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Abstract

Language models (LMs) compute the probabil-
ity of a text by sequentially computing a rep-
resentation of an already-seen context and us-
ing this representation to predict the next word.
Currently, most LMs calculate these representa-
tions through a neural network consuming the
immediate previous context. However recently,
retrieval-augmented LMs have shown to improve
over standard neural LMs, by accessing infor-
mation retrieved from a large datastore, in ad-
dition to their standard, parametric, next-word
prediction. In this paper, we set out to under-
stand why retrieval-augmented language models,
and specifically why k-nearest neighbor language
models (kNN-LMs) perform better than standard
parametric LMs, even when the k-nearest neigh-
bor component retrieves examples from the same
training set that the LM was originally trained
on. To this end, we perform analysis of vari-
ous dimensions over which KNN-LM diverges
from standard LMs, and investigate these dimen-
sions one by one. Empirically, we identify three
main reasons why kNN-LM performs better than
standard LMs: using a different input representa-
tion for predicting the next tokens, approximate
kNN search, and the importance of softmax tem-
perature for the kNN distribution. Further, we
incorporate some insights into the standard para-
metric LM, improving performance without the
need for an explicit retrieval component. The
code is available at https://github.com/
frankxu2004/knnlm-why.
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Figure 1: An illustration of the generalized formulation of
kNN-LM in Equation 2.

1. Introduction

Language modeling is the task of predicting the probability
of a text (often conditioned on context), with broad-spanning
applications across natural language processing (Bengio
et al., 2003; Merity et al., 2018; Baevski & Auli, 2018;
Brown et al., 2020). It is usually done by sequentially en-
coding a context c; using a trained neural network function
f, and computing the probability of the next word w; ac-
cording to f (¢;) and a vector representation of w;.

Recently, retrieval-augmented LMs have shown a series of
impressive results (Grave et al., 2017; Guu et al., 2018; He
et al., 2020; Khandelwal et al., 2020b; Borgeaud et al., 2022;
Alon et al., 2022; Zhou et al., 2022). Retrieval-augmented
LMs compute next token distribution based not only on the
immediately preceding context ¢; and the model parameters,
but also on an external datastore, from which examples are
retrieved and incorporated into the base LM’s prediction.
One such model that is notable for both its simplicity and ef-
ficacy is the k-nearest neighbor language model (KNN-LM;
Khandelwal et al., 2020b). KNN-LM extends a trained base
LM by linearly interpolating the output distribution with a
kNN model. The nearest neighbors are retrieved according
to the distances between the current context embedding of
the base LM and all the context embeddings in the datastore.
The datastore is created by encoding all contexts from any
text, including the original LM training data.

One of the most surprising results from Khandelwal et al.
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(2020b) is that KNN-LM reduces the perplexity of the base
LM even when the kNN component is retrieving examples
from the same training set that the LM was originally trained
on, indicating that xXNN-LM improves the ability to model
the training data and is not simply benefiting from access to
more data. Intrigued by this finding, we wonder why does
kNN-LM work, and how does it improve already-trained
strong transformer-based models? In this paper, we set out
to understand why kKNN-LMs work even in this setting.

In the following sections, we first elucidate connections
between the added kNN component and the standard LM
component. Specifically, we note that word distributions
from both components are calculated using a softmax func-
tion, based on the similarity of the current context hidden
state with a set of embeddings that corresponds to different
next words. With this intuition, we formalize and general-
ize the non-parametric distribution with the softmax layer
and word embedding layer used in parametric LMs. We
then show that this generalized form exposes a variety of
design choices, e.g., the number of context embeddings in
the datastore, the input representation used in softmax layer,
different similarity functions, as well as the approximation
and sparsification implementations in the kNN search. This
provides a general framework for analyzing KNN-LM and
similar models and allows us to perform ablation studies
that test the importance of various design decisions.

We proceed to propose multiple hypotheses as to why £NN-
LM works, which are testable by adjusting the various pa-
rameters exposed by our generalized formulation. Based
on these hypotheses, we perform ablation experiments and
analyze the nuances between different implementations of
the generalized version of Pjnyy. As the answer to our
question, “why do kNN-LMs work?”, we eventually show
that the most probable reasons are threefold:

1. Ensembling the output of softmax using two representa-
tions from different layers of the transformer is important; in
our experiments, this accounts for 55% of the performance
gain of kNN-LM, or 6.5% relative perplexity improvement
compared to the base LM.

2. kENN-LM uses approximate nearest neighbor search to
handle the large number of candidates, and the lack of pre-
ciseness in the algorithm actually helps KNN-LM to gener-
alize better than exact nearest neighbor search and distance
calculation, possibly due to regularization effect. The rela-
tive perplexity improvement from this factor is about 2.6%.

3. Depending on the design decisions that are chosen
for modeling, adding a temperature term to the KNN non-
parametric component can become crucial to the success of
modeling (although coincidentally, in the original settings
of Khandelwal et al. (2020b), a temperature of 1.0 was close
to optimal, which hid the importance of this term). In some

settings, the relative perplexity gap between the default and
optimal temperature can be as high as 8.4%.

Finally, one significant drawback to the current kNN-LM is
the inefficiency of kNN search performed at each step (He
et al., 2021; Borgeaud et al., 2022; Alon et al., 2022; Wang
et al., 2022). Because of the similarity between kNN-LM
and the parametric LM’s last layers and the many design
choices, we also demonstrate that we are able to make kKNN-
LM more efficient by substituting the kNN search with
another matrix operation that can fit in accelerator memory
while maintaining more than half the perplexity improve-
ment, or 6.5% relative improvement to the base LM.

2. Formalizing and Generalizing ANN-LM

kNN-LM (Khandelwal et al., 2020b) is a linear interpo-
lation between a base LM and a ANN model. Given
a set of contexts ¢; and their corresponding next token
w; as a pair (¢;,w;) € D, kNN-LMs create a datastore
(K, V) = {(ki,vi)}, as a set of key-value pairs (K,V) =
{(f (&) yw;) | (¢, w;) € D}, where f (¢;) is typically a
transformer’s hidden state after reading ¢;. During inference,
the parametric component generates the output distribution
pru (welce; 0) over the next tokens and produces the corre-
sponding context representation f(c;), given the test input
context ¢;. Then the non-parametric component queries
the datastore with the f(c;) representation to retrieve its k-
nearest neighbors A with a distance function d(-, -). Next,
kNN-LM computes a probability distribution over these
neighbors using the softmax of their negative distances, and
aggregates the probability mass for each vocabulary item
across all of its occurrences in the retrieved targets:

D Ly, exp(=d(ks, f(cr))) (1)
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Finally, this distribution is interpolated with the parametric
LM distribution py,\ to produce the final kNN-LM distribu-
tion p(wy|cy; 0) = (1 — N)pra(we|c; 0) + Apinn (we|cr),
where A is a scalar that controls the weights of the interpola-
tion between two components, with higher A\ putting more
weight on the non-parametric component.

