Under review as a conference paper at ICLR 2026

VIDEOZOOMER: REINFORCEMENT-LEARNED TEMPO-
RAL FOCUSING FOR LONG VIDEO REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved remarkable
progress in vision-language tasks yet remain limited in long video understand-
ing due to the limited context window. Consequently, prevailing approaches tend
to rely on uniform frame sampling or static pre-selection, which might overlook
critical evidence and unable to correct its initial selection error during its reasoning
process. To overcome these limitations, we propose VideoZoomer, a novel agentic
framework that enables MLLMs to dynamically control their visual focus during
reasoning. Starting from a coarse low-frame-rate overview, VideoZoomer invokes
a temporal zoom tool to obtain high-frame-rate clips at autonomously chosen mo-
ments, thereby progressively gathering fine-grained evidence in a multi-turn inter-
active manner. Accordingly, we adopt a two-stage training strategy: a cold-start
supervised fine-tuning phase on a curated dataset of distilled exemplar and reflec-
tion trajectories, followed by reinforcement learning to further refine the agentic
policy. Extensive experiments demonstrate that our 7B model delivers diverse
and complex reasoning patterns, yielding strong performance across a broad set
of long video understanding and reasoning benchmarks. These emergent capabil-
ities allow it to consistently surpass existing open-source models and even rival
proprietary systems on challenging tasks, while achieving superior efficiency un-
der reduced frame budgets.

1 INTRODUCTION

With a clear task in mind, humans can efficiently navigate long and complex visual streams by
dynamically allocating attention, selectively identifying salient events such as decisive actions in a
sports match or key explanations in a lengthy lecture, while filtering out redundancy. This goal-
directed ability underlies effective and efficient visual reasoning, as widely documented in cognitive
science (Kietzmann et al., 2018), remains difficult to achieve in artificial intelligence. Although
MLLMs perform strongly on image (Bai et al., 2025; Chen et al., 2024) and short-video tasks (Zhang
et al., 2023), they remain constrained in long-video comprehension tasks mainly due to their limited
context window (OpenAl, 2024; Reid et al., 2024).

The most common strategy to address this challenge is uniform frame sampling (Zhang et al.,
2024b;c), which selects frames at fixed intervals (e.g., two frames per second) to construct a sub-
set that fits within context window. Nevertheless, this strategy is inherently limited, as it assumes
all moments are equally important and further risks overlooking short but critical events while al-
locating context budget to redundant clip segments. To address these limitations, prior work has
investigated adaptive frame selection (Yu et al., 2024; Hu et al., 2025a; Tang et al., 2025), where a
lightweight selector module, conditioned on the text query, identifies salient frames before reason-
ing. While improving over uniform sampling, these methods are still inefficient because they are
designed to select a fixed number of frames regradless of the problem’s complexity. Second, the
design remains static and non-interactive. If the initial choice is suboptimal or misses key details,
the model has no mechanism to correct the error or revisit the video. This fundamentally limits its
performance on complex tasks that require iterative evidence gathering.
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Figure 1: Left: Conceptual comparison of three long video reasoning frameworks: (a) uniform
sampling, (b) with frame selector, and (c) VideoZoomer (Ours). Right: Performance comparison of
VideoZoomer against various baseline models under different frame budgets on LSDBench.
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To overcome the rigidity and inefficiency of prior methods, we propose VideoZoomer, a novel frame-
work that empowers an MLLM to autonomously and dynamically control its visual focus during its
reasoning process. As illustrated in Figure 1 (Left), instead of being a passive recipient of pre-
selected frames, our model acts as an active agent. This yields two primary advantages: (i) It is
highly efficient: the agent begins with a coarse overview of low frame rates, only consuming a
significant context budget when it decides to invoke a <video_zoom> tool. This on-demand ap-
proach ensures that the model’s context window is used dynamically and judiciously. (ii) It is more
performant: by learning a policy to request high-frame-rate clips of specific moments, the agent can
correct initial oversights and gather detailed evidence precisely when and where it is needed. This
dynamic, iterative evidence-gathering process avoids the critical information loss inherent in static
methods and raises the upper bound on reasoning performance. Figure 1 (Right) demonstrates the
practical benefit of this design on LSDBench (Qu et al., 2025), a benchmark specifically designed
to test a model’s ability to find short, critical events in long videos. Our method achieves a better
performance-efficiency trade-off, achieving superior accuracy compared to open source baselines
while operating on a flexible and smaller frame budget.

Notably, training such an agent faces several challenges, a naive reinforcement learning approach
would suffer from an inefficiently large action space and exhibit limited reasoning patterns. To ad-
dress this, we introduce a two-stage training strategy. First, a cold-start Supervised Fine-Tuning
(SFT) phase teaches the model the basics of tool using. Using a tailored dataset of exemplar trajec-
tories, we train the model to understand the task format, master the syntax of tool calls, and develop
a baseline reasoning capability. Crucially, to prevent the model from merely imitating a single,
monotonous reasoning pattern, we enrich this dataset with reflection data, which exposes our model
to more diverse and sophisticated problem-solving strategies. Second, with these foundational skills
established, a Reinforcement Learning (RL) phase optimizes the model’s tool interaction policy and
reasoning capability, transforming it from a simple imitator into an adaptive agent that can generalize
its strategy to unseen videos and questions.

‘We summarize our contributions as follows:

e We propose VideoZoomer, a novel framework that reframes long video understanding as a se-
quential tool interaction task, enabling an MLLM to dynamically control its visual focus via
multi-turn tool interaction.

* We introduce a robust, two-stage training strategy: a cold-start phase using a tailored dataset of
exemplar and reflection trajectories, followed by a reinforcement learning phase to optimize an
efficient and effective agentic policy.

