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Abstract001

As Large Language Models (LLMs) expand002
across domains, LLM judges have become003
essential for systems evaluation. Current004
benchmarks typically compare system outputs005
against baseline outputs from an encore model.006
This baseline-mediated approach, though con-007
venient, yields lower reliability than direct com-008
parison between systems. We propose Arena-009
lite, which combines direct head-to-head com-010
parison of outputs from competing systems011
with a tournament structure, eliminating the012
need for encore outputs, reducing the num-013
ber of required comparisons, and achieving014
higher reliability in system rankings. We con-015
ducted two experiments: (1) controlled stochas-016
tic modeling and (2) empirical validation with017
a real LLM judge. Those experiments collec-018
tively demonstrate that Arena-lite consistently019
achieves higher reliability with fewer compar-020
isons, even with smaller datasets or weaker021
judges. We release an easy-to-use web demon-022
stration and code to foster adoption of Arena-023
lite, streamlining model selection across re-024
search and industry communities.025

1 Introduction026

No. Comp. (↓) Judge Eval. Type
Chatbot Arena unknown human head-to-head
Current Practice nmodel · |X| LLM baseline-mediated
Arena-lite (ours) (nmodel − 1) · |X| LLM head-to-head

Table 1: Comparison between Current Practice and
Arena-lite. |X| and nmodel represents size of bench-
mark dataset, and number of candidate LLMs to rank
respectively. Human annotators are considered much
more costly than LLM judge counterpart.

LLMs excel in diverse tasks, from chatbots to027

code generation, due to their powerful generative028

capabilities (Ouyang et al., 2022; Roziere et al.,029

2023). As their versatility grows, accurately eval-030

uating their performance becomes critical. To ad-031

dress this, benchmarks like MMLU and BigBench032

Figure 1: Arena-lite directly compares LLM response
pairs in single-elimination tournament rather than com-
paring baseline outputs. In terms of deciding whether
a certain LLM is better or worse compared to the other
one, we suggest direct head-to-head comparison is more
intuitive and results in better separability.

have emerged to assess LLM capabilities across 033

various domains (Hendrycks et al., 2020; Srivas- 034

tava et al., 2023). Many of these benchmarks, 035

such as those for arithmetic or code execution (e.g., 036

GSM-Hard, HumanEval (Gao et al., 2022; Chen 037

et al., 2021)), use automated scoring to evaluate 038

problem-solving skills. However, their focus is not 039

on quality of generated content, which is crucial for 040

majority of LLM use-cases. The Chatbot Arena, a 041

leading platform for reliable human evaluation of 042

LLMs, has set a standard by collecting extensive 043

human annotations (Chiang et al., 2024). Yet, its 044

resource-intensive approach has prompted efforts 045

to replicate its rankings using LLM judges as a cost- 046

effective alternative (Li et al., 2024, 2023). These 047

methods, however, rely on baseline-mediated com- 048

parisons—comparing LLM outputs to a baseline 049

encore model’s outputs—which sacrifice reliabil- 050

ity. 051

Current benchmarks relying on encore models 052

often rank LLMs by their win rate against baseline 053

responses from an encore model. This approach 054

has two advantages: it scales linearly with the num- 055
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ber of LLMs and provides a consistent quality stan-056