Looking closely at Equation 1, we notice a similarity be-
tween the calculation of Py and the standard Py ;. The
kNN distribution is based on the distances between the cur-
rent context and the nearest neighbors from the datastore,
normalized by a softmax function. Recall that in (standard)
parametric language models, the distribution over the vo-
cabulary is also based on a measure of distance, the inner
product between the current context embedding and the
word embeddings of every token in the vocabulary. Because
each context embedding in the datastore (/C, V) corresponds
to a target token, we can also view this datastore as a large
word embedding matrix with multiple word embeddings for
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each of the vocabulary words. Theoretically, given unlim-
ited computation, we could calculate the distribution based
on the distances to every embedding in the datastore, and
aggregate by vocabulary items, making it more closely re-
semble Py, ;. For Equation 1, this will resultin k£ = |D|, the
size of the entire datastore, and N' = D, using the distances
to every context in the datastore instead of a subset of near-
est neighbors. In practice, we use kNN search as a way of
approximation, by limiting the calculation to only k nearest
neighbors to avoid the computational cost of calculating the
distribution over the entire datastore.

If we re-write and generalize Equation 1, both the ANN-LM
of Khandelwal et al. (2020b) and a large number of related
models can be expressed through the following equation:

Rnterp = (1 - A) softmax(Ws,,L . hsm)
Pr,M parametric component

+ A\ Msoftmax (mask-to-k(Wys ® hys)/T) -

PynN non-parametric component

2

Figure 1 provides an illustration of Equation 2. The first
term of the equation is the standard parametric language
model, whereas the second represents a generalized version
of utilizing an external datastore. The first component, the
output layer of a common parametric language model, is
relatively straightforward. W, of size V' x D is the embed-
ding matrix of the output token, and h,, is the context vec-
tor to calculate the distribution of the output token, usually
the output of the final feedforward layer in the transformer.

In the second component, W, represents the datastore, of
size Ngs X D. Ny, is the number of entries in the datastore,
and D is the size of each context vector. hgs represents
the context vector used to query the datastore. As shown
in Figure 1, hgs may come from a different layer of the
transformer than hg,,. The operator ® represents the oper-
ation type used to calculate the similarity between context
vectors and the query vector, which also has several alter-
natives that we discuss below. mask-to-k(-) represents a
function to sparsify similarity scores across the datastore,
setting all but k similarity scores to —co, which results in
probabilities of zero for all masked similarity scores after
the softmax. Practically, this is necessary for KNN-LMs
because the size of the datastore N s, makes it infeasible
to calculate all outputs at the same time. With the masked
logits, we apply a more generalized version of softmax with
temperature 7. Intuitively adding the temperature can ad-
just the peakiness or confidence of the softmax probability
distribution output. After the softmax, the matrix M of di-
mension V' x Njs sums the probability of the N4, datastore
entries corresponding to each of the V' vocabulary entries.
Each column in this matrix consists of a one-hot vector with
a value of 1 and the index corresponding to the vocabulary
item w; corresponding to the datastore entry for c;.

Within this formulation, it becomes obvious that there are
many design choices for KNN-LM-like models. One im-
portant thing to note is that the right side of Equation 2 is
actually very similar to the left side representing the standard
parametric language model, with a few additional compo-
nents: M, mask-to-k, and ®. More specifically, some of
the design decisions that go into the KNN-LM, and parallel
with standard parametric models are:

Size of W, In standard parametric model, the size of W,
is V embeddings, each with D dimensions. In ANN-LM
the size of Wy, is very large: Ny, the size of the datastore,
usually the number of tokens in the training corpus.

Input representation: In the parametric model, A, is the
output from the feedforward layer in the last transformer
block, which we abbreviate “ffn”. In contrast, ANN-LM
rather use as hg4, the output from the multi-headed attention
layer of the last transformer block (before running the repre-
sentations through the feed-forward network, and after the
LayerNorm (Ba et al., 2016)), which we abbreviate as “att”.

Similarity & Temperature: In the parametric model, the
functional form of ® is the inner product (abbreviated IP),
whereas KNN-LM use negative squared L2 distance (abbre-
viated L2) as a similarity function between Wy, and hgs. As
the similarity scores are turned into probability distributions
with the softmax function, the choice of softmax tempera-
ture (7) can control the scaling of the similarity scores and
thus the peakiness of the non-parametric distribution.

Approximation & Sparsification: In the parametric model,
k = V, and no values are masked, but in the kNN-LM,
k <V, and most of the datastore entries are pruned out.
The definition of the mask-to-k() function, i.e. how to
select the important datastore embeddings to include in
the similarity calculation (in kKNN-LM’s case the k nearest
neighbors), is a crucial open design choice.

In the following sections, we set out to better understand
how each of these design decisions contributes to the im-
provement in accuracy due to the use of kNN-LMs.

3. Baseline AKNN-LM Results

First, we evaluate kNN-LM on Wikitext-103 (Merity et al.,
2016), and examine the importance of two design choices:
the input representation hys and the similarity function ®.

In models examined in this paper, the parametric model
is a transformer language model with mostly the same ar-
chitecture as in Khandelwal et al. (2020b). However, we
make slight modifications to the original base LM (Baevski
& Auli, 2018) to accommodate our experimentation need.
We use BPE tokenization (Sennrich et al., 2015) to train a
smaller vocabulary (33K) than the original (260K) on the
training corpus of Wikitext-103, as subword tokenization is
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has ®  +#params PPL Interp.  Oracle

Base LM - - 0 21.750 - -
KNN-LM-L2 att L2 Ngsx D o0 19.174  14.230
KNN-LM-IP  att IP Ngs X D %) 19.095 14.077
KNN-LM-L2 ffn L2 Ngsx D %9 20.734  15.594
KNN-LM-IP  ffn IP Ngs X D %) 21.101 16.254

Table 1: Performance of the parametric language model and
several KNN-LM variants.

ubiquitous in many state-of-the-art language models (Devlin
et al., 2018; Brown et al., 2020). Using subword tokeniza-
tion also eliminates the need for adaptive softmax (Joulin
et al., 2017). This makes the output layer more general,
sharing more resemblance to the kNN component as de-
scribed in Section 2, and facilitates the ablation studies in
this paper.! This base LM has 268M parameters. To get a
perspective on how large the datastore is, it is built on the
training data that contains nearly 150M BPE tokens, each
paired with a context vector of size 1024. This datastore
has a total memory consumption of about 300GB. Follow-
ing Khandelwal et al. (2020b), at every retrieval step, we
take the top 1024 nearest neighbors, i.e., K = 1024. The
interpolated perplexity is computed with optimal interpola-
tion parameter A tuned according to the perplexity on the
development set, and fixed during inference.

Results comparing multiple KNN-LM variants are shown
in Table 1. The first row represents the base parametric
language model’s perplexity. The second is a formulation
analogous to that of kKNN-LM, and in the remaining rows,
we vary the input representation hgs and distance function ®
from Equation 2. All variants use a large datastore with size
Nys, approximately 5000 times the size of the vocabulary
V', as also reflected in “+#params”, the number of additional
parameters other than the base LM.