* We demonstrate through extensive experiments that our model significantly outperforms existing
open-source models on a wide range of long video understanding and reasoning benchmarks, in
some cases even surpassing leading proprietary models with greater efficiency.
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2 RELATED WORKS

Multimodal Reasoning Models. The remarkable success in LLMs (Guo et al., 2025; Team et al.,
2025; Tan et al., 2025; Jaech et al., 2024; Yang et al., 2025) has demonstrated that reinforcement
learning (RL) is a powerful paradigm for enhancing the complex reasoning capabilities. Many works
since then have tried to transfer this into multimodal domain. Methods such as MM-Eureka (Meng
et al., 2025) and VL-Rethinker (Wang et al., 2025) have successfully adapted RL techniques to
improve the vision-language reasoning abilities of MLLMs. More recently, Video-R1 (Feng et al.,
2025) further validated the efficacy of this approach specifically within the video domain. Recently
some works has tried further extend MLLMs with external tools like image cropping (Zheng et al.,
2025; Su et al., 2025), web search (Wu et al., 2025), segmentation (Liu et al., 2025b). However,
most of these methods focus on image tasks and only interact with the environment for single turn,
combining RL-driven reasoning and multi-turn tool use strategy for long video understanding is still
underexplored.

Long Video Comprehension. Many works have tried to extend the ability of MLLMs in long
video comprehension. A stream of research aims to reduce the number of visual tokens that need to
be fed into the MLLM (Liu et al., 2025a; Yan et al., 2025) through compression or selection mod-
ules. A second, related approach focuses on selecting a sparse subset of the most salient frames from
the entire video. Unlike uniform sampling, these methods aim to identify moments of high impor-
tance (Tang et al., 2025; Hu et al., 2025a; Wang et al., 2024b). While effective, the primary limitation
of these methods is that the frame selection process is decoupled with its reasoning process, hinder-
ing it from learning more complex reasoning patterns. Methods like LongVILA-R1 (Chen et al.,
2025) focus on direct context extension by continuing training on long video datasets to handle
longer video sequences. Recently, a promising direction has emerged that leverages the powerful
zero-shot capabilities of large proprietary models to act as agents. Frameworks like VideoDeepRe-
search (Yuan et al., 2025) and Deep Video Discovery (Zhang et al., 2025) use prompting techniques
to guide a strong LLM like Deepseek-R1 (Guo et al., 2025) or GPT 4.1 (OpenAl, 2024) to itera-
tively explore a video with external tools. These training-free methods demonstrate the potential
of agentic approach but rely on resource-intensive, closed-source models, making them difficult to
optimize, reproduce, or deploy. In contrast, our work focuses on explicitly training a relatively small
7B open-source model to learn an efficient, agentic policy for long video comprehension.

3 METHOD

3.1 OVERVIEW

To address the challenge of efficient long video understanding with a constrained frame budget, we
propose a novel framework, VideoZoomer, which empowers a large multimodal model to actively
seek high-temporal-resolution information by invoking an external tool. Rather than relying on fixed
or uniform sampling strategies, our model learns to dynamically and adaptively allocate its frame
budget during its reasoning process. The core idea is to train an agent that learns an optimal policy
for when and where to request high-frame-rate video clips, a process we call “temporal zoom-in”,
to gather sufficient evidence for answering a given question.

As illustrated in Figure 2, the strategy is summarized as “first glance, then zoom”: initially the
model only has access to the query prompt () and a relatively low frame rate version of the video
Viow, uniformly sampled as a default frame rate f,,,, which provides a coarse, computationally
inexpensive overview of the entire video. To answer the question accurately, especially when it
pertains to fine-grained temporal events or rapid motions, the model may require more detailed
visual information. We introduce a <video_zoom> tool, which allows the model to request a
specific time segment [ts;qrt, teng] from the original video at a higher frame rate, fj;4,. Upon
invoking this tool, the environment returns a high-resolution clip Veiip = T'(V, tstart, tend, frigh)-
The agent’s objective is to interact with the environment by iteratively calling the tool to gather
visual evidence, this process continues until the agent determines it has sufficient information to
produce a final answer. The agentic approach enables the model to develop diverse and complex
reasoning strategies, as demonstrated in Figure 3. Each tool calling is constrained by a frame budget
B (i.e. frigh X (tend — tstart) < B), thus the total number of frames that can be requested from the
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Figure 2: VideoZoomer framework for long video reasoning. The process begins with a “Glance”
where the model obtains a coarse overview of the video. It then enters an iterative “Zoom” phase,
where it can invoke a <video_zoom> tool to request high-fps clips and perform multi-turn reason-
ing. This process continues until the model procudes a final answer or reaches max turn limit.
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Figure 3: Diverse reasoning patterns demonstrated by our model. (a) Direct-hit Reasoning, (b)
Progressive Reasoning, and (c) Self-refine Reasoning.

high-resolution clips is limited by B x N, where N is the maximum number of interaction rounds.
The environment returns an error message if the model makes an illegal request or exceeds the frame
budget. The goal is to learn a policy 7 that maximizes the quality of the final answer while adhering
to the frame budget and tool call number constraints.

3.2 COLD-START INITIALIZATION

Reinforcement learning from scratch on a complex, high-dimensional action space, such as generat-
ing structured tool calls, is notoriously sample-inefficient and prone to instability. To mitigate these
challenges, we precede the RL phase with a supervised fine-tuning (SFT) stage designed to “cold-
start” our agent. The primary objective of this stage is twofold: first, to equip a base multimodal
model with the fundamental capability of understanding and invoking the <video_zoom> tool in
the correct format; and second, to expose it to a diverse range of reasoning patterns, which is crucial
for effective exploration during subsequent RL training. To achieve this, we construct a specialized
SFT dataset by curating high-quality, multi-turn interaction trajectories as illustrated in Figure 4.

Distillation of Exemplar Trajectories. The initial step is to generate a set of “golden” tool-use
trajectories. We leverage state-of-the-art proprietary models, such as GPT-40 (OpenAl, 2024) and
Gemini-2.5-pro (Comanici et al., 2025), as expert demonstrators. For each video-question pair in
our training set, we prompt the expert model with the same system prompt and initial low-frame-
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Figure 4: The pipeline for curating our cold-start dataset. We first distill exemplar trajectories,
then generate reflection data by having an expert model correct the failures of an initial agent. The

final dataset combines both verified exemplar and reflection trajectories.

rate video provided to our agent. The model then engages in a multi-turn interaction, iteratively
calling the <video_zoom> tool until it gathers sufficient information to answer the question. This
process yields a collection of complete trajectories, each containing the initial prompt, a sequence of
tool calls, the corresponding high-frame-rate clip observations, and the final answer. These expert-
generated trajectories serve as ideal examples of effective tool invocation and reasoning.

