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ABSTRACT

Large Language Models (LLMs) have catalyzed transformative advances across
a spectrum of natural language processing tasks through few-shot or zero-shot
prompting, bypassing the need for parameter tuning. While convenient, this
modus operandi aggravates “hallucination” concerns, particularly given the enig-
matic “black-box” nature behind their gigantic model sizes. Such concerns are
exacerbated in high-stakes applications (e.g., healthcare), where unaccountable
decision errors can lead to devastating consequences. In contrast, human decision-
making relies on nuanced cognitive processes, such as the ability to sense and
adaptively correct misjudgments through conceptual understanding. Drawing
inspiration from human cognition, we propose an innovative metacognitive ap-
proach, dubbed CLEAR, to equip LLMs with capabilities for self-aware er-
ror identification and correction. Our framework facilitates the construction of
concept-specific sparse subnetworks that illuminate transparent decision path-
ways. This provides a novel interface for model intervention after deployment.
Our intervention offers compelling advantages: (i) at deployment or inference
time, our metacognitive LLMs can self-consciously identify potential mispredic-
tions with minimum human involvement, (ii) the model has the capability to
self-correct its errors efficiently, obviating the need for additional tuning, and
(iii) the rectification procedure is not only self-explanatory but also user-friendly,
enhancing the interpretability and accessibility of the model. By integrating these
metacognitive features, our approach pioneers a new path toward engendering
greater trustworthiness and accountability in the deployment of LLMs.

1 INTRODUCTION

Natural language processing (NLP) has undergone significant advances in recent years, primarily
fueled by the advent of Large Language Models (LLMs) (Raffel et al., 2020; Zhou et al., 2022b;
OpenAI, 2023). Despite their laudable achievements, LLMs are not infallible; they err due to factors
like “hallucination” (McKenna et al., 2023). These vulnerabilities pose critical challenges for the
trustworthy deployment of LLMs in high-stakes settings where errors can precipitate significant
repercussions. For example, in the application of LLM-assisted medical diagnoses (Monajatipoor
et al., 2022), a single misdiagnosis can inflict profound physical and financial costs on the patient.

Despite its significance, the current literature lacks an effective approach to LLM intervention after
deployment to help the model overcome those errors. U One intuitive method, few-shot or zero-shot
prompting (Wei et al., 2022; OpenAI, 2023) recently has shown promising results. Users can directly
query LLMs and point out their mistakes using usually “hand-crafted” prompts. Though they are
simple, the post-prompting performance remains uncertain. Moreover, it necessitates human exper-
tise both for error identification and prompt design. (2) Another potential method is to fine-tune part
of the parameters in LLMs (e.g, the final layers) on erroneously predicted examples (Hardt & Sun,
2023). Besides costly human involvement, this method risks model overfitting on those examples
and “catastrophic forgetting” of prior knowledge. (3) Some initial work (Li et al., 2023) repetitively
performs activation-level intervention on all examples to get better performance, thus resulting in
drastically inflated inference latency.

Against this backdrop, we trifurcate the challenges for LLM intervention into three folds. ❶ Firstly,
the “black-box” nature of LLMs obscures the malfunction source within the multitude of parameters,
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complicating targeted intervention. ❷ Secondly, rectification typically depends on domain experts
to identify errors, hindering scalability and automation. ❸ Thirdly, the architectural complexity and
sheer size of LLMs render pinpointed intervention an overwhelmingly daunting task.

Self-Correction
LLMs

Concepts

Figure 1: Metacognitive LLMs

In this paper, we advocate that an ideal intervention should be
metacognitive, where LLMs are capable of self-aware error iden-
tification and correction. This perspective is informed by several
key insights from cognitive science literature: (a) Cognitive Per-
ception of Concepts - humans demonstrate the ability to swiftly
identify and rectify judgment errors by perceptively recognizing
essential features, or “concepts” (Malafouris, 2013; Koh et al.,
2020). This ability to hone in on vital features underscores the
efficiency of human cognitive processes. (b) Neural Sparsity
for Efficiency - building upon the notion of efficiency, the ar-
chitecture of the human brain provides a valuable lesson. The distribution of neural connections
and activity patterns in our brains is characterized by a high degree of sparsity (Gerum et al., 2020).
This sparse configuration is believed to facilitate rapid cognitive responses. (c) Conscious Anomaly
Detection - human brain exhibits an intrinsic ability to consciously identify anomalies or challeng-
ing problems (Penfield, 2015). Upon encountering such situations, it channels additional neural
resources to address them effectively.

Building on this premise, we propose an avant-garde Concept-Learning-Enabled metAcognitive
inteRvention framework, herein termed CLEAR, for LLM deployment. CLEAR facilitates LLMs in
mastering concept-specific sparse subnetworks. These subnetworks elucidate transparent decision-
making pathways, thereby providing a unique interface for surgical model intervention, that au-
tomatically allocates more sparse computing modules to potentially more challenging instances.
Distinctively, our approach simultaneously tackles the challenges highlighted above through the
following four core contributions:

⋆ Metacognition. At deployment (or inference) time, our metacognitive framework autonomously
detects potential mispredictions by measuring logit entropy in pivotal intermediate layers.

⋆ Interpretability. Leveraging the transparency of decision pathways, our CLEAR allows for a
logical backtrack to the input, thereby aiding user comprehension and fostering trust in the model.

⋆ Efficiency. Upon identification of a misprediction, the LLM architecture dynamically activates
extra internal experts to refine concept perception without necessitating further parameter tuning.

⋆ Effectivess. Rigorous experiments on real-world datasets with LLM backbones in various sizes
and architectures manifest that our intervention consistently improves inference-time predictions.