dard. However, we argue that comparing LLMs057

directly against each other is inherently more reli-058

able than using baseline outputs, which can intro-059

duce noise coming from weak transitivity (Xu et al.,060

2025) of human preferences on LLM responses. To061

address this, we propose Arena-lite, a novel evalua-062

tion framework that uses direct, head-to-head com-063

parisons organized in a tournament structure. By064

eliminating the need for baseline outputs, Arena-065

lite reduces the number of comparisons required066

while achieving stronger alignment with human-067

established rankings, such as those from Chatbot068

Arena.069

Arena-lite conducts single-elimination tourna-070

ments for each prompt across participating LLMs,071

using the Bradley-Terry model to compute ratings072

from the results (Bradley and Terry, 1952). This073

approach single scalar per model that captures rel-074

ative performance between any model pairs, en-075

abling accurate and efficient ranking. We validate076

Arena-lite through two experiments. The first ex-077

periment, stochastic modeling of LLM competition078

(Section 4.2) demonstrates that tournament-based079

direct comparisons outperform baseline-mediated080

methods under various conditions, including dif-081

ferent numbers of LLMs, dataset rows used, and082

judge accuracies. Second, our empirical experi-083

ment (Section 4.3) shows that Arena-lite, when084

applied to a public benchmark with various LLM085

judges, achieves higher correlation with Chatbot086

Arena’s rankings than traditional methods (Table 1)087

as demonstrated in the modeling experiment. These088

results collectively highlight Arena-lite’s ability to089

deliver reliable rankings with fewer comparisons,090

even with smaller datasets or weaker judges over091

various generation tasks.092

Our contributions are threefold:093

1. We introduce Arena-lite, a tournament-based094

framework for direct LLM comparisons, offer-095

ing greater reliability than baseline-mediated096

approaches.097

2. We demonstrate through modeling and em-098

pirical experiments that Arena-lite achieves099

more accurate rankings with fewer compar-100

isons than prevalent practices of using encore101

model outputs as baseline.102

3. We provide an open-source demo and code103

at [URL placeholder] to streamline LLM104

evaluation for researchers and industry practi-105

tioners.106

2 Preliminaries: Quantifying Generation 107

Ability 108

Evaluating the generative performance of LLMs is 109

challenging due to the variability in their outputs 110

across prompts and the subjective nature of human 111

preferences. A common approach is to test LLMs 112

on diverse prompts to approximate their real-world 113

capabilities. Two widely used metrics for this pur- 114

pose are the win rate against baseline responses and 115

BT preference based on the Bradley-Terry model. 116

2.1 Measuring Win rate over baseline outputs 117

Benchmarks like AlpacaEval and Arena-Hard- 118

Auto assess LLM response quality by comparing it 119

to baseline responses from a encore model (Li et al., 120

2023, 2024). An LLM judge evaluates whether the 121

candidate LLM’s response outperforms the base- 122

line for a given prompt. The win rate—the pro- 123

portion of prompts where the LLM’s response is 124

preferred—serves as a measure of its generative 125

ability. While this approach is straightforward and 126

scalable, it introduces noise coming from mediated 127

comparisons. 128

2.2 Bradley-Terry Model Preference for LLM 129

Rating 130

The Bradley-Terry (BT) model (Bradley and Terry, 131

1952) is widely used to infer pbaseline-mediated 132

rankings of LLMs from pairwise comparisons. 133

Chatbot Arena adopts the BT model rather than 134

the classical Elo system (Elo and Sloan, 1978), 135

but both Elo and BT models estimate the probabil- 136

ity of one outperforming another based on a score 137

difference, though they differ in update rules and 138

statistical assumptions. 139

In the BT model, each LLM is assigned a latent 140

score representing its procificency. Given LLMs 141

i and j with scores Ri and Rj , respectively, the 142

probability that LLM i is preferred over LLM j is 143

modeled as: 144

P(i > j) =
1

1 + 10(Rj−Ri)/400
. (1) 145

This formulation closely resembles the Elo win- 146

probability function, reinforcing the intuitive con- 147

nection between the two. 148

Chatbot Arena uses this BT-based formulation 149

to rank LLMs by aggregating human preferences 150

collected through pairwise matchups (Chiang et al., 151

2024). Users are shown responses from two 152

anonymized models to the same prompt and asked 153
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to select which response they prefer. The accu-154

mulated judgments are then used to fit BT scores,155

producing a leaderboard that reflects relative model156

performance.157

While this approach requires a substantial num-158

ber of human evaluations to ensure reliability, it159

captures nuanced quality differences between mod-160

els more effectively than purely automatic bench-161

marks. Arena-lite, introduced in the next section,162

builds on the same BT modeling framework but163

seeks to reduce the number of required compar-164

isons by using more structured tournament-style165

sampling.166

3 Arena-lite167

To address the high annotation cost of Chat-168

bot Arena while preserving evaluation reliability,169

we propose Arena-lite. Arena-lite introduces a170

tournament-based approach for efficient and reli-171

able LLM evaluation using a single-elimination172

structure. Unlike baseline-mediated evaluations173

that compare model outputs to a baseline, Arena-174

lite directly compares outputs from different mod-175

els through head-to-head matchups for each prompt176

in benchmark datasets. Repeated tournaments177

across the dataset produce consistent leaderboards178

reflecting models’ relative performance.179

We first discuss limitations of baseline-mediated180

evaluations (Section 3.1). Next, we describe how181

Arena-lite conducts tournaments to generate ratings182

(Section 3.2, Algorithm 1). Finally, we highlight183

similarities between the single-elimination struc-184

ture and merge sort, explaining why aggregated185

tournaments yield reliable LLM rankings (Section186

3.3).187

3.1 Comparing to Baseline outputs is not188

Always Helpful189

Although baseline outputs are a standard way to190

evaluate and rank LLMs, they introduce potential191

failure modes. Beyond the fact that a single base-192

line output might not capture every dimension of193

correctness, relying solely on a baseline output can194

lead to unreliable rankings of LLMs.195

Consider an ideal scenario with a judge capable196

of perfectly distinguishing the quality of any two197

outputs. If we choose to compare LLM responses198

directly to rank them using BT preference (Equa-199

tion 1), all head-to-head comparisons are utilized.200

In contrast, baseline-mediated evaluation for dif-201

ferentiating LLMs can exhibit failure modes, as202

shown in Equation 2. 203

M1(Xi)
vs. →

M2(Xi)


M1(Xi) > Yi > M2(Xi) (helpful)
M1(Xi) < Yi < M2(Xi) (helpful)
M1(Xi), M2(Xi) > Yi (unhelpful)
M1(Xi), M2(Xi) < Yi (unhelpful)

(2) 204

When the baseline output (Yi) for a prompt (Xi) 205

successfully disambiguates the pair of LLM re- 206

sponses M1(Xi) and M2(Xi) (as in the first and 207

second cases), comparison to the baseline is effec- 208

tive for benchmarking. Otherwise, these compar- 209

isons do not help differentiate LLM performance. 210

Consequently, the baseline-mediated approach pro- 211

vides less information for ranking when multiple 212

responses are either both correct or both incorrect 213

relative to the baseline. 214

3.2 Tournaments of LLMs over multiple 215

prompts to preference ratings 216

Algorithm 1 Tournaments of LLMs over prompts

Require: prompts X = {x1, x2, ..., xi}, LLMs
M = {m1, m2, ..., mj}, outputs Oi,j =
mj(xi)

Ensure: Ranked LLMs with BT preference
1: function Match(m1,m2, x)
2: return m1 if IsBetter(Ox,1, Ox,2)
3: else m2

4: end function
5: function SingleElim(M , x, res)
6: if |M | = 2 then
7: res.append(Match(M [0], M [1], x))
8: return res[-1]
9: end if

