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ABSTRACT

Neural sequence labeling is an important technique employed for many Natural
Language Processing (NLP) tasks, such as Named Entity Recognition (NER), slot
tagging for dialog systems and semantic parsing. Large-scale pre-trained language
models obtain very good performance on these tasks when fine-tuned on large
amounts of task-specific labeled data. However, such large-scale labeled datasets
are difficult to obtain for several tasks and domains due to the high cost of hu-
man annotation as well as privacy and data access constraints for sensitive user
applications. This is exacerbated for sequence labeling tasks requiring such an-
notations at token-level. In this work, we develop techniques to address the label
scarcity challenge for neural sequence labeling models. Specifically, we develop
self-training and meta-learning techniques for training neural sequence taggers
with few labels. While self-training serves as an effective mechanism to learn
from large amounts of unlabeled data – meta-learning helps in adaptive sample
re-weighting to mitigate error propagation from noisy pseudo-labels. Extensive
experiments on six benchmark datasets including two for massive multilingual
NER and four slot tagging datasets for task-oriented dialog systems demonstrate
the effectiveness of our method. With only 10 labeled examples for each class
for each task, our method obtains 10% improvement over state-of-the-art systems
demonstrating its effectiveness for the low-resource setting.

1 INTRODUCTION

Motivation. Deep neural networks typically require large amounts of training data to achieve state-
of-the-art performance. Recent advances with pre-trained language models like BERT (Devlin et al.,
2019), GPT-2 (Radford et al., 2019) and RoBERTa (Liu et al., 2019) have reduced this annotation
bottleneck. In this paradigm, large neural network models are trained on massive amounts of un-
labeled data in a self-supervised manner. However, the success of these large-scale models still
relies on fine-tuning them on large amounts of labeled data for downstream tasks. For instance, our
experiments show 27% relative improvement on an average when fine-tuning BERT with the full
training set (2.5K-705K labels) vs. fine-tuning with only 10 labels per class. This poses several
challenges for many real-world tasks. Not only is acquiring large amounts of labeled data for ev-
ery task expensive and time consuming, but also not feasible in many cases due to data access and
privacy constraints. This issue is exacerbated for sequence labeling tasks that require annotations at
token- and slot-level as opposed to instance-level classification tasks. For example, an NER task can
have slots like B-PER, I-PER, O-PER marking the beginning, intermediate and out-of-span markers
for person names, and similar slots for the names of location and organization. Similarly, language
understanding models for dialog systems rely on effective identification of what the user intends to
do (intents) and the corresponding values as arguments (slots) for use by downstream applications.
Therefore, fully supervised neural sequence taggers are expensive to train for such tasks, given the
requirement of thousands of annotations for hundreds of slots for the many different intents.

Semi-supervised learning (SSL) (Chapelle et al., 2010) is one of the promising paradigms to address
labeled data scarcity by making effective use of large amounts of unlabeled data in addition to
task-specific labeled data. Self-training (ST, (III, 1965)) as one of the earliest SSL approaches
has recently shown state-of-the-art performance for tasks like image classification (Li et al., 2019;
Xie et al., 2020) performing at par with supervised systems while using very few training labels.
In contrast to such instance-level classification tasks, sequence labeling tasks have dependencies
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Figure 1: MetaST framework.

between the slots demanding different design choices for slot-level loss optimization for the limited
labeled data setting. For instance, prior work (Ruder & Plank, 2018) using classic self-training
techniques for sequence labeling did not find much success in the low-data regime with 10% labeled
data for the target domain. Although there has been some success with careful task-specific data
selection (Petrov & McDonald, 2012) and more recently for distant supervision (Liang et al., 2020)
using external resources like knowledge bases (e.g., Wikipedia). In contrast to these prior work, we
develop techniques for self-training with limited labels and without any task-specific assumption or
external knowledge.

For self-training, a base model (teacher) is trained on some amount of labeled data and used to
pseudo-annotate (task-specific) unlabeled data. The original labeled data is augmented with the
pseudo-labeled data and used to train a student model. The student-teacher training is repeated until
convergence. Traditionally in self-training frameworks, the teacher model pseudo-annotates unla-
beled data without any sample selection. This may result in gradual drifts from self-training on noisy
pseudo-labeled instances (Zhang et al., 2017). In order to deal with noisy labels and training set bi-
ases, Ren et al. (2018) propose a meta-learning technique to automatically re-weight noisy samples
by their loss changes on a held-out clean labeled validation set. We adopt a similar principle in
our work and leverage meta-learning to re-weight noisy pseudo-labeled examples from the teacher.
While prior techniques for learning to re-weight examples have been developed for instance-level
classification tasks, we extend them to operate at token-level for discrete sequence labeling tasks.
To this end, we address some key challenges on how to construct an informative held-out validation
set for token-level re-weighting. Prior works (Ren et al., 2018; Shu et al., 2019) for instance classi-
fication construct this validation set by random sampling. However, sequence labeling tasks involve
many slots (e.g. WikiAnn has 123 slots over 41 languages) with variable difficulty and distribution
in the data. In case of random sampling, the model oversamples from the most populous category
and slots. This is particularly detrimental for low-resource languages in the multilingual setting.
To this end, we develop an adaptive mechanism to create the validation set on the fly considering
the diversity and uncertainty of the model for different slot types. Furthermore, we leverage this
validation set for token-level loss estimation and re-weighting pseudo-labeled sequences from the
teacher in the meta-learning setup. While prior works (Li et al., 2019; Sun et al., 2019; Bansal et al.,
2020) on meta-learning for image and text classification leverage multi-task learning to improve a
target classification task based on several similar tasks, in this work we focus on a single sequence
labeling task – making our setup more challenging altogether.