2 RELATED WORK

Intervention on Deep Models for Error Mitigation. Historically, error mitigation in machine
learning emphasized simpler models, such as Decision Trees and Random Forests, where correc-
tions were largely heuristic and human-driven (Doshi-Velez & Kim, 2017). With the evolution of
machine learning techniques, there was a pivot towards leveraging algorithms themselves for error
detection, emphasizing the removal of non-relevant data and unveiling crucial fault-application rela-
tionships (Abich et al., 2021). The ascendance of neural networks, and LLMs in particular, brought
forth new intervention paradigms. Fine-tuning emerged as a primary strategy for addressing model
shortcomings, despite its challenges related to overfitting and catastrophic forgetting of prior knowl-
edge (Wang et al., 2019; French, 1999). Few-shot and Zero-shot prompting marked another avenue,
guiding models without altering their internal makeup, leading to inherent limitations in error re-
peatability (Wei et al., 2022; OpenAI, 2023). Deeper interventions, targeting model architectures,
have delivered promising accuracy, yet with computational trade-offs (Li et al., 2023). Notably,
quantum error mitigation approaches, though out of our current scope, underline the breadth of
exploration in this domain (Subramanian Ravi et al., 2021).

Concurrently, the push towards model interpretability has intensified (Carvalho et al., 2019; Koh
et al., 2020; Yuksekgonul et al., 2022). The ultimate goal is to design systems whose inner workings
can be easily understood, thereby facilitating targeted interventions. Such transparency is indis-
pensable in critical sectors like healthcare, demanding specialized interventions that are usually
hand-carfted by domain experts (Farrell, 2021; Monajatipoor et al., 2022).
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Figure 2: The illustration of the proposed framework CLEAR, comprised of two components: (a) Concept
Learinng, where the LLM backbone learns to construct concept-specific sparse networks via MoCE; and (b)
Metacognitive Intervention, which involves logit entropy scrutiny, dynamic expert allocation, and pseudo inter-
vention, and offers retrospective accountability.

Metacognitive Approaches. Metacognition, eloquently described as “thinking about thinking”,
has long been acknowledged in cognitive science (Flavell, 1979), resonating through educational and
clinical paradigms (Zimmerman, 2013; Moritz & Woodward, 2007). This foundational knowledge
has segued into AI, aspiring towards machines with self-reflective and adaptive capabilities (Cox,
2005). Recent endeavors have strived to infuse cognitive inspirations into models, emphasizing a
deeper “understanding” of their decisions (Malafouris, 2013). However, genuinely metacognitive
LLMs remain an elusive goal, with inherent challenges arising from their black-box nature and their
vast, intricate architectures.

3 METHODOLOGY

The proposed Concept-Learning-Enabled metAcognitive inteRvention framework, CLEAR is com-
prised of two crucial components: (1) Concept Learning: the learning of concept-specific sparse
subnetworks for LLMs. (2) Metacognitive Intervention: automatic error identification and rectifica-
tion. We provide their detailed elaborations below.

3.1 CONCEPT LEARNING FOR LARGE LANGUAGE MODELS

Basic Setup. Our primary focus is the enhancement of Large Language Models (LLMs)
within the realm of text classification tasks during the inference phase. Given a dataset D =
{(x(i), y(i), c(i))Ni=1}, we utilize an LLM, denoted by fθ, to transform an input text x ∈ RD into a
latent space representation z ∈ RE . This latent representation is then classified via a linear classi-
fier gϕ into the respective task label y. Here {c(i)}Ni=1 denotes the critical features, or “concepts”
annotated by humans (Koh et al., 2020; Abraham et al., 2022). These concepts are typically repre-
sented using one-hot vectors. Take, for instance, a restaurant review sentiment dataset. The concept
“Food” might be denoted by the vector [0, 0, 1], signifying a “Positive” sentiment towards the food.
The other vector positions represent alternative sentiments, specifically “Negative” and “Unknown”.

Incorporating Concept Bottlenecks for LLMs. Our general pipeline is inspired by a previous
work (Koh et al., 2020) on image classifications. Instead of altering LLM encoders—which might
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compromise the integrity of the text representation—we incorporate a linear layer, characterized by
a sigmoid activation function pψ . This layer maps the latent representation z ∈ RE to a concept
space c ∈ RK , thus creating a decision-making pathway depicted as x→ z → c→ y. By allowing
for multi-class concepts, we aim to achieve nuanced interpretations. For ease of reference, LLMs
integrated with Concept Bottlenecks are termed LLM-CBMs (e.g., BERT-CBM). The training of
LLM-CBMs is dual-faceted: (1) Ensure the concept prediction ĉ = pψ(fθ(x)) aligns with the
input’s true concept labels c. (2) Ensure the label prediction ŷ = gϕ(pψ(fθ(x))) corresponds
with true task labels y. Our framework predominantly employs the joint training approach due
to its superior performance, as supported by Anonymous (2023). The joint training mechanism
harmonizes the concept encoder and label predictor through a weighted sum, represented as Ljoint:

θ∗,ψ∗,ϕ∗ = argmin
θ,ψ,ϕ

Ljoint(x, c, y)

= argmin
θ,ψ,ϕ

[LCE(gϕ(pψ(fθ(x), y) + γLCE(pψ(fθ(x)), c)]

= argmin
θ,ψ,ϕ

K∑
k=1

[LCE(gϕk
(pψk

(fθ(x), y) + γLCE(pψk
(fθ(x)), ck)],

(1)

where, LCE represents the Cross-Entropy loss. The third line of the equation incorporates the loss
iterating across the concepts, a detail that will prove pivotal soon. Notably, the sensitivity of jointly
trained LLM-CBMs to the loss weight γ requires attention. By default, we set γ to 5.0, based on
its optimized performance as observed in Anonymous (2023). Further details on varying training
strategies are expounded in Appendix A. It should be noted that conventional LLM-CBMs (Koh
et al., 2020) tend to train all concepts simultaneously. This concurrent training potentially muddles
the parameters meant for individual concept prediction, thus hampering precise intervention.

