh,l)
+

√
dH4

L

(c)

≤
√
dH2

L2

∑
h∈[H]

√√√√∑
l∈[L]

∑
i∈[Rankl]

γi(Σl)/K

1/(KL) + γi(Ξ̂h,l)
+

√
dH4

L

(d)

≤ c

√
dH2

L2

∑
h∈[H]

√√√√∑
l∈[L]

∑
i∈[Rankh]

γi(Σh)/K

1/(KL) + γi(Σl)/D∗ +

√
dH4

L

≤ c
√
d2H4D∗

LK
+

√
dH4

L

where inequality (a) is from the Cauchy-Schwarz inequality, inequality (b) is from the Von Neu-
mann’s trace inequality (Mirsky, 1975) and removes the zero eigenvalues of Σh from the sum. Fur-
thermore, for i ≤ Rankh (implying γi(Σh) > 0), inequality (d) is from the following observation

γi(Ξ̂h,l)
(e)

≥ γi(Ξh,l)− ∥Ξh,l − Ξ̂h,l∥2
(f)

≥ γi(Ξh,l)−
c√
K

(g)

≥ γi(Σh)

D∗ − c√
K

(h)

≥ c
γi(Σh)

D∗ ,

where inequality (e) is from the Weyl’s inequality (see e.g., Chapter 8 in (Wainwright, 2019)),
inequality (f) is from (ii) of event G in Lemma 18, inequality (g) is from the Assumption 5
(which implies γi(Σh) ≤ D∗γi(Ξh,l) from the Weyl’s inequality), and inequality (h) is due to
γi(Σh) > 0,∀i ∈ [Rankh] and the sufficiently large K.

With Assumption 6, we can similarly obtain∑
h∈[H]

Eπ∗,M

[√
dH2

L2
∥ϕ(sh, ah)∥Υ−1

h
+

√
dH2

L

]

≤
√
dH2

L2

∑
h∈[H]

√√√√∑
l∈[L]

∑
i∈[Rankl]

γi(Σl)/K

1/(KL) + γi(Ξ̂h,l)
+

√
dH4

L

≤ c
√
dH2

L2

∑
h∈[H]

√
d(L− L†)L+

D∗dL

K
+

√
dH4

L

≤ c
√
d2H4D∗

LK
+

√
d(L+ 1− L†)H4

L
.

G SUPPORTING LEMMAS

H SUPPORTING LEMMAS

H.1 SUBOPTIMALITY DECOMPOSITION

The suboptimality gap between an output policy π̂ from an offline RL algorithm and the optimal
policy π∗ can be decomposed as follows.

Lemma 23 (Lemma 3.1 in Jin et al. (2021b)). Let π̂ = {π̂h}h∈[H] be the policy such that V̂h(s) =
⟨Q̂h(s, ·), π̂(·|s)⟩. For any π̂ and s ∈ S it holds that

Gap(π̂;M) =−
∑

h∈[H]

Eπ̂,M [ζh(sh, ah)|s1 = s] +
∑

h∈[H]

Eπ∗,M [ζh(sh, ah)|s1 = s]

+
∑

h∈[H]

Eπ∗,M

[〈
Q̂h(sh, ·), π∗(·|sh)− π̂h(·|sh)

〉
|s1 = s

]
,
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where the expectations Eπ̂,M and Eπ∗,M are with respect to the trajectories induced by π̂ and π∗,
and

ζh(s, a) := (BhV̂h+1)(s, a)− Q̂h(s, a)

is the model evaluation error at (s, a, h) ∈ S ×A× [H].

H.2 ENHANCED EMPIRICAL BERNSTEIN INEQUALITY

In following, an enhanced version of empirical Bernstein inequality is derived. First, the famous
Bernstein inequality is presented, which serves as a starting point of the later generalization.
Lemma 24 (Bernstein Inequality). Let Z1, Z2, · · · , Zn be independent random variables with val-
ues |Zi − E[Zi]| ≤ c0. Then, it holds that

P

(∣∣∣∣∣
n∑

i=1

Zi −
n∑

i=1

E [Zi]

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

2
∑n

i=1 V(Zi) +
2
3c0t

)
,

where V(Zi) denotes the variance of random variable Zi.