Our task and framework overview. We focus on sequence labeling tasks with only a few annotated
samples (e.g., K = {5, 10, 20, 100}) per slot type for training and large amounts of task-specific
unlabeled data. Figure 1 shows an overview of our framework with the following components: (i)
Self-training: Our self-training framework leverages a pre-trained language model as a teacher and
co-trains a student model with iterative knowledge exchange (ii) Adaptive labeled data acquisition
for validation: Our few-shot learning setup assumes a small number of labeled training samples
per slot type. The labeled data from multiple slot types are not equally informative for the student
model to learn from. While prior works in meta-learning randomly sample some labeled examples
for held-out validation set, we develop an adaptive mechanism to create this set on the fly. To this
end, we leverage loss decay as a proxy for model uncertainty to select informative labeled samples
for the student model to learn from in conjunction with the re-weighting mechanism in the next step.
(iii) Meta-learning for sample re-weighting: Since pseudo-labeled samples from the teacher can be
noisy, we employ meta-learning to re-weight them to improve the student model performance on the
held-out validation set obtained from the previous step. In contrast to prior work (Ren et al., 2018)
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on sample re-weighting operating at instance-level, we incorporate the re-weighting mechanism at
token-level for sequence labeling tasks. Here the token-level weights are determined by the student
model loss on the above validation set. Finally, we learn all of the above steps jointly with end-to-
end learning in the self-training framework. We refer to our adaptive self-training framework with
meta-learning based sample re-weighting mechanism as MetaST.

We perform extensive experiments on six benchmark datasets for several tasks including multi-
lingual Named Entity Recognition and slot tagging for user utterances from task-oriented dialog
systems to demonstrate the generalizability of our approach across diverse tasks and languages. We
adopt BERT and multilingual BERT as encoder and show that its performance can be significantly
improved by nearly 10% for low-resource settings with few training labels (e.g., 10 labeled exam-
ples per slot type) and large amounts of unlabeled data. In summary, our work makes the following
contributions. (i) Develops a self-training framework for neural sequence tagging with few labeled
training examples. (ii) Leverages an acquisition strategy to adaptively select a validation set from
the labeled set for meta-learning of the student model. (iii) Develops a meta-learning framework for
re-weighting pseudo-labeled samples at token-level to reduce drifts from noisy teacher predictions.
(iv) Integrates the aforementioned components into an end-to-end learning framework and demon-
strates its effectiveness for neural sequence labeling across six benchmark datasets with multiple
slots, shots, domains and languages.

2 BACKGROUND

Sequence labeling and slot tagging. This is the task identifying the entity span of several slot
types (e.g., names of person, organization, location, date, etc.) in a text sequence. Formally,
given a sentence with N tokens X = {x1, ..., xN}, an entity or slot value is a span of tokens
s = [xi, ..., xj ](0 ≤ i ≤ j ≤ N) associated with a type. This task assumes a pre-defined tagging
policy like BIO (Tjong et al., 1999), where B marks the beginning of the slot, I marks an interme-
diate token in the span, and O marks out-of-span tokens. These span markers are used to extract
multi-token values for each of the slot types with phrase-level evaluation for the performance.

Self-training. Consider f(·; θtea) and f(·; θstu) to denote the teacher and student models respec-
tively in the self-training framework. The role of the teacher model (e.g., a pre-trained language
model) is to assign pseudo-labels to unlabeled data that is used to train a student model. The
teacher and student model can exchange knowledge and the training schedules are repeated till
convergence. The success of self-training with deep neural networks in recent works (He et al.,
2019; Xie et al., 2020) has been attributed to a number of factors including stochastic regularization
with dropouts and data regularization with unlabeled data. Formally, given m-th unlabeled sen-
tence with N tokens Xu

m = {xu1,m, ..., xuN,m} and C pre-defined labels, consider the pseudo-labels

Ŷ
(t)
m = [ŷ

(t)
m,1, ..., ŷ

(t)
m,N ] generated by the teacher model at the t-th iteration where,

ŷ(t)m,n = argmax
c∈C

fn,c(x
u
m,n; θ

(t)
tea). (1)

The pseudo-labeled data set, denoted as (Xu, Ŷ (t)) = {(Xu
m, Ŷ

(t)
m )}Mm , is used to train the student

model and learn its parameters as:

θ̂
(t)
stu = argmin

θ

1

M

M∑
m=1

l(Ŷ (t)
m , f(Xu

m; θ
(t−1)
stu )), (2)

where l(·, ·) can be modeled as the cross-entropy loss.

3 ADAPTIVE SELF TRAINING

Given a pre-trained language model (e.g., BERT (Devlin et al., 2019)) as the teacher, we first fine-
tune it on the small labeled data to make it aware of the underlying task. The fine-tuned teacher
model is now used to pseudo-label the large unlabeled data. We consider the student model as
another instantiation of the pre-trained language model that is trained over the pseudo-labeled data.
However, our few-shot setting with limited labeled data results in a noisy teacher. A naive transfer of
teacher knowledge to the student results in the propagation of noisy labels limiting the performance
of the student model. To address this challenge, we develop an adaptive self-training framework to
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re-weight pseudo-labeled predictions from the teacher with a meta-learning objective that optimizes
the token-level loss from the student model on a held-out labeled validation set. This held-out
set is adaptively constructed via labeled data acquisition which selects labeled samples with high
uncertainty for efficient data exploration.