We report several important quantities. “Interp.” shows
the interpolated perplexity. “PPL” shows the perplexity of
only the kNN component of the model pynn(). This is
oo for all kNN-LM models, as when the kNN search does
not retrieve any datastore entries corresponding to the true
target word w, the probability of it will be zero. “Oracle”
shows the lower bound of the interpolated perplexity by
choosing the best X for each token in the evaluation dataset,
which will either be A = 0 or A = 1 depending on whether
Prr(weler) > Prpn(we|cy). From the table, we see that:

1. Using the output of the multi-headed attention layer

'By re-training the base LM from scratch with BPE tokeniza-
tion and a standard output softmax, our LM’s perplexity is worse
than reported by Khandelwal et al. (2020b). However, we observe
similar relative gains from the additional kNN component, and we
argue that the base LM is orthogonal to the study of the factors
behind KNN-LM’s improvements.

(“att”) as hgs (instead of the standard “ffn” layer) is crucial
for better performance of KNN-LM.

2. In general, using negative squared L2 distance or inner
product as a similarity function does not result in a large and
consistent difference, although in our setting, IP provides
slightly better performance when using the “att” inputs, and
slightly worse when using “ffn” inputs.

3. Interestingly, when using “ffn” and “IP”, the same input
and distance metric used in the parametric model, the results
are the worst, indicating that KNN-LM particularly benefits
from a different view of the data than the parametric model.

We found in preliminary experiments that kXNN-LM is gen-
eralizable to other base language models as well, ranging
from small models with 82M parameters to larger models
with 774M parameters. The gain from KNN-LM is more
significant when used with a smaller, less capable base lan-
guage model (Appendix A) In this paper, we mainly focus
on the factors contributing to the relative improvements
from kNN-LM, instead of the absolute performance, so we
use the 268M model for the remainder of the paper. In the
next sections, we perform ablation experiments on the gen-
eral formulation Equation 2 to elucidate the key elements
contributing to the performance improvements in KNN-LM.

4. Effect of Different 1//;,, Formulations

hgs Ngs  +#params PPL Interp.  Oracle

Base LM - - 0 21.750 - -
kNN-LM att  Big Ngs x D 00 19.095 14.077
Learned Wy,  att 1x V xD 22.584 20353 16.954
kNN-LM ffn  Big Ngs X D oo 21.101 16.254
Learned W45  ffn 1x V x D 20.920 20.694 18.772

Table 2: Performance comparison how the choice of hgs,
input representation, affects kNN baselines and models with
learnable embeddings as datastore alternative. hgs is the
attention layer output. ® is IP.

4.1. Replacing Datastore with Trainable Embeddings

From the observation in Section 3, we see that the choice
of hgs has a large impact on the performance of KNN-LM.
This intrigues us to explore if one key to the improvements
of KNN-LM lies in the combination of different input rep-
resentations, namely the attention output (hgs = att) and
feedforward output (hys = ffn). However, based only the
experiments above, it is not possible to disentangle the effect
of the choice of hgys and that of other design choices and
factors in Equation 2.

To test the effect of the choice of /4, in a more controlled
setting, we remove the non-parametric datastore entirely,
and initialize W, in Equation 2 with a randomly initialized
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word embedding matrix of the same size (Ngs = V) as
the LM’s output embedding W,,,, and train W, with all
other parameters fixed.> The loss function for training is
the cross-entropy loss of softmax(Wy; - hgs) with respect
to the ground-truth tokens, identically to how the base LM
is trained. We compare how using hys = att or hys = ffn
affects the interpolated performance. The results are shown
in Table 2, with the results of KNN-LMs using these two
varieties of input representation for reference. From these
experiments we find several interesting conclusions:

Effectiveness of re-training W y5: In the case of “Learned
Was w/ FEN”, we are essentially re-learning the weights
for the softmax function separately from the underlying LM
encoder. Despite this fact, the model achieves a PPL of
20.920, which is 0.83 points better than the base model.
This suggests that it is beneficial to learn the parameters of
W after freezing the transformer encoder.

Effectiveness of ensembling two predictors: In both cases
of Wy, the interpolated perplexity is significantly better
than that of using a single predictor. This is particularly the
case when using the “att” representation for hys, suggesting
that the utility of ensembling predictions from two views of
the data is not only useful when using KNN-LM, but also in
standard parametric models as well.

Parametric ensembles as an alternative to KNN-LM?
Overall, by using a separate word embedding matrix with
size V' x D as an alternative to kNN, we can recover about
55% of the performance gain achieved by kKNN-LM, with
only a limited number of parameters and without the neces-
sity for slow kNN retrieval every time a token is predicted.
This suggests that the majority of the gain afforded by KNN-
LM could be achieved by other more efficient means.

4.2. Increasing the Softmax Capacity

One premise behind kNN-LM is that the large datastore is
the key reason for the KNN-LM’s success: the larger the
datastore’s capacity, the better the performance. We wonder
whether such a big datastore is warranted and whether the
size and expressivity of Wy, leads to better performance.
We test the effect of the datastore size for kNN retrieval on
kNN-LM interpolated perplexity. If a bigger datastore is
better in kKNN-LM than a smaller datastore, then the hypoth-
esis of softmax capacity is more probable. We randomly
subsample the full datastore in varying percentages and the
results are shown in the blue “FAISS mask, FAISS score”
series in Figure 3. The full datastore contains more than
150M entries and storing them takes 293GB when using
fpl6. We see that the perplexity decreases linearly with

?Because we previously found little difference between IP and
L2 as similarity functions, we use IP in the experiments. For
simplicity, we set temperature 7 = 1.

a higher fraction of the original datastore. Even with just
5% of the datastore size (15G), kKNN-LM still provides a
benefit over the base LM. However, even when the subsam-
pling percentage reaches 90%, more entrie in the datastore
still provide benefits without having significant diminishing
returns, suggesting that a large datastore is beneficial.

One possible reason why a larger datastore is helpful is that
some words can be difficult to predict. There are several
reasons: (1) They are rare, or (2) they are frequent, but
they have multiple meanings and appear in different con-
texts. The softmax bottleneck (Yang et al., 2017) suggests
that the final dot product of language model Wy, - hgy, is
capped at D rank, limiting the expressiveness of the output
probability distributions given the context; that is, a single
output vector of a fixed (1024) size cannot express all the
possible mappings between 100M training examples and
33K vocabulary outputs. We hypothesize that KNN-LM
improves performance by alleviating the problem, since
M exp(Wys ® hgs) has a higher rank (M- sums softmax
outputs of the same token) and is more expressive than just
exp(Wspm - hsm). kNN is a sparse approximation of the
full softmax over all the embeddings in the datastore W ;.
To test this hypothesis, we disentangle the effect of Wy,
size from the actual saved context embeddings in Wy, by
training an embedding matrix of the same size from scratch.

We explore several potential solutions for increasing the
capacity of softmax, and examine if they can achieve a
similar effect to KNN-LM. The first and easiest solution
is to increase the embedding matrix size by adding more
embedding vectors for each word type in the vocabulary.
To test this, we replace Wy, with a much smaller matrix of
size nV x D, where we allocate n embedding vectors for
each word type. When calculating the probability from this
component, we compute the softmax over nV items and sum
the probabilities for each vocabulary entry. mask-to-k(-) is
no longer needed, as this formulation is small enough to fit
the entire matrix in the GPU. We then finetune the new W,
on the training data until convergence.

