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Abstract

Image registration is an essential task in medical image analysis. We propose two novel
unsupervised diffeomorphic image registration networks, which use deep Residual Networks
(ResNets) as numerical approximations of the underlying continuous diffeomorphic setting
governed by ordinary differential equations (ODEs), viewed as a Eulerian discretization
scheme. While considering the ODE-based parameterizations of diffeomorphisms, we con-
sider both stationary and non-stationary (time varying) velocity fields as the driving veloc-
ities to solve the ODEs, which give rise to our two proposed architectures for diffeomorphic
registration. We also employ Lipschitz-continuity on the Residual Networks in both archi-
tectures to define the admissible Hilbert space of velocity fields as a Reproducing Kernel
Hilbert Spaces (RKHS) and regularize the smoothness of the velocity fields. We apply both
registration networks to align and segment the OASIS brain MRI dataset. Experimental
results demonstrate that our models are computational efficient and achieve comparable
registration results with a smoother deformation field.

Keywords: Diffeomorphic image registration, residual networks, time dependent and sta-
tionary velocities.

1. Introduction

Image registration, a fundamental technique in many medical image analysis tasks, estab-
lishes global or local correspondences between a pair of images. Deformable registration
methods desire to find a diffeomorphic deformation field, i.e. a smooth invertible deforma-
tion with a smooth inverse, to ensure the preservation of topology when deforming images.
Traditional image registration algorithms like LDDMM (Beg et al., 2005) or SVF (Arsigny
et al., 2006) successfully estimate diffeomorphic deformations to build dense correspon-
dences between image pairs. While LDDMM achieves diffeomorphism by integrating a time
dependent velocity field specified by a Riemennian metric, SVF achieves it by using a sta-
tionary velocity field in the corresponding Lie algebra. SVF thus works on the structure
of the Lie group of diffeomorphic transformations, instead of the underlying Riemannian
manifold (Kobatake and Masutani, 2017). However, these methods often involve computa-
tionally expensive high-dimensional optimization, causing practical challenges of providing
time and memory efficient solutions for large-scale image studies.
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Recently, deep learning based approaches have been proposed to address the above chal-
lenges with highly parallelizable implementations executed on GPU, which make the defor-
mation computations fast. Existing deep registration models tackle the efficiency challenge
using supervised (Yang et al., 2017; Sokooti et al., 2017; Rohé et al., 2017) or unsuper-
vised techniques (Dalca et al., 2018; Krebs et al., 2018). Supervised approaches maintain
the diffeomorphic property, which is inherited from the classical diffeomorphic models like
LDDMM, but they require the extra effort to obtain ground-truth deformations and their
registration accuracy is limited by that of the obtained deformations. Inspired by the SVF
framework, most of the unsupervised approaches have shown promising diffeomorphism and
efficiency balanced registration results. However, because of the assumption of stationary
velocity fields, these algorithms are limited in terms of flexibility and handling complex
deformations, compared to dynamic systems considered in LDDMM. The SVF-based deep
models are also limited by the computational costs of the scaling and squaring step (Arsigny
et al., 2006; Higham, 2005; Mok and Chung, 2020) used for integrating stationary velocity-
driven deformations, resulting in an integration at half-scale of the original dimensional
size of inputs or downsampling original input size, or reducing model size of the used deep
networks. The information loss during the approximation of underlying transformations or
insufficient model capacity is a hindrance to the registration accuracy for high-resolution
images, especially for 3D medical volumes.

In this paper, we propose two diffeomorphic image registration approaches inspired by
the recent characterization of Residual Networks (ResNets) (Tai et al., 2017) as the numeri-
cal continuous flows of diffeomorphisms governed by ordinary differential equations (ODEs),
based on both stationary and non-stationary velocity fields. This ResNet-based ODE solver
makes it possible to perform the integration of the deformation mapping on the original
scale of the input image with a time cost comparable to recent work like VoxelMorph (Dalca
et al., 2018). Our contributions in the paper are summarized as follows:

• We propose two novel architectures using Lipschitz continuous ResNets, one with
shared weights for numerical approximation of exponential diffeomorphic operators
governed by an ODE with a stationary velocity field, and the other without shared
weights for considering the flow of time-dependent (non-stationary) velocity fields.