3.1 ADAPTIVE LABELED DATA ACQUISITION

In standard meta-learning setup for instance-level classification tasks, the held-out validation set is
usually constructed via random sampling (Ren et al., 2018; Shu et al., 2019). Sequence labeling
tasks involve many slot types with variable difficulty and distribution in the data. For instance, NER
tasks over WikiAnn operate over 123 slot types from 41 languages with additional complexity from
variable model performance across different languages. A random sampling leads to oversampling
instances with the most populous categories and slot types in the data. Therefore, we propose a
novel labeled data acquisition strategy to construct the validation set for effective data exploration.
We demonstrate its benefit over classic meta-learning approaches from prior works in experiments.

In general, data acquisition strategies for prior works in meta-learning and active learning broadly
leverage random sampling (Ren et al., 2018; Shu et al., 2019), easy (Kumar et al., 2010) and hard
example mining (Shrivastava et al., 2016) or uncertainty-based methods (Chang et al., 2017a). These
strategies have been compared in prior works (Chang et al., 2017a; Gal et al., 2017) that show
uncertainty-based methods to have better generalizability across diverse settings. There are several
approaches to uncertainty estimation including error decay (Konyushkova et al., 2017; Chang et al.,
2020), Monte Carlo dropouts (Gal et al., 2017) and predictive variance (Chang et al., 2017a). We
follow a similar principle of error decay to find samples that the model is uncertain about and can
correspondingly benefit from knowing their labels (similar to active learning settings). To this end,
we leverage stochastic loss decay from the model as a proxy for the model uncertainty to generate
validation set on the fly. This is used for estimating token-level weights and re-weighting pseudo
labeled data in Section 3.2.

Consider the loss of the student model with parameters θ(t)stu on the labeled data (X l
m, Ym) in the

t-th iteration as l(Ym, f(X l
m; θ

(t)
stu)). To measure the loss decay value at any iteration, we use the

difference between the current and previous loss values. Considering these values may fluctuate
across iterations, we adopt the moving average of the loss values for (X l

m, Ym) in the latest R
iterations as a baseline lmb for loss decay estimation. Baseline measure lmb is calculated as follows:

lmb =
1

R

R∑
r=1

l(Ym, f(X
l
m; θ

(t−r)
stu )). (3)

Since the loss decay values are estimated on the fly, we want to balance exploration and exploitation.
To this end, we add a smoothness factor δ to prevent the low loss decay samples (i.e. samples with
low uncertainty) from never being selected again. Considering all of the above factors, we obtain
the sampling weight of labeled data (X l

m, Y
l
m) as follows:

Wm ∝ max(lmb − l(Ym, f(X l
m; θ

(t)
stu)), 0) + δ. (4)

The smoothness factor δ needs to be adaptive since the training loss is dynamic. Therefore, We
adopt the maximum of the loss decay value as the smoothness factor δ to encourage exploration.

The aforementioned acquisition function is re-estimated after a fixed number of steps to adapt to
model changes. With labeled data acquisition, we rely on informative uncertain samples to improve
learning efficiency. The sampled mini-batches of labeled data {Bls} are used as a validation set for
the student model in the next step for re-weighting pseudo-labeled data from the teacher model. We
demonstrate its impact via ablation study in experiments. Note that the labeled data is only used to
compute the acquisition function and not used for explicit training of the student model in this step.

3.2 RE-WEIGHTING PSEUDO-LABELED DATA

To mitigate error propagation from noisy pseudo-labeled sequences from the teacher, we leverage
meta-learning to adaptively re-weight them based on the student model loss on the held-out valida-
tion set obtained via labeled data acquisition from the previous section. In contrast to prior work
focusing on instance-level tasks like image classification – sequence labeling operates on discrete
text sequences as input and assigns labels to each token in the sequence. Since teacher predictions
vary for different slot labels and types, we adapt the meta-learning framework to re-weight samples
at a token-level resolution.
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Token Re-weighting. Consider the pseudo-labels {Ŷ (t)
m = [ŷ

(t)
m,1, ..., ŷ

(t)
m,N ]}Mm=1 from the teacher

in the t-th iteration with m and n indexing the instance and a token in the instance, respectively. In
classic self-training, we update the student parameters leveraging pseudo-labels as follows:

θ̂
(t)
stu = θ̂

(t−1)
stu − αO

( 1

M

M∑
m=1

l(Ŷ (t)
m , f(Xu

m; θ
(t−1)
stu ))

)
. (5)

Now, to downplay noisy token-level labels, we leverage meta-learning to re-weight the pseudo-
labeled data. To this end, we follow a similar analysis from (Koh & Liang, 2017) and (Ren et al.,
2018) to perturb the weight for each token in the mini-batch by ε. Weight perturbation is used
to discover data points that are most important to improve the model performance on a held-out
validation set (Koh & Liang, 2017) where the sample importance is given by the magnitude of the
the negative gradients. We extend prior techniques to obtain token-level perturbations as:

θ̂
(t)
stu(ε) = θ̂

(t−1)
stu − αO

( 1

M

1

N

M∑
m=1

N∑
n=1

[εm,n · l(ŷ(t)m,n, f(xum,n; θ̂
(t−1)
stu ))]

)
. (6)