10: mid← ⌊|M |/2⌋
11: left← SingleElim(M [:mid], x, res)
12: right← SingleElim(M [mid:], x, res)
13: return SingleElim(left + right, x, res)
14: end function
15: function Tournaments2Ranks(X,M )
16: res← []
17: for xi ∈ X do
18: SingleElim(Shuffled(M ), xi, res)
19: end for
20: return ComputeBTM(res)
21: end function

Figure 1 and Algorithm 1 illustrate how Arena- 217

lite benchmarks LLMs via a tournament approach. 218

Here, |X| denotes the number of prompts in the 219
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benchmark dataset. Each execution of Arena-lite220

runs a tournament among participant LLMs for221

every prompt in the dataset.222

The use of tournament structures for LLM bench-223

marking offers both benefits and challenges. A ma-224

jor advantage of a single-elimination tournament225

is efficiency. As shown in Table 1, the number of226

matches scales linearly with the number of partici-227

pants and even lower compared to using baseline228

outputs. However, single elimination tournament229

only identifies a champion, leaving the relative or-230

dering of other participants unclear.231

To retain tournament’s efficiency while obtain-232

ing a fine-grained ranking, we propose aggregat-233

ing tournament results over multiple prompts with234

randomized initial match-ups for each prompt. Per-235

forming multiple tournaments with random initial-236

ization offers several benefits:237

1. It resolves ties among non-champion partici-238

pants from previous tournaments.239

2. It mitigates the impact of unfavorable match-240

ups in any single tournament.241

3. Aggregating match results allows for precise242

win rate estimation via BT preference, result-243

ing in a well-aligned overall ranking.244

4. More matches are allocated to high-245

performing participants while ensuring every246

participant is evaluated at least once per247

prompt.248

In Section 3.3, we further explain how aggregat-249

ing multiple tournaments could yield an reliable250

ranking of LLMs. We also provide an analysis of251

the number of matches each LLM faces, offering252

a comprehensive view of the method’s efficiency253

and effectiveness.254

3.3 Why Aggregating Multiple Tournaments255

Yields Reliable Rankings256

To achieve reliable rankings of LLMs, our257

approach aggregates match outcomes from258

multiple tournaments, effectively approximating259

the complete set of pairwise comparisons required260

by merge sort. We outline the rationale in four key261

points:262

263

Merge Sort Baseline A single-elimination tour-264

nament mirrors the merging steps of merge sort,265

which requires O(n log n) comparisons with no266

duplicate match-ups to rank n models. However, a267

single tournament omits many comparisons, cov-268

ering only the minimal match-ups needed to deter-269

mine a winner.270

Recovering Comparisons via Aggregation ag- 271

gregating tournaments over diverse prompts helps 272

recovering missed pairwise match-ups had to occur. 273

Assuming match outcomes are prompt-independent 274

(as per the Elo model), matches across prompts are 275

equivalent. With |X| prompts (typically hundreds 276

to thousands) and nmodel models (tens), the initial 277

match-ups alone total |X| · nmodel
2 . This exceeds the 278(

nmodel
2

)
total possible match-ups, ensuring broad 279

coverage. 280

Sufficiency of Comparisons The aggregated 281

match-ups not only cover the necessary compar- 282

isons but also surpass the O(n log n) requirement 283

of merge sort. Moreover, each unique model 284

pair competes in approximately |X|
2(nmodel−1) matches 285

across the benchmark, a frequency sufficient to es- 286

timate relative win rates accurately. 287

Refinement for Reliability The remaining 288

matches, totaling |X| · (nmodel − 1), further refine 289

the ranking by enhancing win rate estimates, es- 290

pecially among top-performing models, reducing 291

noise and ensuring robustness akin to Arena-lite’s 292

sampling strategy. 293

In summary, aggregating multiple tournaments 294

reconstructs the full set of comparisons needed for 295

a merge sort-like ranking while providing enough 296

repeated match-ups to ensure accurate win rate 297

estimations. This dual mechanism yields reliable 298

and robust LLM rankings across the benchmark. 299

4 Experiments 300

We conducted two experiments to evaluate Arena- 301

lite against baseline-mediated benchmarking. The 302

first experiment (Section 4.2) utilized a stochastic 303

model to simulate LLM competitions, comparing 304

Arena-lite’s tournament-based direct comparison 305

with baseline-mediated evaluation. This controlled 306

setup allowed us to test Arena-lite’s design prin- 307

ciples, such as the effectiveness of direct versus 308

mediated comparison (Section 3.1) and tournament- 309

based sampling (3.3), while isolating variables and 310

minimizing noise, such as LLM judge biases (Park 311

et al., 2024). The second experiment (Section 312

4.3) validates Arena-lite empirically using vari- 313

ous LLMs as judges and public benchmark data. 314

We tested models including gpt-4o, gpt-4o-mini, 315

Claude3.5, Qwen2.5, Llama3.1, and Gemma2 to 316

assess Arena-lite’s effectiveness against standard 317

benchmarking practices. Together, these experi- 318

ments demonstrate the superior reliability and effi- 319

ciency of Arena-lite’s tournament approach. Sec- 320
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tion 4.1 outlines shared experimental settings, fol-321

lowed by detailed descriptions of each experiment322

in subsequent subsections.323

4.1 Chatbot Arena Leaderboard as324

Ground-Truth Rankings325

We benchmark Arena-lite and baseline-mediated326

evaluation against rankings from the Chatbot Arena327

leaderboard, widely recognized for its reliabil-328

ity due to extensive human preference annota-329

tions. With a large volume of votes across diverse330

prompts, these rankings provide a robust ground331

truth for model comparisons.332

4.2 Experiment 1: Controlled Stochastic333

Modeling of LLM Competitions334

We suggest a simple stochastic model based on the335

Bradley-Terry (BT) framework to compare Arena-336

lite’s approach with baseline-mediated evaluation.337

The model simulates LLM competitions, with out-338

comes determined by a judge following Equation 3.339

The judge’s decision is based on the BT preference340

difference (∆ij) between models i and j, and the341

judge’s accuracy (Pjudge):342

Ppredict(i > j) = Pjudge × Pgt(i > j)