Figure 2 compares the base LM using the original x\NN-LM
with using either the attention layer output (“att”) or the
feedforward layer output (“ffn”) as hgs. We plot the number
of embeddings for each word type (nV total embeddings
in Wy;) versus the interpolated perplexity, with full details
found in Appendix B. In both cases, comparing with the top
horizontal line which represents the perplexity of the base
LM, replacing the datastore with a much smaller weight
matrix (from Ngs to nVys) by assigning only a few more
embeddings for each word helps, although only about half
as effective as kNN-LM. To give a perspective, the orig-
inal datastore size is about 5000V. Surprisingly, we find
that increasing n does not always bring better performance,
even though a larger datastore is better than using a small
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Figure 2: The number of embeddings per word type (nV'
total embeddings in Wy,) versus interpolated perplexity,
compared with base LM and kANN-LM.

datastore in kKNN-LM. We see that when hg, = ffn, over-
parameterization provides limited improvements, while for
hgs = att it does not bring consistent improvements at
all. Comparing the trend of increasing the embeddings in
W s, with the bottom horizontal line in the plot, which rep-
resents the perplexity of the standard ANN-LM using the
full datastore (W5 with approx. 5000V embeddings), we
see no clear trend that more trainable embeddings result in
better perplexity, and that the gap between using trained
embeddings and using full datastore is still significant. This
suggests that simply over-parameterizing W is not an ef-
fective method of achieving gains similar to ANN-LM.

We hypothesize that this is because by just adding more
embeddings, while still using the same training procedure
as the original LM, the multiple embeddings for each word
type after learning could still be very close to each other,
and thus do not increase the softmax capacity much. This
suggests that some regularization terms may be needed dur-
ing training to make the multiple embeddings not converge
to the same vector, rendering over-parameterization useless.

Besides simply increasing the number of embedding vectors
equally for each word type, we also propose other alterna-
tives to increase softmax capacity. First, we hypothesize
that different word types have different difficulties for the
language model to predict. For those words that appear very
frequently, they may appear in many different contexts. As
a result, instead of adding an equal number of additional
embeddings to each word type, we propose to adaptively
increase the number of embeddings for word types based on
word frequency, or total training loss for the word. Second,
we try to break the softmax bottleneck. Yang et al. (2017)
proposes a solution using Mixture of Softmax (MoS) to
produce more linearly independent probability distributions
of words given different contexts. Last, instead of training
word embeddings of increased size, we also consider com-

PPL Interp.  Oracle
Base LM 21.750 - -
kENN-LM w/ FAISS mask, FAISS score 00 19.174 14.230
ENN-LM w/ FAISS mask, real score 00 19.672 14.393
kKNN-LM w/ real mask, real score 00 19.735 14.480

Table 3: Performance of the parametric language model
and comparison of kNN-LMs using the approximate versus
ground truth kNN. ® is L2. hgs = att.

pressing the datastore down to a similar-sized embedding
matrix for softmax by clustering the datastore and finetuning
of the matrix consisting of cluster centroids. However, none
of these alternative methods provided additional benefits
over the simple multi-embedding approach (Appendix C).

5. Approximate kNN & Softmax Temperature
5.1. Comparing Approximate kNN Search

To calculate Pyny of the non-parametric component in
Equation 2, it is usually prohibitive to use exhaustive kNN
search, and thus Khandelwal et al. (2020a) use approximate
kNN search using the FAISS library (Johnson et al., 2019).
The use of FAISS (similarly to other approximate search
libraries) results in two varieties of approximation.

Approximate Neighbors: Because the search for nearest
neighbors is not exact, the set of nearest neighbors might
not be equivalent to the actual nearest neighbors. Recall
that the function mask-to-k(-) in Equation 2 is the function
that selects kNN entries from the datastore W,,. We denote
“real mask™ as the accurate nearest neighbors for mask-to-
k(-) selection, and “FAISS mask” as the approximate nearest
neighbors returned by the FAISS library.

Approximate Scores: In addition, FAISS makes some ap-
proximations in calculating the distances between the query
and the retrieved neighbors for efficiency purposes. We
denote “real score” as the scores calculated from ground
truth distances between the embeddings, and “FAISS score”
as the distances returned by FAISS approximate search.

The comparison of the different approximation settings is
shown in Table 3. Quite surprisingly, we actually find that
the interpolated perplexity with approximate search is better
than that with exact search, both with respect to the mask
and the score calculation. Intrigued by this counter-intuitive
result, we explore the effect of kNN search approximation.

First, we plot the subsampled size of the datastore with the
interpolated perplexity Figure 3, but showcasing the com-
parison between approximate and real masks, approximate
and real scores in both the full datastore as well as a small
subsampled datastore setting. We find that using an approx-
imate FAISS mask to find nearest neighbors performs better
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Figure 3: The differences between using approximate and
accurate kNN search on varying sizes of the datastore.

than using the exact nearest neighbors both at 5% and 100%
of the datastore. However, using the approximate score
returned by FAISS is better than recomputing the exact dis-
tances between embeddings for the kNN distribution only
for the small 5% datastore scenario. Interestingly, the gap
between using an approximate score or real score given the
same approximate neighbors (“FAISS mask, FAISS score”
vs. “FAISS mask, real score™) is larger than that between
using approximate or real neighbors given the same ground
truth method of calculating the distance (“real mask, real
score” vs. “FAISS mask, real score”).

We hypothesize that this is related to regularization for pre-
venting overfitting, and approximate search provides fuzzi-
ness that functions as a regularizer. We can think of the kNN
component of kNN-LM as a model, where the datastore size
is the model capacity, and the datastore is its training data.
Considering that the kNN component uses the exact same
training data as the base parametric LM, having ground
truth, accurate kNN search may cause the kNN component
to overfit the training data.

5.2. Adding Softmax Temperature to XNN Distribution

Because the number of retrieved nearest neighbors, k, is
usually much smaller than the vocabulary size V, intuitively,
the NN distribution PNy used for interpolation tends to
be more peaky than the standard LM output distribution.
When k£ = 1024 and V' = 33000, as in our experiments,
Pinn will only have a few vocabulary items with a non-zero
probability. Furthermore, many of the retrieved neighbors
share the same target token and thus make the kNN dis-
tribution even peakier. One way to control the entropy, or
peakiness of the distribution is to add temperature to the
distances that go into the softmax function (Holtzman et al.,
2019). We calculate the probability of non-parametric com-
ponent in Equation 2 where 7 is the softmax temperature.
In general, the higher the temperature, the less “peaky” the
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Figure 4: The interpolated perplexity varies with different
softmax temperature 7 values.

distribution becomes. We experiment with both the 5%
as well as the full datastore using different temperatures
ranging from O to 3 at 0.1 intervals. The results are shown
in Figure 4a and Figure 4b respectively.