The token weights are obtained by minimizing the student model loss on the held-out validation set.
Here, we employ the labeled data acquisition strategy from Eq. 4 to sample informative mini-batches
of labeled data Bls locally at step t. To obtain a cheap estimate of the meta-weight at step t, we take
a single gradient descent step for the sampled labeled mini-batch Bls :

um,n,s = −
∂

∂εm,n,s

( 1

|Bls|
1

N

|Bl
s|∑

m=1

N∑
n=1

[l(ym,n, f(x
l
m,n; θ̂

(t)
stu(ε))]

)
|εm,n,s=0 (7)

We set the token weights to be proportional to the negative gradients to reflect the importance of
pseudo-labeled tokens in the sequence. Since sequence labeling tasks have dependencies between
the slot types and tokens, it is difficult to obtain a good estimation of the weights based on a single
mini-batch of examples. Therefore, we sample S mini-batches of labeled data {Bl1, ...,BlS} with
the adaptive acquisition strategy and calculate the mean of the gradients to obtain a robust gradient
estimate. Note that S is a constant number that is the same for each token and the proportional sign
in Eq. 8. Since a negative weight indicates a pseudo-label of poor quality that would potentially
degrade the model performance, we set such weights to 0 to filter them out. The impact of S is
investigated in the experiments (refer to Appendix A.1). The overall meta-weight of pseudo-labeled
token (xum,n, ŷm,n) is obtained as:

wm,n ∝ max(

S∑
s=1

um,n,s, 0) (8)

To further ensure the stability of the loss function in each mini-batch, we normalise the weightwm,n.
Finally, we update the student model parameters while accounting for token-level re-weighting as:

θ̂
(t)
stu = θ̂

(t−1)
stu − αO

( 1

M

1

N

M∑
m=1

N∑
n=1

[wm,n · l(ŷ(t)m,n, f(xum,n; θ̂
(t−1)
stu ))]

)
. (9)

We demonstrate the impact of our re-weighting mechanism with an ablation study in experiments.

3.3 TEACHER MODEL ITERATIVE UPDATES

At the end of every self-training iteration, we assign the student model as a new teacher model
(i.e., θtea = θ

(T )
stu ) . Since the student model uses the labeled data only as a held-out validation set

for meta-learning, we further utilize the labeled data (X l, Y ) to fine-tune the new teacher model
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f(·, θ(t)tea) with standard supervised loss minimization. We explore the effectiveness of this step with
an ablation study in experiments. The overall training procedure is summarized in Algorithm 1.

Algorithm 1: MetaST Algorithm.
Input: Labeled sequences (Xl, Y ); Unlabeled sequences (Xu); Pre-trained BERT model with randomly initialized token

classification layer f(·; θ(0)); Batches S; Number of self-training iterations T .
Initialize teacher model θtea = θ(0)

while not converged do
Fine-tune teacher model on small labeled data (Xl, Y );
Initialize the student model θ(0)stu = θ(0);
Generate hard pseudo-labels Ŷ (t) for unlabeled samplesXu with model f(·, θtea);
for t← 1 to T do

Compute labeled data acquisition function according to Eq. 4;
Sample S mini-batches of labeled examples {Bl

1, ..., B
l
S} from (Xl, Y ) based on labeled data acquisition

function;
Randomly sample a batch of pseudo-labeled examples Bu from (Xu, Ŷ (t)) ;
Compute token-level weights in Bu based on the loss on {Bl

1, ...,B
l
S} according to Eq. 8;

Train model f(·, θ(t)stu) on weighted pseudo-labeled sequences Bu and update parameters θ(t)stu ;
end
Update the teacher: θtea = θ

(T )
stu

end

4 EXPERIMENTS

Encoder. Pre-trained language models like BERT (Devlin et al., 2019), GPT-2 (Radford et al.,
2019) and RoBERTa (Liu et al., 2019) have shown state-of-the-art performance for various natural
language processing tasks. In this work we adopt one of them as a base encoder by initializing the
teacher with pre-trained BERT-base model and a randomly initialized token classification layer.

Dataset # Slots # Train # Test # Lang

Email 20 2.5K 1k EN
SNIPS 39 13K 0.7K EN
MIT Movie 12 8.8K 2.4K EN
MIT Restaurant 8 6.9K 1.5K EN
Wikiann (EN) 3 20K 10K EN
CoNLL03 (EN) 4 15K 3.6K EN

CoNLL03 16 38K 15K 4
Wikiann 123 705K 329K 41

Table 1: Dataset summary.

Datasets. We perform large-scale experi-
ments with six different datasets including
user utterances for task-oriented dialog sys-
tems and multilingual Named Entity Recog-
nition tasks as summarized in Table 1. (a)
Email. This consists of natural language
user utterances for email-oriented user actions
like sending, receiving or searching emails
with attributes like date, time, topics, peo-
ple, etc. (b) SNIPS is a public benchmark
dataset (Coucke et al., 2018) of user queries from multiple domains including music, media, and
weather. (c) MIT Movie and Restaurant corpus (Liu et al., 2013) consist of similar user utterances
for movie and restaurant domains. (d) CoNLL03 (Sang & Meulder, 2003) and Wikiann (Pan et al.,
2017) are public benchmark datasets for multilingual Named Entity Recognition. CoNLL03 is a
collection of news wire articles from the Reuters Corpus from 4 languages with manual annotations,
whereas Wikiann comprises of extractions from Wikipedia articles from 41 languages with auto-
matic annotation leveraging meta-data for different entity types like ORG, PER, LOC etc. For every
dataset, we sample K ∈ {5, 10, 20, 100} labeled sequences for each slot type from the Train data,
and add the remaining to the unlabeled set while ignoring their labels – following standard setups
for semi-supervised learning. We repeatedly sample K labeled instances three times for multiple
runs to report average performance with standard deviation across the runs.