= Pjudge ×
1

1 + 10∆ij/400

(3)343

With the model of judge above (Equation 3),344

we simulate both Arena-lite’s tournament-based345

approach and baseline-mediated approaches346

according to the following initial conditions and347

procedures.348

349

Initial conditions:350

• Ground-Truth BT Preference: We extracted351

BT preferences from the English category of352

Chatbot Arena (as of June 23), derived from353

approximately 60% of user-submitted judg-354

ments. These preferences serve as both the355

initial model parameters and the ground-truth356

rankings for evaluation.357

• Judge Accuracy (Pjudge): We varied judge358

accuracy from 0.6 to 0.9 to simulate realistic359

scenarios where judge reliability depends on360

prompt-response pairs and prompting meth-361

ods.362

• Number of LLMs (nmodel) and Dataset Size363

(|X|): We adjusted the number of participat-364

ing LLMs and benchmark dataset sizes to as- 365

sess the robustness of both approaches in data- 366

poor and data-rich settings. 367

Simulation Procedure: 368

1. Select participant LLMs and their BT prefer- 369

ences. 370

2. Compute expected win rates (Pgt) using Equa- 371

tion 3. 372

3. Sample match outcomes based on Ppredict 373

(Equation 3), determined by the Elo gap (∆ij) 374

and judge accuracy (Pjudge). 375

4. Repeat for the specified number of test 376

prompts (|X|). 377

5. Compute scores: 378

• Baseline-mediated: Win rate against a 379

reference model (gpt-4-1106-preview, 380

Elo 1233). 381

• Arena-lite: BT preference from all tour- 382

nament match outcomes. 383

6. Rank models based on scores. 384

7. Calculate Spearman correlation between sim- 385

ulated and ground-truth rankings. 386

We conducted 50 trials per configuration to ac- 387

count for randomness in tournament brackets and 388

sampling. 389

4.3 Experiment 2: Empirical Validation of 390

Arena-lite with real LLM Judge 391

To empirically validate our proposal, we evalu- 392

ated the reliability of both Arena-lite and baseline- 393

mediated approach over the top 19 models from 394

the Chatbot Arena leaderboards. This experiment 395

employs actual prompt inputs and LLM outputs, 396

distinguishing it from the earlier simulation study. 397

4.3.1 Dataset: Test Prompts and LLM 398

Responses Used 399

Testing the benchmarking approaches requires: (1) 400

test prompts and (2) the corresponding responses 401

from LLMs. For the benchmark dataset, we se- 402

lected Arena-Hard-Auto (Li et al., 2024). The 403

prompts in Arena-Hard-Auto were carefully cu- 404

rated from Chatbot Arena user queries. This 405

dataset consists of 500 prompts—two instances 406

for each of 250 subtopics. Although AlpacaE- 407

val (Li et al., 2023), which comprises 800 prompt- 408

reference pairs, could serve as a viable testbed, 409

we opted for Arena-Hard-Auto because its design 410

aligns more closely with Chatbot Arena. Arena- 411

Hard-Auto uses responses from gpt-4-0314 as the 412
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baseline outputs. For ranking, we utilized the re-413

served outputs of the top 21 models from the Arena-414

Hard-Auto Browser.1415

4.3.2 Participant LLMs416

For ranking, we selected 19 LLMs from the top of417

the ChatBot Arena leaderboard in the hard prompts418

category, as these models most closely align with419

Arena-Hard-Auto.420

4.3.3 LLM Judges421

We used several aligned LLMs as judges for422

testing both benchmarking approaches. LLMs of423

our choice are gpt-4o family of models (OpenAI424

et al., 2024), Claude3.5, and a selection of425

open-weight models: Qwen2.5 (Qwen et al.,426

2025), Llama3.1 (Grattafiori et al., 2024),427

and Gemma2 (Team et al., 2024). For pairwise428

comparisons of responses, we employed the429

judging prompt suggested in LLMBar (Zeng et al.,430

2024) (See Appendix A.8.2). The same judge431

prompt was applied consistently across both the432

tournament and baseline-mediated approaches. To433

mitigate position bias (Wu and Aji, 2023), the434

order of model responses was alternated during435

evaluation. Further details on the LLM-as-a-judge436

configuration are provided in Appendix A.8.437

438

The two experimental settings are summa-439

rized as follows:440

441

Experiment 1 (Modeling Experiment): This442

experiment uses the ground truth BT preference443

of the models to initialize the simulation. We444

vary control parameters for the benchmarking ap-445

proaches—including the judge’s accuracy (Pjudge),446

the number of test prompts used (|X|), and the447

number of participant LLMs (nmodel)—to deter-448

mine which benchmarking approach more accu-449

rately reproduces the participants’ ranking. For450

each configuration, we conduct 50 trials of experi-451

ments.452

Experiment 2 (Empirical Validation): This453

experiment assesses the two benchmarking ap-454

proaches using empirical runs with various LLM455

judges. We select the top 19 LLMs from Chatbot456

Arena and used their reserved outputs on Arena-457

Hard-Auto test prompts. For both the tournament458

and baseline-mediated approaches, we employ the459

Spearman correlation coefficient to measure how460

1Extracted from the 2024 Jul 6 commit (fd42026).