We see that the default temperature 7 = 1 does not al-
ways result in the best-interpolated perplexity and tuning
the softmax temperature is desirable for all sizes of datastore.
The lesson learned here is that tuning the softmax tempera-
ture for the kNN distribution is crucial for getting optimal
results from each setting. Only coincidentally, a tempera-
ture of 1.0 was close to optimal in the original settings of
kNN-LM, which hid the importance of this hyperparame-
ter. Even at the optimal temperature of each setting, “real
mask, real score” underperforms “FAISS mask, real score”.
This is consistent with the counter-intuitive phenomenon
in Section 5.1. There are also differences between different
datastore sizes. With the full datastore, using “real score”
outperforms “FAISS score” given the same “FAISS mask”.
However, the opposite is true when using the 5% datastore.
This suggests that as the datastore size grows, using accu-
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rate distance values are better than the approximate ones.
The smaller gap between using “real score” and “FAISS
score” in both datastore settings shows that the main con-
tributor to the improvements is using approximate nearest
neighbors (“FAISS mask”) rather than using approximate
distance values (“FAISS score”).

These results emphasize the effect of approximation dis-
cussed in Section 5.1, because comparing the small datastore
with only 5% with the original datastore, we see that a small
datastore means a small training set for the kNN “model”
and it thus it benefits more from this regularization, both by
using the FAISS mask and FAISS score (at optimal tempera-
ture settings). Surprisingly, one of the important ingredients
in KNN-LM seems to be approximate kNN search, which
likely prevents overfitting to the datastore created from the
same training set. We further analyze this unexpected result
in Appendix D, where we find that longer words and words
that appear in many different contexts have slightly better
results with approximate nearest neighbors.

Consistently with our findings, He et al. (2021) found that
dimensionality reduction using PCA on the datastore vectors
(from 1024 to 512 dimensions) improves the perplexity of
the original KNN-LM from 16.46 to 16.25, which can be ex-
plained by our findings as PCA may provide another source
of approximation that contributes to regularization. Notably,
similar effects, where an approximation component leads to
better generalization, have been reported in other NLP tasks
as well, and are sometimes referred to as “beneficial search
bias”, when modeling errors cause the highest-scoring so-
lution to be incorrect: for example, Meister et al. (2020b)
suggest that “quite surprisingly, beam search often returns
better results than exact inference due to beneficial search
bias for NLP tasks”; Stahlberg & Byrne (2019) also con-
clude that “vanilla NMT in its current form requires just the
right amount of beam search errors, which, from a modeling
perspective, is a highly unsatisfactory conclusion indeed, as
the model often prefers an empty translation”.

6. Probably Wrong Hypotheses for Why
ENN-LM Works

The results in the previous sections are the result of exten-
sive analysis and experimentation, in which we also tested
a number of hypotheses that did not turn out to have a sig-
nificant effect. Additional details of these hypotheses are
detailed in Appendix E, and we hope that they may provide
ideas for future improvements of retrieval-based LMs.

Ensemble of Distance Metrics We hypothesized that the en-
semble of two distance metrics: the standard inner product
distance (which the LM uses) and the L2 distance (which the
kNN component uses), is the key to the improvement. How-
ever, we found that similar gains can be achieved using the

inner-product metric for the retrieved kNN (Appendix E.1).

Ensembling of Two Models We hypothesized that the kNN
component merely provides another model for ensembling.
The improvement from kNN-LM is purely due to the ensem-
bling effect of simply different models. However, we found
that KNN-LM’s improvement is orthogonal to ensembling
with a different base LM (Appendix E.5).

Sparsification The mask-to-k(-) used by kNN retrieval in-
duces sparsity in the distribution over the vocabulary, due
to a small k (typically 1024) compared to the size of the
vocabulary V' (33K in our experiments and 260K in the
original setting). We hypothesized that kNN-LM increases
the probability of the top-k entries while taking “probability
mass” from the long tail of unlikely word types. However,
we could not gain any benefits solely from sparsifying the
output probability of a standard LM and interpolating it with
the original LM (Appendix E.2).

Stolen Probabilities The stolen probabilities effect (Deme-
ter et al., 2020) refers to the situation where the output
embeddings of an LM are learned such that some words are
geometrically placed inside the convex hull that is formed by
other word embeddings and can thus never be “selected” as
the argmax word. We hypothesized that XNN-LM solves the
stolen probabilities problem by allowing to assign the high-
est probability to any word, given a test context that is close
enough to that word’s datastore key. However, we found
that none of the vectors in our embedding matrix and in the
original embedding matrix of Khandelwal et al. (2020b) is
located in the convex hull of the others, which is consistent
with the findings of Grivas et al. (2022) (Appendix E.4).

Memorization We hypothesized that the kNN component
simply provides memorization of the training set. How-
ever, we could not improve a standard LM by interpolating
its probability with another standard LM that was further
trained to overfit the training set (Appendix E.6).

Soft Labels We hypothesized that KNN-LM’s improvement
lies in reducing the “over-correction” error when training
with 1-hot labels, as hypothesized by Yang et al. (2022),
and that retrieving neighbors is not important. If only “soft
labels” are the key, we could hypothetically improve the
performance of another fresh LM with the same model
architecture but trained with the soft labels from the base
LM, instead of from KNN-LM. This separates the effect
of “soft labeling” from the additional guidance provided by
kNN. However, this did not help at all (Appendix E.7).

Optimizing Interpolated Loss We hypothesized that the
standard LM cross-entropy training loss does not emphasize
the examples where base LM performs badly which could
benefit from kNN, and directly optimizing the interpolated
loss of standard LM and a separate trainable softmax layer
could be a better alternative. However, we could not gain
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any benefits by training an additional softmax layer together
with a base LM using the interpolated loss (Appendix E.8).

7. Conclusion

In this paper, we investigate why kNN-LM improves per-
plexity, even when retrieving examples from the same train-
ing data that the base LM was trained on. By proposing
and testing various hypotheses and performing extensive
ablation studies, we find that the key to kNN-LM’s success
is threefold: (1) Ensembling different input representations —
the feedforward layer output and the attention layer output —
can recover 55% of the performance, even without retrieval.
(2) One of the most unexpected discoveries is that using
approximate nearest neighbor search allows kNN-LMs to
generalize better than exact nearest neighbor search, possi-
bly due to a regularization effect. (3) Tuning the softmax
temperature for the kNN distribution is crucial to adjust the
standard LM output distribution with the distribution cre-
ated by the retrieved neighbors’ distances. These findings
are orthogonal to Drozdov et al. (2022) where they discov-
ered kNN-LM works especially well when there is a large
n-gram overlap between the training and the test set.

We performed extensive experiments which ruled out other
hypotheses as to why kNN-LMs work, such as over-
parameterization, sparsification, overfitting, ensembling of
distance metrics, etc. We believe that this work unlocks
a variety of exciting research directions for efficient KNN-
LM alternatives in addition to existing improvement mod-
els (Zhong et al., 2022). For example, exploring methods
that replace the NN component with trainable parameters
and achieve comparable results without the latency burden
of kNN-LM.
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A. kENN-LM Generalization to Other LMs

#params Base LM PPL  kNN-LM PPL  Absolute PPL Gain

Ours 268M 21.75 19.17 2.58
Distilled-GPT2 82M 18.25 14.84 3.41
GPT2-small 117M 14.84 12.55 2.29
GPT2-medium 345M 11.55 10.37 1.18
GPT2-large 774M 10.56 9.76 0.80

Table 4: Performance of KNN-LM applied to other pretrained language models of different sizes.