• We conduct experiments for both models on the 3D OASIS brain MRI dataset. Re-
sults demonstrate that our framework with Lipschitz-continuous ResNets for both
stationary and non-stationary velocity field integration provides comparable registra-
tion performance in terms of image matching while achieving smoother deformations.

2. Problem Formulation and Background

Given an image pair, a source image I0 and a target image I1, each of size nx × ny × nz,
the goal of diffeomorphic image registration is to determine a smooth deformation field
ϕ : Ω → Ω where Ω ⊆ Rnx×ny×nz with a smooth ϕ−1, such that the image deformed from
the source image, i.e., ϕ · I0, is similar to the target image I1. This problem is modeled as
the minimization of an energy function below:

J (ϕ; , I0, I1) = D(ϕ(I0), I1) +R(ϕ), (1)
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where D is the matching term that ensures the deformed source image is similar to the
target image, and R(·) is a regularizer that controls the smoothness of the deformation ϕ.

A diffeomorphic deformation field is determined by a smooth time-varying velocity field
vt, t ∈ [0, 1], via the following ODE:

d

dt
ϕt = vt ◦ ϕt, ϕ0 = id, (2)

with ϕt indicating the deformation at the time point t. ϕ0 is the identity map and ϕ1 is the
deformation that transforms the source image I0 to the target image I1. Given the velocity
fields vt and ϕ0, the computation of ϕ1 is the numerical integration of Eq. (2), given as
ϕ1 = ϕ0 +

∫ 1
0 vt(ϕt)dt. On the other hand, as introduced in (Arsigny et al., 2006), the

underlying Lie group of diffeomorphisms can be parameterized on stationary velocity fields,
(vt = V,∀t). This one-parameter subgroup is governed by the ODE:

d

dt
ϕt = V (ϕt). (3)

For the flow of a stationary velocity vector field in Eq. (3), the solution of ϕ(t) is represented
as the exponential of the velocity V given as:

ϕ(t) = exp(tV ). (4)

2.1. Related Work

Following the scaling and squaring methodology used to solve Eq. (4) (Arsigny et al., 2006;
Higham, 2005) , most of the current unsupervised registration algorithms (Mok and Chung,
2020; Dalca et al., 2018; Krebs et al., 2018) use the integration of stationary velocity fields
to produce diffeomorphic deformations. However, although each of these algorithms provide
diffeomorphic transformations, they do not use time-dependent velocity fields and are less
flexible for handling large deformations. Residual Networks (ResNets) have been proposed
to be used for the task of image registration in place of the popular convolutional neural
networks (Tai et al., 2017). Recently, some researchers use ResNets to learn deep multi-scale
residual representations to boost the registration accuracy (Yang et al., 2021), others use
the characterization of ResNets as numerical schemes of differential equations by relating
the mapping blocks in the ResNets with the integration steps in the popular LDDMM
algorithm (Ben Amor et al., 2021). The authors use the incremental mappings of ResNets
to parameterize time-dependent affine velocity fields and follow the LDDMM framework to
use a regularizer for summation over all kinetic energies of the system at all time-steps and
apply their framework in the task of registration problems on shapes.

