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ABSTRACT

Pre-trained generalist policies are rapidly gaining relevance in robot learning due
to their promise of fast adaptation to novel, in-domain tasks. This adaptation
often relies on collecting new demonstrations for a specific task of interest and
applying imitation learning algorithms, such as behavioral cloning. However,
as soon as several tasks need to be learned, we must decide which tasks should
be demonstrated and how often? We study this multi-task problem and explore
an interactive framework in which the agent adaptively selects the tasks to be
demonstrated. We propose AMF (Active Multi-task Fine-tuning), an algorithm
to maximize multi-task policy performance under a limited demonstration budget
by collecting demonstrations yielding the largest information gain on the expert
policy. We derive performance guarantees for AMF under regularity assumptions
and demonstrate its empirical effectiveness to efficiently fine-tune neural policies
in complex and high-dimensional environments.

1 INTRODUCTION

The availability of large pre-trained Pretrained policy T e

models has transformed entire areas -~ Q
of machine learning, from computer ‘ \ >

vision (Krizhevsky et al., [2012; He .
et al, 2016} [Dosovitskiy et al., 2021} ééé Dataset Expert provides
Radford et all 2021), to natural lan- Behavior cloning demonstration

guage processing (Radford et al.l [2019;
Brown et al., 2020) and generative
modeling in general (Ho et al.l [2020;
Esser et al.l [2024). This paradigm
has started to extend to robotics and
control (Collaboration, 2023 Ma et al.|
2024), in particular for systems for which demonstrations are readily available (Octo Model Team
et al.l 2024)), or can be easily collected (Zhao et al., [2023). Even when demonstrations are not
easily obtained, scaling laws in reinforcement learning (Ceron et al., 2024bja; [Nauman et al., [2024)
suggest the possibility of leveraging large pre-trained policies. These “generalist” policies have
decent performance on many tasks, and can be fine-tuned on particular set of tasks while leveraging
their previously learned representations and skills. We investigate whether representations of such
policies can be used to significantly bootstrap learning progress.

Figure 1: Interactive loop between agent and expert. We
consider a scenario where we receive a pre-trained policy,
and are able to obtain expert demonstrations of tasks.
We study how to select tasks (in blue) to obtain the best-
performing policy after as few demonstrations as possible.

As a motivating example, consider a household robot that is delivered with a pre-trained “generalist”
policy, and deployed in slightly different conditions than those observed in its training data. While
the robot may achieve some tasks in a zero-shot fashion (e.g. simple pick-and-place), other tasks
might necessitate further fine-tuning (e.g. cooking an omelette). The robot should be able to interac-
tively request demonstrations to compensate for its shortcomings. We seek to answer which demon-
strations should be requested from the user to achieve the best performance, as quickly as possible.

If the agent only needs to perform well in a single task, the fine-tuning process conventionally relies
on behavioral cloning (Chen et al., 2021} Reed et al.|[2022; Bousmalis et al.,|2024) of expert demon-
strations. As collecting demonstrations is in general costly, the number of demonstrations required,
and thus the expert’s effort, should be minimized. However, as each demonstration should solve the
same task, the allocation of the expert’s effort is straightforward. The multi-task case presents the
more nuanced problem of selecting which tasks to demonstrate, and when. This motivates the main
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focus of this work: provided a pre-trained policy, how can we maximize multi-task performance
with a minimal number of additional demonstrations?

To address this problem, we propose AMF (A ctive Multi-task Fine-tuning), which selects maximally
informative demonstrations. AMF parallels recent work on active supervised fine-tuning of neural
networks (Hiibotter et al., [2024b). To this end, AMF relies on estimates of the demonstrations’
information gain about the expert policy. We prove that in sufficiently regular Markov decision pro-
cesses, AMF converges to the expert policy. We then focus on practical scenarios where policies are
represented as neural networks. We show that, despite additional challenges, AMF can effectively
guide active task selection in such settings, leading to better policies after fewer demonstrations.
Our contributions are:

* We propose AMF, an algorithm for multi-task policy fine-tuning that maximizes the infor-
mation gain of demonstrations about the expert policy.

* We prove statistical guarantees for AMF, which extend the results of [Hiibotter et al.|(2024b)
to dynamical systems.

* We empirically scale AMF to high-dimensional tasks involving pre-trained neural policies.

2 RELATED WORK

Learning-based control and active data selection are both well-established research directions. This
section discusses some of the most topical works in either direction, and clarifies the novelty and
placement of this work with respect to them.

Behavioral Cloning Numerous imitation learning approaches have been developed with the goal
of distilling knowledge from high-quality demonstrations to a control policy (Osa et al., [2018).
Within this family of techniques, behavioral cloning (BC, |Bain & Sammut, |1995} Ross & Bagnell,
2010) aims to maximize policy performance by minimizing the distance of its actions to demon-
strated actions, simply through supervised learning. While BC may suffer from accumulating er-
rors (Ross et al., 2011), its empirical effectiveness has seen increasing support when high-quality
demonstrations are readily available (Kumar et al., 2022)). Next to recent empirical successes (Chi
et al.,|2023)), formal analysis has also advanced (Spencer et al., 2021; Block et al.| 2024a; Belkhale
et al., 2024; |[Foster et al., [2024), and established provable performance guarantees for BC policies
(Xu et al .} [2020; Maran et al.| 2023 |Block et al .| [2024b).

Multi-task and Generalist Policies Traditionally, behavioral cloning has mostly been deployed
in a single-task setting. Multi-task learning in sequential decision-making has largely been investi-
gated in the context of reinforcement learning (Teh et al., 2017;|Sodhani et al., 2021;|Yu et al., 2021}
Sun et al., 2022} |Cho et al., 2022; |Hendawy et al.l |2023)). Moreover, the recent rise of multi-task
generative models (Brown et al.||2020) has been mirrored by exploration of multi-task, or generalist
policies, often trained via imitation learning (Reed et al.| 2022 Bousmalis et al., [2024; |Collabora-
tion, |2023)). These recent works mostly build upon algorithms developed for the single-task case,
and simply integrate task-conditioning as part of the state. While several works hand-select parts
of large, open-source robotics datasets for pre-training (Octo Model Team et al., 2024), active data
selection for multi-task fine-tuning has not been addressed. Prior work on meta-learning has studied
how one can explicitly meta-learn the ability to adapt to task demonstrations (Finn et al.,2017). We
find this capability to emerge even from models that are not explicitly trained in this way, and focus
on which demonstrations to obtain.

Data Selection The idea of directing a sampling process to gather information has been central to
machine learning research and studied extensively in experimental design (Chaloner & Verdinelli,
1995) and active learning (Settles, [2009). Most work on active data selection summarizes data
without focusing on a particular task (e.g., Sener & Savarese, 2017} |Ash et al., 20205 [Holzmiiller,
et all 2023; Lightman et al. [2023), which has been predominantly applied to pre-training.
Recently, adapting models after pre-training and during deployment has gained interest. Several
works, mostly in computer vision, focus on unsupervised fine-tuning on a test instance (Jain &
Learned-Miller, 2011} [Krause et al., 2018} |Sun et al.,|2020; Wang et al., 2021bj |Chen et al., [2022).
We focus instead on supervised fine-tuning of learning-based controllers in dynamical systems.
This necessitates automatic data selection, for which practical methods currently rely on uniform
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sampling or externally provided heuristics. Our approach extends work on task-directed data
selection (Kothawade et al., |2020; Wang et al.| [2021aj |[Kothawade et al., 2022} Bickford Smith
et al.l 2023)), which has recently been applied to the supervised fine-tuning of large-scale neural
networks in vision (Hiibotter et al.,2024b) and language (Xia et al., 2024} [Hiibotter et al., 2024al).

3 BACKGROUND

3.1 MULTI-TASK REINFORCEMENT LEARNING

The multi-task setting can be modeled by casting the environment as a contextual Markov decision
process (MDP) M = (S, A,C, P, R,~, j10) where S € R"s and A € RV are possibly continuous
state and action spaces. C is a (potentially infinite) set of tasks, with each task represented by an
Ne¢-dimensional vector ¢ € RV, P : S x A — A(S) models the transition probabilities (A(S)
represents the set of probability distributions over S), R : S x C — R is a scalar reward function,
~ € (0, 1) is a discount factor and pg € A(S) is the initial state distribution. In this setting, a policy
is simply a state-and-task-conditional action distribution v : S x C — A(.A)[H Any given policy
induces a task-conditional distribution over trajectories:

o0
T,((so,ao,sl,al,...) | c) = po(so) Hﬂ'(at | st,¢) - P(St4+1 | St,at).
t=0

The discounted returns for a specific task ¢ € C or a task distribution p. € A(C) are, respectively,

JI = E Z’th(st,c) and J7 = E J.

(505--- )~Tr(c) =0 e

Reinforcement learning algorithms traditionally aim directly at maximizing J7 , which is notori-
ously challenging. In the scope of this work, we instead consider an imitation learning setting, in
which expert demonstrations from an optimal policy 7* are provided. In particular, we focus on
behavioral cloning algorithms, which reduce the control problem to a supervised learning problem.

Given a set of N task-conditioned, H-length trajectories 71.x = (8§, ad, ..., s%_;,a%_; )N, with
task labels c;., behavioral cloning proposes a proxy objective for the policy 7: an empirical esti-
mate of the log-likelihood under the data distribution: J7,.. = & S% S~ Mlogm(a] | si,c;).

If trajectories 7y. are obtained from the optimal policy, cover the support of the desired task
distribution y., and the searched policy class is sufficiently rich, the maximizer of Ji,,, will also

maximize J7 as N and H increase. However, in general, there is a clear mismatch between Jgoxy

and Jl"[c (Xu et al., [2020; [Maran et al., 2023)). Nonetheless, the optimization of J;{OXY is a relatively
straightforward supervised Iearning problem, while the full RL problem raises several convergence
issues, particularly in the offline setting (Levine et al., [2020). Thus, we use J:c only for evaluation,

and carry out optimization through the proxy objective.

3.2 AcCTIVE PoLICcY FINE-TUNING

In this work, we consider an active fine-tuning scheme for multi-task policies. The goal is to fine-
tune a pre-trained policy to perform well on a desired task distribution p. using as few expert demon-
strations as possible. The agent is allowed IV sequential queries for demonstrations according to the
fine-tuning budget. The n-th query should consist of a task ¢,, € C. Once the agent selects a task,
feedback is received from the optimal policy 7* : S x C — A (i.e., an optimal demonstrator). At
each round the agent receives an H-step demonstration conditioned on the chosen task ¢,,. This can
be seen as a single measurement from a stochastic process over trajectories 7 : C — A((S x A)f).