Building Concept-Specific Sparse Subnetworks via Mixture of Concept Experts. Our research
presents the Mixture of Concept Experts (MoCE) framework, a novel approach to creating pathways
anchored in specific concepts, thereby enhancing targeted interventions. This model takes cues
from mixture-of-expert (MoE) paradigms (Shazeer et al., 2017), known for their dynamic activation
of unique network subsets per input. By conditioning on concept-based computation, MoCE crafts
sparse modules, fine-tuning the encoding of text inputs as per their inherent concepts.

Conforming to conventions, we structure blocks of MoCEs as the expert layer. This layer com-
prises a multi-head attention block combined with multiple parallel experts. Specifically, we adapt
MoCE for Transformer architectures, integrating MoE layers within successive Transformer blocks.
Crafting a MoCE expert typically involves segmenting the conventional MLP of transformers into
more compact segments (Zhang et al., 2021) or duplicating the MLP (Fedus et al., 2022). It’s note-
worthy that the majority of extant MoE studies have predominantly focused on the MLP segment
within transformers. This focus arises because MLPs account for approximately two-thirds of the
entire model parameter set, serving as key repositories of accrued knowledge within memory net-
works (Geva et al., 2020; Dai et al., 2022).

The experts can be symbolized as {em}Mm=1, where m signifies the expert index and M is the total
count of experts. For each concept ck, an auxiliary routing mechanism, dubbed rk(·), is deployed.
This mechanism identifies the top-T experts based on peak scores rk(x)m, with x representing the
present intermediate input embedding. Generally, T is much smaller than N , which underscores the
sparse activations among modules of the LLM backbone, making the inference of the model more
efficient. The output, x′, emanating from the expert layer is:

x′ =
K∑

k=1

T∑
m=1

rk(x)m · em(x); rk(x) = top-T(softmax(ζ(x)), T ), (2)

where ζ is a shallow MLP representing learnable routers (Fedus et al., 2022). For the kth concept, the
expert et(·) initially processes the given features, after which the router amplifies it using coefficient
rk(x)t. The combined embeddings across concepts yield the output x′. The top-T operation
retains the top T values, nullifying the others. Typically, a balancing mechanism, such as load or
importance balancing loss (Shazeer et al., 2017), is implemented to avert the risk of representation
collapse, preventing the system from repetitively selecting the same experts across diverse inputs.
Transitioning to matrix representation for all MoE layers in the LLM structure, we derive:

ŷ =

K∑
k=1

ϕk · σ(ψk · fθk (x)) =

K∑
k=1

ϕk · σ(ψk ·
T∑

m=1

Rk(x)m ·Em(x)), (3)
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Figure 3: Logit entropy scrutiny. It can
be observed that predictions with errors
tend to demonstrate lower confidence
and larger entropy.

where σ(·) is the sigmoid projector’s activation function,
with R(·) and E(·) symbolizing matrix incarnations of
all expert layer routers and experts. Crucially, equation 3
portrays a factorized decision trajectory, streamlining the
classification framework. This can be optimized through
a single backward iteration of the composite loss as out-
lined in equation 2. Note that equation 3 accomplishes a
core objective: during inference, the LLM backbone’s fi-
nal classifications intrinsically rely on the learned routing
policies, the chosen experts, and the perceived concepts.
This unique accountability offers an interface for precise error identification and interventions.

3.2 TUNING-FREE METACOGNITIVE INTERVENTION

At its core, our metacognitive intervention emulates human cognitive processes: similar to the way
human brains discern potential pitfalls or intricate challenges, our CLEAR framework proactively
identifies these issues. It then adeptly marshals extra sparse neural resources, specifically experts, to
address these challenges. In this subsection, we elucidate how this is realized through our delineated
sparse decision pathways, in the form of answering three distinctive research questions.

RQ1: How to achieve “metacognition” for intervention on LLMs?
A1: By autonomously monitoring anomalous pattern at critical intermediate layers.

▷ Logit Entropy Scrutiny. The foremost goal is to automatically identify potential errors or more
complex cases. As inferred from Equation equation 3, two critical decision-making phases notably
impact the ultimate label prediction: (a) the deduced routing {Rk(x)}Kk=1 of the final MoCE layer,
and (b) the determined concept activation â = {âk}Kk=1 = ψ · fθ(x). Intuitively, an elevated
entropy of predictive logits denotes a more dispersed distribution over experts or concept options,
signifying lower model confidence and pinpointing instances that deserve additional attention. For
this purpose, the Shannon entropy is utilized for logits within the routine and concept activation:

H(p) = −
∑
j=1

softmax(lj) log(softmax(lj)). (4)

For illustration, the distributions of logits and entropy for concept prediction are depicted using
kernel density estimation in Figure 3. It is evident that predictions with errors tend to demonstrate
lower confidence and augmented entropy, reinforcing our premise. For automation, as we iterate
through the concepts, K-Means clustering is employed to divide confidence levels into two clusters
(K=2). The subset with lower confidence is considered to stem from the more challenging instances.
K-Means offers the advantage of determining thresholds dynamically, eliminating human involve-
ment. If, for a single concept prediction relating to an instance, the confidence levels of both the
routine and concept activation surpass the corresponding thresholds, we tag this concept prediction
as potentially erroneous. We demonstrate further study on the scrutiny in Figure 6 (a) and (b).

RQ2: Once a potential error is identified during inference, how to intervene on LLMs “without
extra parameter tuning”?
A2: By dynamically allocating experts and enforcing preparatory rehearsal during training.

