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Fig. 1: An illustration of how our online dynamic spatio-semantic memory DynaMem responds to open vocabulary queries in a dynamic
environment. During operation and exploration, DynaMem keeps updating its semantic map in memory. DynaMem maintains a voxelized
pointcloud representation of the environment, and updates with dynamic changes in the environment by adding and removing points.

Abstract— Significant progress has been made in open-
vocabulary mobile manipulation, where the goal is for a robot
to perform tasks in any environment given a natural language
description. However, most current systems assume a static
environment, which limits the system’s applicability in real-
world scenarios where environments frequently change due to
human intervention or the robot’s own actions. In this work,
we present DynaMem, a new approach to open-world mobile
manipulation that uses a dynamic spatio-semantic memory to
represent a robot’s environment. DynaMem constructs a 3D
data structure to maintain a dynamic memory of point clouds,
and answers open-vocabulary object localization queries using
multimodal LLMs or open-vocabulary features generated by
state-of-the-art vision-language models. Powered by DynaMem,
our robots can explore novel environments, search for objects
not found in memory, and continuously update the memory
as objects move, appear, or disappear in the scene. We run
extensive experiments on the Stretch SE3 robots in three real
and nine offline scenes, and achieve an average pick-and-drop
success rate of 70% on non-stationary objects, which is more
than a 2× improvement over state-of-the-art static systems.

I. INTRODUCTION

Recent advances in robotics have made it possible to
deploy robots in real world settings to tackle the open vocab-
ulary mobile manipulation (OVMM) problem [1]. Here, the
robots are tasked with navigating in unknown environments
and interacting with objects following open vocabulary lan-
guage instructions, such as “Pick up X from Y and put it in
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Z”, where X, Y, and Z could be any object name or location.
The two most common approaches to tackling OVMM are
using policies trained in simulation and deploying them in the
real world [2–4], or training modular systems that combine
open vocabulary navigation (OVN) [5–8] with different robot
manipulation skills [9–13]. Modular systems enjoy greater
efficiency and success in real-world deployment [14] as
they can directly leverage advances in vision and language
models [9, 12], and are able to handle more diverse and out-
of-domain environments with no additional training.

However, as recent analysis has shown, the primary chal-
lenge in deploying modular OVMM is that limitations of a
module propagate to the entire system [9]. One key module in
any OVMM system is the open vocabulary navigation (OVN)
module responsible for navigating to goals in the environ-
ment. While many such OVN systems have been proposed in
the literature [1, 5–13], they share a common limitation: they
assume static, unchanging environments. Contrast this with
the real world, where environments change and objects are
moved by either robots or humans. Making such a restrictive
assumption thus limits these systems’ applicability in real-
world settings. The primary reason behind this assumption
is the lack of an effective dynamic spatio-semantic memory
that can adapt to both addition and removal of objects and
obstacles in the environment online.

In this work, we propose a novel spatio-semantic memory
architecture, Dynamic 3D Voxel Memory (DynaMem), that
can adapt online to changes in the environment. DynaMem
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maintains a voxelized pointcloud representation of an en-
vironment and adds or removes points as it observes the
environment change. Additionally, it supports two differ-
ent ways to query the memory with natural language: a
vision-language model (VLM) featurized pointcloud, and a
multimodal-LLM (mLLM) QA system. Finally, DynaMem
enables efficient exploration in changing environments by of-
fering a dynamic obstacle map and a value-based exploration
map that can guide the robot to explore unseen, outdated, or
query-relevant parts of the world.

We evaluate DynaMem as a part of full open-vocabulary
mobile manipulation stack in three real world environments
with multiple rounds of changes and manipulating multiple
non-stationary objects, improving the static baseline by more
than 2× (70% vs. 30%). Additionally, we identify an obsta-
cle in efficiently developing dynamic spatio-semantic mem-
ory, namely the lack of dynamic benchmarks, since many
OVN systems use static simulated environments [15, 16]
or static datasets [17, 18]. We address this by developing
a new dynamic benchmark, DynaBench. It consists of 9
different environments, each changing over time. We ablate
our design choices in this benchmark. To the best of our
knowledge, DynaMem is the first spatio-semantic memory
structure supporting both adding and removing objects.