well the results align with the ground truth leader- 461

board rankings. In our empirical study, we conduct 462

500 trials for each experimental setting. 463

5 Results and Discussion 464

We assess the reliability and robustness of Arena- 465

lite as a means for LLM benchmarking, comparing 466

it against the current baseline-mediated approach. 467

Our results from both simulation study and empiri- 468

cal runs indicate that the tournament approach of 469

Arena-lite yields rankings that align more closely 470

with the ground-truth Elo leaderboards. We present 471

our findings using whisker plots and tables in the 472

following sections. 473

5.1 Experiment 1: Modeling Experiment 474

Results 475

Figure 2 illustrates noticeable differences in Spear- 476

man correlation, indicating that the tournament ap- 477

proach is more reliable than the baseline-mediated 478

method. The consistent performance gap across 479

various conditions—namely, the number of partic- 480

ipants, the number of test prompts, and judge ac- 481

curacy (nmodel, |X|, and Pjudge)—demonstrates the 482

robustness of the tournament approach. Although 483

the simulation simplifies real-world complexity, a 484

similar performance gap was observed in the em- 485

pirical findings (Experiment 2, Figure 3). This 486

consistency suggests that the robust performance 487

of Arena-lite is not coincidental or limited to a 488

specific empirical setting of ours. 489

5.2 Experiment 2: Empirical Validation 490

Results 491

As hinted in the previous section, the empirical re- 492

sults in Figure 3 show that Arena-lite consistently 493

outperforms the baseline-mediated approach. Al- 494

though the performance gaps are less pronounced 495

than in the simulation, the same trend persists. In 496

Table 2, we report the median values for Arena- 497

lite and the baseline-mediated approach using the 498

gpt-4o family of judges while varying the num- 499

ber of test prompts (|X|). These results consis- 500

tently demonstrate that Arena-lite outperforms the 501

baseline-mediated method. Note that Arena-lite 502

shows similar or superior reliability even in ex- 503

treme data-poor benchmark condition (|X| = 50). 504

Table 3 presents the outcomes when using other 505

LLMs as judges, with a fixed number of prompts 506

(|X| = 500). The results for Claude3.5-sonnet, 507

Llama3.1-8b, and Qwen2.5-7b follow a simi- 508

lar trend. However, smaller models (Gemma2-2b 509
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Figure 2: Simulation results comparing the tournament and baseline-mediated approaches. The tournament method
consistently outperforms the baseline-mediated approach in Spearman correlation across various control variables:
the number of participant LLMs (nmodels), the number of benchmark prompts (|X|), and judge precision (Pjudge).

Figure 3: Results of Arena-lite (tournament) and
baseline-mediated approach with gpt-4o (left) and
gpt-4o-mini (right) judge. Arena-lite constantly
records higher Spearman correlation coherent with the
Experiment 1 result (Figure 2). Results summary is on
Table 2.

and Qwen2.5-0.5b) appears to be less reliable510

for benchmarking. Hence, we recommend us-511

ing evaluation-specialized judge LLMs or, at least,512

generative judge models with around 7B parame-513

ters regardless of using Arena-lite or considering514

baseline-mediated approach.515

Spearman corr. (↑) |X| = 50 100 250 475 500
baseline-mediated (4o) 0.895 0.935 0.963 0.966 0.964
Arena-lite (4o) 0.905 0.940 0.960 0.970 0.970
baseline-mediated (4o-mini) 0.895 0.908 0.917 0.916 0.912
Arena-lite (4o-mini) 0.901 0.919 0.931 0.933 0.933

Table 2: Spearman correlation (↑) varying over size
of the benchmark set (|X|) for each benchmarking ap-
proach. baseline-mediated refers to baseline-mediated
approach.

5.3 Incorporating a New LLM into an516

Existing Leaderboard517

While our main focus has been on ranking multiple518

LLMs at once, it is also useful to consider the com-519

mon scenario of adding a single new model to an ex-520

isting leaderboard, which is also frequent use-case521

|X| = 500
claude3.5

sonnet
llama3.1

8b-it
qwen2.5

7b-it
qwen2.5
0.5b-it

gemma2
2b-it

baseline-mediated 0.924 0.820 0.756 0.089 0.592
Arena-lite 0.930 0.850 0.811 -0.124 0.552

Table 3: Spearman correlation (↑) result using other
LLMs as a judge. baseline-mediated refers to baseline-
mediated approach. Extended results for varied dataset
size (|X|) is presented in Appendix Table 5.

for leaderboards. We explored two approaches: 522

(1) a binary search-like placement method, and 523

(2) using the top-performing model response as a 524

baseline. Our findings indicate that the latter ap- 525

proach is more reliable (Table 4). Further details 526

and discussions are provided in Appendix A.6. 527

¯|∆rank| (↓) gt=1-6 7-13 14-19 (20) total avg.
binary search (4o) 0.92 1.84 2.13 1.72
comp. to 1st (4o) 1.98 1.55 1.57 1.39
binary search (4o-mini) 1.27 1.82 1.21 1.5
comp. to 1st (4o-mini) 1.00 1.43 1.43 1.37

Table 4: Comparison of the binary search method versus
using the top-performing model’s response as a baseline
(comp. to 1st) for inserting a new LLM into the leader-
board. We report the mean rank deviation ( ¯|∆rank|) from
the ground-truth leaderboard as an additional error met-
ric. For further details, see Algorithm 2 in Appendix.