Baselines. The first baseline we consider is the fully supervised BERT model trained on all avail-
able training data which provides the ceiling performance for every task. Each of the other models
are trained on K training labels per slot type. We adopt several state-of-the-art semi-supervised
methods as baselines: (1) CVT (Clark et al., 2018) is a semi-supervised sequence labeling method
based on cross-view training; (2) SeqVAT (Chen et al., 2020) incorporates adversarial training with
conditional random field layer for semi-supervised sequence labeling; (3) Mean Teacher (MT) (Tar-
vainen & Valpola, 2017) averages model weights to obtain an aggregated teacher; (4) VAT (Miyato
et al., 2018) adopts virtual adversarial training to make the model robust to noise; (5) classic ST (III,
1965) is simple self-training method with hard pseudo-labels; (6) BOND (Liang et al., 2020) is the
most recent work on self-training for sequence labeling with confidence-based sample selection and
forms a strong baseline for our work. We implement our framework in Pytorch and use Tesla V100
gpus for experiments. Hyper-parameter configurations with model settings presented in Appendix.
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Neural sequence labeling performance with few training labels. Table 2 shows the performance
comparison among different models with K=10 labeled examples per slot type. The fully supervised
BERT trained on thousands of labeled examples provides the ceiling performance for the few-shot
setting. We observe our method MetaST to significantly outperform all methods across all datasets
including the models that also use the same BERT encoder as ours like MT, VAT, Classic ST and
BOND with corresponding average performance improvements as 14.22%, 14.90%, 8.46% and
8.82%. Non BERT models like CVT and SeqVAT are consistently worse than other baselines.

Method SNIPS Email Movie Restaurant CoNLL03 (EN) Wikiann (EN)

# Slots 39 20 12 8 4 3

Full-supervision
BERT 95.80 94.44 87.87 78.95 92.40 84.04

Few-shot supervision (10 labels per slot)
BERT 79.01 87.85 69.50 54.06 71.15 45.61

Few-shot supervision (10 labels per slot) + unlabeled data
CVT 78.23 78.24 62.73 42.57 54.31 27.89
SeqVAT 78.67 72.65 67.10 51.55 67.21 35.16
MT 79.48 89.53 67.62 51.75 68.67 41.43
VAT 79.08 89.71 70.17 53.34 65.03 38.81
Classic ST 83.26 90.70 71.88 56.80 70.99 46.15
BOND 83.54 89.75 70.91 55.78 69.56 48.73

MetaST 88.23 92.18 77.67 63.83 76.65 56.61
(0.04;↑12%) (0.47;↑4.93%) (0.10;↑11.76%) (1.62;↑18.07%) (0.73;↑7.73%) (0.4;↑24.12%)

Table 2: F1 score comparison of models for sequence labeling on different datasets. All models (ex-
cept CVT and SeqVAT) use the same BERT encoder. F1 score of our model for each task is followed
by standard deviation and percentage improvement (↑) over BERT with few-shot supervision.

We also observe variable performance of the models across different tasks. Specifically, the per-
formance gap between the best few-shot model and the fully supervised model varies significantly.
MetaST achieves close performance to the fully-supervised model in some datasets (e.g. SNIPS and
Email) but has bigger room for improvement in others (e.g. CoNLL03 (EN) and Wikiann (EN)). This
can be attributed to the following factors. (i) Labeled training examples and slots. The total number
of labeled training instances for our K-shot setting is given byK×#Slots. Therefore, for tasks with
higher number of slots and consequently more training labels, most of the models perform better
including MetaST. Task-oriented dialog systems with more slots and inherent dependency between
the slot types benefit more than NER tasks. (ii) Task difficulty: User utterances from task-oriented
dialog systems for some of the domains like weather, music and emails contain predictive query
patterns and limited diversity. In contrast, Named Entity Recognition datasets are comparatively
diverse and require more training labels to generalize well. Similar observations are also depicted
in Table 3 for multilingual NER tasks with more slots and consequently more training labels from
multiple languages as well as richer interactions across the slots from different languages.

Dataset #Lang #Slots Full Sup. Few-shot Sup. Few-shot supervision + unlabeled data

BERT BERT MT VAT Classic ST BOND MetaST

CoNLL03 4 16 87.67 70.77 68.34 67.63 72.69 72.79 76.41 (0.47) (↑ 7.97%)
Wikiann 41 123 87.17 79.67 80.23 78.82 80.24 79.57 81.61 (0.14) (↑ 2.42%)

Table 3: F1 score comparison of models for sequence labeling on multilingual datasets using the
same BERT-Multilingual-Base encoder. F1 score of MetaST for each task is followed by standard
deviation in parentheses and percentage improvement (↑) over BERT with few-shot supervision.

Controlling for the total amount of labeled data. In order to control for the variable amount of
training labels across different datasets, we perform another experiment where we vary the number
of labels for different slot types while keeping the total number of labeled instances for each dataset
similar (ca. 200). Results are shown in Table 4. To better illustrate the effect of the number of
training labels, we choose tasks with lower performance in Table 2 for this experiment. Comparing
the results in Tables 2 and 4, we observe the performance of MetaST to improve with more training
labels for all the tasks .