Each observed trajectory up to round n is stored in a dataset (¢;.,,, 71.r, ), Which can be used to fine-
tune the policy, and condition the agent’s query at step n + 1. The process is repeated for N rounds,
with the goal of producing a fine-tuned policy that maximizes the expected returns for the desired
task distribution .

"We use 7r and 7 to denote stochastic and deterministic policies, respectively, and 7 (s, c) for realizations.
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Modeling assumptions We take a Bayesian perspective on active multi-task fine-tuning, by as-
suming a Bayesian model 7 over policies. We assume that demonstrations follow a noisy expert:
7(s,c) = (s, c) + €(s, c) where €(s, ¢) is independent noise. We remark, however, that AMF can
also be understood from a non-Bayesian perspective as selecting tasks that most quickly minimize
the size of frequentist confidence sets around the optimal policy.

4 METHOD

The active multi-task fine-tuning problem outlined so far requires active data selection for sample-
efficient learning. We thus build on top of principled active learning approaches for non-sequential
domains (Hiibotter et al.l [2024b)), and propose AMF, which selects queries that maximize the ex-
pected information gain about the expert policy over its occupancy:

H-1
Cp = arg max E I(m(sg, c);T(c) | erin_1, T1n—1)- (1)

c'eC Tlin—1~T(Clin—1) =0

ertic, (80, )~ (c)
We show in Section [4.1] that, under certain regularity assumptions, the policy learned by AMF con-
verges to the expert policy and matches its performance. These results constitute a first-of-its-kind
performance guarantee for active multi-task fine-tuning. The main novelty of this guarantee is the
extension of prior work to sequential domains where the visited trajectory (s, ag, s1,-..) ~ T(¢n)
is unknown when selecting the task c¢,, for a demonstration. In Section [d.2] we discuss the design
choices that make AMF amenable to optimization in practical settings.

4.1 PERFORMANCE GUARANTEES

We begin by presenting the performance guarantees for AMF. Our proof builds upon rates for un-
certainty reduction, then ties these to probabilistic convergence guarantees to 7*, finally resulting in
performance guarantees within the MDP. We summarize the main result here, and include a formal
proof in Appendix [A]

Informal Assumption 1. We make the following assumptions:
1. The expert policy ™ is deterministic, Lipschitz-smooth, lies in the reproducing kernel

Hilbert space Hy (S x C) of the kernel k with norm |7* ||, < oo and induces a Lipschitz-
smooth Q-function.

2. The noise €(s, ¢) affecting demonstrations is conditionally p-sub-Gaussian and bounded.

3. The dynamics of the contextual MDP M are Lipschitz-smooth with bounded support, the
initial state distribution L has bounded support, and the reward is Lipschitz-smooth.

Under these assumptions, we prove the following performance guarantee for active multi-task be-
havioral cloning.

Informal Theorem 2 (Performance guarantees for active multi-task BC). Let all regularity assump-
tions hold. If each demonstrated task of length H is selected according to the criterion in Equation
then with probability 1 — § the performance difference between the expert policy 7 and the
imitator policy m,, after n demonstrations can be upper bounded:

JT = I < Oy (k) VT,

where T, is the mean of 7 at round n and (1) is the maximum information gain about the ex-
pert policy from Hn samples, and is sublinear for a large class of problems. The O(-) notation
suppresses all multiplicative terms that do not depend on n.

Intuitively, this theorem proves that the imitator will eventually achieve the demonstrator’s perfor-
mance in smooth, regular MDPs with sublinear 77, (for a formal definition, we refer to Lemma
[2)in the Appendix). We can also prove a more general result under weaker assumptions: as long as
the policy is regular, the imitator will reach the noisy expert performance in arbitrary, non-smooth
MDPs, albeit only in expectation. A full derivation of this further result can be found in Appendix [B]



Under review as a conference paper at ICLR 2025

4.2 PRACTICAL ALGORITHMS

Theorem [2| guarantees that, under regularity assumptions, the adaptive demonstration sampling
scheme leads to convergence of the imitator’s performance to the optimal one. However, this crite-
rion involves state occupancies and a conditional entropy term, which are hard to access or estimate
in practice. Thus, here we derive a practical objective to be deployed in general settings. We first
rephrase the objective from Equation [I]in its entropy form:

¢, = arg min E 7—[ (s, e) | 7 etmt1, Tino1), 2)
c’€C Trn— 1~T(Ci n-1), T ~7(c")
c~pies (805 )~T(C)

where we use the definition of mutual information Z(:|7(c¢')) = H(-) — H(:-|7(c')), drop the first
entropy term as it does not depend on ¢/, and rewrite the second entropy term as an expectation
over 7(c’). As long as the task space C is finite and its cardinality is tractable, the arg min operator
can be evaluated exhaustively, and the expectation over the task distribution y. can be computed
exactly. When this is not the case, the arg min can be optimized through discretization, or with
sampling-based optimizers. The expectation over (. is also not particularly problematic, as it can
be computed in closed form (if C is discrete) or estimated empirically through sampling, as (. is
assumed to be known. However, two issues need to be resolved: (i) computing the expectation over
the noisy expert’s trajectory distribution 7, and (ii) estimating the conditional entropy term #(- | -).

Occupancy estimation Computing the expectation over a policy’s occupancy over states or
trajectories is in general intractable in continuous state spaces. Fortunately, a coarse empir-
ical estimate can be obtained as soon as few expert demonstrations become available. The
expectation E,. . ~r(c;.,_,)(-) can be estimated through a single sample, which is always
available in the form of the trajectories 77.,—1 collected so far, as they have effectively been
sampled from 7(cy.,—1). However, the remaining two expectations (i.e., E;/~r(~)(-) and
E(so,... )or( C)( )) involve the distribution over trajectories for an arbitrary task, which might not
have been demonstrated yet. However, we observe that, at round n, the tasks demonstrated so
far induce the empirical distribution fic(r) = -5 Z?;ll dc, (+), while the trajectories collected

similarly induce #(-) = -5 Y- §:,(-), where § indicates the Dirac delta distribution. We

can show that expectations over the trajectory distribution for an arbitrary task ¢ € C can be

estimated through importance sampling (i.e., by sampling trajectories from 7 (-) instead of 7(:|c)):
‘r(‘r |c)

Ermr(le) f(T) = Erni(y = f (7). The importance weights can then be estimated as

T(rle) 7(7le) _ (T|)
(1) Joce ﬂc(c’)T(T\c’) Loy T(T|CZ‘)

_ (n=Dpo(so) 15" #(adlse, ©) P(sigalse, ar)
2?711 tio(s0) Hf:?)l (atlse, i) P(sey1lse, at)
_ (n— )Ht o R (arsiy0)

P Ht 0 W(at\é‘tvcz‘)
where 7 = (sg, ag,...) and 7 can be approximated with the current estimate of 7. Intuitively,
the likelihood ratio of a trajectory under two different tasks only depends on the likelihood of
actions under the policy, and thus does not require knowledge of the MDP. As the estimate may be
inaccurate for small numbers of samples, in practice the algorithm can invest the first few rounds to
query a single demonstration for each of the tasks (in case they are countable and few) or to sample
the task space uniformly. On the other hand, the high-variance of the estimate can be controlled by

practical solutions such as clipping. We present the resulting empirical estimate for Equation [2]in
full in Appendix[C] and a qualitative analysis of importance weights in Appendix I}

w(T, ¢) (3)

Entropy estimation The estimation of conditional entropy terms such as (- | -) has been widely
researched in the literature. When the policy is represented through a Gaussian process GP(u, k)
(Williams & Rasmussen, 2006) with known mean function p and kernel kE] the entropy can be

2For simplicity, we consider a single-output GP, but generalize to multi-dimensional policies with multi-
output GPs in both experiments and formal proofs.



Under review as a conference paper at ICLR 2025

directly quantified by the predicted variance. Let us denote a state-task tuple as z = (s, ¢), and
let X be the sample vector obtained from concatenating states and tasks from previous trajecto-
ries (e.g., ¢1.n—1,T1:n—1,¢, 7). The unconditional entropy can be measured in closed form as
H(m(x)) = 3 log(2mk(x,2)) + 3, and the conditional entropy can be obtained by simply replacing
the kernel k with kx (z, 2) = k(z, 2)—k(z, X)[k(X, X)+021]" k(X ), where o2 is the variance
of the observation noise €(s, ¢), assuming it is distributed according to a zero-mean Gaussian.

Thus, when the policy - - —
can be modeled as a Algorithm 1 AMF (practical AME-NN variant in blue)

GP, the only approxima- Input: initial policy 7o, budget N, desired task distr. .., batch size 13

tion needed concerns oc- Output: fine-tuned policy 7y

cupancy estimation. We Initialize dataset Dy = 0; isolate policy parameters

refer to this first, practi- fornec[0,...,N —1] do

cal instantiation as AMF- Compute ¢, as the solution to Eq. 2] (approximated as in Eq.
GP, and present a general Collect new demonstration 7,, for task c,,

algorithmic framework in ifn+1% B =0 then

Algorithm Application Dn+1 = ,Dn+lfB U {CnfB+1:na TnfBJrl:n}

of the method to policies Update 7,41 from 7,1 p with D, 4

parameterized by neural
networks will adopt the same scheme. It will also require additional care on three distinct top-
ics: (i) kernel approximations, (ii) batch selection and (iii) forgetting mitigation, as suggested in the
Algorithm box, in blue.

Kernel approximations When the policy is parameterized through a neural network, estimation
of the conditional entropy is far less straightforward. First, we cannot assume the availability of ad-
hoc techniques for uncertainty estimation (e.g., Dropout (Srivastava et al., 2014} |Gal & Ghahramani,
2016)) or ensembles (Lakshminarayanan et al., 2017)), as they might not be featured in pre-trained
models. Even if the pre-trained model was perturbed and ensembled for fine-tuning, the ensemble
disagreement would not capture the pre-training data distribution. Second, access to pre-training
data is in general unrealistic, or hard to manage due to size and ownership of large robotic datasets.