▷ Tuning-free Intervention. Once an erroneous prediction is identified, we allocate augmented
computational resources to secure a more reliable prediction. This operation can be easily achieved
by setting the maximum expert number from T to a larger number T ′ for the router as below. Note
that this operation is very efficient since no extra parameter tuning is involved.

rk(x) = top-T(softmax(ζ(x)), T ′) (5)

▷ Pseudo Intervention during Concept Learning. Both existing research (Chen et al., 2023) and our
experiments (Figure 6 (c) and (d)) indicate that directly adding more experts at the inference stage
results in marginal improvements. Drawing inspiration from how humans reinforce understanding
of challenging subjects through repeated practice before the final examination, we emulate a similar
rehearsal mechanism during concept learning for better metacognitive intervention. As the LLM
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model is fine-tuned on the task dataset, we progressively raise the count of experts from T to T ′

linearly after a predetermined number of training epochs, typically post the halfway mark. This
strategy of pseudo intervention during the training phase significantly enhances predictions when
the expert count is increased during the inference-time metacognitive intervention, as depicted in
Figure 6 (c) and (d). Through this essential rehearsal setup, and by sequentially executing the steps
outlined in equation 4 and equation 5, the LLM backbone is empowered to autonomously detect
possible errors, addressing them more robustly with minimal human oversight.

RQ3: How can users understand the intervention?
A3: By backtracking from the task label, through the sparse pathway, to the input text.

▷ Retrospective Accountability. A standout feature of our metacognitive intervention is its inherent
explicability. Using the decision-making pathways showcased in equation 3, one can trace back from
the task label prediction, passing through perceived concepts and activated subnetworks (experts),
all the way to the initial text input, as shown in Figure 2. Illustrative examples are provided in
Figure 4. The incorporation of our framework, CLEAR, represents a harmonious blend of precision,
flexibility, and accountability.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Our experiments are conducted on two widely-used real-world datasets: CEBaB (Abra-
ham et al., 2022) and IMDB-C (Anonymous, 2023). Each of them is a text classification dataset
comprised of human-annotated concepts and task labels. Their statistics are presented in Table 1.

Table 1: Statistics of experimented datasets and concepts.

Dataset CEBaB (5-way classification) IMDB-C (2-way classification)

Train / Dev / Test 1755 / 1673 / 1685 Train / Dev / Test 100 / 50 / 50

Concept

Label Negative Positive Unknown Label Negative Positive Unknown
Food 1693 (33.1%) 2087 (40.8%) 1333 (26.1%) Acting 76 (38%) 66 (33%) 58 (29%)

Ambiance 787 (15.4%) 994 (19.4%) 3332 (65.2%) Storyline 80 (40%) 77 (38.5%) 43 (21.5%)
Service 1249 (24.4%) 1397 (27.3%) 2467 (48.2%) Emotional Arousal 74 (37%) 73 (36.5%) 53 (26.5%)
Noise 645 (12.6%) 442 (8.6%) 4026 (78.7%) Cinematography 118 (59%) 43 (21.5%) 39 (19.4%)

Baselines. In this study, our evaluation primarily involves two categories of frameworks as base-
lines. For an in-depth analysis, we examine both (a) the performance on the test sets and (b) the per-
formance on the development sets, before and after the intervention. This dual-faceted examination
allows us to assess the intervention’s effectiveness and evaluate the model’s potential deterioration
in generalizability and catastrophic forgetting of critical prior knowledge. Different LLM backbones
are employed in our analysis, including BERT (Devlin et al., 2018), OPT (Zhang et al., 2022), and
T5 (Raffel et al., 2020). We adjust our choice of LLM backbone per the specific methods employed:

▷ Direct Intervention Methods: (i) Directly prompting the LLM with human identifying mispre-
dictions. For this method, we use GPT-4 (OpenAI, 2023) as the backbone, as it is widely regarded
as the most capable LLM currently. (ii) Directly fine-tuning the LLM backbones on mispredicted
instances identified by humans. (iii) Employing the activation-level intervention method, ITI (Li
et al., 2023), mentioned in the introduction.
▷ Concept Bottleneck Models (CBMs) support concept-level interventions, but still require human
experts to identify mispredictions. We consider the following recent CBM frameworks as base-
lines: (iv) Vanilla CBMs (Koh et al., 2020) map the text into concepts using the LLM backbone
and involve another linear classifier to perform the final classification. (v) Label-free CBMs (LF-
CBMs) (Oikarinen et al., 2022) use GPT-4 to obtain the concept labels. (vi) Concept embedding
models (CEMs) (Zarlenga et al., 2022) that learn continuous embeddings for concepts.

4.2 SUPERIOR PERFORMANCE OF CLEAR

The comparative results are presented in Table 2. Reported scores are the averages of three indepen-
dent runs. Our work is based on general text classification implementations. The implementation of
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Table 2: We compare model performance on the CEBaB and IMDB-C datasets, using Macro F1 as the eval-
uation metric, expressed in percentages (%). Scores shaded in gray highlight instances where the model expe-
rienced catastrophic forgetting, leading to a decline in performance on the development set. Scores shaded in
red indicate a decrease in performance following the intervention. Scores shaded in blue are from CLEAR.

