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Abstract

Reinforcement learning algorithms are typically designed for discrete-time dynam-
ics, even though the underlying real-world control systems are often continuous
in time. In this paper, we study the problem of continuous-time reinforcement
learning, where the unknown system dynamics are represented using nonlinear
ordinary differential equations (ODEs). We leverage probabilistic models, such
as Gaussian processes and Bayesian neural networks, to learn an uncertainty-aware
model of the underlying ODE. Our algorithm, COMBRL, greedily maximizes
a weighted sum of the extrinsic reward and model epistemic uncertainty. We
show that this approach has sublinear regret for the continuous-time setting.
Furthermore, in the unsupervised RL setting (i.e., without extrinsic rewards), we
provide a sample complexity bound. In our experiments, we evaluate COMBRL
in the standard and unsupervised RL settings and show that it outperforms the
baselines across several deep RL tasks.

1 Introduction

Reinforcement learning (RL) has proven to be a flexible paradigm for learning control policies
through interaction, with success stories across robotics [Levine et al., 2016, Hwangbo et al., 2019,
Spiridonov et al., 2024], games [Schrittwieser et al., 2020, Hafner et al., 2025], and applications in
medicine and energy [Yu et al., 2021, Degrave et al., 2022]. Most RL algorithms assume discrete time,
yet many real systems like robots or biological processes are naturally governed by continuous-time
dynamics, modelled by ordinary differential equations (ODEs). Discretization can obscure key
temporal behaviours and limit control flexibility. In contrast, continuous-time models align better
with real-world sensing and actuation. We focus on continuous-time model-based RL, aiming to
learn the underlying ODE from interaction.

We address two settings: (i) reward-driven RL, where the goal is to solve a specific task; and (ii)
unsupervised RL, where the objective is to learn the system dynamics globally. The latter requires
accurate global modeling, while the former demands task-relevant accuracy.

We propose COMBRL, a continuous-time RL algorithm that uses probabilistic models (e.g., Gaussian
processes, Bayesian neural nets) to capture epistemic uncertainty. Policies are selected by maximiz-
ing a weighted sum of reward and uncertainty, following the optimism-in-the-face-of-uncertainty
principle [Curi et al., 2020, Kakade et al., 2020, Treven et al., 2023, Sukhija et al., 2025b]. In the
unsupervised case, COMBRL reduces to active learning via uncertainty sampling [Taylor et al., 2021,
Lewis and Catlett, 1994] and guides the agent toward regions where the model is most uncertain.

We show that COMBRL achieves sublinear regret in the reward-driven case and offer a sample
complexity bound in the unsupervised setting. Empirical results on several deep continuous-time RL
tasks demonstrate improved performance and sample efficiency compared to baselines.
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Contributions

• We propose COMBRL, a scalable continuous-time optimistic model-based RL algorithm. Un-
like prior continuous-time methods that are either exploitative or rely on costly co-optimization,
COMBRL uses a single scalar to balance reward and epistemic uncertainty, supporting both
reward-driven and unsupervised learning.

• We provide theoretical guarantees, showing sublinear regret in the reward-driven case and offer sam-
ple complexity bounds in the unsupervised setting, with explicit dependence on the measurement
selection strategy. These results extend optimism-based analysis to continuous-time RL.

• We demonstrate strong empirical results across continuous-time deep RL benchmarks, showing
that COMBRL scales better than prior methods and generalizes to unseen downstream tasks.

2 Problem setting

Consider an unknown continuous-time dynamical system f∗(x(t),u(t)) with initial state x(0) =
x0 ∈ X ⊂ Rdx and control input u : [0,∞) → U ⊂ Rdu . Furthermore, consider a policy
π : X → U so that the control input follows said policy, i.e. u(t) = π(x(t)). Typically in optimal
control (OC, cf. Luenberger [1979]), we consider the associated finite-time OC problem over the
policy space Π to solve for the optimal policy such that an objective function J(π,f∗) is maximized:

π∗ def
= argmax

π∈Π
J(π,f∗) = argmax

π∈Π

∫ T

0

r
(
x(s),π(x(s))

)
ds

s.t. ẋ(t) = f∗(x(t),π(x(t))), x(0) = x0,(
x(t),u(t)

)
∈ X × U ⊂ Rdx+du , t ∈ [0, T ].

(1)

To learn the unknown dynamics, we collect data across episodes n = 1, . . . , N , each deploying a
policy πn over horizon T . Optimizing solely for the reward function r(x(t),u(t)) during learning
introduces a directional bias, since f∗ is mostly explored in high-reward region, resulting in limited
exploration and poor generalization of the learned dynamics. In contrast, system identification or
unsupervised RL aims to learn the ODE f∗ globally, independent of a reward function. COMBRL
supports both settings, unlike prior continuous-time RL methods [Yildiz et al., 2021, Treven et al.,
2023, 2024], which are only designed for the supervised RL setting.

In each episode n, we query f∗ by taking a sequence of measurements Sn at mn different times tn,i,
i ∈ {1 . . . ,mn} to form a dataset Dn ∼ (πn, Sn) as follows:

Dn = {(zn(tn,i), ẏn(tn,i))}mn
i=1, with zn = (xn,πn(xn)), ẏn = ẋn + ϵn,i.

The learner uses the data up to the current episode D1:n−1
def
=
⋃n−1

i=1 Di to update its model of f∗ and
deploys πn accordingly. While rolling out the policy πn, the state derivative ẋ is rarely observed
directly and is typically estimated via finite differences or filtering. Thus, the derivative measurements
ẏn are subject to measurement noise ϵn,i.

Note that, since we defined a continuous-time setting, we are not necessarily restricted to a fixed
sampling rate. COMBRL allows flexible, event-driven sampling taken under a measurement strat-
egy (MSS) S, which is a sequence of sets (Sn)n≥1 specifying the measurement times in each
episode [Treven et al., 2023, Definition 1], as well as variable control rates. In this work, we focus on
simpler strategies (i.e. fixed sampling and control rates with continuous-time dynamics) to isolate
core behavior.