Nevertheless, we can leverage the approximation of neural networks as a linear functions over
an embedding space 7(s,c;0) = B ¢g(s,c), where both weights 3 and embeddings ¢p(-) ex-
ist in a p-dimensional latent space (Lee et al.l 2019; |[Khan et al., [2019). This technique does not
violate any of the practical constraints listed above, and allows us to adapt the machinery intro-
duced in GP settings. While several embedding strategies exist (Jacot et al., 2018; |Devlin et al.,
2019; Holzmiiller et al.l 2023)), we adopt loss gradient embeddings (Ash et al., 2020). Assuming
the prior 3 ~ N(0, I), the policy (s, c; ) can be modeled by a Gaussian Process with kernel
ko((s,c), (s',¢") = (do(s,c),dp(s’,¢")). When coupled with this approximation, the conditional
entropy objective in Equation [2can be reformulated:

H-1
¢y = arg max E > ko(se,¢), X)[ko(X, X) + 021 k(X (51, ), 4)
c'eC Tl:n—l’\“r(?lzn—l))w T’(N;'(C/) =0
C~ ey (80,... )T (C

where X is vector of states and tasks in (¢/, 7/, ¢1.n—1, T1.n—1)- As the collected dataset grows, the
conditioning on previous trajectories 71.,—1 can instead be addressed by fine-tuning the network’s
parameters 6 (e.g., through conventional gradient descent), resulting in updates in the embedding
function ¢g.

Batch selection Standard practice in deep active learning prescribes the collection of batches of
samples at each round (Gal et al., 2017; [Sener & Savaresel 2018}, [Ducoffe & Preciosol 2018)). This
necessity is partially addressed by the fact that, in our setting, a single demonstration contains sev-
eral samples for training the policy (as many as the length I of the demonstration). Nevertheless,
we can further leverage the GP approximation to select multiple demonstrations at each round. In
fact, a simple recursive greedy selection can provide a constant factor approximation on the infor-
mation gain objective (Krause & Golovin, 2014; Hiibotter et al.,[2024b)). In practice, when selecting
M demonstrations at the n-th round, we can select the m-th demonstration out of M by applying the
criterion in Equation[I] while making sure to condition entropy estimates on both the m — 1 demon-
strations already selected in this round, and the M - (n — 1) demonstrations previously collected.
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Figure 3: Experiments in GP settings for a 2D integrator (see Figure . AMF-GP selects tasks
that minimize the policy’s posterior entropy and improves the agent’s returns faster than uniform
task sampling. In the middle, the improvement in final return over the baseline is greater when the
pre-training distribution is skewed and includes fewer tasks. We report return and entropy curves
for non-skewed and skewed pre-training (left and right, respectively). We report means and 90%
simple bootstrap confidence intervals over 10 random seeds ; dots and crosses mark corresponding
measurements.

Dealing with forgetting A fundamental issue with neural function approximation under shifts to
the training distribution is known as forgetting (McCloskey & Cohenl |1989; French, [1999)), as any
further optimization may catastrophically perturb pre-trained parameters. Common strategies for
its mitigation often involve rehearsal (Atkinson et al.,|2021; |Verwimp et al.,|2021)) or regularization
(Kirkpatrick et al} 2017). Unfortunately, the former is not feasible in this setting due to lack of
access to pre-training data, and the latter was not found to be empirically effective (see Appendix
EI). Scale and a diverse pre-training dataset can also mitigate forgetting (Ramasesh et al.| 2022),
but neither can be controlled during fine-tuning. Thus, we opt for a parameter isolating solution
(Rusu et all [2016; [Yu et al., 2020), in which the task-space is partitioned (e.g., uniformly),
and a copy of the fine-tuning parameters is stored and trained for each partition, thus avoiding
negative interference. Inference can then be performed by selecting the parameter set through a
nearest-neighbor lookup in task-space. This solution can be easily applied for limited task sets,
and can be scaled to large task spaces through discretization schemes. While parameter isolation
prevents constructive interference across tasks, we found it to bring a net benefit during fine-tuning.

By combining the approximations required by AMF-GP with three additional design choices
(namely kernel approximation, batch selection and parameter isolation), we obtain a method for
active multi-task fine-tuning of policies parameterized via neural networks. We refer to this practi-
cal instantiation as AMF-NN.

5 EXPERIMENTS

The experiment section is designed to evaluate active multi-task fine-
tuning and provide an empirical answer to several questions. We thus
reserve a section to each of them.

5.1 WHEN IS AMF BENEFICIAL?

Figure 2: 2D integrator.
Starting from the ori-
gin, each task involves
reaching a given point
on a circle, as shown
by differently colored
trajectories.

When none of the assumptions listed in Section @ is violated, AMF is
guaranteed to converge to the optimal policy. We furthermore investigate
whether AMF also results in faster empirically faster convergence with
respect to naive approaches to data collection. To do so, we compare
AMF to uniform i.i.d. sampling from the set of tasks C. First, we con-
sider a classic 2D integrator as a benchmark environment (see Figure[2)).
The agent is a pointmass initialized in the origin, and can directly control
its 2D velocity, which is integrated over the past trajectory to return the current state. We can define
an infinite task space, in which each task consists of reaching a point on a circle centered on the
origin, and the agent is rewarded with the negative Euclidean distance to it. The evaluation distri-
bution p. assigns equal probability to 12 points in different directions. The initial state distribution
is deterministic, dynamics are both deterministic and smooth, while the expert policy is smooth and
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Figure 4: AMF with neural policies in Frankakitchen (top) and Metaworld (bottom). Experiments
are repeated for state and RGB inputs (left and right). We evaluate both uniform and skewed pre-
training distribution. AMF-NN is overall desirable, and highly beneficial for skewed pre-training
distributions. We report means and 90% simple bootstrap confidence intervals over 10 seeds.

corrupted with i.i.d. Gaussian noise. We model the policy as a Gaussian Process with a RBF ker-
nel, and we condition it on a pre-training dataset of 12 noisy demonstrations. We then collect 50
additional demonstrations by running both AMF-GP and uniform sampling.

We first consider a perfectly uniform pre-training regime, in which each evaluation task is demon-
strated exactly once (Figure [3] left). As the policy’s entropy is minimized, AMF-GP increases the
policy’s returns at a higher rate compared to uniform sampling of demonstrations. We then extend
this evaluation to several pre-training distributions (Figure 3} middle), and compare the final perfor-
mance of the two methods as the pre-training budget is allocated to a decreasing number of tasks. As
the pre-training distribution becomes more skewed (e.g., when only 6/12 tasks are demonstrated in
Figure [3] left), we observe that the performance gap between uniform task sampling and AMF-GP
grows larger. This is to be expected, as in this case the information gain from the next demonstra-
tion heavily depends on the queried task, and taking the arg max of the criterion in Equation [T]is
significantly better than choosing a random task. Intuitively, in this case, uniform sampling of tasks
fails to reliably provide demonstrations for tasks that were observed less often during pre-training.

5.2 CAN AMF SCALE TO HIGH-DIMENSIONAL TASKS?

In realistic settings, the assumptions enabling a formal analysis of AMF are soon violated. As the
complexity of the environments of interest increases, most modern behavior cloning applications
rely on neural networks for policy parameterization (Reed et al,[2022} [Chi et al.| [2023)). Motivated
by this pattern, we now study a second version of our method, AMF-NN, and evaluate its ability
to scale to complex, high-dimensional tasks. We consider two common benchmarks for multi-task
learning, both with a finite set of tasks.

* In Metaworld we create a scene with a robotic arm, a cup and a faucet,
defining 4 tasks: moving the cup to two distinct positions, opening and closing the faucet.

* In FrankaKitchen 2020), we consider 5 tasks, namely turning a knob on or off,
opening a pivoting or a sliding cabinet, or opening the microwave door.

In both environments, we evaluate AMF-NN when learning from state measurements, as well as
from raw pixels. In the first case, the policy is simply parameterized through a MLP, while in the
second the MLP receives the embedding of a pre-trained visual encoder (Nair et al., 2022b)). The pol-
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Figure 5: Influence of batch size B overareaun-  Figure 6: AMF performance with alternative
der success rate curve with 20 demonstrations. uncertainty estimation schemes.

icy is pre-trained on ~ 15 total demonstrations, which we allocate either uniformly across all tasks,
or only on half of them, reproducing the uniform and skewed regimes from the previous experiments.
Afterwards, we apply AMF-NN for 10 iterations, collecting 2 demonstrations at each iteration.

Figure [ reports average multi-task success rates at each iteration compared to a random uniform
task selection scheme. For the baseline, we additionally report performance without parameter
isolation, highlighting performance degradation due to negative gradient interference across tasks.
We observe that AMF’s performance is on par or better than a uniform task sampling scheme when
the prior was trained uniformly on all tasks. However, as reported in the previous section, AMF is
very beneficial when the pre-training dataset does not uniformly cover the evaluation tasks. These
trends are consistent across both environments, and both modalities. For a qualitative analysis of the
strategy induced by AMEF, we refer to Appendix [Hand[l}

Finally, Figure [] also highlights the effect of the only hyperparameter introduced by AMF-NN,
namely the noise parameter o2 in the GP approximation. While selecting an excessively high noise
level results in slightly greedier behavior and premature convergence, we overall observe that the
method is not particularly sensitive to this hyperparameter, performing fairly reliably across 2 orders
of magnitude.

5.3 IS BATCH-WISE TASK SELECTION IMPORTANT FOR AMF?

In the GP setting, policy fine-tuning and conditioning for batch-wise selection correspond. Thus, it is
not necessary to collect batches of demonstrations. This is not the case for AMF-NN. On one hand,
collecting batches of training data is computationally beneficial since training can be parallelized
effectively (Sener & Savaresel, [2018). On the other hand, each query already returns several samples
in our setting, which could make batch selection unnecessary. We thus set out to empirically validate
which batch size is desirable for active data collection in our setting. While keeping the total budget
fixed to 20 demonstrations, we evaluate AMF-NN with batch sizes B spanning from 1 to 4, and
report the area under the success rate curve in Figurelﬂ For convenience, we report the same metric
for the uniform selection baselines from Figure [ for which the data selection strategy does not
depend on the batch size. We find that larger batch sizes are not necessarily desirable.