CEBaB IMDB-C

Pre-intervention Post-intervention Pre-intervention Post-intervention
Dev Test Dev Test Dev Test Dev TestMethods Backbones

Concept Task Concept Task Concept Task Concept Task Concept Task Concept Task Concept Task Concept Task

Direct Intervention Methods
Prompting GPT4 - 46.52 - 45.87 - 46.52 - 48.32 - 69.35 - 68.74 - 69.35 - 69.84

BERT - 80.03 - 79.75 - 76.43 - 81.23 - 74.52 - 72.11 - 71.69 - 74.26
OPT - 82.65 - 81.37 - 80.84 - 82.16 - 80.62 - 79.98 - 75.42 - 81.05Fine-tuning
T5 - 82.64 - 82.65 - 80.67 - 83.34 - 81.85 - 79.87 - 77.62 - 81.53

ITI T5 - 82.64 - 82.65 - 82.64 83.29 - 81.85 - 79.87 - 81.85 - 81.25

Concept Bottleneck Models
BERT 85.86 78.32 85.29 78.11 85.86 78.32 88.52 79.52 64.52 72.51 62.76 70.41 64.52 72.51 65.31 71.96
OPT 87.84 80.03 87.27 79.73 87.84 80.03 89.62 80.12 67.15 78.96 66.53 78.21 67.15 78.96 69.47 79.34Vanilla-CBMs
T5 88.20 81.05 87.96 80.63 88.20 81.05 90.21 81.05 68.85 79.58 67.94 78.26 68.85 79.58 70.26 79.95

BERT 82.37 75.24 83.45 75.69 82.37 75.24 83.52 75.82 62.51 70.49 60.35 68.21 62.51 70.49 61.32 68.13
OPT 84.54 77.62 84.62 76.84 84.54 77.62 85.36 76.64 64.18 75.24 63.37 75.06 64.18 75.24 63.58 74.65LF-CBMs
T5 85.68 78.25 85.74 77.22 85.68 78.25 85.59 76.87 65.16 76.83 64.92 76.30 65.16 76.83 64.43 75.68

BERT 86.78 79.10 86.62 78.64 86.78 79.10 88.67 80.04 64.86 72.61 62.84 71.05 64.86 72.61 65.57 72.33
OPT 87.98 80.51 87.92 79.86 87.98 80.51 89.89 80.65 68.29 79.67 66.97 78.68 67.84 79.62 70.34 79.75CEMs
T5 88.64 81.32 88.34 80.69 88.64 81.32 90.65 81.42 68.98 79.83 68.65 79.64 68.98 79.83 70.93 80.72

Metacognition Intervention
CLEAR OPT-MoCE 88.24 80.96 88.24 80.39 89.04 80.85 90.46 81.24 68.83 79.75 68.47 79.52 68.39 79.86 71.02 80.12
CLEAR T5-MoCE 89.65 81.62 89.63 81.30 89.65 81.62 91.25 82.14 69.46 80.25 69.65 80.63 69.46 80.25 71.67 80.95

our framework is also released1. More implementation details and parameter values are included in
Appendix B. From the result, we obtain the following findings:
• Effectiveness. The presented framework, CLEAR, unfailingly surpasses all baseline models in

concept prediction and task label prediction, both before and after the intervention. This consis-
tent outperformance underscores the robustness and efficiency of the CLEAR framework across
various conditions and parameters. (a) In the concept learning phase, the proposed MoCE layers
play a pivotal role. By constructing sparse, concept-specific subnetworks, the MoCE layers facil-
itate the efficient disentanglement of concepts. This organized division significantly smoothens
and enhances the internalization of concepts, laying a solid foundation for further enhancement
during the intervention phase. (b) During the intervention phase, the excellence of CLEAR further
shines. It elevates prediction accuracy through precisely targeted interventions, tailoring its ap-
proach to the specific challenges and complexities encountered in each instance. This meticulous
and adaptable strategy allows CLEAR to hone in on and address the unique difficulties faced by
each prediction task, ensuring optimal enhancement of prediction accuracy.

• Metacognition. Beyond raw performance metrics, the CLEAR framework profoundly under-
scores its metacognitive prowess, presenting a triumvirate of decisive advantages: efficiency, ac-
countability, and autonomy, setting it distinctly apart from existing baselines. (a) Efficiency: Un-
like direct intervention methods, CLEAR is free from extensive tuning, safeguarding it from
prevalent issues like catastrophic forgetting encountered in fine-tuning methods (shaded in gray).
(b) Autonomy: Distinct from CBMs, CLEAR operates without human intervention, ensuring com-
plete autonomy. This self-sufficiency expands its applicability, particularly in areas where human
expertise is limited or costly. Notably, LF-CBMs, utilizing GPT-4 to extract noisy concept la-
bels, display a detrimental effect from intervention (highlighted in pink). This observation further
underscores the criticality of accurate and targeted intervention. (c) Accountability: CLEAR pro-
vides a comprehensive, multilayered insight into its decision-making process, covering concept,
subnetwork, and input levels. This transparency significantly amplifies user trust, offering clarity
and assurance in the framework’s operations and decisions. We will go through more details of
those advantages in subsequent subsections.

4.3 EXTRA INVESTIGATION AND ABLATION STUDY

Accoutability. CLEAR does not just execute tasks; it stands out by ensuring retrospective inter-
pretability and in-depth insight into its metacognitive intervention processes. This transparency
permeates various levels through backtracking, offering concept-level, subnetwork-level, and input-
level explanations. This multilayered insight not only fulfills intellectual curiosity but also enhances
user trust and confidence in CLEAR. By understanding the “how” and “why” behind each decision,
users gain a more profound insight into the model’s operations, leading to informed and confident
interaction with the framework.