To test the generalizability of KNN-LM, we follow the same experimental setup as used in Section 3. We select several
pretrained models from the GPT2 family (Radford et al., 2019) of various parameter counts, plus a distilled version of
GPT2, DistillGPT2. (Sanh et al., 2019) We take the pretrained model checkpoint, build the datastore and evaluate on the
Wikitext-103 dataset splits. The results are shown in Table 4. We see that KNN-LMs has good generalizability on other
models. It improves the perplexity of all the base LMs tested. However, the larger the model is, and usually the better the
base LM’s perplexity is, the less gain can be achieved from adding kNN. Note that our model is trained from scratch on
Wikitext-103 dataset and thus even with a relatively large model size, the perplexity and perplexity gain from adding £NN is
still less than models with pretraining. Without loss of generalizability, we will use our own trained-from-scratch model as
the base LM in the following sections for ablation study.

B. Detailed Results for Increasing the Softmax Capacity

has Ngs ®  +#params PPL Interp.  Oracle
- - - 0 21.750 - -

att  Big 1P Ngs x D 00 19.095 14.077
att Ix IP V x D 22.584 20353 16.954
att 2x IP 2V xD 21903 20529 17.432
att 3x IP 3V xD 22434 20395 17.132
att 4x IP 4V x D 21936 20.521 17.423
att 5x IP BV xD 22025 20643 17.560
att 6x IP 6V xD 21972 20519 17422
att 9x IP 9V xD 22084 20.696 17.631

ffn Big IP Ngs x D 00 21.101 16.254
ffn 1x IP V x D 20920 20.694 18.772
ffn 2x IP 2V xD 20889 20.646 18.701
ffn 3x IP 3V xD 20829 20603 18.717
ffn 4x IP 4V x D 20769 20.629 18.876
ffn 5x IP 5V xD 20720 20.594 18.878
ffn 6x IP 6V xD 20726 20.599 18.902
ffn 9x IP 9V xD 20.687 20.567 18.887

Table 5: Performance comparison of kNN baselines and models with learnable embeddings of increasing size as Wy,
datastore alternative. hg4; is either attention layer output (att) or feedforward layer output (ffn).

C. Alternative Methods for Increasing Softmax Capacity
C.1. Adaptive Increasing Embedding Size

We hypothesize that different word types have different difficulties for the language model to predict. For those words
that appear very frequently, they may appear in many different contexts. As a result, instead of adding equal number of
additional embeddings to each word type, we propose to adaptively increase the number of embeddings for word types
based on word frequency, or total training loss for the word. Based on the intuition of Zipf’s law (Clauset et al., 2009), we
assign 1 + log, f,, for each word type v € V, based on either the frequency or the total training loss of the word, f,,. The b
is a hyperparameter that could be tuned. To ensure fair comparison, we tune b so that for each experiment the total number
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of embeddings matches: ) ., 1+ log, f, = nV. The results are shown in Table 6. We see that although nice on paper,
given the same number of total embeddings, adaptively increasing the number of embeddings assigned for each word type
does not make a significant difference in the final perplexity, when compared with the models that use equal number of
embeddings for each word type.

has Nags ®  +#params  PPL Interp.  Oracle

Base LM - - - 0 21.750 - -
KNN att Big L2 Ngs x D 00 19.174  14.230
KNN att Big IP Ngs x D 00 19.095 14.077

Equal Per Word  att 3x IP 3V xD 22434 20395 17.132
Loss Weighted att 3x IP 3V xD 21948 20440 17.303
Freq. Weighted  att 3x IP 3V xD 22507 20387 17.105

KNN ffn Big L2 Ngsx D 00 20.734 15594

KNN ffn Big IP Ngsx D 00 21.101  16.254
Equal Per Word  ffn 3x IP 3V xD 20829 20.603 18.717
Loss Weighted ~ ffn 3x IP 3V xD 20764 20.659 18978
Freq. Weighted ffn 3x IP 3V x D  20.757 20572 18.782

Table 6: Performance comparison of kNN baselines and several configurations that adaptively increase the embedding size
with training loss or word frequency.

C.2. Mixture of Softmaxes

(Yang et al., 2017) proposes a solution to the problem using a Mixture of Softmax (MoS) to produce more linearly independent
probability distributions of words given different contexts. Suppose that there are a total of R mixture components. MoS
first uses R linear layers with weight w,. to transform the current query context vector hyg into w;.hgs. With a shared word
embedding matrix W,,, we calculate each softmax component’s probability distribution with softmax (W, - w,-hgs). The
mixture distribution is then given by:

R
PJV[OS = Z Tr,hqs SOftmaX(an ‘ wrhds) (3)

r

The prior weights are calculated using another linear layer with weight w, as 7, j,,. = softmax(w;hgs). The softmax
ensures that Zf’ Ty h,. = 1. Comparing the MoS with the first term in Equation 2, M softmax (mask-to-k(Wys ® hgs)), we
see that there are some connections between the two. MoS eliminates the mask-to-k(-) operation, and replaces the single
softmax across a very large vector (size of datastore), into multiple smaller softmaxes, each across only a vector of the size
of vocabulary. As a result, the huge W, is replaced by several linear layers to project the word embedding matrix. Now the
first term becomes:

M (@ Esoftmax (Wi, - w,has)) €]
My = mppy,, Vi <V &)

where @ represents the vector concatenation operation, and the aggregation matrix M/ now contains the mixture weights for
each softmax being concatenated. We perform experiments with a varying number of mixtures (R), different definitions hgs,
and whether to finetune the output word embeddings W,,,. We allow finetuning the word embedding when we use attention
layer output as context vector, since the word embedding matrix is trained with feedforward layer output originally. The
results for this formulation are shown in Table 7. MoS models on its own increase the performance of the language model
marginally. When compared with Table 5, we find that these models are worse than those that simply increases the number
of embeddings. This is expected because MoS has fewer added parameters compared to those, as it only requires several
additional linear projection layers for the embeddings.

C.3. Clustering Datastore

Opposite to training the word embeddings of an increased size, we also consider ways to compress the datastore down to a
similar-sized embedding matrix for softmax computation. The intuition is that the datastore contains redundant context
vectors, and thus compression could make the datastore smaller without sacrificing too much performance gain. (He et al.,
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his R ® +#params PPL Interp.  Oracle

Base LM - - - 0 21.750 - -
KNN att - L2 Ngs x D 00 19.174  14.230
KNN at - P Nags x D 00 19.095 14.077
KNN ffn - L2 Ngs x D 00 20.734  15.594
KNN ffn - IP Ngs x D 00 21.101  16.254
Ft. MoS+embed att 2 1P VD+2D*+2D 21986 20720 17.573
Ft. MoS+embed att 3 1P VD+3D?>+3D 22106 20.779 17.609
Ft. MoS Only att 2 IP 2D?% + 2D 22.552  21.011 17.796
Ft. MoS Only at 3 IP 3D* + 3D 22573  21.024 17.812
Ft. MoS Only ffn 2 IP 2D? + 2D 21.351 21338 20.258
Ft. MoS Only ffn 3 IP 3D? +3D 21495 21460 20.322
Ft. MoS Only ffn 4 IP 4D? + 4D 21.321 21321 20.396
Ft. MoS Only ffn 5 IP 5D? 45D 21.371  21.367  20.406

Table 7: Performance comparison of kNN baselines and several MoS configurations. R is the number of mixtures.