Augmentation with Reflection Data. While SFT on only exemplar trajectories effectively teaches
the model the format of tool use, we observed a significant limitation: the resulting model tends to
overfit the expert model’s dominant reasoning patterns. This often leads to a “‘shallow” policy, where
the model learns to call the tool at most once and then immediately outputs an answer, regardless
of whether the retrieved clip was actually helpful or contained errors. This lack of perseverance
and adaptability would severely hinder its ability to solve more complex problems requiring deeper,

iterative reasoning.
To address this and introduce more diverse and complex reasoning patterns, we generate reflection
data. As shown in Figure 4. The process begins by using our initial model trained only on exemplar
data, to produce its own rollouts. We then identify trajectories where the model failed to answer
correctly. These incorrect rollouts are subsequently fed back to the expert model, which is prompted
to reflect on the flawed reasoning. The model then identifies the mistake and generates a corrected,
more robust reasoning path. This corrected path might involve additional tool calls or a different
line of reasoning. This reflection process creates valuable training instances that explicitly teach the
model how to recover from errors, critically evaluate the information returned by a tool, and when to
persist with further investigation. Furthermore, this on-policy-like data generation strategy ensures
that the new trajectories are challenging yet achievable, mitigating distribution shift and stabilizing

the transition from SFT to RL.

The final cold-start dataset is a carefully curated combination of the distilled exemplar trajectories
and reflection trajectories. Before inclusion, all candidate trajectories are passed through verifiers to
ensure quality. This resulted composite dataset, approximately 11,000 trajectories in total, provides

a rich and balanced foundation for our base model.
3.3 MULTI-TURN TOOL-INTEGRATED REINFORCEMENT LEARNING

We employ GRPO (Shao et al., 2024) for RL training due to its demonstrated efficacy in enhancing
multimodal reasoning capabilities. We extend its original formula to multi-turn tool calling contexts
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and adapt a token-level loss mask on tool call trajectory, ignoring text and image tokens that are not
generated by the model.

Reward Design. The design of the reward function is essential to guide the agent toward the
desired behavior. Our reward is assigned at the end of each trajectory and is composed of three
distinct components designed to promote accuracy, valid format, and exploration:

R(T'a y) = Racc(xv y) + Rformat (y) + Riool (y) ()

The accuracy reward R, is the primary task-oriented reward, it provides a strong positive signal
if the agent’s final answer is correct. The format reward Rf,rmq¢ validates the structure of the
agent’s response at each turn. This reward is set to a positive value if the model’s output strictly
adheres to the predefined format, and zero otherwise. Specifically, the agent receives a positive
reward if every intermediate step correctly wraps its reasoning in <think></think> tags and
be followed by either a valid <video_zoom></video_zoom> or a final answer enclosed in
<answer></answer> tags. A key challenge during early training is that a model unfamiliar
with the <video_zoom> tool may be hesitant to use it, often preferring to guess an answer di-
rectly. To solve this and encourage exploration, we introduce a bonus Ry,,; for using the tool. To
prevent the agent from learning to make redundant or unhelpful tool calls, this bonus is conditional:
it is only awarded if the final answer is correct.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Implementation Details. We initialize our model from Qwen-2.5-VL-7B-Instruct (Bai et al.,
2025) for its strong foundational capabilities and amenability to reinforcement learning. For cold-
start initialization, we adapt the LLaMA-Factory (Zheng et al., 2024) framework. Our RL training
and evaluation framework is based on verl (Sheng et al., 2024), which we extended to support multi-
turn tool-calling tasks and optimized for efficiency in long video training scenario.

For training data, we use LongVideoReason (Chen et al., 2025), a long video QA dataset comprised
of 52K high-quality question-reasoning-answer pairs. In cold start stage, we trained our base model
with a learning rate of 5 x 107° for 1 epoch on dataset we construct as described in Section 3.2.
During RL stage, we use a learning rate of 1 x 10~°, rollout number of 16 and batchsize of 128.
The model is initialized with 64 uniformly sampled frames. It can then perform up to 4 subsequent
tool calls, each retrieving up to 16 frames of high-resolution clip from a segment of interest, before
providing a final answer. To improve training effectiveness and stability of RL training process,
we also adapt clip-higher and dynamic sampling from DAPO (Yu et al., 2025). Further details are
provided in the appendix.

Benchmarks. To comprehensively evaluate the capabilities of our model, we conducted tests
on two distinct categories of benchmarks: long video understanding and long video reason-
ing. For long video understanding, we utilized four benchmarks: MLVU (Zhou et al., 2024),
LongVideoBench (Wu et al., 2024), VideoMME (Fu et al., 2024), and LVBench (Wang et al., 2024a).
These benchmarks encompass a variety of tasks designed to assess the model’s general video com-
prehension abilities. For long video reasoning, we employed three benchmarks that require more
than superficial visual analysis: VideoMMLU (Song et al., 2025), VideoMMMU (Hu et al., 2025b),
and LongVideoReason-eval (Chen et al., 2025). These chanllenging benchmarks are specifically
designed to evaluate the model’s integrated perception and reasoning capabilities.

4.2 MAIN RESULT

Baselines. We compare VideoZoomer against a wide range of video understanding models, in-
cluding (1) Proprietary models: GPT-4o0 (OpenAl, 2024) and Gemini-1.5-Pro (Reid et al., 2024);
(2) Open-source VLMs: Video-LLaVA (Lin et al., 2023), LLaVA-NeXT-Video (Zhang et al.,
2024b), Video-XL (Shu et al., 2024), VILA-1.5 (Lin et al., 2024), Kangaroo (Liu et al., 2024a),
LongVU (Shen et al., 2024), LongVA (Zhang et al., 2024a), LongVILA (Xue et al., 2024),
LongVILA-RI1 (Chen et al., 2025), Video-R1 (Feng et al., 2025) and Qwen2.5-VL (Bai et al., 2025).
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Table 1: Results on long video benchmarks." denotes evaluation results using our own evaluation
protocol under max frames of 128. For a fair comparison, our model is evaluated with a maximum
of 64 frames in the first round, followed by up to 4 turns requesting a maximum of 16 frames per
turn, yielding a total of max 128 frames.