It is noted that the true variance is required in the original form of Bernstein inequality, which is
hard to be obtained in practice. Thus, Maurer & Pontil (2009) established an empirical version of
Bernstein inequality, where the estimated variance is used instead of the true variance.
Lemma 25 (Empirical Bernstein Inequality; Theorem 4 in Maurer & Pontil (2009)). Let
Z,Z1, Z2, · · · , Zn be i.i.d. random variables and let δ > 0 with values |Zi − E[Z]| ≤ c0. Then,
with probability at least 1− δ, it holds that∣∣∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ ≤
√

2V̂(Z) ln(4/δ)
n

+
7c0 ln(4/δ)

3n
,

where V̂(Z) denotes the empirical variance of Z with samples Z1, · · · , Zn

However, in Lemma 25, the samples Z1, · · · , Zn are i.i.d, i.e., from the same source, which do not
meet the need of handling data from heterogeneous sources in this work. Thus, a further enhanced
version is provided in the following.
Lemma 26 (Enhanced Empirical Bernstein Inequality). Let Zl, Z1,l, Z2,l, · · · , Znl,l be i.i.d. ran-
dom variables with values Zi,l ∈ [0, 1] respectively for each l ∈ [L], and let δ > 0. Then, denoting

η :=
1

L

∑
l∈[L]

E[Zl]−
1

L

∑
l∈[L]

1

nl

nl∑
i=1

Zi,l,

with probability at least 1− δ, it holds that

|η| ≤

√√√√∑
l∈[L]

8V̂(Zl) log(
2(L+1)

δ )

L2nl
+

√√√√√∑
l∈[L]

36
(
log( 2(L+1)

δ )
)2

L2(nl)2
,

where V̂(Zl) denotes the empirical variance of Zl with samples Z1,l, Z2,l, · · · , Znl,l

Proof. With nmin = minl∈[L]{nl} and

t :=

√√√√∑
l∈[L]

4V(Zl) log(
2(L+1)

δ )

L2nl
+

4 log( 2(L+1)
δ )

3Lnmin
,

which implies that

t2

2
∑

l∈[L]

∑nl

i=1 V(Zl
i)/(L

2n2l ) + 2t/(3Lnmin)
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≤ t2

max{4
∑

l∈[L] V(Zl)/(L2nl), 4t/(3Lnmin)}

≤ log

(
2(L+ 1)

δ

)
,

from Lemma 24, it holds that

P (|η| ≥ t) ≤ 2 exp

(
− t2

2
∑

l∈[L]

∑nl

i=1 V(Zl
i)/(L

2n2l ) + 2t/(3Lnmin)

)

≤ δ

L+ 1
.

Furthermore, with Lemma 27 and a union bound, with probability at least 1− Lδ
L+1 , it holds that

√
V(Zl) ≤

√
V̂(Zl) +

√
2 ln(L+1

δ )

nl
, ∀l ∈ [L].

If the above event happens, it holds that

t =

√√√√∑
l∈[L]

4V(Zl) log(
2(L+1)

δ )

L2nl
+

4 log(2(L+1)
δ )

3Lnmin

≤

√√√√√√∑
l∈[L]

4

(√
V̂(Zl) +

√
2 log(L+1

δ )

L2nl

)2

log( 2(L+1)
δ )

nl
+

4 log(2(L+1)
δ

3Lnmin

≤

√√√√∑
l∈[L]

8V̂(Zl) log(
2(L+1)

δ )

L2nl
+

√√√√√∑
l∈[L]

16
(
log( 2(L+1)

δ )
)2

L2(nl)2
+

4 log(2(L+1)
δ )

3Lnmin

≤

√√√√∑
l∈[L]

8V̂(Zl) log(
2(L+1)

δ )

L2nl
+

√√√√√∑
l∈[L]

32
(
log( 2(L+1)

δ )
)2

L2(nl)2
+

32
(
log( 2(L+1)

δ )
)2

9L2n2min

≤

√√√√∑
l∈[L]

8V̂(Zl) log(
2(L+1)

δ )

L2nl
+

√√√√√∑
l∈[L]

36
(
log( 2(L+1)

δ )
)2

L2(nl)2
.