Effect of varying the number of labels K per slot. Table 5 shows the improvement in the per-
formance of MetaST when increasing the number of labels for each slot type in the SNIPS dataset.
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Dataset BERT (Full Supervision) BERT (Few-shot Supervision) MetaST ( %Improvement )

MIT Movie 87.87 75.81 80.33 (↑ 5.96%)
MIT Restaurant 78.95 60.12 67.86 (↑ 12.87%)
CoNLL03 (EN) 92.40 77.48 81.61 (↑ 5.33%)
Wikiann (EN) 84.04 62.04 71.27 (↑ 14.88%)

Average 85.82 68.86 75.27 (↑ 9.31%)

Table 4: F1 scores of different models with 200 labeled samples for each task. The percentage
improvement (↑) is over the BERT model with few-shot supervision.

Similar trends can be found on other datasets (results in Appendix). As we increase the amount of
labeled training instances, the performance of BERT also improves, and correspondingly the margin
between MetaST and these baselines decreases although MetaST still improves over all of them.
In the self-training framework, given the ceiling performance for every task and the improved per-
formance of the teacher with more training labels, there is less room for (relative) improvement of
the student over the teacher model. Consider SNIPS for example. Our model obtains 12% and 2%
improvement over the few-shot BERT model for the 10-shot and 100-shot setting with F1-scores as
88.22% and 95.39%, respectively. The ceiling performance for this task is 95.8% on training BERT
on the entire dataset with 13K labeled examples. This demonstrates that MetaST is most impactful
for low-resource settings with few training labels for a given task.

#Slots Few-shot Supervision Few-shot supervision + unlabeled data

BERT CVT SeqVAT MT VAT Classic ST BOND MetaST (%Improvement)

5 70.63 69.82 69.34 70.85 71.34 72.59 72.85 81.56 (↑15%)
10 79.01 78.23 78.67 79.48 79.08 83.26 83.54 88.22 (↑12%)
20 86.81 88.04 85.05 87.31 88.19 88.32 88.93 91.99 (↑6%)
100 93.90 94.61 91.46 94.26 94.53 93.92 94.22 95.39 (↑2%)

Table 5: Variation in model performance on varying K labels / slot on SNIPS dataset with 39 slots.
The percentage improvement (↑) is relative to the BERT model with few-shot supervision.

Ablation analysis. Table 6 demonstrates the impact of different MetaST components with ablation
analysis. We observe that soft pseudo-labels hurt the model performance compared to hard pseudo-
labels, as also shown in recent work (Kumar et al., 2020). Such a performance drop may be attributed
to soft labels being less informative compared to sharpened ones. Removing the iterative teacher
fine-tuning step (Section 3.1) also hurts the overall performance.

Method Datasets

SNIPS CoNLL03

BERT w/ Continued Pre-training +
Few-shot Supervision 83.96 69.84

Classic ST 83.26 70.99
Classic ST w/ Soft Pseudo-Labels 81.17 71.87

MetaST (ours) w/ Hard Pseudo-Labels 88.23 76.65
MetaST w/ Soft Pseudo-Labels 86.16 75.84

MetaST w/o Iterative Teacher Fine-tune 85.64 72.74
MetaST w/o Labeled Data Acq. 86.63 75.02

Pseudo-labeled Data Re-weighting
MetaST w/o Re-weighting 85.48 73.02
MetaST (Easy) 85.56 74.53
MetaST (Difficult) 86.34 68.06

Table 6: Ablation analysis of our framework MetaST with
10 labeled examples per slot on SNIPS and CoNLL03 (EN).

Figure 2: Visualization of MetaST re-
weighting on CoNLL03 (EN).

Continued pre-training v.s. self-training. To contrast continued pre-training with self-training,
we further pre-train BERT on in-domain unlabeled data and then fine-tune it with few labeled ex-
amples denoted as “BERT (Continued Pre-training + Few-shot Supervision)”. The pre-training
step improves the BERT performance over the baseline on SNIPS but degrades the performance
on CoNLL03. This indicates that continued pre-training can improve the performance of few-shot
supervised BERT on specialized tasks (e.g., SNIPS) with different data distribution than the original
pre-training data (e.g., Wikipedia), but may not help for general domain ones like CoNLL03 with
overlapping data from Wikipedia. In contrast to the above baseline, MetaST brings significant im-
provements on both datasets. This demonstrates the generality and flexibility of self-training over
pre-training as also observed in contemporary work (Zoph et al., 2020) on image classification.
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Adaptive labeled data acquisition. We perform an ablation study by removing adaptive labeled
data acquisition from MetaST (denoted as “MetaST w/o Labeled Data Acq.”). Removing this com-
ponent leads to around 2% performance drop on an average demonstrating the impact of labeled data
acquisition. Moreover, the performance drop on SNIPS (39 slots) is larger than that on CoNLL03 (4
slots). This demonstrates that adaptive acquisition is more helpful for tasks with more slot types –
where diversity and data distribution necessitate a better exploration strategy in contrast to random
sampling employed in prior meta-learning works.
Re-weighting strategies. To explore the role of token-level re-weighting for pseudo-labeled se-
quences (discussed in Section 3.2), we replace our meta-learning component with different sam-
ple selection strategies based on the model confidence for different tokens. One sampling strategy
chooses samples uniformly without any re-weighting (referred to as “MetaST w/o Re-weighting”).
The sampling strategy with weights proportional to the model confidence favors easy samples (re-
ferred to as “MetaST-Easy”), whereas the converse favors difficult ones (referred to as “MetaST-
Difficult”).We observe the meta-learning based re-weighting strategy to perform the best. Inter-
estingly, MetaST-Easy outperforms MetaST-Difficult significantly on CoNLL03 (EN) but achieves
slightly lower performance on SNIPS. This demonstrates that difficult samples are more helpful
when the quality of pseudo-labeled data is relatively high. On the converse, the sample selection
strategy focusing on difficult samples introduces noisy examples with lower pseudo-label quality.
Therefore, sampling strategies may need to vary for different datasets, thereby, demonstrating the
necessity of adaptive data re-weighting as in our framework MetaST. Moreover, MetaST signifi-
cantly outperforms classic self-training strategies with hard and soft pseudo-labels demonstrating
the effectiveness of our design.