6 Related Works 528

6.1 LLM-as-a-Judge for Systems Ranking 529

Utilizing LLM-as-a-Judge as a building block for 530

systems ranking has become a common practice in 531

the LLM benchmarking community. Several stud- 532

ies have investigated how LLM judges compare 533

to human evaluators, examining their similarities 534

and differences (Park et al., 2024), as well as how 535

these differences impact system rankings (e.g., JuS- 536

tRank (Gera et al., 2024), (Gao et al., 2025)). Our 537
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research extends these approaches by proposing a538

method that orchestrates LLM-as-a-Judge through539

a well-established tournament structure to derive540

rankings among systems.541

6.2 Efficient and Reliable Evaluation542

There is a growing body of research focused on543

optimizing the number of evaluations while main-544

taining reliability when using LLM-as-a-Judge for545

system ranking. Perlitz et al. proposed a metric546

called DIoR to quantify the relationship between547

computational costs and system ranking reliability.548

UniCBE (Yuan et al., 2025) introduced a method549

to analyze the relationship between reliability and550

the number of judge evaluations based on uncer-551

tainty. BenchBench (Perlitz et al., 2024b) system-552

atically analyzed consistency across benchmarks553

and provided a package to facilitate this analysis.554

tinyBenchmarks (Maia Polo et al., 2024) explored555

strategies to minimize the number of evaluations556

across various established benchmarks. Arena-lite557

relates to these studies in that it leverages the prop-558

erties of tournament structures and direct compar-559

isons to achieve more reliable results with fewer560

judge evaluations.561

7 Conclusion562

We introduced Arena-lite, an efficient and reliable563

framework for evaluating Large Language Mod-564

els (LLMs) through tournament-based direct com-565

parisons. By eliminating the need for baseline566

encore outputs and adopting head-to-head com-567

parison, Arena-lite achieves higher reliability in568

system rankings with reduced number of compar-569

isons. Our experiments, encompassing controlled570

stochastic modeling and empirical validation with571

various LLM judges, confirm that Arena-lite con-572

sistently outperforms standard baseline-mediated573

evaluation methods, even with smaller datasets or574

weaker judges. The release of an accessible web575

demonstration and code supports the adoption of576

Arena-lite to help streamlining model development577

cycle across research and industry. Future work578

will extend Arena-lite’s application to diverse do-579

mains, including multi-modal LLM evaluation in-580

volving visual or audio inputs and outputs.581

Limitations582

While we conducted extensive testing to assess the583

robustness of Arena-lite tournaments—including584

50 and 500 trials for Experiment 1 and Experiment585

2, respectively—some inherent sources of random- 586

ness remain, such as variation due to initial match 587

bracket assignments. The randomness in bracket 588

assignment is added for adopting tournament struc- 589

ture of Arena-lite and may influence outcome sta- 590

bility. Future work could explore more informative 591

or adaptive matchmaking strategies that improve 592

ranking fidelity beyond what is achievable with 593

single-elimination formats, potentially within the 594

same or even fewer number of matches. 595
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A Appendix 1095

A.1 Arena-lite Web Demo 1096

We provide screenshots of Arena-lite web demo. 1097

After the review process, we will unveil the link 1098

to our demo. Arena-lite demo provides the bench- 1099

mark result (Figure 4) with helpful visualization 1100

interface that enables walking through the matches 1101

and tournaments one by one (Figure 5) and match 1102

statistics between LLMs (Figure 6). We also pro- 1103

vide visualization that helps examining potential 1104

bias of LLM Judge being used (Figure 7). 1105

Figure 4: Arena-lite web screenshot 1: At the top of
the result page, one can see the leaderboard of LLMs
with their BT preference. If the benchmark dataset has
subcategories, radar chart (right) is also visible.

A.2 Full table for Experiment 2 1106

Here is the extended results of Experiment 2 (Sec- 1107

tion 4.3) presented in Table 3. Aligned LLMs 1108

smaller than 7B parameters struggles to work as a 1109

proper Judge. Otherwise, Arena-lite method excels 1110

over common practice of using encore outputs as 1111

baselines. 1112
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Figure 5: Arena-lite web screenshot 2: User can walk
through the matches and tournaments one by one. Match
brackets is visualized briefly with text UI and user can
select any specific match to see the details (e.g. match
result, prompt, and model outputs).

Figure 6: Arena-lite web screenshot 3: User can see the
match statistics between LLMs (i.e. win rate between
model pairs, number of matches per pair and per model).

Figure 7: Arena-lite web screenshot 4: User can see the
LLM Judge’s examine how biased the LLM judge being
used. The demo provides clues for potential bias toward
response length and position.