There are multiple works to provide insights into ResNets from an aspect of ODE/PDE
(partial differential equation) and relate the incremental mapping (residual blocks) defined
by ResNets as numerical schemes of differential equations used in diffeomorphic registration
models, especially to deep LDDMM. Currently, multiple methods have been proposed based
on using continuous optimization dynamics via neural ODEs (Chen et al., 2018) for image
registration. In (Wu et al., 2021) authors use a novel multi-scale approach based on neural
ODEs and a modality independent similarity measure for the task of image registration.
However, they do not guarantee diffeomorphic deformations in their registration results. A
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similar method to use neural ODEs is proposed in (Xu et al., 2021) using an optimization
based strategy for registration, which is more relevant to the classical registration methods;
however, they use stationary velocity fields for performing 3D image registrations. Recurrent
neural networks have also been used in (Sandkühler et al., 2019) as a novel sequence-based
framework to generate sequence-based transformations instead of directly estimating the
final transformation in one step. They use an interpolating transformation model based
on a fixed basis function. However, even though this model achieves global smoothness, it
would hinder the preservation of local details that a dense model allows. Since the final
transformation is based on the previous series of transformations, it highly depends on a
good estimation of the initial transformation.

Alternatively, inspired by (Rousseau et al., 2020) that provides theoretical and computa-
tional insights of characterization of ResNet architectures as the numerical implementation
of diffeomorphic continuous flows governed by ODEs, we use ResNets to solve Eq. (2)
and (3), providing a framework for both stationary and time-dependent velocity field inte-
gration.

3. Registration-based Interpretation of ResNets

The mapping block in a Residual Network, which incrementally maps the embedding space
onto a new unknown space, has the following form:

xl+1 = xl + F (xl, θl), (5)

where xl is the input to the lth residual unit and θl are the trainable weights associated with
the lth residual unit. This incremental mapping points a striking similarity to diffeomor-
phic registration models, which tackles the registration problem by composing a series of
incremental diffeomorphic mappings. Each mapping is close to the identity and integrates
using the forward Euler method with a given initial value. Training a deep residual network
is often viewed as a discretization of a dynamical system governed by the first-order ODE,
where the network layers are viewed as time-steps and the network parameters, and θl are
viewed as the control to optimize (Liu and Theodorou, 2019). The discrete paramterization
of velocity field vt with the neural network based representations of ODEs in (2) and (3) can
be considered as a linear combination of basis functions using ResNet mapping in Eq. (5):

vt+1 = vt + F (vt, θt), (6)

where each mapping block t is viewed as a time-step, and θt represents the network param-
eters. Similarly, each residual unit of a ResNet is expected to implement the composition
of a series of diffeomorphic mappings. Such a connection makes the function F to be a
parameterization of a deformation flow field. Moreover, residual units with shared weights
are viewed as the numerical implementation of the exponential of velocity fields, which is
the diffeomorphic operator governed by stationary velocity fields (Rousseau et al., 2020).

To this end, we use Residual Networks to formulate our image registration problem,
with additional Lipschitz constraints (see Section 4) on the velocity fields for generating
diffeomorphic deformations under an unsupervised scheme.
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Figure 1: Overview of our proposed network.The ResNet block without shared weights cor-
responds to the time-varying velocity field, while the one with shared weights
correspond to the stationary velocity field. Both models use k=7 ResNet blocks.

4. Proposed Methods

Figure 1 shows two proposed architectures for diffeomorphic image registration. We name
the registration architecture based on Non-Stationary (time-varying) Velocity Fields as
NSVF-R2Net (Registration Residual Network) and the one based on Stationary Velocity
Fields as SVF-R2Net. Below are network designs shared by both architectures:

Initial estimation of velocity field. Firstly, for both architectures, we approximate
the posterior probability parameters representing the velocity field mean and variance using
an encoder-and-decoder scheme as used in (Dalca et al., 2018). We use the UNet architecture
(Ronneberger et al., 2015), which takes in image pairs and outputs the mean µ and the
variance Σ for sampling a corresponding initial velocity field. Although such a scheme can be
used for a wide range of representations, we let the estimated v be a non-stationary velocity
field that drives a diffeomorphic mapping ϕ through the ODE in Eq. (2) for NSVF-R2Net,
and use it as a stationary one that specifies diffeomorphisms through the ODE in Eq. (3)
for SVF-R2Net. This constitutes the parameter-estimating phase of both architectures.