Combining this the bound of t with the concentration inequality proved above, the lemma is proved.

Lemma 27 (Theorem 10 in (Maurer & Pontil, 2009)). Let Z,Z1, · · · , Zn be i.i.d. random variables
with values in [0, 1], and let δ > 0, with probability at least 1− δ, it holds that√

V(Z) <
√
V̂(Z) +

√
2 ln(1/δ)

n
.

H.3 VARIANCE OF MIXTURE MODELS

Lemma 28. With random variable Xl following distribution Pl for each l ∈ [L], the random
variable X is assumed to follow the distribution mixture, especially, P =

∑
l∈[L] αlPl, where

α = [α1, · · · , αL] ∈ ∆L, the followings holds

CV(X) ≥
∑
l∈[L]

α2
lV(Xl),

if

C ≥
∑

l∈[L] α
2
lV(Xl)∑

l∈[L] αlV(Xl)
.
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Proof. For each side of the desired inequality, we have

LHS := CV(X) = C

∑
l∈[L]

αlE[X2
l ]−

∑
l∈[L]

αlE[Xl]

2


RHS :=
∑
l∈[L]

α2
lV(Xl) =

∑
l∈[L]

α2
lE[X2

l ]−
∑
l∈[L]

α2
l [EXl]

2.

With the above expressions, we can further obtain that

LHS− RHS =
∑
l∈[L]

αl(C − αl)E[X2
l ]− C

∑
l∈[L]

αlE[Xl]

2

+
∑
l∈[L]

α2
l [EXl]

2

=
∑
l∈[L]

αl(C − αl)E[X2
l ] +

∑
l∈[L]

α2
l (1− C)[EXl]

2 − C
∑
l ̸=n

αlαnE[Xl]E[Xn]

≥
∑
l∈[L]

αl(C − αl)E[X2
l ] +

∑
l∈[L]

α2
l (1− C)[EXl]

2 − C
∑
l ̸=n

αlαn
[EXl]

2 + [EXn]
2

2

=
∑
l∈[L]

αl(C − αl)E[X2
l ] +

∑
l∈[L]

α2
l (1− C)[EXl]

2 − C
∑
l∈[L]

αl(1− αl)[EXl]
2

=
∑
l∈[L]

αl(C − αl)E[X2
l ] +

∑
l∈[L]

αl(αl − C)[EXl]
2

=
∑
l∈[L]

αl(C − αl)V(Xl),

which leads to the lemma.

H.4 MISCELLANEOUS

Lemma 29 (Covering Number of a Euclidean Ball; Lemma D.5 of Jin et al. (2020)). There exists a
set Cε ∈ Rd with |Cε| ≤ (1 + 2R/ε)d such that for all x ∈ Sd−1 := {x ∈ Rd : ∥x∥2 ≤ R} there
exists a y ∈ Cε with ∥x− y∥2 ≤ ε.
Lemma 30 (Lemma H.4 of Min et al. (2021)). Let ψ : S ×A → Rd satisfying ∥ψ(s, a)∥2 ≤ C for
all (s, a) ∈ S × A. For any T > 0 and κ > 0, define ḠT =

∑
τ∈[T ] ψ(s

τ , aτ )ψ(sτ , aτ )⊤ + κId
where (sτ , aτ )’s are i.i.d. samples from some distribution ν over S × A. Then, for any δ ∈ (0, 1),
with probability at least 1− δ, it holds that∥∥∥∥ḠT

T
− Eν

[
ḠT

T

]∥∥∥∥
2

≤ 4
√
2C2

√
T

(
log

2d

δ

)1/2

.
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