5.4 HOW DO UNCERTAINTY ESTIMATES FOR AMF COMPARE?

As entropy estimation is at the core of AMF-NN, we additionally compare the adopted GP ap-
proximation with loss-gradient embeddings to other approaches from the literature. In praticu-
lar, we also consider an alternative GP approximation using last-layer embeddings
2023), as well as test-time Dropout (Loquercio et al) [2020). For the latter, each

batch is simply filled with demonstrations from the task maximizing prior entropy, that is
argmaxX,cc Ery. i ~or(cim_1), (505 )~ (c) Zif,l H(m(s¢,¢) | T1:n—1)- Both of these schemes are
in practice desirable, as they do not require access to action labels. However, we observe that these
two schemes are prone to early convergence to suboptimal task choices, or are less effective in
driving task selection. Hence, as shown in Figure |6 multi-task performance is in general lower,
suggesting that the entropy estimation technique is crucial to AMF-NN.
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5.5 CAN AMF BE APPLIED TO OFF-THE-SHELF MODELS?

As AMF-NN has minimal requirements (essen-
tially, access to a differentiable pre-trained prior
is sufficient), it should be widely applicable.
In this section, we investigate scaling our eval-
uation to recently published open-source gen-
eralist policies. For this purpose, we chose
Octo (Octo Model Team et al.l |2024). This
model relies on a transformer backbone for in-
tegrating multimodal information (in the form
of state sensors, camera images and text or 'AMF'NN Uniform
RGB task descriptions), and uses a diffusion- "~ Uniform, no parameter 0 2 4
based policy head for action prediction isolation Rounds

2023). For computational reasons, We  pjoyre 7: Evaluation on life-like WidowX tasks.

will focus on fine-tuning the action head alone. A MF.NN can be applied to large-scale settings.
Octo is pre-trained on a large-scale real-world

robotic dataset (Collaboration), 2023, and is thus designed for inference on physical hardware.
Nonetheless, a recently proposed evaluation suite enables simulated evaluations that statistically cor-
relate with real-world results 2024). We thus collect rollouts from a pre-trained Octo on
the WidowX tasks, and filter them to only include successes, akin to self-distillation schemes
(2024). On availability of such self-supervised demonstrations, we then apply AMF-NN
for 4 iterations, providing 4 demonstrations in each round. The results are reported in Figure

As all evaluation tasks are largely demonstrated in the pre-training dataset (Collaboration|, [2023),
we find that AMF-NN does not improve significantly upon uniform task collection, confirming the
trend we observed for uniform pre-training distributions in Figure ] Nonetheless, we observe that
it constitutes an effective method for data selection, and can be applied as a drop-in replacement for
fine-tuning of off-the-shelf modelsﬂ

WidowX

o
'S
O

Multi-task success rate
(=}
o
(=]

0.40

6 DISCUSSION

As generalist robotic policies gain prominence, a new set of challenges and opportunities emerge.
This work responds to this trend by investigating an active multi-task fine-tuning scheme, which
adaptively selects the task to be demonstrated for sample-efficient multi-task behavioral cloning.
This approach is developed from first principles, extending a formally-motivated, information-based
criterion to trajectories over dynamic systems. The resulting method is both formally supported by
novel performance guarantees and widely applicable. Moreover, a practical instantiation enables
sample-efficient multi-task fine-tuning across GP and neural network policy classes.

Naturally, active multi-task fine-tuning has several limitations. When coupled with neural networks,
the algorithm relies on uncertainty estimation techniques, which remain an open problem. While the
approximation we leverage is informative in our experiments, AMF could benefit if large pre-trained
policies would allow other off-the-shelf uncertainty quantification techniques (e.g., through model
ensembling during pre-training). Second, we found the performance of AMF to depend naturally
on the pre-training data distribution. While AMF induces efficient learning for skewed pre-training
distributions, it naturally brings more modest gains when the pre-trained policy is equally capable
for all tasks, and uniform task sampling is sufficient.

On top of addressing the current limitations, this work suggests multiple interesting directions. An
extensive empirical evaluation of active fine-tuning with large-scale generalist policies is clearly
desirable, but remains infeasible at the moment due to the scarce availability of open-source mod-
els and benchmarks. Another future research direction would involve direct estimation of the RL
objective, thus removing the dependence on non-equivalent BC proxy objectives.

3This evaluation also reports an interesting trend, that is a vast reduction in catastrophic forgetting, to the
point that parameter isolation is not necessary. This anecdotal evidence can be seen as an instance of a general
trend of mitigated catastrophic forgetting in large models (Ramasesh et al.L 2022).

10
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REPRODUCIBILITY STATEMENT

Appendix |L| describes implementation details and hyperparameters across all experiments. We ad-
ditionally open-source a clean and commented implementation of AMF-GP and AMF-NN at the
anonymous website.
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A PERFORMANCE GUARANTEES UNDER REGULARITY ASSUMPTIONS

This sections retrieves guarantees on the performance of the imitator policy as a function of the
number of provided demonstrations n. At first, this analysis focuses on policies over a single-
dimensional action space. An extension to multi-dimensional outputs is introduced later on. The
general sketch of the proof can be informally described as follows:

* we first introduce the regularity assumptions required for the guarantees;

» we then show that, in Lipschitz, bounded MDPs, the effect of stochasticity on information
gain at each round can be controlled;

* we show how the variance over the imitator’s policy shrinks according to the maximum
information gain at each round, which in turn depends on the maximum information gain
over a set of queries to the expert;

* starting from the previous result, we leverage a well-known theorem (Abbasi-Yadkori,
2013)) to retrieve a probabilistic, anytime guarantee on the error of the imitator;

» we quantify the relationship between the imtator’s error and its performance, thus retrieving
our main theoretical result.

A.1 ASSUMPTIONS

It is clear that bounding imitation performance would be hopeless without any regularity assump-
tion, as slight errors in the imitator’s policy could result in arbitrary differences in return. We thus
introduce the following:

Assumption 1. (Regular, noisy policy) We assume that the optimal policy ™ ~ GP(u, k) with
known mean function p and kernel k. Furthermore the noise €(s, c) is mutually independent and
zero-mean Gaussian, with known variance p*(s,c) > 0 for all (s,c) € S x C.

In order to motivate further assumptions, let us recall the criterion from Equation [T}

H-1

¢, = arg max E I(w(st,c);7(") | Crim—1,T1in—1)- 5
c'eC Tiin—1~T(C1in—1) —
c~pie, (80500 )~T(C)

Through this section, we will use a slightly more precise formulation:

H—-1
¢, = arg max E ZI(W(St,C);ﬁ'(T,C/) \ Cl:n71a71:n71)7 (6)
c/eC  Tin—1~T(c1in—1),7~7(c") —0

e~ e, (80,-.. )~T(C)
in which we clarify that the mutual information is only computed with respect to the actions of the
noisy expert, and overload the notation with 7 (7, ¢') = (7(s;,¢'))i =" for 7 = (s4,a;){ . The
criterion selects the task c,, with the greatest expected mutual information between the policy and
the trajectory associated with the task. We note that, the objective produces a fully deterministic se-
quence of tasks, as all stochasticity is resolved in the expectation. Nevertheless, the actual sequence
of states at which the demonstrator is queried remains stochastic. For this reason, we require the
following two sets of assumptions to ensure that information gained along empirical trajectories is

not arbitrarily smaller than the expected one.

Assumption 2. (Lipschitz, bounded MDP and policy) Given the contextual MDP M =
(S8, A,C,P,R,~, o) and the noisy expert T we assume that, for every {(s,c,a),(s',c,a’)} C
SxCxA:

* the support of the initial state distribution pig is bounded by an €,,-ball

a - <
oo [sn = sill2 < €uq»

e the transition kernel P is L p-smooth

W(P('|S,CL),P('|S/,&/)) <Lp- d((s,a), (S/aa/))v
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where d((s,a), (s',a’)) = ||s — s|l2 + ||la — @'||2, and W(-,-) is the Wasserstein 1-distance
with respect to d(-,-); furthermore, the support of P(:|s, a) is bounded by an €p-ball

a —sif2 <
sz,Shesglp()jg(.‘sya)) ||3h Sl||2 <ep,

* the reward function R is L r-smooth
|R(s,c,a) — R(s',c/,a')| < Lg-d((s,c,a),(s',c,a")),
where d((s,c,a),(s',c;a)) =||ls—s|la+ |lc— |2+ |la — a||2,
¢ the noisy expert 7 is L-smooth
W(w(-|s,c,a), P(-|s', ¢ a")) < L - d((s,c,a),(s',c,a")),

where d((s,c,a), (s, c,a")) = ||s — s|l2 + |lc = |2 + |la — a'||2 and W(,-) is the 1-
Wasserstein distance with respect to d(-, -); furthermore, the support of 7 (+|s, a) is bounded
by an e-ball
max llan — aill2 < ep,
ar,an €supp(7(-|s,c))
* finally, the Q-function for the expert ™ is Lg-smooth

Q7 (s,c,a) = QT (s',¢,a")| < Lq - d((s, ¢,a), (s, ¢, "))

We note that smoothness of the noisy expert is guaranteed by construction if the expert 7 is L-
smooth.

Assumption 3. (Smooth MI) For every pair of sequences of trajectories {T1.n—1,71.,_1} C

(S x AHT=D (5.¢) € S xC, c1pq € C* L, 7 € (Sx A and ¢, € C, we assume that the
mutual information at step n is Li-smooth with respect to the mean square deviation of collected
trajectories:

|I(7T(8’ C); 7?(7:’ cn)‘cl:n—h Tl:n—l)_I(Tr(Sv C); 7?(7:7 Cn)|clzn—1a 7—1/;71_1)| S Ll'd(len—la 7—1/;71_1)7
_ H—
where d((50717 0,15 - - - SH,n—1, aH,n—l)’ (36,1’ a6,17 s S/H,n—l’ a%],n—l) = ﬁ 22:11( t:ol

”stm - Stmll3 + llaem — aQ’mH%)% is the mean square deviation over the concatenation of tra-
Jectories.

A.2 PROOF

We first prove that, under Assumptions[2]and[3] the effect of stochasticity on the mutual information
at step n is bounded.