Analysis of pseudo-labeled data re-weighting. To visually explore the adaptive re-weighting
mechanism, we illustrate token-level re-weighting of MetaST on CoNLL03 (EN) dataset with K=10
shot at step 100 in Fig. 2. We include the re-weighting visualisation on SNIPS in Appendix A.1. We
observe that the selection mechanism filters out most of the noisy pseudo-labels (colored in blue)
even those with high teacher confidence as shown in Fig. 2.

5 RELATED WORK

Semi-supervised learning has been widely used for consistency training (Bachman et al., 2014;
Rasmus et al., 2015; Laine & Aila, 2017; Tarvainen & Valpola, 2017; Miyato et al., 2018), latent
variable models (Kingma et al., 2014) for sentence compression (Miao & Blunsom, 2016) and code
generation (Yin et al., 2018). More recently, methods like UDA (Xie et al., 2019) leverage consis-
tency training for few-shot learning of instance-classification tasks leveraging auxiliary resources
like paraphrasing and back-translation (BT) (Sennrich et al., 2016).

Sample selection. Curriculum learning (Bengio et al., 2009) techniques are based on the idea of
learning easier aspects of the task first followed by the more complex ones. Prior work leveraging
self-paced learning (Kumar et al., 2010) and more recently self-paced co-training (Ma et al., 2017)
leverage teacher confidence to select easy samples during training. Sample selection for image
classification tasks have been explored in recent works with meta-learning (Ren et al., 2018; Li
et al., 2019) and active learning (Panagiota Mastoropoulou, 2019; Chang et al., 2017b). However,
all of these techniques rely on only the model outputs applied to instance-level classification tasks.

Semi-supervised sequence labeling. Miller et al. (2004); Peters et al. (2017) leverage large
amounts of unlabeled data to improve token representation for sequence labeling tasks. Another
line of research introduces latent variable modeling (Chen et al., 2019; Zhou & Neubig, 2017) to
learn interpretable and structured latent representations. Recently, adversarial training based model
SeqVAT (Chen et al., 2020) and cross-view training method CVT (Clark et al., 2018) have shown
promising results for sequence labeling tasks.

6 CONCLUSIONS

In this work, we develop an adaptive self-training framework MetaST that leverages self-training and
meta-learning for few-shot training of neural sequence taggers. We address the issue of error propa-
gation from noisy pseudo-labels from the teacher in the self-training framework by adaptive sample
selection and re-weighting with meta-learning. Extensive experiments on six benchmark datasets
and different tasks including multilingual NER and slot tagging for task-oriented dialog systems
demonstrate the effectiveness of the proposed method particularly for low-resource settings.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
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A APPENDIX

A.1 EXPLORATIONS ON UNLABELED DATA AND MINI-BATCH S

Variation in model performance with unlabeled data. Table 12 shows the improvement in model
performance as we inject more unlabeled data with diminishing returns after a certain point.

Variation in model performance with mini-batch S. We set the value of S in Eq. 8 to {1, 3, 5}
respectively to explore its impact on the re-weighting mechanism. From Figure 3 we observe that
the model is not super sensitive to hyper-parameter S but can achieve a better estimate of the weights
of the pseudo-labeled data with increasing mini-batch values.

Ratio of Unlabeled Data Datasets
SNIPS CoNLL03

5% 84.47 72.92
25% 87.10 76.46
75% 87.50 76.56

Table 7: Varying proportion of unlabeled data
for MetaST with 10 labels per slot.

CONLL03 SNIPS
70

75

80

85

90

F
1

S=1

S=2

S=3

Figure 3: Varying S mini-batch la-
beled data for re-weighting.

A.2 ANALYSIS OF RE-WEIGHTING ON SNIPS AND CONLL03

Analysis of pseudo-labeled data re-weighting. To visually explore the adaptive re-weighting
mechanism, we illustrate token re-weighting of MetaST on CoNLL03 and SNIPS datasets with
K=10 shot at step 100 in Fig. 4. Besides the observation in the experimental section, we observe that
many difficult and correct pseudo-labeled samples (low teacher confidence) are selected according
to Fig. 4a.

(a) SNIPS (b) CoNLL03

Figure 4: Visualization of MetaST re-weighting examples on SNIPS and CoNLL03 (EN).

A.3 K-SHOTS

Effect of varying the number of few-shots K. We show the performance changes with respect
to varying number of few-shots K {5, 10, 20, 100} on Wikiann (en), MIT movie, MIT Restaurant,
CoNLL2003 (En), Multilingual CoNLL and Multilingual Wikiann in Table 9-13. Since the number
of labeled examples for some slots in Email dataset is around 10, we only show 5 and 10 shots for
Email dataset in Table 8.
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Table 8: Email Dataset.