2.1 Performance measure

For the supervised RL setting, a natural performance measure is given by the cumulative regret that
sums the gaps between the performance of the policy πn at episode n and the optimal policy π∗ over
all the episodes:

RN
def
=

N∑
n=1

rn
def
=

N∑
n=1

J(π∗,f∗)− J(πn,f
∗) (2)

If the cumulative regret RN is sublinear in N , then the average reward of the policy converges to the
optimal reward, and by extension to the optimal policy π∗.
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3 COMBRL: Continuous-time optimistic model-based RL

We now present COMBRL, a continuous-time, optimistic model-based reinforcement learning
(MBRL) algorithm. COMBRL proceeds in a continuous-time, episodic setting, alternating between
learning a predictive model of the dynamics from data and selecting policies that trade off extrinsic
reward and epistemic uncertainty. The method assumes only access to a simulator or physical
system for episodic rollouts and measurements. To enable theoretical analysis, we adopt standard
assumptions from RL and Bayesian optimization (see Appendix B.1; cf. Srinivas et al. [2012],
Chowdhury and Gopalan [2017], Treven et al. [2023]). Specifically, we assume Lf -Lipschitz
continuity of the dynamics f∗, as well as Lipschitz continuity on the reward r and policies π ∈ Π,
and that observations are corrupted by i.i.d. σ-sub-Gaussian noise [Rigollet and Hütter, 2023].

COMBRL learns a probabilistic model fn that provides both mean predictions µn(z) and uncer-
tainty estimates σn(z). We assume the model is well-calibrated [Rothfuss et al., 2023], i.e., the true
dynamics f∗ lie within a high-probability confidence setMn (see Definition 1 in App. B.1) defined
by (µn,σn), and that σn is Lipschitz. This supports reliable uncertainty quantification and formal
regret bounds. The assumption holds for Gaussian processes (GPs) as shown by Rothfuss et al. [2023,
Lemma 3.6] and can be approximated for Bayesian neural networks (BNNs) via calibration [Kuleshov
et al., 2018]. Thus, COMBRL is model-agnostic: the statistical model can be instantiated using
GPs [Rasmussen and Williams, 2005, Deisenroth et al., 2015], BNNs [MacKay, 1992], ensem-
bles [Lakshminarayanan et al., 2017], or other estimators that capture epistemic uncertainty.

3.1 Optimistic planning objective

In each episode n, we select any Lf -Lipschitz model from the confidence setMn−1 of the previous
episode, i.e., fn ∈ Mn−1 ∩ F , where F is the set of Lf -Lipschitz functions. We then choose a
policy πn that maximizes a reward-augmented optimistic objective under the current model fn:

πn = argmax
π∈Π

∫ T

0

(
r
(
x′(s),u(s)

)
+ λn · ∥σn−1(x

′(s),u(s))∥
)
ds (3)

s.t. ẋ′(t) = fn(x
′(t),u(t)), u(t) = π(x′(t)).(

x(t),u(t)
)
∈ Z = X × U ⊂ Rdx+du , t ∈ [0, T ].

The key feature of COMBRL is its reward-plus-uncertainty objective in continuous time, inspired
by discrete-time optimistic MBRL methods [Sukhija et al., 2023, 2025b], enabling a principled
trade-off between exploration and exploitation. The scalar λn balances reward and model uncertainty,
and is treated as a tunable hyperparameter in practice. The epistemic uncertainty term σn−1(z)
in (3) encourages the agent to visit poorly understood regions of the state-action space. A similar
discrete-time objective from Sukhija et al. [2025b] achieves sublinear regret and scales well to high
dimensions, unlike Curi et al. [2020]. We extend this guarantee to the continuous-time setting.

Treven et al. [2023] propose an optimistic exploration algorithm for continuous-time RL that requires
joint optimization over both policies and dynamics fn ∈ Mn−1 ∩ F . This is intractable and
heuristically addressed using a reparametrization trick from Curi et al. [2020], which increases input
dimensionality from du to du + dx, limiting scalability in high-dimensional settings. COMBRL
avoids this by selecting any model fromMn−1 ∩ F ; in practice, using µn works well.1 Unlike
optimistic dynamics or classical control, COMBRL balances exploration and exploitation via a single
scalar λn and encourages exploration of uncertain regions to improve model fidelity. COMBRL is
summarized in Algorithm 1.

Algorithm 1 COMBRL: Continuous-Time Optimistic MBRL
1: Initialize: statistical model M0, simulator SIM(·, ·), empty dataset D0 = {}, measurement

selection strategy S = (Sn)n≥1, int. reward weight λn for i = 1 . . . N
2: for episode n = 1, . . . , N do
3: Select policy πn by solving (3) subject to Lf -Lipschitz dynamics fn ∈ F
4: Roll out policy: Dn ← SIM(πn, Sn) using measurement selection strategy Sn

5: Update model:Mn ← (µn,σn)← D0:n

1Even though the mean model might not lie in Mn−1 ∩ F . For GP dynamics, we show how to pick a model
from Mn−1 ∩ F in Appendix B.2
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3.2 The internal reward weight λn

The scalar value λn in Equation (3) determines the trade-off between maximizing extrinsic reward
and exploring regions of high model uncertainty. We differentiate between three key scenarios that
affect the agent’s behaviour:

• Greedy (λn = 0): Pure exploitation with respect to the given reward function. The model is
only updated passively through whatever data results from reward-seeking behaviour, as in prior
continuous-time MBRL approaches [Yildiz et al., 2021].

• Balanced (0 < λn < ∞): Task-driven but exploratory behaviour; most practical and improves
model quality over time. We offer some strategies to select λn subsequently.

• Unsupervised (λn → ∞): Ignores reward and acts solely to reduce uncertainty, akin to active
learning methods in discrete time [Pathak et al., 2019, Sekar et al., 2020, Sukhija et al., 2023].

How to choose λn in the balanced case? For the case 0 < λn <∞, we study several practical
strategies for setting or adapting λn:

• Static (hyperparameter): Set λn = λ to a fixed value tuned via cross-validation or grid search.
This is simple and often effective.

• Scheduled (annealing): Decrease λn over time, for example λn = λ0 ·(1−n/N). This encourages
more exploration early in training and more exploitation as the model improves.

• Auto-tuned: Use an information-theoretic approach such as the auto-tuning procedure described
by Sukhija et al. [2025a], which selects λn adaptively based on maximizing mutual information
gain or related criteria.