13
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A.3 Machine Requirements for Experiments1113

Except the part we inferenced open-weight mod-1114

els such as Llama, Qwen and Gemma, our ex-1115

periments are mostly do not require GPU usage.1116

Inference are done on one A100 GPU, but T41117

would be enough for reproducing our experiments.1118

Otherwise, our experiments require querying API1119

and post-processing those with CPU. Experiments1120

could be run on personal desktops. The lowest spec-1121

ification of the machine we deployed had i5-84001122

CPU, 16 GiB RAM.1123

A.4 Assuring Statistical Significance of the1124

Results within Budget for proprietary1125

models1126

To ensure a statistically significant number of trials1127

for each experiment while staying within budget,1128

we utilize OpenAI’s Batch API to prepare full-grid1129

match outcomes (i.e., all-play-all matches for every1130

prompt) in a cache file, allowing us to reuse these1131

outcomes. Each empirical experiment consists of1132

500 trials per setting, with results represented us-1133

ing whisker plots or summary statistics such as me-1134

dian values. When experimenting with a subset of1135

the Arena-Hard-Auto benchmark (|X| < 500), we1136

sample a stratified subset of the benchmark dataset1137

for each new trial.1138

A.5 BT preference from Arena-lite compared1139

to Human Annotations1140

Figure 8 shows the BT preference computed out of1141

Arena-lite. For judge, we used gpt-4o. As men-1142

tioned in the caption, the BT preference are boot-1143

strapped median value from 500 trials. 95% confi-1144

dence intervals also plotted as an error bar, which1145

look negligible in scale compared to observed val-1146

ues. Matches are performed over Arena-Hard-Auto1147

benchmark dataset (500 prompts).1148

A.6 Binary search vs. Win rate over baseline1149

A.6.1 Binary Search1150

We tried binary search placement of a newly added1151

LLM to the leaderboard without baseline output1152

in Table 6. Details of how we implemented binary1153

search are attached in Appendix 2. It turns out1154

that binary search based on leaderboard ranks is1155

not as reliable as the current approach of scoring1156

the newcomer to the baseline outputs. The num-1157

ber of judge operations performed is equivalent1158

to the matches allocated to the least-performant1159

model in a tournament, which is |X| (i.e. maxi-1160

Algorithm 2 Binary Search for Enlisting new LLM
to a leaderboard
Require: Leaderboard L, new model mnew, test

prompts X , outputs Oij , assumes |X| > |L| >
ncomparisons

Ensure: Updated leaderboard L′ with mnew
placed

1: ncomparisons ← ⌊log2(|L|)⌋
2: nmatches ← ⌊|X|/ncomparisons⌋
3: function BINARYSEARCHPLACE-

MENT(L,mnew)
4: X← Shuffle(X)
5: X← concat(X;X)
6: low← 0
7: high← |L| − 1
8: while low ≤ high do
9: mid← ⌊(low + high)/2⌋

10: wins← 0
11: for i← 1 to nmatches do
12: x← X .pop()
13: if Match(mnew, L[mid], x) =

mnew then
14: wins← wins +1
15: end if
16: end for
17: if wins > nmatches/2 then
18: high← mid −1
19: else if wins < nmatches/2 then
20: low← mid +1
21: else if |X| >0 then
22: continue ▷ Ensure tie
23: else
24: return mid, tie ▷ Tie
25: end if
26: end while
27: return low, non-tie ▷ Position found
28: end function
29: function UPDATELEADERBOARD(L,mnew)
30: position, istie ←

BinarySearchPlacement(L,mnew)
31: L′ ← L.insert(position, mnew, istie)
32: return L′

33: end function
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Figure 8: BT preference of the model with gpt-4o judge on the full set of Arena-Hard-Auto (Li et al., 2024) prompts.
Arena-lite result (bootstrapped median over 1000 samples of 500 trials) is in blue, plotted alongside the ratings
from the ground truth leaderboard in red (Chatbot Arena, Hard prompts category). Error bars are 95% confidence
intervals.

mum possible matches that an LLM could have is1161

|X|∗ log2nmodel). Within the size of the benchmark1162

prompts (|X|), binary search is incompatible with1163

the current approach of using baseline instead.1164

A.6.2 Comparing to the most performant1165

Model so far: Converting Elo Table1166

back to Win Rate1167

Assuming we preserved a set of match results1168

and model outputs from the last benchmarking,1169

we could benefit from those to perform insertion.1170

One could pick an appropriate anchor LLM as a1171

baseline in a leaderboard to estimate the skill of1172

a newcomer. Using previous matches from the1173

tournaments that built the leaderboard could be1174

used for estimating win rates over the baseline.1175

This is the same as converting the Elo table into a1176

win rate leaderboard. Since the leaderboard is not1177

built with full-grid matches but with tournaments,1178

there would be some missing matches against the1179

baseline regardless we have picked. There are two1180

ways to estimate the win rate over the baseline1181

model. We could just count the matches given1182

are enough in amount, or we could also convert1183

BT preference back to P (i > a) to use it directly1184

for scoring for the model ranks in the leaderboard.1185

Reminding that Elo rating is purposed for expect-1186

ing a likely outcome of the match, this should1187

work. After this win rate of the newcomer model1188

P ∗(n > a) = count(n wins)
|X| could be directly com-1189

pared for enlisting.1190

A.7 Separability In terms of Confidence1191

Interval1192

To see how well the two benchmarking approach1193

(anchored comparison and tournament approach)1194

separates LLMs in adjacent ranks, we provide scat-1195

ter plot of Elo rating and win rate paired with1196

error bar (95% confidence interval). We present1197

the both results of using gpt-4o (Figure 9) and1198

|∆rank| (↓) gt=1 2 3 4 5 6 avg.
binary search 0.09 1.24 1.75 1.55 1.26 1.10 0.92
(4o) (.04/-.03) (.14/-.14) (.09/-.09) (.07/-.06) (.08/-.08) (.10/-.09)

anchored 0.00 1.01 1.95 2.00 0.96 0.30 1.98
(4o) (0.00/0.00) (0.01/-0.01) (0.02/-0.02) (0.00/0.00) (0.02/-0.02) (0.04/-0.04)

binary search 0.52 0.85 0.59 2.03 1.20 2.45 1.27
(4o-mini) (.09/-.07) (.12/-.11) (.10/-.09) (.02/-.02) (.05/-.05) (.07/-.06)

anchored 0.00 0.00 1.00 2.00 2.00 1.00 1.00
(4o-mini) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00)