1https://github.com/Anonymous-submit-23/CLEAR.git
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very creepy visuals and atmosphere.,. It's a quiet kind of horror that isn't made anymore...
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▷ Case Study. To further illustrate, we present a detailed
case study of the metacognitive intervention process in
Figure 4. More examples are included in Appendix C.
This depiction illuminates the transition of the predicted
label for the concept “Cinematography” from incorrect “-
” to correct “+”, subsequently refining the final task label.
Texts highlighted in red indicates the clues overlooked by insufficient experts. Moreover, by analyz-
ing expert and concept activations before and after the intervention, we reveal the neural mechanics
underpinning the intervention strategy at the subnetwork level, offering additional real-world impli-
cations. For instance, we can compute the influence I of each concept ck to the final decision by
the product of the concept activation âk and the corresponding weight wk in the linear classifier:
I(ck) = âk · wk. The results are visualized in Figure 5. This capability to correct and interpret
the underlying causes for prediction errors further boosts the model’s overall trustworthiness and
usability. Coupled with experimental findings, this case study enriches our understanding of the po-
tential of the proposed metacognitive interventions, showcasing them not just as a model fine-tuning
method, but as a structured approach towards more transparent and adaptable AI systems.

Table 3: Efficiency comparison between interventions
Method Human labels Parameter tuning Targeted intervention

Prompting ✔ ✘ ✘
Fine-tuning ✔ ✔ ✘

ITI ✘ ✘ ✘
CBM ✔ ✘ ✘

CLEAR ✘ ✘ ✔

Autonomy and Efficiency. CLEAR also
demonstrate unique advanatges with its full au-
tonomy and tuning-free interventions. We list
the comparison of important features among all
intervention methods in Table 3. From the com-
parison, we can observe that CLEAR is the only
framework that achieves this impressive enhancement without the need for extensive human in-
volvement or intricate parameter tuning, which are often required by other existing methods. This
self-sufficient functionality not only streamlines the operation of the CLEAR framework but also
reinforces its reliability and effectiveness. The absence of heavy reliance on human input or com-
plex tuning procedures eliminates potential sources of error and inconsistency, further bolstering the
robustness, consistency and dependability of the CLEAR framework.

Table 4: Ablation study on intervention mechanism. Scores are reported in %.
CEBaB IMDB-C

Pre-intervention Post-intervention Improvement (↑) Pre-intervention Post-intervention Improvement (↑)Methods
Concept Task Concept Task Concept Task Concept Task Concept Task Concept Task

CLEAR (oracle) 89.63 81.30 91.98 82.06 2.35 0.76 69.65 80.63 72.64 81.36 2.99 0.73
CLEAR 89.63 81.30 91.25 81.80 1.62 0.5 69.65 80.63 71.67 80.95 2.02 0.32

Ablation Study. In this section, we perform comprehensive ablation studies to evaluate the critical
components of CLEAR, including the intervention mechanism options, logit entropy scrutiny, and
pseudo intervention. We will discuss each result in detail.
▷ Intervention Mechanism. In Table 4, we present a detailed comparison between the proposed
metacognitive intervention and oracle intervention. For the oracle intervention, human-annotated
ground-truth labels serve as the oracle, ensuring all incorrect predictions are identified. This method
allows for the precise allocation of additional experts to these accurately identified mispredictions
during the intervention phase. Analyzing the results, it is evident that CLEAR performs commend-
ably, only marginally lagging behind the oracle intervention. This close performance highlights the
robust metacognitive capabilities of CLEAR. Despite not having access to human-annotated labels
as the oracle method does, CLEAR effectively identifies and corrects erroneous predictions with
a high degree of accuracy. This successful outcome underscores the efficiency and reliability of
CLEAR’s metacognitive intervention mechanisms, demonstrating its practical utility and effective-
ness in real-world applications where human annotation may not always be feasible or accurate.
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Figure 6: Extra studies about CLEAR. (a) and (b) investigate diverse logit entropies for scrutiny un-
der different expert numbers, where RE denotes routing entropy, and CE denotes concept prediction
entropy. (c) and (d) examine the effects of w/wo pseudo intervention (PI) on gradually increased
intervention expert number T ′.

▷ Options for Logit Entropy Scrutiny. Figure 6 (a) and (b) visually lay out the outcomes for various
logit entropy scrutiny methods. These visualizations offer an examination into the effectiveness of
different scrutiny methods. Analytically, it is unmistakably observed that employing both entropy
thresholds jointly contributes to superior performance compared to the utilization of each individ-
ually. This synergy between the thresholds manifests as a more robust and resilient model, able to
more accurately navigate and correct its predictions. Specifically, the exclusion of concept predic-
tion entropy results in a marked decline in performance. This downturn is attributed to the distinc-
tive structure of CLEAR, which constructs concept-specific subnetworks. This architecture is more
sensitive to concept prediction errors, and awareness of these errors is pivotal for the model’s func-
tionality. Recognizing and addressing these errors directly enhances the capacity for accurate and
effective intervention. It allows the model to pinpoint and rectify the specific areas of miscalculation,
bolstering the overall performance and reliability of CLEAR.

▷ Pseudo Intervention. Figure 6 (c) and (d) illustrate the performance difference of CLEAR with
and without the proposed pseudo intervention during concept learning. The results clearly demon-
strate that employing pseudo intervention significantly enhances CLEAR’s performance. This posi-
tive outcome confirms our premise that intentionally increasing the number of experts during training
better prepares the model for inference-time intervention, leading to improved results. The pseudo
intervention acts as a robust rehearsal, honing the model’s capabilities and reinforcing its readiness
for real-time challenges, thereby affirming its crucial role in the CLEAR framework.

▷ Sensitivity Analysis on the Number of Experts. Figure 6 (a) and (b) distinctly emphasize the
notable enhancement in CLEAR’s performance as the number of experts in the MoCE layers is
amplified (larger model parameters). This remarkable advancement is fundamentally due to the
natural expansion of the model, leading to a consequential augmentation in its learning capability.
A more intricate network of experts within the layers allows for a more comprehensive learning
phase, enabling the model to make more accurate and refined predictions and decisions. Conversely,
Figure 6 (c) and (d) underscore the significant improvement in CLEAR’s performance when more
experts are engaged in correcting erroneous predictions during the intervention phase. This data
corroborates the vital role of a higher number of experts in both the learning and intervention stages
of the model, showcasing their contribution to the superior performance of CLEAR.