In this work, we primarily treat λn as a tunable hyperparameter with scheduling. In Section 4, we
also study the auto-tuning approach and show its effectiveness, as well as the unsupervised RL case.

3.3 Theoretical results

The regret of any continuous-time model-based RL algorithm depends on the hardness of learning
the true dynamics f∗ and on the measurement selection strategy (MSS) S, which defines the discrete
time points at which the system is observed. Following Treven et al. [2023, Definition 1], an MSS is
a sequence of sets (Sn)n≥1, where each Sn ⊂ [0, T ] contains mn measurement times.2 The MSS
governs how data is collected – e.g., using equidistant sampling – and thus affects learning efficiency.
The model complexity for the unknown dynamics f∗ under MSS S is defined as:

IN (f∗, S)
def
= max

π1,...,πN∈Π

N∑
n=1

∫ T

0

∥∥σn−1

(
zn(t)

)∥∥2 dt.

Intuitively, for a given N , the more complicated the dynamics f∗, the larger the epistemic uncertainty
and thereby the model complexity. Curi et al. [2020] study the model complexity for the discrete-time
setting, where the integral is replaced by the sum over the uncertainties. In continuous-time, the MSS
S proposes when we measure the system and influences how we collect data to update our model.

Theorem 1. Under regularity assumptions (Assumptions 1 to 4 in Appendix B.1), we have with
probability at least 1− δ:

RN ≤ O
(√
I3N (f∗, S)N

)
.

Theorem 1 bounds the regret of COMBRL w.r.t. the model complexity. For GP dynamics, where the
well-calibration assumption is true and the monotonicity of the variance holds, Treven et al. [2023]
show that the model complexity IN (f∗, S) is sublinear for many common kernels and MSSs, e.g.,
grows with poly log(N) for the RBF kernel and equidistant MSS. Therefore, for common kernels
and MSSs, COMBRL enjoys sublinear regret in the GP setting, and the policy converges to the
optimal policy π∗. We provide the proofs for all our theoretical results in Appendix B.2.

2Here, the set Sn may depend on observations prior to episode n or is even constructed while we execute the
trajectory. For ease of notation, we do not make this dependence explicit.
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Theorem 2. Consider the unsupervised setting (λn →∞) and let Assumptions 1 to 4 hold.
If σn−1,j(z) ≥ σn,j(z) ∀ z ∈ Z , j ≤ dx, and n > 0, then

max
π∈Π

∫ T

0

∥∥σn−1

(
x(s),π(x(s))

)∥∥ ds ≤ O

(√
I3N (f∗, S)

N

)
.

Theorem 2 provides a sample-complexity bound for the unsupervised case. Effectively, this shows
that pure intrinsic exploration with λn →∞ reduces our model epistemic uncertainty with a rate of√
I3N/N . To the best of our knowledge, we are the first to show this for continuous-time RL.

4 Experiments

We evaluate the COMBRL algorithm on various environments from the OpenAI/Farama gymnasium
benchmark suite (Gym, Brockman et al. [2016], Towers et al. [2024]) and the DeepMind control suite
(DMC, Tassa et al. [2018], Tunyasuvunakool et al. [2020]).

For the dynamics model fn, we use Gaussian processes (GPs) and probabilistic ensembles (PEs) to
capture uncertainty about well-calibrated statistical models. Since COMBRL models continuous-
time dynamics directly, it also remains agnostic to the solver or discretization scheme, and can
in principle accommodate adaptive strategies [Treven et al., 2024]. In our experiments, we use
equidistant MSS and fixed-rate control to isolate core algorithmic behavior. We solve the continuous-
time planning problem using standard discrete-time solvers via fine-grained uniform discretization,
but unlike discrete-time RL, fn learns the ODE of the true system f∗. We use fn to simulate
trajectories for policy training with SAC [Haarnoja et al., 2018] or real-time planning using the
improved cross-entropy method (iCEM) described by Pinneri et al. [2021].

Baselines We compare COMBRL with two baselines with different planning approaches. The
mean planner uses the mean estimate µn of the statistical model and greedily maximizes the extrinsic
reward for the task at hand, akin to Yildiz et al. [2021]. Furthermore, we compare our method with
the trajectory sampling scheme (TS-1) proposed by Chua et al. [2018], subsequently referred to as
PETS. PETS samples trajectories from PEs for state propagation and thus inherently captures the
epistemic uncertainty during planning.

Treven et al. [2023] thoroughly study and demonstrate the advantages of continuous-time RL over its
discrete-time counter part. To this end, in our experiments we focus on the four questions explored in
the following. We provide additional details on our experimental setup in Appendix C.

COMBRL (Ours)

OCORL

PETS

Mean Planning

Pendulum-GP: Swing-up Mountaincar-GP: Go up right

M
ea

n 
ep

. r
et

ur
n

Episode n Episode n
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Figure 1: Learning curves for baselines, COMBRL and OCORL with fixed internal reward weight
λn using GP dynamics and iCEM planning, averaged over 5 seeds. We report the mean and the
standard error bands.

Does COMBRL scale better than the SOTA? In Figure 1, we empirically validate our theoretical
insights using GPs. We consider two classic continuous control tasks – the pendulum swing-up
and the mountaincar problem [Moore, 1990] – and use iCEM for real-time planning. We compare
COMBRL with the baselines above and with the state-of-the-art continuous-time RL algorithm
OCORL from Treven et al. [2023]. In these experiments, λn is held constant throughout training and
treated as a static, hand-tuned hyperparameter.

Results, averaged over five random seeds with standard error bands, show that COMBRL consistently
achieves higher asymptotic returns than the baselines, confirming the benefits of intrinsic rewards
for guiding exploration. For the Pendulum experiments, all algorithms solve the task of swinging
up. However, the co-optimization over the reward and the optimistic dynamics as well as the
reparametrization trick used by the OCORL algorithm are computationally prohibitive, and require
around 3× the compute time compared to COMBRL (see Appendix C.2). We believe this shows
that our algorithm scales better and is more computationally efficient than the SOTA.
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Figure 2: Learning curves for COMBRL and baselines with autotuned internal reward weight λ. We
report the mean return when evaluating the learned model on the task at hand, averaged across 10
random seeds along with the standard error.