Long Video Understanding Long Video Reasoning

Model S MLVU  LongVideoBench VideoMME LVBench VideoMMLU VideoMMMU LongVideoReason

dev test val overall long quiz eval
Proprietary Models
GPT-40 - 646 549 66.7 719 653 48.9 449 61.2 60.7
Gemini-1.5-Pro - - - 64.0 75.0 674 33.1 - 53.9 67.3
Open-Source VLMs
Video-LLaVA 7B 362 30.7 37.6 39.9 -
LLaVA-OneVision 7B 647 472 56.4 583 46.7 - 33.4 33.9
LLaVA-NeXT-Video 7B - - 49.1 - - - 27.6
Video-XL 7B 649 455 50.7 55.5 - -
VILA-1.5 7B 56.7 - - - - - 20.5 20.9
Kangaroo 8B 61.0 - 54.8 56.0 » 394
LongVU 7B 654 - - 60.6
LongVA 7B 563 41.1 - 52.6 - - - 24.0
LongVILA 7B - - 57.1 60.1 - -
LongVILA-R1 7B - - 576 624 533 - - - 67.9
Video-R1F 7B 650 492 52.0 61.1 514 38.7 613 49.8 72.8
Qwen2.5-VL! 7B 583 455 51.0 635 539 36.9 61.0 48.1 70.8
VideoZoomer! 7B  68.8 55.8 57.7 65.2 558 41.5 67.9 52.2 80.3
A over base model +10.5 +10.3 +6.7 +1.7  +19 +4.6 +6.9 +4.1 +9.5

Table 2: Detailed result on MLVU. ER: Ego Reasoning. NQA: Needle QA, PQA: Plot QA, SQA:
Sport QA, AO: Action Order, AC: Action Count, TQA: Tutorial QA, AR: Anomaly Recognition,
TR: Topic Reasoning.

. Single Detail Multi-detail Holistic
Split  Model
ER NQA PQA SQA AO AC TQA AR TR Avg.
Dev Qwen2.5-VL 477 65.1 659 - 502 13.6 - 655 856 583
VideoZoomer 66.8 80.3 72.9 - 59.8 50.5 - 525 833 6838
Test Qwen2.5-VL  32.1 533 540 444 329 150 372 385 802 455

VideoZoomer 58.5 633 640 444 429 283 395 462 89.0 558

Long Video Understanding. Our model demonstrates marked improvements across a range of
long video understanding benchmarks, as shown in Table 1. On MLVU, it achieves scores of 69.0
(dev) and 56.0 (test), yielding substantial gains of +10.5 and +10.3 points over its base model,
Qwen2.5-VL. This performance is further validated on LongVideoBench and LVBench, where our
model scores 57.7 and 41.5, respectively, outperforming all listed open-source baselines. These
results collectively underscore the effectiveness of our adaptive temporal zoom mechanism. No-
tably, even on benchmarks not exclusively focused on extremely long durations like VideoMME, our
method provides a clear performance boost (65.2 overall, 55.8 on long-set) over an already strong
baseline. This demonstrates that the learned policy to dynamically “zoom” in relevant segments is
beneficial across various video length.

We present a detailed analysis of our model’s performance on the MLVU benchmark in Table 2.
The results clearly show that our method’s improvements are most significant on tasks requiring
detailed perception. For instance, in the “Single Detail” category of the dev set, our model shows
massive gains in Ego Reasoning (ER, +19.1), Needle QA (NQA, +15.2), and Plot QA (PQA, +7.0).
The most significant improvement is seen in the “Multi-detail” task of Action Count (AC), where
our model’s score increases from 13.6 to 50.5. This task, which requires counting specific, often
rapid actions, directly benefits from the ability to re-sample critical moments at a higher frame rate.
Similar substantial gains are observed on the test set in ER (+26.4), NQA (+10.0), and AC (+13.3).
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Table 3: Evaluation of Ablation Baselines.

Long Video Understanding Long Video Reasoning
Model MLVU LongVideoBench  VideoMME LVBench VideoMMLU VideoMMMU LongVideoReason
dev  test val overall long quiz eval
VideoZoomer 69.0 56.0 57.7 652 55.8 41.5 67.9 522 80.3
w/o RL 56.4 45.6 42.0 544 442 26.0 63.5 46.6 63.3
w/0 R0l 67.5 522 56.2 62.5 525 40.6 63.6 53.8 79.9
w/o cold-start  57.0 42.8 435 53.5 46.6 355 63.9 43.6 59.6
w/o reflection 67.0 53.2 54.8 587 474 40.9 70.1 522 75.1

Long Video Reasoning. On VideoMMLU and VideoMMMU, our model scores 67.9 and 52.2
respectively, achieving the highest among all open-source models. On LongVideoReason-eval, our
model achieves a highest score of 80.3, surpassing the performance of powerful proprietary models
like GPT-40 (60.7) and Gemini-1.5-Pro (67.3). Notably, our model also outperforms LongVILA-RI1,
which is trained on the same dataset but with a larger frame budget, highlighting the superior effi-
ciency of our agentic strategy. This indicates that the iterative, evidence-gathering process enabled
by our agentic strategy allows the model to construct more robust and accurate reasoning chain,
which is crucial for tackling complex, knowledge intensive video reasoning tasks.