II. RELATED WORKS

A. Spatio-semantic Memory

Early works in spatio-semantic memory [19–23] created
semantic maps for limited categories based on mostly ad-
hoc deep neural networks. Later work builds upon repre-
sentations derived from pre-trained vision language models,
such as [6, 7, 24–29]. These works use a voxel map or
neural feature field as their map representation. Some recent
models [30, 31] have used Gaussian splats [32] to represent
semantic memory for manipulation. Most of these models
show object localization in pre-mapped scenes, while CLIP-
Fields [5], VLMaps [33], and NLMap-SayCan [27] show
integration with real robots for indoor navigation tasks. Some
recent works [10, 34, 35] extend this task to include an
affordance model or manipulation primitives. However, few
existing semantic memory research deals with the dynamics
of environments. To resolve this limitation, our work builds
upon the voxel map based spatio-semantic memory literature
and extends it to dynamic environments where both objects
and obstacles can change over time. Concurrent to our work,
DovSG [36] looks at dynamic semantic scene graphs. As
scene graphs deal with an object level abstraction, DovSG
needs to handle object merging, association, and deduplica-
tion explicitly, which are all handled implicitly in DynaMem.

B. Mapping and Navigating Dynamic Environments

For robot navigation, Simultaneous Localization and Map-
ping (SLAM) [37] methods are crucial. However, practical
SLAM instances based on voxels [38, 39], objects [40, 41],
landmark [20, 42], NeRF [43, 44], and Gaussian splats [45,
46] tend to make the simplifying assumption that the world
is static. Some sparse SLAM methods improve on dynamic

environments by estimating underlying state [47–55] or
explicitly modeling moving objects [56–58]. Some methods
also forego a map and rely on reactive policies to navigate
dynamic environments [59? –62], although they generally
tackle local movement and not global navigation. Our work
relies on SLAM systems that are stable under environment
dynamics, and focuses on building a dynamic semantic
memory based off of online exploration and observations.

III. METHOD

In this section, we define our problem setup, and then de-
scribe our online, dynamic spatio-semantic memory for open
world, open vocabulary mobile manipulation. We introduce
how to use this memory to localize text query and how to
navigate to the target object in Appendix III-C and III-D
respectively.

A. Problem Statement

We create our algorithm, DynaMem, to solve open vocab-
ulary mobile manipulation (OVMM) problems in an open,
constantly changing world. The goal in OVMM is for a
mobile robot to execute a series of manipulation commands
given arbitrary language goals. We assume the following
requirements for the memory module for dynamic, online
operation:
• Observations: The mobile robot is equipped with an on-

board RGB-D camera, and unlike prior work [9], doesn’t
start with a map of the environment. Rather, the robot
explores the world and use the online observed sequence
of posed RGB-D images to build its map.

• Environment dynamism: The environment can change
without the knowledge of the robot.

• Localization queries: Given a natural language query (i.e.
”teddy bear”), the memory module has to return the 3D
location of the object or determine that the object doesn’t
exist in the scene observed thus far.

• Obstacle queries: The memory module must determine
whether a point in space is occupied by an obstacle.
Both the location of the objects and obstacles can move,
previous observations often contradict each other and must
be resolved by the memory.

B. Dynamic 3D Voxel Map

Our answer to the challenge posed in the Section III-
A is DynaMem. DynaMem is an evolving sparse voxel
map with associated information stored at each voxel, as
shown in Fig. 6. In each non-empty voxel, alongside its 3D
location (x, y, z), we also store the observation count C (how
many times that voxel was observed), source image ID I
(which image the voxel was backprojected from), a high-
dimensional semantic feature vector f coming from a VLM
like CLIP [63] or SigLIP [64], and the latest observation
time, t, in seconds.

To make this data structure dynamic, we describe the
process with which we add and update with new observations
and remove outdated objects and associated voxels.



Adding Points: When the robot receives a new set of
observations, i.e. RGB-D images with global poses, we
convert them to 3D coordinates in a global reference frame,
and generate a semantic feature vector for each point. The
global coordinates are calculated from the global camera
pose and the backprojected depth image using the known
camera transformation matrix. We calculate the point-wise
image feature by first converting the images to object patches
by using a segmentation model such as SAM-v2 [65], and
then aggregating each patch feature over the output of a
vision-language models like CLIP [63] or SigLIP [64]. For
more details about image-to-feature vector mapping, we refer
to earlier works [5, 8, 9]. Once we have calculated the points
and associated features, we cluster the new points and assign
them to the nearest voxel grids. In Fig. 7, we show how
each voxel’s metadata is updated. The count keeps track of
the total number of assigned points to each voxel grid, and
the feature vector keeps track of the weighted average of all
feature vectors assigned to that voxel. Finally, the observation
time and image ID are updated to keep track of the latest
observation contributing to a particular voxel. If a voxel was
empty before assignment, we assume its count C = 0 and
feature vector f =

−→
0 .