How does the intrinsic reward affect learning? To assess the effect of intrinsic rewards, we
compare COMBRL with λn > 0 against PETS and the mean planner (λn = 0). Figure 2 shows
learning curves on several environments from Gym and DMC. In these experiments, we model
dynamics using PEs and use SAC to train the policy. We compare COMBRL, with a nonzero
intrinsic reward weight λn, against PETS and the mean planner. For COMBRL, the internal reward
weight λn is automatically tuned following the strategy proposed by Sukhija et al. [2025a], as outlined
in Appendix C.3.

Across a range of environments, COMBRL achieves higher asymptotic returns, particularly in sparse-
reward or underactuated settings such as MountainCar and CartPole, highlighting that optimism-
driven exploration significantly accelerates learning. In higher-dimensional environments such as
HalfCheetah and Hopper, COMBRL improves performance by encouraging exploration of uncertain
regions, which helps uncover effective behaviors in complex, high-degree-of-freedom systems, even
when these behaviors are not directly tied to high immediate reward signals.

How does COMBRL perform in the unsupervised RL setting? We evaluate whether exploration
driven by model uncertainty improves generalization to unseen tasks. Specifically, we train policies
on a primary task (e.g., reaching a target) and assess zero-shot performance on a downstream task not
encountered during training (e.g., moving away from the target).

Figure 3 compares standard COMBRL as well as its unsupervised variant (λn →∞, cf. Section 3.2)
to the baselines. To ensure a fair comparison, we let each agent explore the environment for several
episodes, and then periodically evaluate the learned model on downstream tasks. While COMBRL
generally achieves the best performance on the primary task especially in environments which offer
sparse rewards, its unsupervised variant performs best on the downstream task across all seven
evaluated domains. This suggests that exploration guided by model uncertainty encourages the
agent to cover a more diverse state-action space and highlights the trade-off between task focus and
exploration breadth: Ignoring the reward signal entirely leads the agent to explore broadly, acquiring
a globally accurate model that generalizes better to unseen tasks for λn →∞.

How does the choice of λn trade-off directed exploration w.r.t. the extrinsic reward and global
exploration? We ablate different values of the internal reward weight λn for the Gym implementa-
tion of the HalfCheetah [Wawrzyński, 2009], Hopper [Erez et al., 2012], as well as the Reacher and
Pusher, which are part of the MuJoCo environments [Todorov et al., 2012]. Figure 4 shows that grow-
ing nonzero λn values improve downstream generalization while maintaining strong performance on
the primary task. In contrast, large λn may overly favor exploration and degrade performance on the
primary task. This suggests that there exists an intermediate value of λn that balances goal-directed
behaviour with model uncertainty reduction, achieving the best of both COMBRL (task-optimal)
and its unsupervised variant (exploration-optimal).
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Figure 3: Final performance at convergence on primary and downstream tasks across seven Gym
environments. We train the policy using SAC on the primary task with the COMBRL objective and
compare with the mean and PETS dynamics propagation, then additionally evaluate on a previously
unseen secondary task. For COMBRL, we differentiate between the balanced case with a static or
annealing schedule for λn, or the unsupervised case with λn → ∞. We report the mean return as
well as the standard error for the primary and downstream task.
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Figure 4: Final performance at convergence for different environments and tasks with varying internal
reward weight λ. We ablate over different choices of λ and report the mean return and standard error
on a primary task the proposed algorithm was trained on as well as a previously unseen downstream
task.

5 Conclusion

In this work, we introduced COMBRL, a continuous-time model-based reinforcement learning
algorithm that uses epistemic uncertainty to guide exploration through an intrinsic reward. Our
approach provides a principled and flexible mechanism to balance exploration and exploitation via the
internal reward weight λn, generalizing the classical optimism-in-the-face-of-uncertainty paradigm
to continuous-time domains that is scalable and easy-to-implement.

Our experiments demonstrate that COMBRL excels at goal-directed learning on the task at hand,
while its unsupervised RL variant (i.e., λn →∞) is particularly effective at generalizing to unseen
downstream tasks. This highlights a core trade-off: Reward directed exploration for appropriate λn

values and exploration across the entire reachable domain for λn →∞. We differentiate between
three cases for the internal reward weight that affect the agent’s behaviour – greedy, balanced, and
unsupervised. Empirical ablations confirm that there exists a range for λn that enables generalizable
yet sample-efficient learning. Furthermore, the unsupervised version of COMBRL acts as an
unsupervised system identification strategy, enabling strong zero-shot adaptation to new objectives.
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A Additional related work

A.1 Model-based reinforcement learning

Model-based RL (MBRL) has emerged as a sample-efficient alternative to model-free methods, with
applications ranging from robotics to online decision-making [Chua et al., 2018, Janner et al., 2019,
Hansen et al., 2023, Rothfuss et al., 2024]. Recent deep MBRL methods differ primarily in dynamics
modeling and planning strategies, yet often rely on naive exploration heuristics such as Boltzmann
exploration [Hansen et al., 2024, Hafner et al., 2025]. However, such heuristics are suboptimal even
in simple settings [Cesa-Bianchi et al., 2017].

COMBRL addresses this by introducing a principled exploration mechanism that combines epistemic
uncertainty with extrinsic reward. Unlike prior methods, it is model- and planner-agnostic, scalable,
and comes with sublinear regret guarantees. We show that this intrinsic reward formulation not
only improves theoretical performance but also enables meaningful exploration across deep RL
benchmarks, where naive methods fail.

A.2 Unsupervised reinforcement learning and intrinsic exploration

System identification [Åström and Eykhoff, 1971] and unsupervised exploration [Aubret et al.,
2019] require efficient exploration, as the agent must learn accurate global dynamics models without
access to extrinsic rewards. In such settings, exploration is essential for covering informative
regions of the state-action space. To this end, intrinsic motivation techniques have long been used to
encourage exploration in RL, making use of objectives like model prediction error [Pathak et al., 2017],
novelty [Bellemare et al., 2016], empowerment [Salge et al., 2014], and information gain [Sekar
et al., 2020, Sukhija et al., 2023]. However, such techniques are often used in isolation from extrinsic
rewards. COMBRL instead combines epistemic uncertainty, which poses a principled intrinsic signal,
with task rewards, aligning exploration with learning progress. In the unsupervised setting, COMBRL
reduces to active learning Taylor et al. [2021], specifically uncertainty sampling [Lewis and Catlett,
1994] and guides the agent toward regions where the model is most uncertain. Similar ideas have
been explored in bandits [Auer et al., 2002, Srinivas et al., 2012], data-driven control [Grimaldi et al.,
2024], and RL [Abeille and Lazaric, 2020, Sukhija et al., 2025a], where joint optimization of reward
and model uncertainty is shown to improve learning.