5 CONCLUSION

In conclusion, CLEAR stands out as a pioneering framework, uniquely positioned to alleviate the
contemporary challenges faced by Large Language Models (LLMs). This paper outlines its robust
capabilities in autonomously identifying and correcting errors, thereby reducing the need for ex-
tensive human oversight and intricate adjustments. By employing a metacognitive strategy inspired
by human cognitive processes, CLEAR enables the construction of transparent, concept-specific
sparse subnetworks. This attribute ensures clear, comprehensible decision pathways and eases post-
deployment model intervention. In tackling the enduring “black-box” issue prevalent in LLMs,
CLEAR confidently showcases its effectiveness in diminishing mispredictions and bolstering over-
all model interpretability and accessibility. These advances by CLEAR underscore a significant
enhancement in both the performance and reliability of LLMs, ensuring their more trustworthy and
accountable deployment in diverse real-world scenarios. Moving forward, the widespread applica-
tion of CLEAR promises a tangible, positive shift in the landscape of LLM deployment, underscor-
ing its role as an invaluable asset in the evolution of machine learning models.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Geancarlo Abich, Rafael Garibotti, Vitor Bandeira, Felipe da Rosa, Jonas Gava, Felipe Bortolon,
Guilherme Medeiros, Fernando G Moraes, Ricardo Reis, and Luciano Ost. Evaluation of the soft
error assessment consistency of a jit-based virtual platform simulator. IET Computers & Digital
Techniques, 15(2):125–142, 2021.

Eldar D Abraham, Karel D’Oosterlinck, Amir Feder, Yair Gat, Atticus Geiger, Christopher Potts,
Roi Reichart, and Zhengxuan Wu. Cebab: Estimating the causal effects of real-world concepts
on nlp model behavior. Advances in Neural Information Processing Systems, 35:17582–17596,
2022.

Authors Anonymous. Interpreting pretrained language models via concept bottlenecks. EMNLP,
2023.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victo-
ria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, et al. Efficient large scale language
modeling with mixtures of experts. arXiv preprint arXiv:2112.10684, 2021.

Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learning interpretability: A
survey on methods and metrics. Electronics, 8(8):832, 2019.

Tianlong Chen, Zhenyu Zhang, Ajay Jaiswal, Shiwei Liu, and Zhangyang Wang. Sparse moe as the
new dropout: Scaling dense and self-slimmable transformers. arXiv preprint arXiv:2303.01610,
2023.

Michael T Cox. Metacognition in computation: A selected research review. Artificial intelligence,
169(2):104–141, 2005.

Yong Dai, Duyu Tang, Liangxin Liu, Minghuan Tan, Cong Zhou, Jingquan Wang, Zhangyin Feng,
Fan Zhang, Xueyu Hu, and Shuming Shi. One model, multiple modalities: A sparsely activated
approach for text, sound, image, video and code. arXiv preprint arXiv:2205.06126, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–
5569. PMLR, 2022.

Christopher-John Farrell. Identifying mislabelled samples: machine learning models exceed human
performance. Annals of Clinical Biochemistry, 58(6):650–652, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. The Journal of Machine Learning Research, 23(1):
5232–5270, 2022.

John H Flavell. Metacognition and cognitive monitoring: A new area of cognitive–developmental
inquiry. American psychologist, 34(10):906, 1979.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.
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A DEFINITIONS OF DIFFERENT TRAINING STRATEGIES

Given a text input x ∈ RD, concepts c ∈ RK and its label y, the strategies for fine-tuning the text
encoder fθ, the projector pψ and the label predictor gϕ are defined as follows:

i) Vanilla fine-tuning an LLM: The concept labels are ignored, and then the text encoder fθ and the
label predictor gϕ are fine-tuned either as follows:

θ, ϕ = argmin
θ,ϕ

LCE(gϕ(fθ(x), y),

or as follows (frozen text encoder fθ):

ϕ = argmin
ϕ

LCE(gϕ(fθ(x), y),

where LCE indicates the cross-entropy loss. In this work we only consider the former option for its
significant better performance.

ii) Independently training LLM with the concept and task labels: The text encoder fθ, the projector
pψ and the label predictor gϕ are trained seperately with ground truth concepts labels and task labels
as follows:

θ, ψ = argmin
θ,ψ

LCE(pψ(fθ(x)), c),

ϕ = argmin
ϕ

LCE(gϕ(c), y).

During inference, the label predictor will use the output from the projector rather than the ground-
truth concepts.

iii) Sequentilally training LLM with the concept and task labels: We first learn the concept encoder
as the independent training strategy above, and then use its output to train the label predictor:

ϕ = argmin
ϕ

LCE(gϕ(pψ(fθ(x), y).

iv) Jointly training LLM with the concept and task labels: Learn the concept encoder and label
predictor via a weighted sum Ljoint of the two objectives described above:

θ, ψ, ϕ = argmin
θ,ψ,ϕ

Ljoint(x, c, y)

= argmin
θ,ψ,ϕ

[LCE(gϕ(pψ(fθ(x), y)

+ γLCE(pψ(fθ(x)), c)].
It’s worth noting that the LLM-CBMs trained jointly are sensitive to the loss weight γ. We tune the
value for γ for better performance (Anonymous, 2023).