Removing Points: When an object is moved or removed,
its associated voxels in DynaMem may get removed. We
use ray-casting to find the outdated voxels. The operation
follows a simple principle: if a voxel falls within the frustum
between the camera plane and the associated view point
cloud, that voxel must be unoccupied. To reduce the impact
of the depth noise at long range, we don’t consider any pixel
whose associated depth value is over 2m.

We illustrate a simplified 2D representation of this algo-
rithm in Fig. 2. In practice, to speed up the intersection
between the sparse voxelmap and the view frustum, we
project each existing voxel to the camera plane and calculate
the camera distance. If the image height and width are
(H,W ), the depth image is D, and a certain voxel is
projected to points (h,w) in the camera plane with depth
d, it gets removed if both Eq. 1 and 2 hold.

(h,w) ∈ [0, H]× [0,W ] (1)

d ∈
(
0,min(2,D

[
h,w

]
+ ϵ)

)
(2)

Where Eq. 1 ensures that the point falls within the camera
view, and Eq 2 ensures that (a) the depth d > 0, or the object
is in front of camera, (b) d < 2m, or the voxel isn’t too far
away from the camera, and (c) d < D[h,w] denoting the
voxel is between the camera and the currently visible object.

C. Querying DynaMem for Object Localization

As described in Section III-A, we define the object lo-
calization or 3D visual grounding problem as a function
mapping a text query and posed RGBD images to either the
3D coordinate of the query object, or ∅ if the object is not in
the scene. Unlike previous work, we abstain from returning
a location when an object is not found. To enable this, we
factor this grounding problem into two sub-problems. The
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Fig. 2: A high-level, 2D depiction of how adding and removing voxels from
the voxel map works. New voxels are included which are in the RGB-D
cameras view frustum, and old voxels that should block the view frustum but
does not are removed from the map.
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Top voxel match: V

Latest image index  : VI I235
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Fig. 3: Querying DynaMem with a natural language query. First,
we find the voxel with the highest alignment to the query. Next,
we find the latest image of that voxel, and query with an open-
vocabulary object detector to confirm the object location or abstain.

first is finding the latest image where the queried object could
have appeared. The second is identifying whether the object
is actually present in that image. For the first sub-problem,
we propose two alternate approaches of visual grounding:
one using the intrinsic semantic features of DynaMem, and
another using state-of-the-art multimodal LLMs such as
GPT-4o [66] and Gemini 1.5 Pro [67].

Embedded Vision Language Features: As described in
Section III-B, we convert the incoming images to point-wise
image features, and embed them into our voxels. When we
have a new language query, we calculate its latent embedding
using the VLM text encoder, and find the voxel whose feature
has the highest dot product with the text embedding. Once
we find the right voxel, we simply retrieve its associated
latest image from our data structure.

Multimodal Large Language Models (mLLMs): We note
that the problem of finding the latest image where an object



may appear is similar to the problem of visual question-
answer (VQA) [68]. Since we fully rely on pretrained models
to build our map, we pose this multi-image VQA problem as
an mLLM QA problem similar to OpenEQA [69]. We give
the model a sequence of our latest environment observations
images and ask the model for the index of the last image
where the queried object was observed. We additionally
instruct the model to respond “None” if the object was not
observed in any image.
Handling Absence of Object: As mentioned above, we
locate objects in two stages. First, we find the best candidate
image where the object may have been seen (Section III-C).
Then, we use an open-vocabulary object detector model such
as OWL-v2 [70] to search that image for the queried object.
If we don’t find the queried object, we assume that the object
has either moved, or the response from the voxelmap or
mLLM was inaccurate, and respond with “object not found”.
If OWL-v2 returns an object bounding box, we find the
median pixel from the object mask and return its 3D location.