COMBRL follows this direction, using model epistemic uncertainty as a reward bonus to guide
exploration. Our work is closely related to Sukhija et al. [2025b], who propose a similar reward
formulation in the discrete-time setting. However, our focus on continuous-time systems leads to
significantly different theoretical analysis and experimental design. In particular, we derive regret
and sample complexity bounds tailored to the continuous-time domain and analyze the effect of the
intrinsic reward weight λn in greater depth. Unlike prior work, which is mostly empirical or limited
to linear systems, COMBRL also provides theoretical guarantees for general nonlinear systems in
continuous time and demonstrates scalability to high-dimensional tasks.

A.3 Continuous-time reinforcement learning

While most model-based RL methods are developed in discrete time, continuous-time formula-
tions have gained increasing interest due to their relevance for real-world control and physical
modelling [Doya, 2000, Frémaux et al., 2013, Yildiz et al., 2021]. Recent works explore learning
dynamics via neural ODEs [Chen et al., 2018] and physics-informed priors [Greydanus et al., 2019,
Cranmer et al., 2020].

Yildiz et al. [2021] propose a continuous-time actor-critic method that plans using the posterior mean
of the learned ODE model. Treven et al. [2023, 2024] derive regret bounds for continuous-time MBRL
using optimistic dynamics and show that considerably fewer interactions with the environment is
needed to achieve the same or better performance compared to discrete time counterpart. COMBRL
extends this line of work by proposing a flexible framework for both reward-driven and unsupervised
exploration in continuous time. In contrast to prior methods, COMBRL incorporates optimism
directly in the reward function and thus offers a simple, scalable, and theoretically grounded approach
that operates directly in the continuous-time domain and supports general-purpose dynamics models.
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B Theory

We provide the assumptions and proofs for Theorems 1 and 2, which formalize the regret and
exploration guarantees of COMBRL, in this section. The former bounds regret in terms of model
complexity, which is sublinear for common GP kernels and MSSs, implying convergence to the
optimal policy. The latter shows that intrinsic exploration alone (i.e. λ → ∞) reduces epistemic
uncertainty at a rate of

√
I3N/N . To the best of our knowledge, we are the first to show this for

continuous-time RL.

B.1 Assumptions

In the following, we make some common assumptions (cf. Curi et al. [2020], Treven et al. [2023])
that allow us to theoretically analyse the regret RN and prove a regret bound. We first make an
assumption on the continuity of the underlying system and the observation noise.
Assumption 1 (Lipschitz continuity). The dynamics model f∗, reward r, and all policies π ∈ Π are
Lf , Lr and Lπ Lipschitz-continuous, respectively.

Assumption 2 (Sub-gaussian noise). We assume that the measurement noise ϵn,i is i.i.d. σ-sub
Gaussian.

The Lipschitz assumption is commonly made for analysing nonlinear systems [Khalil, 2014] and is
satisfied for many real-world applications. Furthermore, assuming σ-sub Gaussian noise [Rigollet
and Hütter, 2023] is also fairly general and is common in both RL and Bayesian optimization
literature [Srinivas et al., 2012, Chowdhury and Gopalan, 2017, Curi et al., 2020].

In COMBRL, we learn an uncertainty-aware model of the underlying dynamics. Therefore, we
obtain a mean estimate µn(z) and quantify our epistemic uncertainty σn(z) about the function f∗.

Definition 1 (Well-calibrated statistical model of f∗, Rothfuss et al. [2023]). Let Z def
= X × U . An

all-time well-calibrated statistical model of the function f∗ is a sequence {Mn(δ)}n≥0, where

Mn(δ)
def
=
{
f : Z → Rdx | ∀z ∈ Z,∀j ∈ {1, . . . , dx} : |µn,j(z)− fj(z)| ≤ βn(δ)σn,j(z)

}
,

if, with probability at least 1 − δ, we have f∗ ∈
⋂

n≥0Mn(δ). Here, µn,j and σn,j denote the
j-th element in the vector-valued mean and standard deviation functions µn and σn respectively,
and βn(δ) ∈ R≥0 is a scalar function that depends on the confidence level δ ∈ (0, 1] and which is
monotonically increasing in n.

Assumption 3 (Well-calibration of the model). The learned model is an all-time well-calibrated
statistical model of f∗, i.e., with probability at least 1−δ, we have f∗ ∈

⋂
n≥0Mn(δ) for confidence

setsMn(δ) as defined in Definition 1.

Assumption 4 (Lipschitz continuity of the uncertainty estimates). The standard deviation functions
σn : Z → Rdx are Lσ-Lipschitz continuous for all n ≥ 0.

Intuitively, Assumption 3 states that we are, with high probability, able to capture the dynamics
within a confidence set spanned by our predicted mean and epistemic uncertainty. For Gaussian
process (GP) models, the assumption is satisfied [Rothfuss et al., 2023, Lemma 3.6] and for more
general classes of models such as Bayesian neural networks (BNNs), re-calibration techniques
[Kuleshov et al., 2018] can be used.

Lastly, we make an assumption on the regularity of the dynamics by placing them in a reproducing
kernel Hilbert space (RKHS):
Assumption 5 (RKHS Prior on Dynamics). We assume that the functions f∗

j , j ∈ {1, . . . , dx} lie in
a RKHS with kernel k and have a bounded norm B, that is

f∗ ∈ Hdx

k,B , with Hdx

k,B = {f | ∥fj∥k ≤ B, j = 1, . . . , dx}.