Lemma 1. Let Assumptions |Z| and |3| hold. Fix a sequence of tasks c1.,_1 and consider two ar-
bitrary sequences of trajectories T1.,—1 and T.,,_, sampled from T(c1.,—1). Fix one state-task
pair (s,¢) € S xC, one task ¢, € C and one trajectory ¥ ~ T(cn). Let ¢, = 8H2(1 +
max(Lp, L))" max(e, €, €p). The difference in mutual information when conditioning on the
two sequences of trajectories can be bounded:

|I(7T(S7 C); 7?(7:7 Cn)|7-i:n—1) - I(ﬂ'(S, C); ﬂ'(%, Cn)|7-',; 1)| S €n-

Proof. Under Assumption[3]it is sufficient to show that stochasticity in the MDP does not cause the
demonstrator’s trajectories to deviate excessively. This is a direct consequence of smoothness and
boundedness, which we assume in Assumption [2] and can be shown by induction. Let us fix a task
¢n, € C and consider two trajectories 7, 7" ~ T(c,,). For the two initial states (s, s{,), boundedness
of the initial state distribution p implies that ||sg — sll2 < €,,. Now, assuming that the distance
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between two states (s, s;) is bounded as ||s; — s}||2 < €, we have that

€141 = |[Se41 — 32+1||2 7
CWP(Isi,ar), PCIshy ) + 2ep ®)
< Lp-(|[st — silla + [lar — agll2) + 2ep ©)
=Lp- (& + llar — ag|l2) + 2¢p (10)
L (e £ WE 50, ), 715 ) + 22) + 2 (1
< Ly (€ + Ly - ||t — stll2 + 2€5) + 2¢ep (12)
=Lp-(et+ Ly e+ 2€;) + 2ep (13)
=Lp-(La+1) € +2€e)+ 2ep (14)
=Lp(1+4+ Lx)et +2(Lper +€p) (15)
= Ae; + B, (16)

where Lemma|§| was used in (i) and (ii); Assumption [2|and the fact that ¢; = ¢, were used through
the rest of the derivation. The recurrence relation can be easily unrolled as

t—1
e < Aley + ZAiB a7
=0

< Aleg + max(A* 1) Bt (18)

< max(A4,1)"(eq + Bt) (19)

=max(Lp(1+ Ly),1) (eo +2t(Lpes + €p)) (20)

< (1+Lp)'"(1+ Lx) (o +2t((1 + Lp)exr + €p)) 1)

< (14 Lp)'(1+ Ly (2t(1 + Lp) max(eq, €x, €p)) (22)

=2t(1+ Lp)"™™" (1 4 L)' max(eo, €x, €p), (23)

thus bounding the L2 distances between states at each step of the trajectory e; = ||s; — s}||2. We

note that the distance between actions can also be easily bound by Lemma[9} |la; — a}|2 < L€, +
2¢,. This can in turn be related to distances over trajectories. Let us fix ¢1.,,—1 € C and consider
Tlin—1,T1.p—1 ~ T(¢1.n—1). We have that

n—1 H-1
ATrin15 1) = =g 20D Isem = shonll3 + lorm — ot 3)* 24)
m=1 t=0
H-—1
< () &+ (Lres +26,)%)2 (25)
t=0
H—-1
<Y G+ (Leer +6)?)2 (26)
t=0
H—-1
= (" €+ (14 L)%z Q27)
t=0
H—-1
< (3 21+ Ly)2ed)? (28)
t=0
H—-1
1
=201+ L.)* ) )2 (29)
t=0
H-1
1
=V2(1+ L) D )2 (30)
t=0
<V2(1+ L) (Hé_)? 31)
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2H(1+ Ly)eg—1 (32)
<V2H(1+ Ly)-2(H — 1)1+ Lp) (1 + L)' max(eg, €5, ep)  (33)
< 4H%(1 + Lp)7 (1 + L))" max(eg, €, €p) (34)
< SH%(I+maX(LP7L7‘-)>HmaX(60,6ﬂ—,EP). (35)

Having obtained an upper bound on the distance between sequences of trajectories, the result fol-
lows naturally from smoothness of mutual information according to Assumption [3]

O

We can now focus on the main result. We start by introducing an important measure, quantifying
the maximum information gain at each round:

H—-1
'), := maxt,(c¢’) = max E L(w(ss,0); w(T', ) | Cln—1,T1m—1)  (36)
c'eC ¢'€C 11~ T(C1in—1) =0
! ’ -
7'~ ()

e~ e, (80,... )~T ()

We note that the criterion in Equation [6]takes the arg max of the same quantity I',, maximizes over.
As common in the literature (Bogunovic et al.,[2016}; Kothawade et al.|[2020; Hiibotter et al.| 2024b),
we make a standard assumption on diminishing informativeness.

Assumption 4. For each n,i € N with ¢ < n, the maximum information gain at round n is not
greater than the maximum information gain at round i:

T, <T;.

This can be leveraged to show that the expected mutual information is sublinear in the number of
rounds n. From this point, we overload the notation and allow policies (e.g., 7r) to map vector to ran-
dom vectors, that is w((zg, . . ., Tp—1)) = (7(x0), ..., 7(TH_1)) for (zg,...,xn_1) € (S x C)".
Lemma 2. Under Assumptions [I|and 4} if (co, ..., cn) follows the criterion in Equation @ then
T, < %’Y(Hn)’ where 7y(frny = maxxcsxc Z(w(S x C); w(X)).

| X|<Hn
Proof.
1 n—1
I, =- T, 37
n; (37)
() 1
<=-> I (38)
1=0
1 n—1 H—-1
= - max E I 807 7 (T C) | cl:n7177—1:n71) (39)
n i—0 c'€C 7y p_1~T(Clin—1) =0
7' ~T1(c)
c~pie, (S0, )NT(C)
(i1) 1 n—1
= 72 E ZI SOa (T cn)lcln 1, Tlin— 1) (40)
n A=y mme1~eT(enn-1) 15
T'~T(Cn)
e~ pie, (80,... )~T(C)
1 H-1 n—1
=~ E E ZI (50, €); 7 (Tnsn) | Crn1,Tim1) (A1)
noooemMe 4T TarT(cn)
(s0,---)~7(€) Tim—1~T(Clin_1)
(iii) 1 =
= = ya 170 (T1n, Clin 42
n el > E (7 (50, €); T (T1in, C1in)) (42)

Tn~T(Cn)

MC t—O
(s0,-)~7(€) T=0 2 or(eron 1)
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H—-1
< = |7
= n e X%lg)icz(ﬂ(S(),C),Tr(X)) (43)
(50, )~7(c) =0 | X|=Hn
1 H-1
< = 7
= L Jnax I(m(S x C); (X)) (44)
50,... )~ (c) t=0 | X|=Hn
H -
= ypax I(m(§ x C); (X)) (45)
| X|=Hn
H
n

where (i) follows from Assumption ] (ii) follows from Equation[f] (iii) is due to the chain rule of
mutual information. We note that v,, = maxxcsxe, |x|<n Z(7(S x C); (X)) is sublinear for a

large class of GPs. In this cases, a looser upper bound would be H? I O

This bound on expected round-wise mutual information can then be leveraged to describe how the
total variance shrinks over rounds.

Lemma 3. (Uniform convergence of marginal variance, following Hiibotter et al.|(2024bl)) Under
Assumption[1) 2] and[3| for any n > 0 and (s,c) € S x C,

2627

on(s,0) < (14 en) —5—,
min

where 5% = maX(s c)esSxc 0—8(87 C) + P2(37 C) and Tyin = mins,cESxC ETNT(C) Lser

Proof.

02(87 C) = VaI‘[ﬂ'(S, C) | Cl:n, 7—lzn] (47)
= (Var[m(s,c) | crn, Ti:n) + p°(5, c)) - p2(s7c) (48)
= Var[@ (s, ¢) | ¢1.n, T1:n] — Var[ft(s,c) | w(s,¢), c1.n, T1:n) (49)
(@) Var[7 (s, ¢) | ¢1.m, T1:n)
< 521 ’ 50
=7 Og<Var[ (s,¢) | w(s,¢),¢1m, T1in) (50)
=267T(m(s,c); (s, ) | CLn, T1n) (51)

1 -
=20 ———— E Ll Z(n(s,¢); ®(s,¢) | crns T1in) (52)
ETNT(C) 1567’ Tr~1(C)
(i) 252 _
< E lse-Z(m(s,¢);@(s,¢) | crin, T1in) (53)
Tmin 7~7(c)
252 -
S E 1867'1(71-(870);77(7’ C) ‘ Cl:n77—1:n) (54)
Tmin 7~7(c)
252 _
< E Z(m(s,c); ™(T,¢) | Crons Tin) (55)
Tmin 7~7(c)
252 1 -
< d E 186(80,...) E I(TF(&C);W(T, C) | Cl:nalen)
Tmin B e~pe 156(507 ) e pe ()
80,... )~T(c) (s0,---)~7(c)
(56)
252 -
< 2 E i 186(80,“.) E I(TK'(S,C);TI'(T, C) | Cl:naTl:n) (57)
Tmin( CNHe T~ (c)
$0,... )~T(c)
252 -
= T cf]VEpw 186(80,...)1(77(370);77(7-7 C) | Cl:naTl:n) (58)
min - (e)

(s0,... )~7(c)
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H-1

252
<5 B it ) Z((se, 0l (T0) | Crins Tien) (59)
min T~ (C) t=0
(s0---)~7(c)
252 =
<5 B ) T(m(sn0)i A o) | et i) (60)
min T~7(C) t=0
(50, )~T(c)
(iid) 25 = ~
S (1+€n)T E Z E I(W(Styc);ﬂ(7—7c) | Cl:n;len) (61)
Thi T‘f:_’_/*(cc) —0 Tiin—1~T(C1in—1)
(s0,...)~7(c)
262 =
=(1+e)—5 E I(m(se,¢);(T,¢) | Crins Tin) (62)
min Trn-1~T(C1n—1) {0
T~T(C)
e~pies (80, )~T(c)
252 =
< (14 €,) % max E L(w(sy,0); 7(7', ) | Criny T1im) (63)
mm ceC 7y, 1~T(61n 1) i—0
T'~T ()
e, (50,0 )~ (c)
2521,
min

where (i) follows from Lemma [8]and monotonicity of variance, (ii) holds as the state s is within the
support of 7(+|c), and (iii) follows from Lemma |I|as the difference between the expected mutual
information and the mutual information for a realized trajectory is less than the difference in mutual
information for two arbitrary realized trajectories. O

This result can then be translated to the agnostic setting, for a regular policy 7*, which we still model
through the stochastic process 7. Without loss of generality we will assume that the prior variance
is bounded by Var[m (s, c)] < 1.