Method Shots
5 10

Full-supervision
BERT 0.9444

Few-shot Supervision
BERT 0.8211 0.8785

Few-shot Supervision + unlabeled data
CVT 67.44 78.24

SeqVAT 64.67 72.65
Mean Teacher 84.10 89.53

VAT 83.24 89.71
Classic ST 86.88 90.70

BOND 84.92 89.75

MetaST 89.21 92.18

Method Shots (3 Slot Types)
5 10 20 100

Full-supervision
BERT 84.04

Few-shot Supervision
BERT 37.01 45.61 54.53 67.87

Few-shot Supervision + unlabeled data
CVT 16.05 27.89 46.42 66.36

SeqVAT 21.11 35.16 42.26 62.37
Mean Teacher 30.92 41.43 50.61 67.16

VAT 24.72 38.81 50.15 66.31
Classic ST 32.72 46.15 54.41 68.64

BOND 34.22 48.73 52.45 68.89

MetaST 55.04 56.61 60.38 73.20

Table 9: Wikiann (En) Dataset.

Method Shots (12 Slot Types)
5 10 20 100

Full-supervision
BERT 87.87

Few-shot Supervision
BERT 62.80 69.50 75.81 82.49

Few-shot Supervision + unlabeled data
CVT 57.48 62.73 70.20 81.82

SeqVAT 60.94 67.10 74.15 82.73
Mean Teacher 58.92 67.62 75.24 82.20

VAT 60.75 70.17 75.41 82.39
Classic ST 63.39 71.88 76.58 83.06

BOND 62.50 70.91 75.52 82.65

MetaST 72.57 77.67 80.33 84.35

Figure 5: MIT Movie Dataset.

Method Shots (8 Slot Types)
5 10 20 100

Full-supervision
BERT 78.95

Few-shot Supervision
BERT 41.39 54.06 60.12 72.24

Few-shot Supervision + unlabeled data
CVT 33.74 42.57 51.33 70.84

SeqVAT 41.94 51.55 56.15 71.39
Mean Teacher 40.37 51.75 57.34 72.40

VAT 41.29 53.34 59.68 72.65
Classic ST 44.35 56.80 60.28 73.13

BOND 43.01 55.78 59.96 73.60

MetaST 53.02 63.83 67.86 75.25

Table 10: MIT Restaurant Dataset.

Method Shots (4 Slot Types)
5 10 20 100

Full-supervision
BERT 92.40

Few-shot Supervision
BERT 63.87 71.15 73.57 84.36

Few-shot Supervision + unlabeled data
CVT 51.15 54.31 66.11 81.99

SeqVAT 58.02 67.21 74.15 82.20
Mean Teacher 59.04 68.67 72.62 84.17

VAT 57.03 65.03 72.69 84.43
Classic ST 64.04 70.99 74.65 84.93

BOND 62.52 69.56 74.19 83.87

MetaST 71.49 76.65 78.54 85.77

Table 11: CoNLL2003 (EN)

Method Shots (4 Slot Types)
5 10 20 100

Full-supervision
BERT 87.67

Few-shot Supervision
BERT 64.80 70.77 73.89 80.61

Few-shot Supervision + unlabeled data
Mean Teacher 64.55 68.34 73.87 79.21

VAT 64.97 67.63 74.26 80.70
Classic ST 67.95 72.69 73.79 81.82

BOND 69.42 72.79 76.02 80.62

MetaST 73.34 76.65 77.01 82.11

Table 12: Multilingual CoNLL03.

Method Shots (3 Slot Types × 41 languages)
5 10 20 100

Full-supervision
BERT 87.17

Few-shot Supervision
BERT 77.68 79.67 82.33 85.70

Few-shot Supervision + unlabeled data
Mean Teacher 77.09 80.23 82.19 85.34

VAT 74.71 78.82 82.60 85.82
Classic ST 76.73 80.24 82.39 86.08

BOND 78.81 79.57 82.19 86.14

MetaST 79.10 81.61 83.14 85.57

Table 13: Multilingual Wikiann
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A.4 IMPLEMENTATIONS AND HYPER-PARAMETER

We do not perform any hyper-parameter tuning for different datasets. The batch size and maxi-
mum sequence length varies due to data characteristics and are as shown in Tbale 14. The hyper-
parameters are as shown in Table 14.

Also, we retain parameters from original BERT implementation from https://github.com/
huggingface/transformers.

We implement SeqVAT based on https://github.com/jiesutd/NCRFpp and im-
plement CVT following https://github.com/tensorflow/models/tree/master/
research/cvt_text.

Dataset Sequence Length Batch Size Labeled data sample size |B| Unlabeled Batch Size BERT Encoder

SNIPS 64 16 32 32 BERT-base-uncased
Email 64 16 32 32 BERT-base-cased
Movie 64 16 32 32 BERT-base-uncased
Restaurant 64 16 16 32 BERT-base-uncased
CoNLL03 (EN) 128 16 8 32 BERT-base-cased
Wikiann (EN) 128 16 8 32 BERT-base-cased
CoNLL03 (multilingual) 128 16 32 32 BERT-multilingual-base-cased
Wikiann (multilingaul) 128 16 32 32 BERT-multilingual-base-cased

Table 14: Batch size, sequence length and BERT encoder choices across datasets

BERT attention dropout 0.3
BERT hidden dropout 0.3
Latest Iteration R in labeled data acquisition 5
BERT output hidden size h 768

Steps for fine-tuning teacher model on labeled data 2000
Steps T for self-training model on unlabeled data 3000
Mini-batch S 5
Re-initialize Student Y
Pseudo-label Type Hard
Warmup steps 20
learning rate α 5e−5

Weight decay 5e−6

Table 15: Hyper-parameters.
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