Integration of velocity fields. As discussed before, we utilize ResNets as numerical
schemes of differential equations and relate the incremental mapping defined by ResNets
to diffeomorphic registration models. In this regard, we have a series of ResNet blocks
without sharing weights (see Fig. 1), which compute time-dependent velocity fields. This
constitutes as the integration component for NSVF-R2Net. Similarly, we utilize the same
ResNet block but with shared weights to compute stationary velocity fields. This constitutes
as the integration component for SVF-R2Net.

Spectral normalization for Lispchitz continuity. A number of works advocate the
importance of Lipschitz continuity in assuring the boundedness of statistics (Yoshida and
Miyato, 2017; Gouk et al., 2021). LDDMM defines an admissible Hilbert space of veloc-
ity fields with adequate smoothness conditions as an RKHS (Reproducing Kernel Hilbert
Space). Under adequate assumptions on the velocity fields v, with a time-dependent Lip-
schitz constant integrable in time, v → ϕ1 is a well-defined mapping into the space of
time-dependent diffeomorphisms by the Cauchy-Lipschtiz theorem. A smoother v yields
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Method RMSE (e−3) #Foldings Avg. Dice Inference Memory
(per img. pair) (GB on GPU)

SyN 1.08 ± 0.00 47.70 ± 145.14 0.67 10 min (CPU) -
VoxelMorph 1.10 ± 0.00 51.43 ± 83.76 0.72 450ms+1440ms 8.6
SVF-R2Net 1.54 ± 0.00 28.41 ± 17.56 0.69 900ms 7.9
NSVF-R2Net 1.34 ± 0.00 27.23 ± 47.44 0.70 900ms 8.5

Table 1: Summary of quantitative results for all algorithms: Mean squared error over all test
images, mean number of locations with a non-positive determinant of Jacobian,
mean Dice scores over all anatomical structures and subjects, the inference time
for a pair of images and the memory required for training models on a single GPU.

a smoother ϕ1, as seen in (Younes, 2010) (Theorem 8.7). A recent work connects neural
networks and RKHS (Bietti and Mairal, 2019) (Proof for Proposition 14), which shows con-
volutional neural networks with homogenous activation functions (tanh) fall under RKHS.
Following this, we employ the method proposed in (Miyato et al., 2018) to enforce Lipschitz
continuity of Residual blocks in both architectures, i.e., using the spectral normalization for
each convolutional layer inside the residual units. This operation normalizes the spectral
norm of the weight matrix W so that after the spectral normalization it satisfies the Lips-
chitz constraint δ(ŴSN ) = 1, that is, ŴSN := W

δ(W) . Having this condition implies that the
Hilbert space of admissible velocity fields is an RKHS.

Loss functions. We use similarity metric Lsim to ensure good image matching. The
Kullback-Leibler loss LKL is used between the expected multivariate normal distribution
N (0, 1) and the real latent distribution N (µ, γ), which are the mean and variance of the
learned initial velocity field. Lastly, LJdet is used to enforce the smoothness of the deforma-
tion by penalizing the total number of locations, where the Jacobian determinants |J(ϕ(x))|
are negative (Kuang and Schmah, 2019). The overall objective function is formulated as

L = λ1Lsim(
1

2σ2K
∥I1 − ϕ ◦ I0∥22)+λ2LKL(N (0, 1),N (µ, γ))+λ3LJdet(0.5(|J(ϕ(x))|−J(ϕ(x)))),

(7)
where K is the number of samples, and λ1, λ2 and λ3 are the balancing weights, for which
values of [2, 1, 1] worked the best in the experiments, after trials over a few training cycles.

5. Experiments

We evaluate our framework for the task of brain MRI registration. All experiments for both
architectures NSVF-R2Net and SVF-R2Net are done in 3D. Experiments for VoxelMorph,
NSVF-R2Net and SVF-R2Net were performed using a Titan X GPU.