Moreover, we assume that k(z, z) ≤ σmax for all x ∈ X .
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B.2 Analysis of Gaussian process dynamics

Assumption 5 allows us to model f∗ with GPs. The posterior mean µn(z) = [µn,j(z)]j≤dx and
epistemic uncertainty σn(z) = [σn,j(z)]j≤dx can then be obtained using the following formula

µn,j(z) = k⊤
n (z)(Kn + σ2I)−1yj

1:n,

σ2
n,j(z) = k(z, z)− k⊤

n (z)(Kn + σ2I)−1kn(z),
(4)

Here, yj
1:n corresponds to the noisy measurements of f∗

j , i.e., the noisy derivative observation from
the dataset D1:n, kn(z) = [k(z, zi)]zi∈D1:n , and Kn = [k(zi, zl)]zi,zl∈D1:n is the data kernel
matrix.

Moreover, since f∗ has bounded RKHS norm, i.e., ∥f∗∥k ≤ B (Assumption 5), it follows from
Srinivas et al. [2012], Chowdhury and Gopalan [2017] that with probability 1− δ we have for every
episode n:

∥f∗ − µn∥kn
≤ βn.

Instead of planning with the mean, which in general might not be Lipschitz continuous for all n, we
select a function fn that not only approximates the f∗ function well, i.e. satisfies ∥f∗ − fn∥kn

≤ βn,
but also has an RKHS norm that does not grow with n. To achieve this, we propose solving the
following quadratic optimization problem:

fn = argmin
f∈span(k(x1,·),...,k(xn,·))

∥f − µn∥kn
(5)

s.t. ∥f∥k ≤ B

Theorem 3. The optimization problem Equation (5) is feasible and we have ∥fn − µn∥kn
≤ 2βn.

Proof. Consider the noise-free case, i.e., ϵn,i = 0, and let µ̄n be the posterior mean for this setting.
For the function µ̄n, it holds that ∥f∗ − µ̄n∥kn

≤ βn (Corollary 3.11 of Kanagawa et al. [2018]) and
∥µ̄n∥k ≤ B (Theorem 3.5 of Kanagawa et al. [2018]). Thus it follows that

∥µ̄n − µn∥kn
≤ ∥µ̄n − f∗∥kn

+ ∥f∗ − µn∥kn
≤ 2βn.

By representer theorem, it also holds that µ̄n ∈ span(k(z1, ·), . . . , k(zn, ·)).

Let αn = (K + σ2I)−1y ∈ Rn and reparametrize f(x) =
∑n

i=1 αik(xi,x). We have ∥f∥2k =
α⊤Kα. We also have:

∥f − µn∥2kn
= (α−αn)

⊤K

(
I +

1

σ2
K

)
(α−αn)

Hence the optimization problem Equation (5) is equivalent to:

min
α∈Rn

(α−αn)
⊤K

(
I +

1

σ2
K

)
(α−αn)

s.t. α⊤Kα ≤ B2

This is a quadratic program that can be solved using any QP solver. The program finds the closest
function to the posterior mean µn that is Lipschitz continuous. In particular, note that since ∥fn∥k ≤
B, for Lipschitz kernels, fn has a Lipschitz constant LB which is independent of n [Berkenkamp,
2019]. From hereon, let L∗ = max{Lf , LB}.
Next, we plan with the dynamics fn that are obtained from solving Equation (5).

πn=argmax
π∈Π

Eπ

[∫ T

0

(
r(x′(t),u(t)) + λn ∥σn(x

′(t),u(t))∥
)
dt

]
(6)

s.t. ẋ′(t)=fn(x
′(t),u(t)).
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Lemma 4. Let Assumption 2 and Assumption 5 hold. Consider the following definitions:

J(π,f∗) = E

[∫ T

0

r(x(t),π(x(t))) dt.

]
s.t. ẋ = f∗(x(t),π(x(t))), x0 = x(0),

J(π,fn) = E

[∫ T

0

r(x′(t),π(x′(t))) dt.

]
s.t. ẋ′ = fn(x

′(t),π(x′(t))), x′
0 = x(0),

Σn(π,f
∗) = E

[∫ T

0

∥σn(x(t),π(x(t)))∥ dt.

]
s.t. ẋ = f∗(x(t),π(x(t))) x0 = x(0),

Σn(π,fn) = E

[∫ T

0

∥σn(x
′(t),π(x′(t)))∥ dt.

]
s.t. ẋ′ = fn(x

′(t),π(x′(t))), x′
0 = x(0).

Furthermore, let λn = 2βnLr(1 + Lπ)e
L∗(1+Lπ)T .

Then, we have for all n ≥ 0, π ∈ Π with probability at least 1− δ:

|J(π,f∗)− J(π,fn)| ≤ λnΣn(π,fn)

|J(π,f∗)− J(π,fn)| ≤ λnΣn(π,f
∗).

Proof.

|J(π,f∗)− J(π,fn)| = E

[∫ T

0

r(x(t),π(x(t)))− r(x′(t),π(x′(t))) dt.

]

≤ Lr(1 + Lπ)E

[∫ T

0

∥x(t)− x′(t)∥ dt.

]

≤ 2βnLr(1 + Lπ)Te
Lf (1+Lπ)T

∫ T

0

∥σn−1(x(t),π(x(t)))∥ dt.

(Treven et al. [2023] Lemma 4.)

Similarly, we can also use Lemma 4 from Treven et al. [2023] and bound the regret with Σn(π,fn).

|J(π,f∗)− J(π,fn)| = E

[∫ T

0

r(x(t),π(x(t)))− r(x′(t),π(x′(t))) dt.

]

≤ Lr(1 + Lπ)E

[∫ T

0

∥x(t)− x′(t)∥ dt.

]

≤ 2βnLr(1 + Lπ)Te
LB(1+Lπ)T

∫ T

0

∥σn−1(x
′(t),π(x′(t)))∥ dt.
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Lemma 5. Let Assumption 2 and Assumption 5 hold and consider the simple regret at episode n:

rn = J(π∗,f∗)− J(πn,f
∗).

The following holds for all n > 0 with probability at least 1− δ:

rn ≤ (2λn + λ2
n)Σn(πn,f

∗).