2021) shows that we can safely compress the datastore by clustering to 50% of the original size without losing performance.
We test this idea further by clustering the entire datastore into a size that could fit in GPU memory (e.g. 2V, 3V) and
thus could be easily finetuned further and use the resulting centroids to replace W ;5. Within each cluster, there will be
a distribution of different words with contexts, and we use the frequency of words within each cluster to calculate the
aggregation matrix M in Equation 2. This would have the added benefit of “multi-sense” embedding, which allows similar
meanings to be clustered to form a new “meta word” while the same word with different meanings would form different
“meta words”. A notable example is bank, shore, and financial institution. However, this does not work, mostly because of
the high compression loss after clustering and the imbalanced distribution of word types among each cluster.

D. Which Words Benefit from Approximation?

To further understand the unexpected results when using the different KNN approximate retrieval settings in Section 5.1
and Section 5.2, we analyze on a token level, based on how many times each ground truth token’s probability in the
evaluation set are helped by each kNN setting. It means that for each ground truth token in the evaluation, we count the
times when the NN distribution is higher than the base LM distribution Py, i.e., Poxnny > Pras.

Since we found previously that approximate kNN provides an additional performance boost compared to ground truth kNN,
we thus compare “real mask, real score” versus “FAISS mask, real score” in this analysis. To prevent outliers, we filter out
words with less than 10 occurrences in the evaluation set. For each setting, we calculate the percentage of occurrences in the
evaluation set where each token in the vocabulary where the kNN module achieves a better probability than base LM. We
then plot the absolute difference between the percentages of the two settings, with respect to various possible attributes of
the token that achieves better probability using each setting.

Figure 5 shows that the longer the token is, which usually suggests proper nouns and harder and less common words in
English, are better with approximate neighbors than ground truth ones, and vice versa. We hypothesize that this is due
to longer words are more prone to overfitting in KNN-LM and thus using approximate kNN provides an effect similar to
smoothing and regularization.

We also compare words that could appear in more diverse contexts with words that co-occur with few distinct contexts. To
measure how diverse the contexts of each word in the vocabulary is, we calculate both the forward and backward bigram
entropy for each word in the evaluation set that has more than 10 occurrences. The bigram entropy is a simple yet good
indicator of context diversity for a given word, as used in Kneser—Ney smoothing (Ney et al., 1994). We calculate both the
forward and backward bigram entropy for each word w as follows, where w,ger and Wepefore TEPresent the word after and
before the given word w.

Hforwu.rd (’LU) - - Z p(wafler‘w) log p(wafler‘w) (6)
Wafter

Hbackward(w) = - Z p(wbefore‘w) 1ng(wbefore‘w) (7N
Whefore
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Figure 5: The effect of the token character length on how much accurate nearest neighbors are better than approximate
FAISS neighbors. Negative values mean worse. The trend line of the scatter points is shown.

Forward and backward entropy represents how diverse the context after and before the given word is. Intuitively, bigram
entropy is supposed to indicate words that can appear in lots of different contexts. The higher the entropy of a word, the
more diverse its context is, and vice versa. For example, words like “Francisco” would have a low entropy because it mostly
comes after “San”.
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Figure 6: The effect of the forward and backward entropy of words on how accurate nearest neighbors are better than
approximate FAISS neighbors. Negative values mean worse. The trend line of the scatter points are shown.

The comparison is shown in Figure 6. We see that the higher the entropy in both forward and backward cases, the better using
approximate nearest neighbor search becomes. This suggests that words that appear in many different contexts are better off
with an approximate kNN, and “easy-to-predict” examples such as “Jersey” and “Fransisco” is better with accurate kNN,
possibly because these examples are less prone to overfitting errors and thus requires less regularization from approximation.

E. Failed Hypotheses
E.1. Distance Metric

We hypothesize that the key to kNN-LM’s performance gain is the ensemble of two distance metrics: the standard dot
product distance (which the LM uses) with the L2 distance (which the kNN component uses as ®). We tried to replace the
kNN component with a component that just takes the tokens retrieved by the kNN search and returns their L2 distance to
the LM output word embeddings: W,,, ® hgs instead of Wy, ® hgs, where ® represents the negative L2 distance. We tried
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this with both variants of hy, attention layer output, and feedforward layer output. None of these helped.

E.2. Sparsification

In Equation 2, mask-to-k(-) used by kNN retrieval induces sparsity in the distribution over the vocabulary, due to a small k
compared to the number of vocabulary V. We hypothesize that the in kNN-LM, the kNN distribution is sparse, practically
increasing the probability of the top-k entries. The kNN distribution has up to 1024 entries that are non-zero, concentrating
more probability mass over the most likely tokens. This effect is similar to the redistribution of probability mass for text
generation in (Holtzman et al., 2019). We test this hypothesis only by taking top 32, 64, 128, 512, or 1024 tokens in the
parametric LM probability and zeroing out the probabilities of the rest of the tokens. To compensate, we experiment with
different softmax temperatures and then interpolate with the parametric LM probability. This isolates the effect of the
datastore and retrieval at all, and this does not help at all, suggesting that sparsification of the output probability alone is not
enough.

Another attempt is to hypothesize that the key in kNN-LM is that it selects “which tokens to include” in the NN distribution,
and not their distances. The intuition behind is that maybe the selection of the top tokens according to the kNN search is
better than that from the dot-product distance between the language model’s output vector and all the vocabulary embeddings.
We perform experiments similar to the previous attempt, sparsifying the output probability with the tokens retrieved by
the kNN search (but ignoring the distances provided by the kNN search) rather than the top k tokens of the LM, with and
without removing duplicates. In the best case, they manage to reduce the perplexity by 0.5 (whereas kNN-LM reduces by
nearly 2).

E.3. Location within Context Window

Supposedly, words in the beginning of the “context window” of the transformer at test time have less contextual information
than words toward the end of context window.

We hypothesized that maybe the base LM performs worse in one of these (beginning vs. end of the context window), and
maybe KNN-LM provides a higher improvement in one of these. We measured the per-token test perplexity with respect
to the location of each token in the context window. However, we did not find any significant correlation between the
performance of the base LM and the location, and no significant correlation between the difference between KNN-LM and
the base LM and the location.

We also hypothesized that maybe the beginning of every Wikipedia article is more “predictable”, and the text becomes more
difficult to predict as the article goes into details. However, we also did not find any correlation with the location of the word
within the document it appears in.

E.4. Stolen Probabilities

The stolen probabilities effect (Demeter et al., 2020) refers to the situation where the output embeddings of an LM are
learned such that some words are geometrically placed inside the convex hull that is formed by other word embeddings.
Since language models generate a score for every output word by computing the dot product of a hidden state with all word
embeddings, Demeter et al. (2020) prove that in such a case, it is impossible for words inside the convex hull to be predicted
as the LM’s most probable word (the “argmax”).