Lemma 4. (Well-calibrated confidence intervals, following |Abbasi-Yadkori (2013|)) Pick § €
(0,1). Assume that 7 lies in the RKHS H(C) of the kernel k with norm ||7*||, < oo, the
noise €, is conditionally p-sub-Gaussian, and =, is sublinear in n. Let 3,(6) = |=
P\ 2(Y(rn) + 1 +10g(1/9)). Then, for any n. > 1 and (s,c) € S x C, GP(un, k) is an all-time
well-calibrated model of w*. Thus, jointly with probability at least 1 — 6,

|7T*(S,C) - /Ln(S,C)‘ < 6n<5)0n

We note that 3,,(6) depends on () as Hn samples from the demonstrator’s policy are collected
up to round n. Combining Lemmas [3| and |4| we easily get for all (s,¢) € S x C and n > 0 with
probability 1 — 4:

RRCT RO ey NOP M SN (R S
While the analysis has so far dealt with a scalar 7*, a simple union bound can guarantee that
7 (5.6) = pn( ) < Al (1 -+ e) 222 ) (66)
min
with probability at least 1 — § for an action space of dimension |.A|, where now £, (§) = ||7*||x +

P/ 2(Y(rn) + 1 +10g(JA[/6)). From now on, we will refer to i, as m,. We are thus able to
globally bound the L; distance of the imitator policy with respect to the expert policy with high
probability under active fine-tuning.
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It is clear that, even if this distance is small, the performance of an imitator which does not exactly
match the expert (7, (s, c) # 7*(s, c) for some (s,¢) € S x C) can be arbitrarily low for arbitrary
MDPs. It is however possible to show that, as long as the Q-function of the expert is smooth, the

performance gap to the expert can be controlled. We note that, in case YLp(1 + L,+) < 1, then the
Q-function Q™ is guaranteed to be Lg-Lipschitz continuous with Ly < ﬁ (Rachelson:
& Lagoudakis| [2010). If smoothness holds, it is easy to connect the divergences in action space to
performance gaps (Maran et al., [2023)).

Lemma 5. Let w and 7' denote two deterministic policies. If the state-action value function Q”/ is
LQW/ -Lipschitz continuous, then:

2 w’ LQ’” ’
|JT = J" | < ﬁEmd"[HW (s,¢) = (s, 0)|1].

Proof. Given a function f : A — R, we denote the Lipschitz semi-norm ||f(:)[|z =
SUDg are A 7‘“‘?;1—(1{7}: )L We have:
- - (i) 1 -
JT—J = mEsNdﬂ' anﬂ'(-|s,c) [A (57 C, a)] (67)
1 I - 7,
-1 ’YESNdW Egr(19)[@" (s,c,a)] =V (s,c)] (68)
1 [ , /
= —FE;ugr / m(a | s)QT (s,c,a) — V7™ (s,¢) (69)
1—~ | JacA
1 i . :
= —Fsgr Q" (s,¢,a)[r(a | s,c) —n'(a| s,c)] (70)
1—7 | Ja€A
1 i ™ !
< 7Es~d7‘ sup Q (8763 a)[ﬂ-(a ‘ S,C) -7 (a‘ | 870)] (71)
1—7 | Ja€A s,c€SxC

@) 1 /
< T Esnar ll sup Q" (S,Cw)llLW(W('Is,C)ﬂT’(~Isvc))] (72)

1= v $,cESXC

(ii)) Ly )

< T Esar [W(n(- | s,¢),7'(- | 5,¢))] (73)
) L !

@ 28 Bl | 5,0) =7 [ 5,0l (74

where (i) follows from the performance difference lemma (Kakade & Langford, 2002, (ii) follows
from the definition of L; Wasserstein distance, (iii) holds as Lo~ > [|sup; .csxc @™ (8, ¢, )|z and
(iv) follows from both policies being deterministic. The proof is completed by taking the absolute
value on both sides. O

So far, we have shown rates of convergence for the imitator, and connected its error to performance.
Our main formal result can be shown by coordinating the lemmas so far presented.

Theorem 3. (Performance guarantees for active multi-task BC) Let Assumptions and || hold.
Pick § € (0,1). Assume that 7* lies in the RKHS H.(C) of the kernel k with norm ||7*||;; < oo,
the noise €, is conditionally p-sub-Gaussian, and vy, is sublinear in n. If each demonstrated task is
selected according to the criterion in Equation|l] then with probability at least 1 — ¢ the performance
difference between the expert policy 7 and the imitator policy T, after n demonstrations can be
upper bounded:

[MES

) P

J =
7—min(l - 7)

((1+e)B2@OT)" = Olyam) /v,
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where €, = 8H? (1 + maX(Lﬂ-,LP))HmaX(GO,Eﬂ—,EP). Furthermore, if v, = O(logn) (e.g., for

linear kernels), then J™ — J™ "0

Proof.
Jﬂ'* Jx (i) JT J7r*
—JT= I =TT (75)
Lemma5] L o+
TR e lIma(s.0) = 7)) (76)
Lemma[3][4] LQ”* or,, 1
< B! 1
<5 B (O +e) ) (77)
\/ﬁLQw*”&Hl ’ %
== = ((1+€)B2(0)T, 78
o (aresior) 78)

where (i) is due to the fact that J™ > J™ for any policy 7, and the expectation fades due to
1

uniform convergence. The only terms with a dependency on n are 3, () = O(fon)) and I'), =

O(7(#n))/m» which can be combined in the asymptotic notation in the Theorem. If y,, = O(log n),

then J™ — J™ = O(logn)//n "=~ 0. For a summary of magnitudes of +,, for common kernels,
we refer to Table 3 in |Hiibotter et al. (2024b)). ]

B GUARANTEES IN NON-LIPSCHITZ MDPs

The main result reported in Theorem [3| provides anytime guarantees on the agent’s performance,
assuming smoothness in the MDP. However, it is possible to replace this assumption with a weaker
one, at the cost of only retaining guarantees in expectation. This weaker version of the theorem can
be retrieved by simply assuming smoothness on the noise, rather than on the MDP, and leveraging
results recently presented by Maran et al.|(2023)).

Assumption 5. The noise distribution € is Ly-TV-Lipschitz continuous.
This assumption is satisfied by a large class of Gaussian and sub-Gaussian distributions (Maran

et al, 2023). We can build upon Assumption 4] and Lemma [2] and start by providing a weaker
version of Lemma[3

Lemma 6. (Uniform convergence of marginal variance in expectation) Under Assumption |l| for
anyn > 0and (s,c) € S x C,

26°T
2 n
E o,(s,c) < 2
Tiin—1~T(Clin—1) Tomin

~2 2 2 :
where 6° = maX(s,cyesSxc 99 (s,¢) + p°(s,c) and Typin = miNg ceSxC Ernr(c) Loer.

Proof. We resume from Inequality [60]in the proof of Lemma 3}

252 il
o2(s,¢c) < o CLEH Z Z(mw (s, c);®(T,¢) | e1:ny T1in) (79)
min TNT(CC) =0

(805-- )~ (€)

Therefore,
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o
T

_ —1
o
E UZ(S,C) < E —5 Z(m(sg,¢);7(T,¢) | C1iny T1im) (80)
Tiin—1~T(C1in—1) Tl:nle"'%C;:nfl) 7-min t
e~y (80,... )~T(C)

[\

Il
o

o

< max E
€C 1 pi~T(crin—1) T,
T/ ~7 ()
e, (80,... )T (C)
25T,

Tmin

o H—
Z (s1,¢); ®(7', ) | C1on, T1im) (81)
t=0

BL\J

in

O

Having bounded variance at each round, this time in expectation, we can invoke Lemma[4]to bound
the expected distance to the optimal policy with high probability:

I (s.0) — pals. ) < Bu(@)lals (250) )

Tiin—1~T(Clin—1) min

Instead of leveraging bounds for the imitator’s performance in Lipschitz-smooth settings, we can
instead use the fact that the expert’s actions are corrupted by smooth noise. In this setting, it is
instead possible to control the suboptimality of the imitator with respect to the noisy expert. We
report the following Theorem from Maran et al.| (2023), and refer to the original work for the proof.

Lemma 7. Let n*, 7 and m denote the expert, noisy expert and imitator policy, respectively. If
Assumption B holds, then:

2L£Qmax
L=y

where Quax = MaX(s ¢ qyesxcx.A |Q(S, a)|™ and W represents the Wasserstein 1-distance.

JE—JT < Espn W™ (- | 8),7(- | 5))];

As the expert 7* and the imitator 7, are both deterministic, this implies that

7 T 2LéQmax *
JT—=J; ﬁEsw*H(W ¢ 1s)m( )l (84)

IN

By invoking this Lemma, we can thus conclude that, with probability at least 1 — §

% 2 LéQmax”U”l _1
E JF g < Z25malONL g1 (5\PE = Oy g H). (85)
Tiin—1~T(C1in—1) 7-mm(l - ’Y) ( ) ( ( ) )
Therefore, if v, = O(logn), then B, | r(cr 1) JT — J7 = O(li’%’) "Z° 0. While these

performance guarantees only hold in expectation, they arise from minimal assumptions, mostly
regarding the policy class and the perturbation noise, and can thus be applied to arbitrary MDPs.

C PRACTICAL OBJECTIVE

Following up on the approximations reported in Section[d.2] we present the empirical estimate of the
objective that is used through experiments. In particular, we show how the expectations in Equation
[2)may be approximated with finite samples. The original criterion is expressed as

¥

. 12 . / !
¢p, = argmin ¢, (') = arg min E H(mw(se,e) | 75 c1m—1,T1im—1)-
cec ¢'€C Tip—1~T(Ctin—1), T'~T(C)
c~pie, (50,... )~T(C)

Il
=]

(86)
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An empirical estimate can be derived as follows:

H—
Pn(c) = H(w(se,c) | 7' 11, T1:n-1) (87)

Tlin— 1"“7'(('1n 1), 7'~ (e) t=0
cvtics (505ee )T (e)

,_.