4.3 ABLATION STUDY

Effectiveness of Key Components. To validate the contribution of each key component in our
framework, we conduct a comprehensive ablation study, with results summarized in Table 3 and
training dynamics shown in Figure 5. For a fair comparison, all ablated models except “w/o cold-
start” were trained using the same amount of SFT data as our final model. The w/o RL model,
trained only via supervised fine-tuning, suffers a catastrophic performance drop across all bench-
marks (e.g., -17.0 on LongVideoReason), confirming that RL is essential for learning an effective
tool-use policy. Similarly, the w/o cold-start model, which skips our curated SFT stage, fails to
converge to a meaningful policy, highlighting the necessity of a strong initialization. Within the
cold-start process, removing reflection data (w/o reflection) causes the model to adopt a shallow,
simple strategy, where the average tool call count stabilizes at about 1.0, limiting its ability to tackle
complex problems. In contrast, our full method learns to make nearly two calls on average, enabling
deeper investigation and achieving higher accuracy in the validation set. Finally, removing the con-
ditional tool-use bonus (wW/o R;,.;) leads to “policy collapse”, where the agent’s tool usage trends
towards zero during training, as it fails to discover the tool’s utility without explicit encouragement.
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Figure 6: Performance comparison with varying frame budgets. We compare our model against
the Qwen2.5-VL-7B baseline. The x-axis(log scale) represents the fixed frame budget for the base-
line and the average number of frames actually used by VideoZoomer on each benchmark.

Each ablation results in significantly lower performance on various benchmarks, demonstrating that
all components are necessary to achieve the final performance.

Performance Across Various Frame Budgets. To further investigate the efficiency of Video-
Zoomer, we analyze the performance of our model and the base model under various frame bud-
gets. As illustrated in Figure 6, we plot the accuracy of the model against the number of frames
processed. For the baseline model, this x-axis represents a fixed, uniformly sampled frame bud-
get. For our model, it represents the actual average number of frames consumed per dataset, a
result of its dynamic decision-making process. The results clearly demonstrate our model’s supe-
rior efficiency. On MLVU, our model achieves 0.64 accuracy using only 48 frames on average,
surpassing the baseline’s 0.581 accuracy at a much larger 128 frame budget. This trend holds
on LVBench, where our model using 77 frames outperforms the baseline using 256 frames. Fur-
thermore, on the LongVideoReason benchmark, our model and the baseline model both peaks at
around 64 frames, suggesting that complex reasoning tasks may not benefit from increasing vi-
sual information, which can introduce noise. However, within this optimal frame window, our
model’s peak accuracy of 0.803 significantly surpasses the base model’s peak of 0.718. This per-
formance gap underscores our model’s stronger reasoning capability enabled by its agentic policy.

Combining with a Frame Selector. Our pri-
mary method uses uniform sampling for the
initial overview to ensure a global and unbi-
ased starting point, we also investigate whether
our agentic framework can be combined with
more sophisticated frame selectors. To test

Table 4: Performance comparison when com-
bining with an external frame selector. Results
are evaluated using our protocol under a consis-
tent setting.

this, we replace the initial uniformly sampled Model MLVU LongVideoBench
frames with the output of the output of TSPO- Qwen2.5VL  58.1 51.0
0.4B (Tang et al., 2025). The results presented +tspo 68.1 54.9
in Table 4 shows that providing a more intel- VideoZoomer  69.0 57.7
ligently selected initial overview further boosts +tspo 70.8 60.7

our model’s performance by +1.8 on MLVU and +3.0 on LongVideoBench. This demonstrates the
flexibility and transferability of our approach; the learned policy effectively leverages the improved
starting point to conduct an even more efficient and accurate investigation of the video.

5 CONCLUSION

In this work, we propose VideoZoomer to address the critical challenge of long video understanding
in MLLMs. We empower the MLLM to become an active agent capable of utilizing external tool to
investigate long videos more effectively and efficiently through a carefully designed two-stage train-
ing process. Our experimental results robustly validated our approach. The ablation studies con-
firmed that each component—the cold-start initialization, the reflection data, the RL optimization,
and the conditional reward bonus—was indispensable for achieving final performance. Our model
not only achieves strong performance across numerous long video benchmarks, but also demon-
strated superior frame efficiency, outperforming stronger baselines while using significantly fewer
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frames. This demonstrates the effectiveness of our agentic strategy in enhancing the perception and
reasoning capabilities of MLLMs for long videos.

ETHICS STATEMENT

Our research adheres to the ICLR Code of Ethics. This work aims to advance the efficiency of video
understanding for positive applications, ensuring transparency, reproducibility, and fairness in all
experiments. All datasets used are publicly available, and our use of proprietary models for data
distillation complies with their terms of service. We acknowledge that our model, like other large
language models, may inherit and reflect biases from its training data. While our method improves
reasoning, it is not designed to mitigate social biases, and we advocate for responsible downstream
use and further research into fairness. The intended application is for research purposes, and we do
not foresee direct dual-use concerns from our proposed framework.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a comprehensive overview of our methodol-
ogy, implementation, and evaluation. Further implementation details, including training hyperpa-
rameters and specific prompts used for training and data generation, are described in Appendix B.
To facilitate direct replication and further research, we will release our codebase, datasets and model
weight upon acceptance of this paper.
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A LLM USAGE

During the preparation of this paper, we utilized LLM to assist with grammar correction and lan-
guage refinement. In accordance with ICLR 2026 policy, we have carefully reviewed and edited all
model-generated text to ensure its accuracy and originality. The authors take full responsibility for
the final content of this paper.

B MORE IMPLEMENT DETAILS

Evaluation Details. We evaluate our model and baselines under a consistent setting with a maxi-
mum of 128 frames and a resolution corresponding to 100,352 pixels per frame. For inference, we
employed the vLLM framework (Kwon et al., 2023) with the temperature parameter set to 0 to en-
sure deterministic outputs. For the VidleoMMLU benchmark, answers are scored by GPT-40 using
the official prompt and the final score is computed as the average score of three disciplines.

Training Details. We show the key training hyperparameters in Table 5.

Table 5: Key Hyperparameters

(a) SFT stage (b) RL stage
Hyperparameter Value Hyperparameter Value
Train epochs 1 Max total response length 32768
Train batch size 64 Rollout temperature 1.0
Learning rate 5e-5 Max interaction turns 5
Learning rate scheluder cosine Train batch size 128
Warmup ratio 0.1 PPO mini batch size 32
Freeze vision encoder true Rollouts per prompt (n) 16

Clip ratio (low / high) 0.2 / 0.27
Entropy coefficient 0.001

KL coefficient (/3) 0.001
Learning rate le-6

Reward weight (acc/format/tool) 0.9/0.1/0.5

The SFT training is conducted on 8 xH100 GPUs for ~6h, RL training is conducted on 16 xH100
GPUs for ~45h.