Dataset. We use the OASIS brain MRI dataset (Marcus et al., 2007; Hoopes et al.,
2021), which contains T1-w MRI scans for 414 subjects preprocessed with skullstripping,
bias-correction, registered and resampled into the freesurfer’s talairach space. After prepro-
cessing, each volume has dimensions of 160× 192× 224. We divide these 414 subjects into
sets of 264, 100 and 50 as our training, test, and validation groups. We then randomly pair
images in each set and choose 350 pairs for training, 50 for validation, and 100 for testing.
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Figure 2: Dice scores for segmenting anatomical structures using SyN, VM, and ours.
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Figure 3: Registration comparison among SyN, VM (VoxelMorph), and our models. The
deformation (red) and deformed mask (Caudate in green, Thalamus in blue) are
overlaid on the deformed image, and its difference w.r.t the target is shown below.

Baselines and Evaluation metrics. We compare our models to the classical registra-
tion algorithm ANTs SyN (Avants et al., 2011) from the ANTsPy package with manually
tuned parameters on a few training images and the deep learning based diffeomorphic ver-
sion of VoxelMorph (VM) (Dalca et al., 2018) with their given default parameters. We
evaluate the registration performance in terms of image matching by computing the in-
tensity Root Mean Square Error (RMSE). We also evaluate the Dice score between the
segmentation mask of the target image and the deformed mask of the source image, using
the deformation field estimated for the input image pairs. We compute the average Dice
score across 35 anatomical structures. To quantify the deformation smoothness, we count
the number of its voxels with negative Jacobian determinants. In order to measure the
resource utilization, we state the time and memory requirements for all algorithms.
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6. Results and Discussion

The quantitative results for all algorithms are shown in Table 1. It can be seen that our
methods (SVF-R2Net and NSVF-R2Net) achieve comparable results to those of VoxelMorph
and SyN in terms of image matching and averaged segmentation Dice. Further improvement
of image matching term is possible by increasing the weight of the image-matching loss
during training, at the expense of increasing the number of foldings. NSVF-R2Net achieves
slightly better performance than SVF-R2Net, which is probably due to the fact of increased
flexibility due to non-sharing weights in the mapping block. This helps achieve better
matching results due to better convergence during training. The Dice scores in Figure 2 show
both architectures produced comparable Dice scores as VoxelMorph, across the anatomical
structures, while doing better than SyN, in all regions. More importantly, compared to other
algorithms our method produced significantly smoother and more regular deformations as
shown by the number of foldings in Table 1 and the qualitative results in Fig. 3.

Regarding the computational cost, the amount of GPU memory utilized by both SVF-
R2Net and NSVF-R2Net is less than that of VoxelMorph (see Table 1). Worth to mention
that, VoxelMorph works on the integration of half-scale velocity fields, while our models
work on full-scale resolutions. Futhermore, VoxelMorph takes about 450ms to estimate the
velocity fields for an image pair; however, the output flow parameters from VoxelMorph
have to be integrated and upsampled to match the original resolution of the input image.
To obtain final scale deformation fields, the task of integrating (via scaling and squaring)
and upsampling for a single output takes about additional 1.44 seconds. Our SVF-R2Net
and NSVF-R2Net provide the final deformation field at the original image resolution in
just one pass through the trained model, which takes less than one second. SyN can be
performed only on CPU due to the unavailability of a GPU based implementation, which
needs about 10 minutes. That is, our models are efficient in terms of both memory and
inference time cost, which makes it possible to handle higher resolution image scans.

7. Conclusion

In this paper we have proposed two unsupervised diffeomorphic image registration models,
i.e., SVF-R2Net and NSVF-R2Net, using time-dependent and stationary velocity fields, re-
spectively, to drive deformations through ODEs. We utilize Lipschitz-continuous ResNets
as numerical schemes of differential equations for generating diffeomorphic mappings. Our
models show comparable quantitative and qualitative results in terms of image-matching
with improved performance on the smoothness of the generated diffeomorphic deforma-
tion fields. Our architectures also show better resource utilization, which is memory and
inference efficient in comparison to two popular diffeomorphic registration algorithms.