B IMPLEMENTATION DETAIL

In this section, we provide more details on the implementation settings of our experiments. Specif-
ically, we implement our framework with PyTorch (Paszke et al., 2017) and HuggingFace (Wolf
et al., 2020) and train our framework on a single 80 GB Nvidia A100 GPU. We follow a prior
work (Abraham et al., 2022) for backbone implementation. All backbone models have a maximum
token number of 512 and a batch size of 8. We use the Adam optimizer to update the backbone, pro-
jector, and label predictor according to Section 3.1. The values of other hyperparameters (Table 5
in the next page) for each specific PLM type are determined through grid search. We run all the
experiments on 4 Nvidia A100 GPUs with 80GB RAM.

For the LLM backbones, we use their pubic versions available on Huggingface. Specifically, we
deploy bert-base-uncased, facebook/opt-350m, and t5-base. In our implementation,
we also include other baseline backbones from more langugae model families. We intentionally in-
clude the above three in the main experiment results for their similar sizes. The other backbones
include: roberta-base, distilbert-base-uncased, gpt2, facebook/opt-125m,
facebook/opt-1.3b, and switch-transformer-base.

13



Under review as a conference paper at ICLR 2024

Table 5: Key parameters in this paper with their annotations and evaluated values. Note that bold
values indicate the optimal ones.

Notations Specification Definitions or Descriptions Values

max len - maximum token number of input 128 / 256 / 512
batch size - batch size 8

epoch - maximum training epochs 30

lr

DistilBERT learning rate when the backbone is DistilBERT 1e-3 / 1e-4 / 1e-5 / 1e-6
BERT learning rate when the backbone is BERT 1e-3 / 1e-4 / 1e-5 / 1e-6

RoBERT learning rate when the backbone is RoBERT 1e-3 / 1e-4 / 1e-5 / 1e-6
OPT-125M learning rate when the backbone is OPT-125M 1e-3 / 1e-4 / 1e-5 / 1e-6
OPT-350M learning rate when the backbone is OPT-350 1e-4 / 1e-5 / 1e-6 / 1e-7
OPT-1.3B learning rate when the backbone is OPT-1.3B 1e-4 / 1e-5 / 1e-6 / 1e-7
CLEAR learning rate for CLEAR 1e-4 / 3e-4 / 5e-4 / 7e-4/ 1e-5

γ

DistilBERT value of γ when the backbone is DistilBERT 1 / 3 / 5 / 7 / 9
BERT value of γ when the backbone is BERT 1 / 3 / 5 / 7 / 9

RoBERT value of γ when the backbone is RoBERT 1 / 3 / 5 / 7 / 9
OPT-125M value of γ when the backbone is OPT-125M 1 / 3 / 5 / 7 / 9
OPT-350M value of γ when the backbone is OPT-350 1 / 3 / 5 / 7 / 9
OPT-1.3B value of γ when the backbone is OPT-1.3B 1 / 3 / 5 / 7 / 9
CLEAR value of γ for CLEAR 5 / 7 / 9 / 10 / 11 / 13 / 15

C MORE EXAMPLES FROM REAL-WORLD DATASETS

Figure 7: An example for the metacognitive intervention on one instance from the CEBaB dataset.

Figure 8: An example for the metacognitive intervention on one instance from the IMDB-C dataset.

D COMPARISON WITH EXISTING WORKS ON MOE FOR LLMS

Mixture of Experts in Large Language Models. The incorporation of Mixture of Experts (MoE)
into Large Language Models (LLMs) has evolved significantly, with early research by Shazeer et al.
(2017) laying the groundwork. These foundational studies (Fedus et al., 2022; Zhou et al., 2022a;
Du et al., 2022; Artetxe et al., 2021; Shen et al., 2023) focused primarily on improving model per-
formance and computational efficiency in a black-box manner. On the contrary, in this work, we
utilize the design of MoE in LLMs for metacognitive capabilities. This novel approach, distinct
from earlier efficiency-focused applications, uses MoE for error detection and correction, a critical
step towards solving the interpretability and trust issues in AI decision-making. Our framework,
CLEAR, contributes to this evolving landscape by embedding MoE within a metacognitive frame-
work, emphasizing error rectification, transparency, and autonomy in LLMs. This shift marks a
significant advancement from traditional MoE applications, positioning CLEAR at the forefront of
innovative LLM enhancement strategies.
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E ANALYSIS OF K-MEANS IN LOGITS SCRUTINY
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Figure 9: Studies on the design of K-means for logits scrutiny. This figure illustrates the effective-
ness of K-means in distinguishing between correct and erroneous logits for both routing and concept
prediction. Logits are normalized using a softmax function, reducing the impact of noise and ex-
treme values.

F ANALYSIS OF OVERFITTING IN CONCEPT LEARNING
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Figure 10: Visualization of training dynamics of one run on CEBaB and IMDB-C datasets. We
adopt the “early stop” strategy to avoid overfitting, where the model with the highest validation
accuracy is selected and evaluated on the test set.

G COMPUTATION COMPLEXITY AGAINST NUMBER OF EXPERTS
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Figure 11: The number of floating-point
multiplication operations (FLOPs) con-
sumed on one the inference with a se-
quence of 128 tokens.

In Figure 11, we show an experiment to quantify the
increase in computational complexity, as measured by
FLOPs, with the increasing number of experts, in one the
inference given a sequence of 128 tokens. The results,
as shown in the attached figure, clearly indicate a linear
increase in computational complexity with the number of
experts. This is an expected outcome, as each additional
expert adds a similar computational load to the model.
However, it is crucial to note that the addition of each
expert provides a significant improvement in model per-
formance. We acknowledge that there is a trade-off be-
tween the increased computational overhead and the en-
hanced performance achieved. In practical applications,
this trade-off would need to be carefully balanced based on the specific requirements and constraints
of the task at hand. In future work, we plan to investigate techniques for optimizing the computa-
tional efficiency of our model, such as pruning less effective experts or implementing more efficient
computation strategies. This will allow us to maintain or even enhance model performance while
managing the computational costs more effectively.
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