D. Robot Navigation and Exploration
To navigate in a real-world environment, robots use an

obstacle map in conjunction with a navigation algorithm like
A* in [9, 33]. We use a simple voxel-projection strategy
to build an obstacle map. Due to the depth observation
noise, we simply set a threshold for the ground (0.2m for
our experiments), and project all the voxels above that z-
threshold as the obstacles in our map. The voxels below the
threshold are projected into the 2D obstacle map as navigable
points. Finally, the points in the map that are not marked as
either obstacle or navigable are marked as explorable points.
Exploration Primitives: Since our robot does not start
with an environment map, it explores the environment with
frontier based methods to build the map. We can further
accelerate this process by providing exploration guidance.
Based on the current status of the map, DynaMem provides
an exploration value function to accelerate the exploration
process both for building and updating the map.

We provide two value-based exploration maps: one time-
based, and one semantic-similarity-based [71]. The time-
based value map prioritizes the least-recently seen points. If
the current time is T , and the last-seen time of voxel (x, y, z)
is tx,y,z , the temporal value map VT is expressed as:

T∗[x, y] = max
z

(T − tx,y,z)

VT [x, y] = σ
(
−βT

(
T∗[x, y]− µT

))
where βT , µT are hyper-parameters and σ is the sigmoid
function. Similarly, if the VLM feature at voxel (x, y, z) is
fx,y,z , and the VLM feature for the language query is fq ,
then the similarity-based value map VS is be expressed as:

S∗[x, y] = max
z

(fq · fx,y,z)

VS [x, y] = σ
(
−βS

(
S∗[x, y]− µS

))
where once again βS , µS are hyperparameters. We may also
linearly combine VT ,VS to balance our exploration between
last seen time and semantic similarity.

IV. EXPERIMENTS

We evaluate our method, DynaMem, on a Hello Robot:
Stretch SE3 in real world environments. We also perform
a series of ablation experiments in an offline benchmark in
Appendix VII.

A. Real-world Experiments
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Fig. 4: Statistics of failure, broken down by failure modes, in
our real robot experiments. Statistics are collected over three
environments and 30 open-vocabulary pick-and-drop queries on
objects whose locations change over time.

As a baseline, we compare with OK-Robot [9], a state-of-
the-art method for OVMM. OK-Robot uses a static voxelmap
as its memory representation, and thus it highlights the
importance of dynamic memory for OVMM in a changing
environment. For DynaMem, we run two variations of the
algorithm in the real world: one with VLM-feature based
queries and one with mLLM-QA based queries.

We describe detailed experiment setup in Appendix VIII.
Results: Our experiments in three dynamic environments
and with 30 queries is summarized in Fig. 4. We find
that DynaMem with both VLM-feature based and mLLM-
QA based queries have a total success rate of 70%. This
is a significant improvement over the OK-Robot system,
which has a total success rate of 30%. Notably, DynaMem
is particularly adept at handling dynamic objects in the
environment: only 6.7% of the trials failed due to our system
not being able to navigate to such dynamic objects in the
scene. This is in contrast to the OK-Robot system, where
53.3% of the trials failed because it could not find an object
that moved in the environment. In contrast, navigating to
static goals fails in only 10% of the cases for DynaMem with
VLM-feature, 13.3% for OK-Robot and 20% for DynaMem
with mLLM-QA.

V. CONCLUSIONS

In this work, we introduced DynaMem, a spatio-semantic
memory for open-vocabulary mobile manipulation that can
handle changes to the environment during operation. We
showed in three real world environments that DynaMem can
navigate to, pick, and drop objects even while object and
obstacle locations are changing.
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T. Ma, H. Khedr, R. Rädle, C. Rolland, L. Gustafson,
E. Mintun, J. Pan, K. V. Alwala, N. Carion, C.-Y. Wu,
R. Girshick, P. Dollár, and C. Feichtenhofer, “Sam
2: Segment anything in images and videos,” arXiv
preprint arXiv:2408.00714, 2024. [Online]. Available:
https://arxiv.org/abs/2408.00714

[66] O. Team, “Gpt-4 technical report,” 2024. [Online].
Available: https://arxiv.org/abs/2303.08774

[67] G. T. Google, “Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context,”
2024. [Online]. Available: https://arxiv.org/abs/2403.
05530

[68] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,
C. L. Zitnick, and D. Parikh, “Vqa: Visual question
answering,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 2425–2433.