A possible future approach involves considering a multi-scale approach to improve the
registration performance. Various other techniques of velocity estimation and operations
other than spectral normalization to achieve smooth velocity fields could be considered to
improve the overall registration performance. Another enhancement to the current approach
could be the use of Invertible Residual Networks (Behrmann et al., 2019), which obtains a
better estimate for the spectral norm than the current upper bound used in this work.
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Appendix A. Computational Cost

In this section, we study the computational cost of VoxelMorph (VM), SVF-R2Net and
NSVF-R2Net. All experiments are carried out on a single Titan X GPU. SyN was not
included in this experiment due to the unavailability of a GPU-based implementation.

Table 2 shows the training time and memory cost for varying sizes of input image
resolutions starting from 64 × 64 × 64 up to 224 × 224 × 224. The public implementation
of VoxelMorph was modified, in that, the integration of the velocity fields was done on the
original input sizes instead of their default half size, in order for it to be a fair comparison
with SVF-R2Net and NSVF-R2Net, which both work on original scale velocity fields. Our
methods consistently need less memory compared to VM. More importantly, VM cannot
handle the size of 192 × 192 × 192 and 224 × 224 × 224, but ours can. In each training
iteration, SVF-R2Net and NSVF-R2Net take a little more time compared to VM.

In terms of how each algorithm handles scaling up of the input dimension, we ran
experiments for the input size of 128× 128× 128. While SVF-R2Net and NSVF-R2Net can
handle up to 4 input image pairs on a single GPU, both taking 2 seconds each to train all
4 pairs in a single iteration, VoxelMorph can handle only 2 such image pairs and takes 2
seconds to finish a single iteration. This shows that the proposed architectures SVF-R2Net
and NSVF-R2Net, can handle higher resolutions of images and scale-up better, compared
with the baseline algorithm VoxelMorph.

Dataset Size VM SVF-R2Net NSVF-R2Net
n3 Time(s) Memory (GB) Time(s) Memory (GB) Time(s) Memory (GB)
64 0.113 1.4 0.170 0.9 0.174 0.9
96 0.298 2.4 0.432 1.4 0.433 1.4
112 0.419 4.4 0.651 2.4 0.660 2.4
128 0.600 8.5 0.915 4.5 0.908 4.5
144 0.907 8.5 1 4.5 1 4.5
192 – – 3 8.5 3 8.5
224 – – 4 11.8 4 11.8

Table 2: Training Time (sec/iteration) and GPU Memory (GB) consumption for VM (Vox-
elMorph), and our models. All experiments are carried out on one input image
pair, and the reported values are averaged over 10 runs.

Appendix B. Spectral Normalization

In this section we provide background for the spectral normalization algorithm used in both
proposed architectures and its implementation. In the work proposed by (Miyato et al.,
2018), Algorithm 1, the authors use fast approximation by the power iteration method in
order to replace the weights W with δ(W ), the largest singular value of W . This is done to
avoid the added computational complexity of computing the singular value decomposition.
For our work, we used the open source Keras implementation1.

1. https://github.com/IShengFang/SpectralNormalizationKeras
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SyN VM SVF-R2Net NSVF-R2Net

Figure 4: One sample showing deformations zoomed in the same region across SyN, VM,
SVF-R2Net, and NSVF-R2Net.

Appendix C. Smoothness Visualization

In this section, we show a few zoomed-in examples of the same regions within the generated
deformations using all algorithms: SyN, VM, SVF-R2Net and NSVF-R2Net. It can be seen
in Figure 4 and 5 that while SyN and VoxelMorph produce non-smooth deformations such as
foldings or overly-compressed curves, SVF-R2Net and NSVF-R2Net always produce smooth
deformations. It can also be seen that the background region is unsmooth for VoxelMorph,
which is not the case with SyN, SVF-R2Net, and NSVF-R2Net.
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VMSyN NSVFR2-NetSVFR2-Net

Figure 5: Another two samples showing deformations zoomed in the same regions across
SyN, VM, SVF-R2Net, and NSVF-R2Net.
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