(i) =

~ E H(mw(se,e) | 7' e1m1, T1n_1) (88)
ot (oo Yorr(e) =0

(i) 1 ey .y

~ H ) ~IE(c’) 2 H(w(se,e) | 7' c1im—1,T1n—1) (89)

DS H(r(s0,0) | €07 crnr i) (0)
t=0

H-1
1
= E  w(, d)w((so,...),c) H(mw(se,0) | o7 cim—1,T1n—1)  (91)
| | ceC (s0, .'.N;-N‘T' t=0
(idi) 1 Al
~ mz Zw(T’,c) ((s0,---) Z’H (s, e) | o7 etm_1, Tin—1),
celC T EFLin—1 t=0

(5050 )EFLin—1

92)

where (i) uses a single sample to estimate the expectation over past trajectories, (ii) uses a sample-
based approximation to the target task distribution ., and (iii) uses the importance sampling trick
(n—=1) [, #(ae|se.c)
Sisg Ilizo’ #(aclse,ci)
does not involve expectations, and can be efficiently computed. The complexity of evaluating the
criterion for a single task ¢’ scales linearly with the number of samples in C and quadratically with
the number of rounds n. However, the dependency on the number of rounds can be removed by
evaluating the second sum over a fixed number of trajectories sampled among 7y.,,—1, ensuring that
the complexity does not depend on the round.

introduced in Section with w(r,¢) = . This final approximate objective

D ADDITIONAL RESULTS FOR AMF-GP

Figure [3] only reports full return curves for two representative pre-training settings, namely those
involving 6/12 and 12/12 demonstrated tasks. We here report full results for each task allocation,
spanning from 1/12 to 12/12 demonstrated tasks. For each setting, we report both average multi-
task return and average policy entropy curves.
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Figure 8: Additional results in GP settings for a 2D integrator (see Figure . AMF-GP results in
improved sample efficiency across all pre-training regimes, and is particularly effective for skewed
pre-training distributions (e.g., when pre-training demonstrations have been allocated to 1/12 or 6/12
tasks).
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E ADDITIONAL RESULTS FOR AMF-NN

Results in Figure [ are computed over two representative pre-training distributions: one allocating
pre-training demonstrations uniformly over all tasks, the other one only demonstrating the first two
tasks. We report these results again, and compare them with those for several other pre-training
distributions. In particular, we evaluate a family of skewed priors which are only trained on one or
two tasks. Results are reported for FrankaKitchen in Figure 0] and for Metaworld in Figure [T0} and
are consistent with patterns observed in Figure ]
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Figure 9: Additional results for AMF-NN in FrankaKitchen with state inputs. We evaluate several
allocations of the pre-training demonstrations, as labeled below each plot (e.g., the label [8, 8, 0, 0, 0]
indicates that 8 demonstrations were provided for each of the first two tasks each, and none for the
remaining tasks).
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Figure 10: Additional results for AMF-NN in Metaworld with state inputs. We evaluate several
allocations of the pre-training demonstrations, as labeled below each plot (e.g., the label [8, 8,0, 0]
indicates that 8 demonstrations were provided for each of the first two tasks each, and none for the
remaining tasks).
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Figure 11: Influence of batch size B over area under success rate curve with a budget of 20
demonstrations in Metaworld.
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Moreover, we also report an ablation over the choice of batch size for Metaworld in Figure[TT] thus
complementing the one reported in Section[5.3] We observe a slight upward trend favoring larger
batch size in the case of an uniform prior, but smaller batches remain overall desirable.

F UNCERTAINTY ABLATION

Section [5.4] evaluates alternative uncertainty quantification schemes in FrankaKitchen for two pre-
training distributions. This Section extends these results to include results for Metaworld, and for
several other pre-training settings (see Figures[I2]and [I3)). Results are consistent with those so far
reported, suggesting that loss gradient embeddings are an important component for the empirical
performance of AMF-NN.
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Figure 12: Additional results for AMF-NN in FrankaKitchen with state inputs and different uncer-
tainty quantification techniques. Task allocation during pre-training is reported under each plot.
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Figure 13: Additional results for AMF-NN in Metaworld with state inputs and different uncertainty
quantification techniques. Task allocation during pre-training is reported under each plot.

G MITIGATING FORGETTING

The ability of neural networks to adapt to shifts in training distribution while retaining information
is an important object of interest in lifelong and continual learning (Wang et al.,[2024b)). In general,
learned models display a trade-off between their ability to integrate novel information, and their
memory of previously observed training samples. Arguably, common neural network architectures
can easily fit new data (save for loss of plasticity 2023)), but are known to forget previous
information, often catastrophically. This problem is of utmost relevance in our setting, in which the
pre-trained network is not just leveraged as a useful initialization, but may already capable of solving
some tasks. Hence, the fine-tuning procedure should be careful not to disrupt this ability.

Several methods aimed at mitigating forgetting can be traced back to rehearsal (Riemer et al., 2019;
Chaudhry et al.] 2019) and regularization (Kirkpatrick et al, 2017) strategies. While rehearsal ap-
proaches are often effective, they also require access to pre-training data, which is unrealistic in our
setting. Hence we consider two common regularization technique, namely L2-regularization to the
pre-trained weights, and EWC (Kirkpatrick et al., 2017). The latter can be seen as a more nuanced
version of the former, which adaptively scales the regularization strength according to the curvature
of the loss landscape.

Furthermore, we consider a continual learning algorithm based on Git Re-Basin
[2023), which was originally proposed as a model-merging technique that seeks linearly mode con-
nected (LMC) areas in the loss landscape by permuting network weights. Interestingly, while much
of the following work additionally relies on rehearsal techniques (Pefia et al]] 2023} [Wang et al]
20244), |[Ainsworth et al.| (2023) also propose a data-independent matching algorithm, which can
be applied to our setting. In practice, after each round, we apply the permutation returned by Git
Re-Basin to the updated policy’s weights, as if we had to merge it with the policy weights at the
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Figure 14: Performance of uniform task sampling with several techniques to mitigate forgetting.

Darker shades represent stronger regularization coefficients. L2, EWC regularization and Git Re-
Basin are not effective in this setting.
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previous round. This should return updated weights lying in a LMC area with respect to the policy’s
previous weights, mitigating the performance gap with respect to the pre-training objective.

Unfortunately, we find these methods to be insufficient in our setting, as reported in Figure [T4}
When coupled with large regularization weights, the asymptotical performance of L2-regularization
and EWC is significantly limited. When regularization weights are too low, they recover the perfor-
mance of a naive baseline. Intermediate values were found to interpolate between the two behaviors,
without addressing the forgetting issue. On the other hand, we fine that fine-tuning updates did not
cause large shifts in the policy weights, therefore permutations explored by Git Re-Basin would
hardly induce changes in the parameters. While less scalable, we found hard parameter isolation to
be the only effective solution amongst the one we tested. As mitigating forgetting in neural network
is an orthogonal direction to the main topic of this work, we adopt this solution, and expect that
further developments in continual learning will be applicable in our setting.

Finally, we remark that preventing forgetting is cru- WidowX
cial for fine-tuning, irrespectively of the data collec- i

tion strategy used. For completeness, we present ex- £ 0.60

tended results from Figure [f] in Figure In par- = AMF-NN £

ticular, we include learning curves for AMF without = Uniform § 0-35

parameter isolation, showing that the performance ™ AMF-NN,no =

of all data collection strategies drops to comparable ~Parameter isolation "

levels if the continual learning problem is not ad- = Uniform, no B 045

dressed. We also present extended results from Fig- parameter isolation § 0.40

ure [7]in Figure[[3] In this case, the policy is param- '

eterized by a much larger models. We confirm that, 0 2 4
as the model scale increases, catastrophic forgetting Rounds

is partially alleviated, independently from the data . .

collection strategy. This is consistent with trends in Figure 15: Evaluation on WidowX  tasks
language modeling (Ramasesh et al] 2022). While, Without parameter isolation.

in this case, parameter isolation is not entirely necessary, catastrophic forgetting remains a pressing
problem for datasets and models of modest size.
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Figure 16: Extended results from Figure El, including performance of AMF-NN without parameter
isolation. If catastrophic forgetting is not addressed, AMF recovers the performance of a uniform
data collection strategy.

H DOES AMF REBALANCE DEMONSTRATION COUNTS?

In discrete task spaces, counting the number of demonstrations for each task is possible. In this
case, a naive data selection strategy would simply request demonstrations for tasks that have been
demonstrated the least in the past. If all tasks require a similar amount of demonstrations, this
would empirically perform very well. In our setting, however, data selection algorithms do not have
knowledge of pre-training data. For this reason, a count could only be kept with respect to the fine-
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tuning demonstrations: actively balancing this count would lead to a near-uniform task selection,
and recover the performance of uniform sampling in expectation.

Nevertheless, we implement this “rebalancing” criterion as a privileged baseline, which assumes
access to the pre-training task distribution. We evaluate it in the standard settings for AMF-NN
from Figure @] In Figure [[7} we observe that AMF-NN is able to match the performance of this
baseline in skewed settings, or outperform it in uniform settings, despite having no knowledge of
the pretraining distribution.

This implies that AMF can infer information on the pre-training phase through estimation of the
policy’s uncertainty, and is capable of automatically recovering a “rebalancing” strategy. Moreover,
AMEF-NN considers the reduction in entropy across several tasks: hence, it can outperform the
“rebalancing” baseline by focusing on tasks that are harder to learn or that could, in principle, lead
to learning progress on other tasks. Further empirical evidence for these behaviors is shown in
Appendix [}
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Figure 17: Extended results from FigureEl including a privileged “rebalancing” baseline.

I SINGLE-TASK PERFORMANCE

This Section presents a detailed look at the data selection strategies induced by AMF-NN. For this
purpose, we consider the main experiments in Kitchen and Metaworld outlined in Figure[d and plot
single-task success rates, as well as the amount of demonstrations collected over time.

In the case of skewed pre-training (Fig. [I8|and[20), we observe that AMF samples tasks that were not
present in the pretraining dataset more often, without having access to any direct information on
the pre-training distribution. Moreover, even if multiple tasks have the same frequency in the pre-
training distribution, AMF will prefer the ones that induce a larger reduction in posterior uncertainty:
for instance, in Kitchen, AMF selects the harder task Left door more often. Similarly, in the uni-
form pre-training case (see Fig. [[9]and 1), AMF does not simply sample tasks uniformly. Rather,
it focuses on those that maximize learning process (e.g., Left door, Microwave), while largely
ignoring tasks that are nearly learned (e.g., Knob off, Sliding door). As a consequence, it
can outperform naive baselines (see Appendix [H).

We remark that these task selection strategies arise naturally from our information-based criterion in
Equation [T} without any direct information on the pre-training distribution, nor any explicit policy
evaluation.
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Figure 18: Single-task curves for skewed pre-training in Kitchen. Dashed lines represent demon-
strations counts, with grey lines displaying the (inaccessible) count of pre-training demonstrations.
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Figure 19: Single-task curves for uniform pre-training in Kitchen. Dashed lines represent demon-
strations counts, with grey lines displaying the (inaccessible) count of pre-training demonstrations.