We hypothesized that kNN-LM solves the stolen probabilities problem by allowing to assign the highest probability to any
word, given a test hidden state that is close enough to that word’s datastore key. Nevertheless, as shown by Grivas et al.
(2022), although this problem might happen in small RNN-based language models, in modern transformers it rarely happens
in practice. Using the code of Grivas et al. (2022), we checked the embeddings matrix of our model and of the checkpoint
provided by Khandelwal et al. (2020b). Indeed, we found that in both models — no word is un-argmaxable.

E.5. Are kNN-LM Just Ensembling?

Our hypothesis is that kNN component only provides another model for ensembling. The interpolation process is basically
an ensemble model. Technically it is unsurprising that KNN-LM will have the benefit from ensembling, but we perform
experiments to see how it compares to other ensembling. We trained another language model with the same architecture as
the base LM we used throughout the experiments, with some variants having more than one embedding vector for each
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word (similar to Section 4.2). We interpolate the models with the original base LM, and the results are shown in Table 8. We
see that even just ensembling the base LM with another identical model, but trained with a different random seed, provides a
huge performance boost, both on interpreted perplexity and on oracle perplexity.

Prev. Layers hgqs Nas ® +#params PPL Interp.  Oracle
same - - - 0 21.750 - -
same att  Big L2 Nas x D 00 19.174  14.230
same att Big IP Ngs x D o0 19.095 14.077
same ffn Big L2 Nas x D 00 20.734 15594
same ffn Big IP Ngs x D o0 21.101  16.254
diff ffn Ix IP F+VxD 21569 18941 14.980
diff ffn 2x  IP F+2V xD 21914 18948 14.885
diff ffn 3x IP F+3VxD 22206 18981 14.853

Table 8: Performance comparison of kNN baselines and models with different size output embeddings re-trained from
scratch.

However, just because ensembling two LMs of the same architecture provides better performance than interpolating the
base LM with kNN does not necessarily suggest that KNN’s performance improvement can be fully replaced by model
ensembling. In other words, we are interested in whether the kNN performance improvements are orthogonal to that of
model ensembling. To test this, we compare the performance of the ensemble of K multiple LMs versus the ensemble of
K — 1 multiple LMs plus the kNN component. The comparison is fair because we have the same number of models in the
ensemble, and the only difference is whether the kNN component is included. The results are shown in Figure 7. For the
“LM” series, each point is K LMs ensemble, and for the “AkNN” series, each point is K — 1 LMs plus kNN. We see that
even at 4-ensemble, the ensemble that contain kNN as a component still have a considerable edge over the 4-ensemble that
contain just LMs.

= LM == kNN
22

20

1 2 3 4
Number of Ensemble Components

Figure 7: Ensembling effect comparison, between multiple base LMs and multiple base LMs plus kNN component.

E.6. Are kNN-LM Just Overfitting?

Since kNN-LM improves perplexity even with the same training dataset as datastore, we are curious if KNN-LM works by
only “memorizing” the training data. The hypothesis is that the datastore and the kNN search are trying to memorize the
training data. In other words, the parametric LM is under-fitting some tokens. The intuition behind this is that the kNN
component retrieves examples directly from the training set. What if we could retrieve the same examples using an overfitted
LM? We took the trained LM, removed the dropout, and continued training until almost perfect fit (very small training loss).
We then interpolated the overfitted transformer with the original LM. The results are shown in Table 9. F’ represents the
number of parameters in the base LM, minus the output embedding matrix. We see that overfitting can provide very little
help after interpolation. Looking at the oracle performance, we think that the overfitted model memorizes some rare contexts
and tokens in the training set where it could be useful during evaluation. However, the overfitting hurts the performance on
other tokens too much so that even interpolation is not able to balance the performance.
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Prev. Layers hgs Ngs ® +#params PPL Interp.  Oracle

Base LM same - - - 0 21.750 - -
kNN-LM same att  Big L2 Ngs x D o0 19.174  14.230
kKNN-LM same att Big IP Ngs X D 0 19.095 14.077
kNN-LM same ffn Big L2 Ngs x D o0 20.734  15.594
kKNN-LM same ffn Big IP Ngs x D 00 21.101  16.254
Overfit@92 diff ffn \%4 IP F+V xD 1702806 21.732 17.764
Overfit@129 diff ffn \%4 IP F+V xD 8966508 21.733 17.814

Table 9: Performance comparison of several baselines with two overfitted models, at 92 and 129 additional epochs.

E.7. Are kNN-LM Just Soft-Label Training?

(Yang et al., 2022) claims that using “soft labels” during training is the key to KNN’s success, that interpolates the ground
truth labels with KNN-LM model outputs, effectively “distilling” kNN-LM. It is based on the hypothesis that the room for
kNN-LM’s improvement over base LM lies in the “over-correction” when training with a 1-hot labels. This is related to the
effect from label smoothing methods (Szegedy et al., 2016; Pereyra et al., 2017; Meister et al., 2020a). However, we believe
that this explanation is not satisfactory. If the key is training with soft-labels, why do these soft labels must be provided
specifically by a kNN search? If soft labels were the key, then soft-label training where the labels come from the base LM
itself should have worked as well. To separate the effect of soft labeling from the kNN’s additional guidance, we train
another LM with the same model architecture as the base LM, with the soft labels from the base LM. This teacher-student
training is to distill the knowledge from the base LM (Hinton et al., 2015). We find that by just training with “soft labels*
from the base LM to alleviate the alleged “over-correction” problem is not the key, as this does not help with the interpolated
perplexity at all. This suggests that even with the same training data, kNN still provides valuable additional guidance.

E.8. Are kNN-LM Just Training to Optimize Interpolated Loss?

In Section 4.2, we discover that using over-parameterization with standard LM training loss does not further close the
gap towards KNN-LM. This suggests that some regularization term may be needed during training to make the multiple
embeddings not converge to the same vector, rendering over-parameterization useless.

From Table 2, we see that a better interpolated perplexity may not require a very low perplexity when measured only with
the extra input representation. However, we still use a standard LM loss to only train the additional embedding matrix,
that directly minimizes the perplexity using only the extra input representation. This discrepancy between training and the
evaluation with interpolation suggests that training with an alternative loss function that interpolates the base LM’s output
with the output using the extra input representation may be beneficial.

To test the hypothesis that standard LM training loss do not emphasize the examples where base LM performs badly, we
train the extra model’s parameter Wy, with interpolated loss L:

L = CrossEntropy (Asoftmax(Ws - hgs) + (1 — A)softmax(W,, - hsm ), ¥) 8

y represents the ground truth label for each context. We only learn the parameter W, while freezing all other parameters,
similar to all other experiments. We choose A = 0.25 as it is the best hyper-parameter for KNN-LM experiments and our
goal for this training is to mimic the loss of KNN-LM after interpolation. This training loss effectively assigns a higher value
to the training examples where the base LM’s loss is high, suggesting the need for the extra W, to help with these hard
cases. However, for either “att” for “ffn” for hg4s, either V' or 3V for the number of embeddings in W5, we are unable to
achieve a better perplexity than just the base LM. This suggests that, while nice on paper, the interpolated loss optimization
process is not trivial.
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