7 8 9 10 11 12 13 avg.
1.31 1.27 2.22 1.74 2.27 2.23 1.86 1.84

(.10/-.10) (.11/-.11) (.14/-.12) (.09/-.09) (.12/-.11) (.12/-.12) (.07/-.07)

0.30 3.68 1.09 1.03 2.97 0.78 1.00 1.55
(0.04/-0.04) (0.04/-0.04) (0.03/-0.03) (0.02/-0.01) (0.02/-0.02) (0.05/-0.05) (0.00/0.00)

0.69 0.85 3.89 1.95 2.10 2.37 0.88 1.82
(.07/-.06) (.09/-.09) (.12/-.11) (.06/-.05) (.03/-.03) (.10/-.11) (.12/-.11)

0.51 0.52 3.50 1.00 1.00 3.00 0.50 1.43
(0.49/-0.51) (0.48/-0.52) (0.49/-0.51) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.50/-0.50)

14 15 16 17 18 19 20 avg.
1.40 3.07 0.80 1.47 5.00 0.96 - 2.13

(.04/-.05) (.11/-.11) (.08/-.09) (.05/-.04) (.11/-.11) (.08/-.09)

2.00 2.00 1.00 1.21 3.00 0.21 - 1.57
(0.00/0.00) (0.00/0.00) (0.00/0.00) (0.03/-0.04) (0.00/0.00) (0.04/-0.03)

1.45 4.20 0.19 0.08 1.09 1.08 0.40 1.21
(.07/-.08) (.17/-.17) (.07/-.06) (.03/-.02) (.05/-.05) (.05/-.05) (.07/-.07)

1.00 2.00 2.00 1.00 1.00 3.00 0.00 1.43
(0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00) (0.00/0.00)

Table 6: Binary search vs. Anchored comparison: Mean
rank deviation (|∆rank|) from ground-truth leaderboard.
Result of binary search placement and anchored compar-
ison insert by gpt-4o[-mini] judge are provided with
bootstrapped 95% confidence interval (500 trials, 1000
samples, |X|=500, Arena-Hard-Auto (Li et al., 2024)).
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Figure 9: gpt-4o result of anchored comparison and
tournament approach. 1000 bootstrapped median from
500 observations used for confidence interval estima-
tion.

gpt-4o-mini (Figure 9) as a judge. Inside the1199

each plot, inseparables indicates the cases where1200

any pair of datapoint co-includes each other within1201

their range of error bars, and overlap means a cer-1202

tain datapoint is within some other’s range of error,1203

when it is one-sided.1204

A.8 Judge configuration1205

A.8.1 Evaluation Prompt1206

We use the prompt from LLMBar. The prompt1207

depicted in Figure A.8.2. We added 4 questions1208

for criteria of our own to Metrics.txt prompt of1209

(Zeng et al., 2024). You can refer to the original1210

prompt in LLMBar github.1211

A.8.2 Decoding Parameters1212

We did not configure decoding parameters of judge1213

LLMs (gpt-4o[-mini]), which its temperature de-1214

faults to 1. The only parameter we have adjusted is1215

maximum number of tokens to be generated, which1216

for our prompt is less than 6 (i.e. The output of1217

our prompt is (a) or (b)). To avoid position bias,1218

we alternated the position of the responses from a1219

certain model across the benchmark prompt.1220

Figure 10: gpt-4o result of anchored comparison and
tournament approach. 1000 bootstrapped median from
500 observations used for confidence interval estima-
tion.
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PROMPTS = [ # metrics.txt from LLMBar1221

1222

"role": "system", "content": "You are a helpful assistant in evaluating the quality of the outputs1223

for a given instruction. Your goal is to select the best output for the given instruction.", ,1224

1225

"role": "user", "content": """Select the Output (a) or Output (b) that is better for the given in-1226

struction. The two outputs are generated by two different AI chatbots respectively.1227

1228

Here are some rules of the evaluation:1229

(1) You should prioritize evaluating whether the output honestly/precisely/closely executes the instruction,1230

then consider its helpfulness, accuracy, level of detail, harmlessness, etc.1231

(2) Outputs should NOT contain more/less than what the instruction asks for, as such outputs do NOT1232

precisely execute the instruction.1233

(3) You should avoid any potential bias and your judgment should be as objective as possible. For1234

example, the order in which the outputs were presented should NOT affect your judgment, as Output (a)1235

and Output (b) are **equally likely** to be the better.1236

1237

Do NOT provide any explanation for your choice.1238

Do NOT say both / neither are good.1239

You should answer using ONLY "Output (a)" or "Output (b)". Do NOT output any other words.1240

1241

# Instruction:1242

instruction1243

1244

# Output (a):1245

response_a1246

1247

# Output (b):1248

response_b1249

1250

# Questions about Outputs:1251

Here are at most three questions about the outputs, which are presented from most important to least1252

important. You can do the evaluation based on thinking about all the questions.1253

- Does the output well satisfy the intent of the user request?1254

- If applicable, is the output well-grounded in the given context information?1255

- Does the output itself satisfy the requirements of good writing in terms of:1256

1) Coherence1257

2) Logicality1258

3) Plausibility1259

4) Interestingness1260

1261

1262

# Which is better, Output (a) or Output (b)? Your response should be either "Output (a)" or1263

"Output (b)":""",1264

, ]1265
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