J ANALYSIS OF IMPORTANCE WEIGHTS

Importance weights (as introduced in Equation [ allow estimating the expert’s occupancy for ar-
bitrary tasks. Naturally, the quality of importance weights depends on many factors, including the
dimensionality of the trajectory space, and the density with which available data covers it. In this
section, we report a qualitative evaluation of importance weights for both AMF-GP and AMF-NN
(Figures 22] and 23] respectively). In both cases, we find that informative weights can be retrieved
eventually, given the proper amount of clipping (as described in Appendix[[). While in early rounds
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Figure 20: Single-task curves for skewed pre-training in Metaworld. Dashed lines represent demon-
strations counts, with grey lines displaying the (inaccessible) count of pre-training demonstrations.

Cup left
1.0
j
2
£ 08
@
2
j)
g 0.6
}=]
%
)
% 0.4
2
o
o
Po2
@
0.0
0 5 10
10
El
g *
H
-
% 6 7/
g PioRe
=} ’ //
g T e Sttt
< 7z
/.7
3 "z’
2
F* ’
4
o /1
0 5 10
Rounds

Single-task success rate

# of demonstrations

0.8

0.6

0.4

0.2

0.0

Cup right
o
2
=
-
2
j)
o
o
=]
%
\Q{\j £
3
g
o
o
=
@
0 5 10
w
-
/7 2
=
-7 8
/, S
_____ WL g
o ©
-, o
42 3
o 3=
’
/7
0 5 10
Rounds

== AMF-NN (¢ = le™3) == Uniform

Open faucet Close faucet

1.0 1.0
g W
2
0.8 M £ 0.8
w
2
j)
0.6 g 0.6
}=]
%
4
0.4 % 0.4
3
o
o0
0.2 Po2
@
0.0 0.0
0 5 10 0 5 10
10 10
«
8 'S 8
E z
6 6 ’
| g L
-~ ]
/R ——— - 4 o ———— i ——
,/--' % p) Pz
- it r--
2 /¢ ° 2 /’/’
 — ES is
/ 4
o !/ o /
0 5 10 0 5 10
Rounds Rounds

== # of pre-training demonstrations

Figure 21: Single-task curves for uniform pre-training in Metaworld. Dashed lines represent demon-
strations counts, with grey lines displaying the (inaccessible) count of pre-training demonstrations.

of the algorithm, weights can be inaccurate, leading to a poor estimate of the objective, we observe
that the quality of importance sampling weights improves within a handful of rounds.
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Importance weights @ round 1 Importance weights @ round 5

Importance weights @ round 9

<—— Task space Task space ———> <€—— Task space —>

Figure 22: Analysis of importance sampling weights for AMF-GP. We consider the skewed pre-
training setting from Figure ] and compute importance weights after 1, 5 and 9 rounds. We sample
four tasks cy.3, represented by vertical dashed lines of different colors. For each task ¢;, we collect a
demonstration 7; and sweep over ¢’ € C on the x-axis; we plot w(7;, ¢') with solid lines. We observe
that importance weights are uninformatlve in early parts of training, but converge to more accurate

values within a few rounds.
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Figure 23: Analysis of importance sampling weights for AMF-NN. We consider the skewed pre-
training setting from Figure[d} and compute importance weights after 1, 5 and 9 rounds. We visualize
weights for both Kitchen (top) and Metaworld (bottom). As the task set is discrete, we consider all
tasks (¢; € C), and collect one demonstration 7; for each. The entry of each colormap at row i
and column j represents w(7;, ¢;). Again, we observe that at the beginning of training importance
weights can be inaccurate, particularly for tasks c; that have not been sufficiently demonstrated.
However, as more data is collected and the policy specializes to each task, the weights converge.
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Pretraining distribution

K CRITERION VS RETURNS 03 -

As a didactic example, we evaluate the crite-
rion optimized by AMF-GP in a particular in- 0.1 A
stance. We adopt the settings presented in Sec-
tion[5.1] and pre-train a GP policy by providing
50 demonstrations in the 2D integrator environ- les  Estimated expected posterior entropy
ment, uniformly sampled among tasks in the
top half of the target circle. We represent the
task space along one dimension, and plot the
smoothed pre-training distribution on the top of 5
Figure The second row of the Figure dis-

plays the evaluation of the criterion in Equa- 0.0 - -
tion 2] for 100 tasks uniformly sampled across
the entire task space. By comparison with the
plot above, it is evident that the criterion is
significantly lower for tasks that have not yet
been demonstrated. These tasks are also those 130 -
that, if demonstrated, would lead to a greater
increase in multi-task performance after fine-
tuning, as reported in the bottom row of Fig-
ure 24] In this instance, it’s easy to see that the
criterion leads to selection of tasks which have
not been demonstrated sufficiently, and that will
thus lead to greater policy performance.

0.0 -

Average return after finetuning

-13.5 1

<«<————— Taskspace —m8 ——>

Figure 24: Didactic example on correlation be-
tween pre-training distribution over tasks (top),
evaluations of the AMF criterion for each task
(middle) and return after fine-tuning on a demon-

L IMPLEMENTATION DETAILS stration for a given task (bottom).

In order to ease reproducibility, we open-source our codebase on the project’s anonymous WebsiteE]
Furthermore, we describe several implementation details in the following sections.

L.1 METRICS

All metrics are reported in the form of their mean and the 90% simple bootstrap confidence intervals
over 10 random seeds.

L.2 GP SETTINGS

In GP settings (5.1), each expert demonstration involves 5 steps, is corrupted with Gaussian noise
and collected by a scripted policy. As the task space is continuous, the criterion is simply optimized
via uniform random shooting, with a budget of 100. Multi-task returns are averaged over 20 episodes
per task.

L.3 NEURAL NETWORK SETTINGS

L.3.1 ENVIRONMENTS

We evaluate AMF-NN across three environments, namely FrankaKitchen, Metaworld and WidowX.
For the first two, demonstrations are 50 steps, while for the latter they involve 100 steps. In FrankaK-
itchen, demonstrations are provided by Kumar et al.|(2024)), and collected by trained SAC agents. In
Metaworld, demostrations are instead collected by the scripted policies provided (Yu et al., [2020).
Finally, in WidowX successful trajectories are collected by Octo-small (Octo Model Team et al.,
2024)) itself and filtered according to success labels, in an instance of self-supervised distillation.
Furthermore, in the case of WidowX, the initial position of the object is not randomized, as we
found this to result in very inconsistent performance for the data collection policy. In the first two

4sites.google.com/active-multitask-finetuning
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environments, 25 attempts for each task are evaluated, while the evaluation for WidowX involves 50
attempts.

L.3.2 BEHAVIOR CLONING

The policy is parameterized via a deterministic MLP with 2 layers and 256 units per layer, with layer
normalization (Bal [2016). Task conditioning are image embedding extracted by R3M (Nair et al.,
2022a)). Policies are pre-trained for 500 epochs with batch size of 128, learning rate of 1.e — 4 using
the Adam optimizer (Kingmal [2014).

L.3.3 IMPORTANCE SAMPLING WEIGHTS

In GP setting, importance weights are computed from the Gaussian policy distribution, and log-
probabilities are clipped to the range [—12, 0]. In NN settings, for deterministic policies, we inter-
pret the policy’s output as the mean of a Gaussian with fixed standard deviation o = 1.0, and only
clip log-probabilities for numerical stability. In experiments involving pre-trained Octo policies, we
evaluated two solutions. One option consisted of fitting a Gaussian distribution through maximum
likelihood methods to samples from the diffusion policy, and was found to underperform. We thus
treat the Octo policy as strictly deterministic: with continuous action spaces, this simplifies impor-
tance sampling weights to w(c, 7) = 1 in case 7 is a demonstration provided exactly for task ¢, and
0 otherwise. We note that this solution cannot be used to evaluate the criterion on yet unobserved
tasks, but remains feasible when tasks are finite and few.

L.3.4 AMF

Each fine-tuning round involves 3000 gradient steps, each with a batch size of 128. We warm-start
each algorithm by collecting the first |C| demonstrations uniformly, as mentioned in Section
In the case of loss-gradient embeddings, we found it to be beneficial to use a separate copy of the
policy for task selection, which is not trained on these initial trajectories (which thus can be seen as a
small “validation” set). As these demonstrations are not selected according to the criterion, to avoid
unwanted updates of pre-training weights, they are only added to the training set once the algorithm
selects a task belonging to the same partition of the task space, as defined by parameter isolation.

L.4 RUNTIME
Each experimental run for AMF-NN takes at most 5 hours with GPU acceleration. In this case, data

selection itself requires up to 8 minutes per round, and can be significantly sped up by reducing the
sampling budget. AMF-GP experiments can be reproduced within 10 minutes on CPU.

M USEFUL INEQUALITIES
Lemma 8. Ifa,b € (0, M] for some M > 0 and b > a then

b—a<M-10g(b>.
a

If additionally, a > M’ for some M’ > 0 then

b—aZM'-log(b>.

a

Proof. Let f(x) &f log z. By the mean value theorem, there exists ¢ € (a, b) such that

f(b) = f(a) _logb—loga _log ()

==

c b—a b—a b—a
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Thus,

ba—c~10g(b> <M-10g<b).
a a

Under the additional condition that ¢ > M’, we obtain

b—azc-log(i) >M’~log<2).

Lemma 9. Let us consider two spaces X € R™, Y € R™, and a conditional distribution p : X —
A(Y") whose support supp(p(-|x)) is bounded by a ball of radius € for all x € X, that is

O

max lyp —ull2 <e
yi,yn Esuppp(-|z)

Forall (z,2") C X, y ~ p(-|x) and y' ~ p(-|z’) it holds that
ly = 'l < W(p(:|2), p(-|2")) + 2¢,

where K denotes the Wasserstein 1-distance.

Proof.
ly=y'l < max fly—y2 (93)
yesupp(p(+|z))
vy’ €supp(p(-|z"))
(@)
< min - ly—yffl2 + 2e 94
yesupp(p(+|))
y' €supp(p(-|z”))
(i)
< W(p(|x), p(z")) + 2, (95)
where (i) follows from the triangle inequality, and (2) is due to the fact that the integral of the
distance between two points in Y for any coupling is greater than the minimum distance. O
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