Figure 7 shows key statistics of our cold-start dataset. The left panel shows the distribution of total
token lengths per trajectory, indicating a wide variety of response lengths that cover both simple and
complex reasoning chains. The right panel illustrates the distribution of interaction rounds (i.e., the
number of tool calls), showing that the dataset contains a significant number of multi-step examples.

Prompt Template. We provide the detailed prompt used for training and cold-start data synthe-
sization as follows:
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Figure 7: Statistics of the cold start dataset.

Reasoning Prompt

System Prompt: You are a helpful assistant. You will receive a low-frame-rate video and related
questions. You can analyze the video content to answer the question and trigger high-frame-rate
inspections when finer temporal resolution is needed. When you detect ambiguous motion/objects that
require closer inspection, wrap your request in <video_zoom></video_zoom> tags and provide
the exact time segment and target frame rate in JSON format: <video_zoom>{"segment":
[start.sec, end.sec], "fps": n} </video-zoom>, it will return the video clip at the
target fps to help you better answer the question. Note that the total frames num of the request clip
cannot exceed 16 (e.g. (end_sec - start_sec) * fps < 16) and DO NOT include <answer> tags in
this round. Example usage: <video_zoom> {"segment W g [4.0, 6.0], "fps": 2}
</video_zoom>. If the initial tool response does not provide sufficient information to answer the
question, you may continue to request additional video zoom inspections as needed, until you either
(1) gather enough information to form a complete answer, or (2) are explicitly instructed to stop using
the tool. Output the thinking process within <think> </think> tags, once you confirm your final
answer place the final answer inside <answer> and </answer>.

User: ...<framei_timet><image>...Question

Prompt for Constructing Reflection Trajectory

You are an expert video understanding model with access to a video zoom tool that allows you to request
high-frame-rate clips for temporal inspection. Your task is to correct a flawed analysis of a low-frame-
rate video by using a video_zoom tool. Your workflow is a multi-turn process:

Turn 1: Reflection and Tool Call

1. Analyze the Error: You will be given a question, choices, and a previous, incorrect attempt.
First, you must reflect on why the previous video_zoom tool call was flawed. Was the time
segment wrong? Was the frames-per-second (fps) too low? Was the focus of the analysis
misaligned with the question?

2. Formulate a Correction: Based on your analysis, decide on a new, corrected video_zoom
request. This request should target the precise moment of interest and use an appropriate fps
to capture the fine-grained detail.

3. Output the Tool Call: Generate your reflection and the new tool call in the specified format.
Your output for this turn MUST end immediately after the </video_zoom> tag. Do
not generate anything further. The system will then execute this call and provide you with the
result.

Constraint for the tool call: The total number of frames requested must not exceed 16. That is:
(end_sec — start_sec) * fps <= 1l6.
Turn 2: Analysis and Final Answer

1. Receive Tool Response: The system will provide the high-frame-rate video clip from your
corrected tool call.
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2. Analyze the New Clip: Carefully examine the new clip. Describe what you can now clearly
see that resolves the question.

3. Provide the Final Answer: Based on your new observation, state the correct answer from the
choices, enclosed in \boxed{}.

Output Format Structure:

[FIRST TURN OUTPUT]

<think>

The previous tool call was incorrect because [explain the flaw in the tool use, e.g., wrong segment,
wrong fps, or misaligned focus].

Now I will zoom in to inspect the motion of ’{target object/action}’ between {start_sec}s and
{end_sec}s with higher temporal resolution.

</think><video_zoom> {" segment": [start_sec, end.sec], "fps": n}
</video-zoom>

[YOUR TURN 1 OUTPUT STOPS HERE]

[SECOND TURN OUTPUT] (after you receive the tool response)

<think> In the corrected high-frame-rate clip, [describe what is clearly observed now]. </think>
<answer> \\boxed{correct answer} </answer>

Example to follow:

Question: Which hand did the woman use to pick up the cup?

Choices: A: Left hand B: Right hand C: Both hands D: Neither

Previous Trajectory (Wrong): Tool call: <video_zoom> {"segment": [0.0, 2.0],
"fps": 2}</video-zoom>

(Your First Turn Output Should Look Like This):

<think> The previous tool call was incorrect because it focused on the wrong time segment. The
woman only reaches for the cup between 3.0s and 5.0s. Additionally, the low fps of 2 might not be
sufficient to clearly distinguish the hand’s motion.

Now I will zoom in to inspect the motion of 'the woman’s hand reaching for the cup’ between 3.0s
and 5.0s with a higher temporal resolution. </think><video_zoom> {"segment": [3.0,
10.0]1, "fps": 1} </video-zoom>

(System provides tool response, then you start your Second Turn) (Your Second Turn Output
Should Look Like This):

<think>In the corrected high-frame-rate clip, the woman’s right hand is clearly seen moving towards
and gripping the cup handle between 4.1s and 4.8s, while her left hand remains on her lap. The motion
is now unambiguous. </think> <answer> B. </answer>

C MORE EXPERIMENT RESULTS

C.1 DIFFERENT EXPERT MODEL FOR COLD-START DATA CONSTRUCTION.

In our main experiments, we utilized data distilled from Gemini 2.5 Pro to generate the cold-start
SFT dataset. To justift this choice, we conduct a comparative analysis of data distilled from Gemini
2.5 pro versus data from GPT-40. We conducted two identical training runs of our model. The only
difference was the source of the cold start dataset used in the SFT stage: one model was trained on
data distilled from GPT-40, and the other on data from Gemini 2.5 Pro. Both models then underwent
the same reinforcement learning phase. We evaluated the final performance of both models on our
key benchmarks. The results of this comparison are presented in Table 6. As the result shows, the
model trained using data from Gemini 2.5 pro achieved slightly better results on most benchmarks.
Through qualitative analysis of the generated data, we observed that the trajectories from Gemini
exhibited greater diversity in their reasoning patterns and tool-use strategies.

Table 6: Performance comparison using different expert models for cold-start data construction.