Proof.

rn = J(π∗,f∗)− J(πn,f
∗)

≤ J(π∗,fn) + λnΣn(π
∗,fn)− J(πn,f

∗) (Lemma 4)
≤ J(πn,fn) + λnΣn(πn,fn)− J(πn,f

∗) (Equation (6))
= J(πn,fn)− J(πn,f

∗) + λnΣn(πn,fn)

≤ λnΣn(πn,f
∗) + λnΣn(πn,fn) (Lemma 4)

= 2λnΣn(πn,f
∗) + λn(Σn(πn,fn)− Σn(πn,f

∗))

≤ (λ2
n + 2λn)Σn(πn,f

∗).

Theorem 1 (Regret bound in the sub-Gaussian noise case). Let Assumption 2 and Assumption 5 hold.
Then we have for all N > 0 with probability at least 1− δ:

RN ≤ O
(
I3/2
N

√
N
)
.

Proof of Theorem 1.

RN =

N∑
n=1

rn (Equation (2))

≤
N∑

n=1

(λ2
n + 2λn)Σn(πn,f

∗) (Lemma 5)

≤ (λ2
N + λN )

N∑
n=1

Σn(πn,f
∗)

= (λ2
N + 2λN )

N∑
n=1

Ef∗

[∫ T

0

∥σn(x(t),πn(x(t)))∥ dt

]

≤ (λ2
N + 2λN )

√
NT

N∑
n=1

Ef∗

[∫ T

0

∥∥σ2
n(x(t),πn(x(t)))

∥∥ dt

]
≤ (λ2

N + 2λN )
√

NTIN (f∗, S) (Treven et al. [2023], Proposition 1)

Theorem 2 (Sample complexity bound in the unsupervised case). Let Assumption 2 and Assumption 5
hold. Consider Algorithm 1 with extrinsic reward r = 0, i.e.,

πn = argmax
π∈Π

Eπ

[∫ T−1

0

∥σn(x
′(t),π(x′(t)))∥ dt

]
,

s.t. ẋ′(t) = fn(x
′(t),π(x(t))).

Then we have for all N > 0, with probability at least 1− δ:

max
π∈Π

Ef∗

[∫ T−1

0

∥σn(x(t),π(x(t)))∥ dt

]
≤ O

(√
I3N
N

)
.
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Proof of Theorem 2. Let Σ∗
N = maxπ ΣN (π,f∗) and π∗

N the corresponding policy.

Σ∗
N ≤

1

N

N∑
n=1

Σ∗
n (monotonicity of the variance)

≤ 1

N

N∑
n=1

(1 + λn)Σn(π
∗
n,fn) (Lemma 4)

≤ 1

N

N∑
n=1

(1 + λn)Σn(πn,fn) (πn is the maximizer for dynamics fn)

≤
N∑

n=1

(1 + λn)
2Σn(πn,f

∗) (Lemma 4)

≤ (1 + λN )2
1

N

N∑
n=1

Σn(πn,f
∗)

≤ (1 + λN )2
1√
N

N∑
n=1

Σ2
n(πn,f

∗)

≤ O

(√
I3N
N

)

C Experimental setup

We provide additional details for our experiments in this section.

C.1 GP experiments

We evaluate our method on two low-dimensional continuous control tasks: Pendulum-GP and
MountainCar-GP [Moore, 1990]. Unlike in the other, following experiments, these environments
are implemented directly by us as continuous-time systems with known physical dynamics given by
nonlinear ODEs, rather than relying on Gym or DMC implementations. We emulate a continuous-
time setting by using a fine time discretization for state propagation. As for measurements, we assume
that we have direct access to the state derivatives.

In Pendulum-GP, the agent must swing up and stabilize a pendulum in the upright position. The
state vector is defined as

x =

[
x0

x1

x2

]
=

cos θsin θ

θ̇

 , u = u ∈ [−2, 2],

where θ ∈ [−π, π] is the pendulum angle and θ̇ is the angular velocity. The underlying nonlinear
ODE is:

dθ

dt
= θ̇,

dθ̇

dt
=

3g

2ℓ
sin θ +

3

mℓ2
u,

with constants g = 9.81m/s2, m = 1, and ℓ = 1. We use a Gym-style reward, which penalizes
deviations from the target angle θ = 0, angular velocity θ̇, and control input u:

r(x,u) = −θ2 − 0.1 θ̇2 − 0.02u2,

where θ = arctan 2(x1, x0) and θ̇ = x2.
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In MountainCar-GP, the agent must build momentum to propel a car up a steep hill. The state vector
is defined as

x =

[
x1

x2

]
, u = u ∈ [−1, 1],

where x1 ∈ [−1.2, 0.6] is the position and x2 ∈ [−0.07, 0.07] is the velocity. The underlying
nonlinear ODE is given by:

dx1

dt
= x2,

dx2

dt
= 0.0015 · u− 0.0025 cos(3 · x1).

Position and velocity are clipped to their bounds, and backward motion is blocked at x1 = −1.2 if
x2 < 0.The reward includes a terminal bonus of +100 for reaching the goal and penalizes control
effort:

r(x,u) = −0.1u2 + 100 · 1goal reached,

where the goal is reached if the car’s position exceeds 0.45 and its velocity is non-negative.

For our GP experiments in Figure 1, we use the RBF kernel. The kernel parameters are updated
online using maximum likelihood estimation [Rasmussen and Williams, 2005]. We use a hand-tuned
static regime for the internal reward weight, i.e. λn = λ. For the OCORL baseline, we provide the
confidence level function βn(δ) = β. The hyperparameters for the statistical model as well as for the
environments and algorithms are given in Table 1.

Table 1: Model training hyperparameters and experimental setup for the GP-based experi-
ments in Figure 1.

Environment T [s] N ν [s−1] Algorithm λ β Learning Rate

Pendulum-GP 2.5 12 20

COMBRL 1.0 –

0.01OCORL 0 7.5
PETS 0 –
Mean 0 –

MountainCar-GP 200 15 1

COMBRL 106 –

0.01OCORL 0 30
PETS 0 –
Mean 0 –

Episode horizon T , number of episodes N , and measurement/control frequency ν are shared
across algorithms for each environment.

For planning, we use the iCEM optimizer [Pinneri et al., 2021] even though it is a discrete-time
algorithm. We emulate the continuous-time setting by using a fine time discretization (see measure-
ment/control frequency ν in Table 1) and using the equidistant MSS. The hyperparameters for the
planning are given in Table 2.