[69] A. Majumdar, A. Ajay, X. Zhang, P. Putta, S. Yenaman-
dra, M. Henaff, S. Silwal, P. Mcvay, O. Maksymets,
S. Arnaud, et al., “Openeqa: Embodied question an-
swering in the era of foundation models,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024, pp. 16 488–16 498.

[70] M. Minderer, A. Gritsenko, and N. Houlsby, “Scaling
open-vocabulary object detection,” 2024. [Online].
Available: https://arxiv.org/abs/2306.09683

[71] N. Yokoyama, S. Ha, D. Batra, J. Wang, and B. Bucher,
“Vlfm: Vision-language frontier maps for zero-shot
semantic navigation,” in 2024 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE,
2024, pp. 42–48.

[72] S. Yenamandra, A. Ramachandran, M. Khanna,
K. Yadav, D. S. Chaplot, G. Chhablani, A. Clegg,
T. Gervet, V. Jain, R. Partsey, R. Ramrakhya,
A. Szot, T.-Y. Yang, A. Edsinger, C. Kemp,
B. Shah, Z. Kira, D. Batra, R. Mottaghi,
Y. Bisk, and C. Paxton, “The homerobot open
vocab mobile manipulation challenge,” in Thirty-
seventh Conference on Neural Information Processing
Systems: Competition Track, 2023. [Online]. Available:
https://aihabitat.org/challenge/2023 homerobot ovmm/

[73] N. Yokoyama, A. Clegg, J. Truong, E. Undersander,
T.-Y. Yang, S. Arnaud, S. Ha, D. Batra, and A. Rai,
“ASC: Adaptive skill coordination for robotic mobile
manipulation,” arXiv preprint arXiv:2304.00410, 2023.

[74] A. Majumdar, A. Shrivastava, S. Lee, P. Ander-
son, D. Parikh, and D. Batra, “Improving vision-and-
language navigation with image-text pairs from the
web,” in ECCV. Springer, 2020, pp. 259–274.

[75] J. Krantz, S. Lee, J. Malik, D. Batra, and D. S. Chaplot,
“Instance-specific image goal navigation: Training em-
bodied agents to find object instances,” arXiv preprint
arXiv:2211.15876, 2022.

[76] M. Hahn, D. S. Chaplot, S. Tulsiani, M. Mukadam,

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2306.09683
https://aihabitat.org/challenge/2023_homerobot_ovmm/


J. M. Rehg, and A. Gupta, “No rl, no simulation:
Learning to navigate without navigating,” Advances in
Neural Information Processing Systems, vol. 34, pp.
26 661–26 673, 2021.

[77] D. S. Chaplot, D. P. Gandhi, A. Gupta, and
R. R. Salakhutdinov, “Object goal navigation
using goal-oriented semantic exploration,” in
Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., vol. 33. Curran Associates,
Inc., 2020, pp. 4247–4258. [Online]. Available:
https://proceedings.neurips.cc/paper files/paper/2020/
file/2c75cf2681788adaca63aa95ae028b22-Paper.pdf

[78] N. Yokoyama, S. Ha, and D. Batra, “Success weighted
by completion time: A dynamics-aware evaluation cri-
teria for embodied navigation,” in 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 2021, pp. 1562–1569.

[79] X. Zhao, H. Agrawal, D. Batra, and A. G. Schwing,
“The surprising effectiveness of visual odometry tech-
niques for embodied pointgoal navigation,” in Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2021, pp. 16 127–
16 136.

[80] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets,
R. Mottaghi, M. Savva, A. Toshev, and E. Wijmans,
“Objectnav revisited: On evaluation of embodied agents
navigating to objects,” CoRR, vol. abs/2006.13171,
2020. [Online]. Available: https://arxiv.org/abs/2006.
13171
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Fig. 5: Real robot experiments in three different environments:
kitchen, game room, and meeting room. In each environment, we
modify the environment thrice and run 10 pick-and-drop queries.
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Fig. 6: DynaMem keeps its memory stored in a sparse voxel
grid with associated information at each voxel.
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Fig. 7: Updating DynaMem by adding new points to it, alongside the update rules for
the stored information.