MLVU LongVideoBench  VideoMME LVBench VideoMMLU VideoMMMU LongVideoReason

Model Size

dev  test val overall long quiz eval
Qwen2.5-VL 7B 58.1 454 51.0 63.5 539 36.9 61.0 48.1 70.8
VideoZoomergemini 7B 68.8 55.8 57.7 652 558 41.5 67.9 52.2 80.3
VideoZoomerg,; 4, 7B 69.5 54.6 55.5 61.6 51.0 412 64.1 51.2 78.4
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C.2 RESULTS ON OOD TASKS

To assess the generalizability and robustness of VideoZoomer, we evaluated its performance on two
distinct out-of-distribution (OOD) task categories: short video captioning and logical reasoning on
synthetic data. These experiments were designed to verify that our training process enhances long-
video capabilities without degrading the model’s foundational abilities.

While our primary focus is on long videos, we tested VideoZoomeron several short video captioning
benchmarks TemporalBench(Cai et al., 2024), TempCompass(Liu et al., 2024b) and VDC(Chai et al.,
2024) to ensure its core descriptive capabilities were maintained. The results, summarized in Table 7,
show that our model not only preserves but significantly improves upon the baseline’s performance
across all tested benchmarks.

Table 7: Short Video Captioning Benchmark Results

Model TemporalBench TempCompass VDC
(Short Caption Score) (Captioning Acc) (Short Acc/ Score)

QwenVL-2.5-7B 40.9 52.1 37.8/1.98

VideoZoomer 56.4 65.3 49.2/2.51

We further tested the model’s robustness on a subset of the CLEVRER dataset(Yi et al., 2019), which
evaluates causal and logical reasoning on synthetic videos. This domain is significantly different
from the real-world, long-form videos used in our training.

As shown in Table 8, the comparable performance to the baseline model demonstrates that our two-
stage training process does not degrade the model’s foundational reasoning abilities. The minimal
gain is expected, as the glance-and-zoom mechanism is not designed for the abstract, logical puzzles
presented by CLEVRER. This result confirms that our method successfully retains the model’s core
competencies on tasks that do not require our agentic framework.

Table 8: Performance on CLEVRER

Model CLEVRER Accuracy
QwenVL-2.5-7B 67.3
VideoZoomer 68.0

C.3 IMPACT OF SFT DATA QUANTITY
We investigated whether the effectiveness of our Supervised Fine-Tuning (SFT) phase stems from

the quantity of dat. We compared our model, trained on our curated 11k trajectory dataset, against
a model trained on a dataset of the same composition but with double the quantity (~20k samples).

Table 9: Impact of SFT Data Quantity

Training Dataset MLVU (dev) MLVU (test) LVBench LongVideoBench LongVideoReason-eval
Ours (~11Kk) 68.8 55.8 41.5 57.7 80.3
Scaled Dataset (~20k) 69.5 54.6 41.2 55.5 78.4

As shown in Table 9, simply doubling the data quantity did not lead to better overall performance.
While there was a marginal improvement on MLVU (dev), the model trained on the larger dataset
performed worse on all other benchmarks. This result strongly suggests that the effectiveness of our
dataset comes from the high-quality, diverse reasoning patterns it contains, rather than its sheer size.
This “less is more” philosophy aligns with recent findings from works like DeepSeek-R1(Guo et al.,
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2025) and LIMO(Ye et al., 2025), which demonstrate that a few thousand high-quality, reasoning-
focused samples can be sufficient to unlock powerful capabilities in large models. Our methodology
prioritizes a rich collection of reasoning pathways over a large volume of repetitive examples.

C.4 ANALYSIS OF CHOSEN FPS

A key feature of our <video_zoom> tool is that the frames-per-second (fps) for a “zoom-in” clip
is dynamically generated by the model itself, allowing it to decide not only where to look but also
how closely to look. To understand the model’s learned behavior, we analyzed the distribution of
fps values it chose across thousands of tool calls on our validation set.

The results in Table 10 reveal that the model does not default to the highest possible fps. Instead,
its most frequent choice is a moderate fps in the (1, 2] range, which it selects in 66.2% of cases.
This demonstrates that the model learns an efficient policy, requesting just enough temporal detail to
solve the task without unnecessarily expending its frame budget. While a high fps like 8 might seem
excessive for a full video, it is a reasonable and effective choice for examining a critical few-second
clip, and the model learns to use it sparingly.

Table 10: Distribution of fps Values Chosen by the Model

fpsRange  (0,1] (1,2] (2,4] (4,8] (8,00

Percentage 249% 662% 82% 0.6% <0.1%

C.5 PERFORMANCE BY MAXIMUM ALLOWED TOOL CALLS
To understand the impact of multi-step reasoning, we evaluated how model accuracy changes with
the maximum number of allowed tool calls. We varied the limit from O (no tool use) to 4 and

measured performance across several benchmarks.

Table 11: Performance by Maximum Allowed Tool Calls

Max Tool Calls MLVU (dev) MLVU (test) LongVideoBench LVBench LongVideoReason-eval

0 (No Tool Use) 65.0 52.6 52.7 38.7 64.8
1 66.7 53.4 553 39.6 79.9
2 67.8 56.6 57.0 414 80.2
3 68.4 56.0 56.2 41.8 81.1
4 69.0 558 57.7 41.5 80.3

The results in Table 11 show a clear trend. The most significant performance jump occurs when al-
lowing just one tool call, confirming the fundamental value of our agentic framework. For example,
on LongVideoReason-eval, accuracy leaps from 64.8% to 79.9%. Increasing the limit from one to
two calls provides another consistent and significant boost, highlighting the importance of multi-turn
interaction for refining searches or gathering more evidence. After two calls, the benefits of increas-
ing the limit further show diminishing returns. While there are minor gains, the improvements are
smaller and less consistent. Our final model, with a limit of 4, uses this extra budget sparingly for
the hard problems, but the core performance is achieved within the first two interactions.