Table 2: iCEM hyperparameters used for planning in the GP-based experiments.
Environment Horizon # Particles # Samples # Elites Steps α Exponent

Pendulum-GP 30 10 500 50 10 0.2 2
MountainCar-GP 100 10 500 50 5 0.2 2

Horizon refers to the iCEM planning horizon (in time steps). Steps indicates how many CEM optimization
iterations are performed per control decision to refine the action distribution using elite samples. The
number of time steps and control decisions are given by the measurement/control frequency ν.
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C.2 Computational costs

We give the computational costs for our GP experiments in Table 3. This shows that the co-
optimization over the reward and the optimistic dynamics as well as the reparametrization trick used
by the OCORL algorithm are computationally prohibitive, and require around 3× the compute time
compared to COMBRL.

Table 3: Computation cost comparison (training time) for each algorithm across environments.

Environment COMBRL OCORL Mean PETS

Pendulum-GP a 10.8 ± 0.13 min 30.6 ± 0.4 min 10.4 ± 0.04 min 30.78 ± 0.27 min
MountainCar-GP b 1.29 ± 0.01 h 4.55 ± 0.1 h 1.28 ± 0.03 h 4.67 ± 0.16 h
a Mean total training time. GPU: NVIDIA GeForce RTX 2080 Ti.
b Mean training time per episode. GPU: NVIDIA GeForce RTX 2080 Ti.

C.3 Auto-tuning experiments

In Figure 2, we auto-tune the intrinsic reward weight λn following the method proposed by Sukhija
et al. [2025a], who demonstrate that this approach is effective across a range of model-free off-policy
RL methods in discrete time. Specifically, we adjust λ by minimizing the loss:

L(λ) = E
x∼D1:n,u∼πn,ū∼π̄n

log(λ)(σn(x,u)− σn(x, ū)). (7)

Here, π̄n denotes a slowly updated target policy obtained via Polyak averaging of πn. The objective
promotes larger λ values when the current policy explores less than the target policy.

C.4 BNN experiments

In our experiments that do not explicitly use Gaussian Processes, we train an ensemble of 5 neural
networks to model forward dynamics. Model epistemic uncertainty is estimated via the disagreement
among the ensemble members [Pathak et al., 2019]. To further leverage the model, we augment the
data by including synthetic transitions. For each policy update, we sample real transitions (x,u, ẏ)
from the replay buffer D1:n and add corresponding model-predicted transitions (x,u, ẏ′), where
ẏ′ is generated by the mean model µn. This lets us blend real and synthetic rollouts, similar to the
strategy used by Janner et al. [2019], thereby increasing the update-to-data (UTD) internal ratio.

We adopt the same hyperparameters as Sukhija et al. [2025a] for optimizing the loss via stochastic
gradient descent in Equation (7) and for configuring the UTD. We also periodically perform soft resets
for the policy for training stability [D’Oro et al., 2023]. The hyperparameters for the statistical model
and SAC are given in Table 4. For the ensemble-based experiments, we use several environments from
the Gym and DMC benchmark suites [Brockman et al., 2016, Tunyasuvunakool et al., 2020]. We
adapt them to the continuous-time setting by approximating the derivatives using a finite difference
filter. The measurement/control frequency is given by the duration of an environment step dt.

Table 4: Hyperparameters for ensemble-based experiments with SAC in Section 4, grouped by
environment family.

Environments Acti
on

Rep
ea

t

Poli
cy

/ C
rit

ic

Arch
ite

ctu
re

M
od

el

Arch
ite

ctu
re

Lea
rni

ng
Rate

Batc
h Size

Gym – Pendulum / MountainCar 1 (256,256) 5×(256,256) 3× 10−4 256
Gym – Reacher / DMC – Quadruped 2 (256,256) 5×(512,512) 3× 10−4 256
Gym – other environmentsa 2 (256,256) 5×(256,256) 3× 10−4 256
DMC – all except Quadruped 2 (256,256) 5×(256,256) 3× 10−4 256
a HalfCheetah, Hopper, Pusher.
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C.5 Downstream tasks

To evaluate zero-shot generalization in Figures 3 and 4, we introduce custom downstream tasks
that differ semantically from the primary training objective. While the primary task corresponds to
the default reward in each Gym or DMC environment, the downstream task uses a custom reward
function that incentivizes behaviour that contrasts with the original task (e.g., moving away instead
of toward a goal).

We implement each downstream task by overriding the reward computation in the Gym or DMC
environment using environment wrappers. Table 5 summarizes the evaluated primary and downstream
tasks. It also gives the internal reward parameter λn for the experiments shown in Figure 3. For said
experiments, the downstream rewards are defined as follows:

• MountainCar – go up left: Encourages the car to reach the leftmost side of the hill, in contrast to
the standard goal on the right.

• HalfCheetah – run backwards: Reverses the locomotion objective by rewarding backward
velocity.

• Hopper – hop backwards: Rewards hopping backwards while maintaining a healthy posture.3

• Pendulum
– Balance upright: Starts upright and rewards maintaining the upright position.
– Swing up: Starts with the pendulum pointing downward and rewards swinging it up.
– Swing down: Starts upright and rewards swinging the pendulum downward.
– Keep down: Starts downward and rewards staying down.

• Reacher – go away: Penalizes proximity to the goal, inverting the standard reaching task.
• Pusher – push away from target: Encourages the agent to push the object away from the goal

location.

Table 5: Primary and downstream tasks used in our evaluation. Each downstream task is defined via a
custom reward that encourages behaviour contrasting the primary task. We also provide the algorithm
hyperparameters used in Figure 3, namely the strategy used and the optimized internal reward weight
λn.

Environment Primary Task Downstream Task Strategya λ

MountainCar Go up right Go up left Annealing 50
HalfCheetah Run forward Run backward Annealing 2
Hopper Hop forward Hop backward Static 10
Pendulum Balance upright Swing down Annealing 10
Pendulum Keep down Swing up Annealing 50
Reacher Reach target Keep away Static 0.17
Pusher Push to target Push away Static 0.56
a Static denotes a fixed internal reward weight λn = λ, annealing a decreasing

reward weight λn ∝ λ · (1− n/N).

3The Hopper environment in Gym introduces a healthy_reward, which is preserved for the downstream
task.
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