VI. RELATED WORKS

A. Open Vocabulary Mobile Manipulation (OVMM)
Navigating to arbitrary goals in open ended environments

and manipulating them has become a key challenge in robotic
manipulation [72, 73]. This line of query follows Open-
Vocabulary Navigation systems [5, 33], which builds upon
prior object and point goal navigation literature [12, 14, 74–
80] which attempted navigation to points, or fixed set of
objects and object categories. OVMM is a naturally harder
challenge as it requires an ability to handle arbitrary queries,
and “navigation to manipulation” transfer – which means
unlike pure navigation, the robot needs to get close to
the environment objective and obstacles. In the OVMM
challenge [72], modular solutions such as [1, 13, 81] out-
performed the competition. More recently, OK-Robot [9]
performed extensive real-world evaluations of the challenges
in OVMM and demonstrated a system that achieves 58.5%
success rate in static home environments. We extend this
work by enabling manipulation in changing environments.

VII. ABLATIONS ON AN OFFLINE BENCHMARK

Running real robot OVMM experiments can be expensive
and time-consuming. So, we developed an offline benchmark
called DynaBench to easily evaluate dynamic 3D visual
grounding algorithms on dynamic environments and perform
algorithmic ablations. The benchmark isolates the query-
response part of the dynamic semantic memory without robot
navigation, exploration, and manipulation.

1) Data Collection: In the real world, the robot collects
its own map-building data by exploring the environments.
Following this, we collect the robot’s runtime sensor data
from three environments. To further enrich our benchmark,
we simulate this process by taking posed RGB-D images
on an iPhone Pro in six more environments. In all cases,
we emulate environment dynamics by moving objects and
obstacle locations in three successive rounds.

2) Data Labelling and Evaluation: We manually annotate
queries and responses in the dataset. Each query has an asso-
ciated natural language label q, object location X⃗ = (x, y, z),
and an object radius ϵ. Since the environment is dynamic,
each query also has an associated time t. For evaluation, at
time t (i.e. after the memory algorithm has observed all the
input data points with timestamp < t), we query the model
with q. If it predicts an object location X⃗ ′ = (x′, y′, z′), it’s
a success if ||X −X ′||2 ≤ ϵ and a failure otherwise. Since
the robot may also encounter queries for objects it has not
observed yet, we emulate negative queries by adding queries
for objects (a) that have not been observed yet, or (b) that
have been observed but were subsequently removed. For both
of these query types, the model must respond with not found;
otherwise it’s counted as a failure.

3) Evaluation Results: Using our offline benchmark, we
ablate design decisions of DynaMem as discussed in Section
III. Among these design decisions, the primary are: using
feature embedding-based vs. mLLM-QA based language
grounding, ablating components such as point removal or ab-
stentiation from the algorithm, and trying different mLLMs.



TABLE I: Ablating the design choices for our query methods for
DynaMem on the offline DynaBench benchmark. We also present
results from five human participants to ground the performances.

Query type Variant Success rate

Human (average over five participants) 81.9%

VLM-feature default (adding and removing points) 70.6%
only adding points 67.8%
no OWL-v2 cross-check 59.2%
no similarity thresholding 66.8%

mLLM-QA default (Gemini Pro 1.5) 67.3%
Gemini Pro 1.5, no voxelmap filtering 66.8%
Gemini Flash 1.5 63.5%

Due to API costs, we only evaluate Gemini models on the
benchmark. We present our results in Table I.

We see that performance of VLM-features and mLLM-QA
follows the same order in the real world in the benchmark,
corroborating the benchmark design. The best design choices
are to both add and remove points, and to cross check with
OWL-v2 on top of similarity thresholding for VLM-feature
based grounding. For mLLM-QA based grounding, Gemini
Pro outperforms Gemini Flash, and voxelmap based image
filtering benefits the method.

VIII. EXPERIMENT SETUP

We evaluate DynaMem and its impact on open-vocabulary
mobile manipulation in three real-world dynamic environ-
ments (Fig. 5). In each environment, we set up multiple
objects as potential manipulation targets, change the environ-
ment in three rounds, and execute 10 pick-and-drop queries
over the rounds We use the Hello Stretch SE3 as our mobile
robot platform, and use its head-mounted Intel RealSense
D435 RGB-D camera to collect the input data.

To build a complete pick-and-drop system around Dy-
naMem, we follow the system architecture in OK-Robot [9].
In particular, we use the AnyGrasp [82] based open-
vocabulary grasp system and use the heuristic based dropping
system. However, we use DynaMem’s exploration primitives
let the robot build the map of the environment and allow the
robot to explore when an object is not found in the memory.
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