D MORE CASES
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fQ:How many green mugs were on the fridge top after | first opened the fridge?A 0B.2C.3D.1 \

T T T T T T T T Y S S I B B
0s_ 100s

l 4005

<think>The user is asking about the number of green mugs on the fridge top after the first time the
fridge is opened. The relevant frames are around 342.83s. | need to see the motion of the person
opening the fridge and what is inside. | will request a higher frame rate clip from 342.0s to
343.0s.</think>

<video_zoom>{"segment": [342.0, 343.0], "fps": 8}</video_zoom>

<think>The zoomed clip clearly shows the person opening the fridge. Inside the fridge, there are two
green mugs visible on the top shelf. This confirms that the number of green mugs on the fridge top
after the first time the fridge is opened is 2. </think>

<answer>B. 2</answer>

- J

Figure 8: Case Study: Single-Detail Reasoning.

Q:What does the man do before frying the food at the end of the video? \
A. Adjusts the kitchen timer

B. Cuts some vegetables

C. Cleans the frying pan

D. Melts butter

E. Sprinkles some pepper on the food
F. Turns on the range hood

<think>The question is about the man's actions before frying the food. The relevant part of the video is
towards the end, around 1640s. | need to see the sequence of events leading up to the frying to
determine what he does first. | will request a higher frame rate clip for the segment from 1630s to
1640s.</think><video_zoom>{\"segment\": [1630.0, 1640.0], \"fps\": 1}</video_zoom>

<think>In the high-frame-rate clip, | can see the sequence of events clearly.- From 1630s to 1634s, the
man is using a whisk to stir something in a pot.- At 1635s, he stops stirring and walks to the stove.- At
1638s, he picks up a stick of butter from a wooden bowl. At 1640s, he is seen adding the butter to a
pan on the stove. This confirms that before he fries the food, he melts butter in the pan. The other
wtions are not shown in this specific sequence.</think><answer>D</answer> j

Figure 9: Case Study: Single-Detail Reasoning.
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Q: In accordance with the video footage, who protects the mermaid?

o "

»
S
C=>
Rt & 3

o

<think>The user is asking about who protects the mermaid. The initial frames show the mermaid and a
shark together, but | need to see the sequence of events to understand the interaction and who is
protecting her. I'll request a clip from around 30 seconds to see what happens next.</think>
<video_zoom>{"segment": [30.0, 32.0], "fps": 4}</video_zoom>

<think>The zoomed clip confirms that the shark is holding a drawing of the mermaid and the dog,
which suggests that the shark is planning something. However, the clip does not show the
immediate interaction or the protection of the mermaid. | need to request a clip from around 32
seconds to see what happens next.</think>

<video_zoom> {"segment": [32.0, 34.0], "fps": 4} </video_zoom>

s &
<think>The zoomed clip shows that the shark is now standing next to the mermaid, and the dog is in
the background. This confirms that the shark is actively protecting the mermaid, as the dog is not
visible in the immediate vicinity. The interaction between the shark and the mermaid is clear, and

the shark is clearly the one providing protection.</think>
k<answer>\boxed{A. The shark.}</answer>

Figure 10: Case Study: Self-Correction and Refined Reasoning.
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/Q: Which of the following options correctly matches the sequence of actions as they actually appear \
in the video?

A. making jewelry --> cleaning toilet --> paragliding --> carving pumpkin
B. paragliding --> making jewelry --> cleaning toilet --> carving pumpkin
C. carving pumpkin --> cleaning toilet --> making jewelry --> paragliding
D. paragliding --> cleaning toilet --> carving pumpkin --> making jewelry

‘ a ..’ ] &

<think>The user wants me to match the sequence of events presented in different time clips provided
in the video frames. To accurately match the sequence, | need to clarify the order of specific moments
mentioned in the question. A higher frame rate inspection around the relevant timestamps is necessary
to get precise details. I'll start with the segment where a paraglider is visible.</think>
<video_zoom>{"segment": [50.0, 52.0], "fps": 8}</video_zoom>

<think>The first clip confirmed that the sequence includes paragliding. Next, | need to confirm the
order of the other specified activities\u2014making jewelry, cleaning a toilet, and carving pumpkins.
I'll zoom into another section where jewelry-making and cleaning the toilet are visible for better
details and context. I'll focus on the relevant timestamps for these activities.\n</think>
<video_zoom>{\"segment\": [90.0, 92.0], \"fps\": 4} </video_zoom>

<think>The second clip confirms that the activity of making jewelry occurs before cleaning the toilet.
Now, | will inspect the segment where cleaning a toilet is visible to better understand the sequence
of these events. The cleaning clips usually appear towards the later part of the sequence

I will request a clip from around 180.0s to 182.0s to see the transition from the previous scene to
the next.</think><video_zoom> {"segment": [180.0, 182.0], "fps": 8} </video_zoom>

<think>The third clip confirms that the cleaning of the toilet follows the \u201cmaking
jewelry\u201d activity. Finally, | need to confirm the last action, which is carving a pumpkin. The
pumpkin carving is at the initial stages in the video sequence. | will now request a sequence around
the moment this specific activity is visible in greater detail.<think><video_zoom> {"segment": [279.0,
281.0], "fps": 8} </video_zoom>

<think>The zoomed clip confirms that carving the pumpkin is shown between 279.0s and 281.0s.

This confirms that carving the pumpkin is the final event in the sequence. Combining all the
observations, the correct sequence of events is paragliding, making jewelry, cleaning the toilet, and
carving the pumpkin.</think>

k<answer>B. paragliding --> making jewelry --> cleaning toilet --> carving pumpkin</answer> /

Figure 11: Case Study: Multi-Detail Reasoning for Complex Queries.
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Based on the video, which event are the attendees most likely participating in, and what commemorative
item is associated with the manager\u2019s 2014 achievement?

A. A Baltimore Orioles home game at Camden Yards, featuring a 2014 AL Manager of the Year garden gnome
giveaway

B. A Baltimore Ravens playoff game, distributing Super Bowl commemorative footballs

C. A Baltimore Orioles fan convention, offering signed baseballs by 2014 MVP players

D. A charity event at a local park, giving away team jerseys from the 2014 season \n\n"

Ve

<think>The video shows a crowd at what appears to be a baseball stadium (\"Camden Yards\" is visible), primarily wearing orange
\"Orioles\" shirts. Several frames show people handing out and presenting commemorative boxes. In the background, we see \"Buck
Showalter\" on products. Frame 11 confirms a \"Buck Showalter Garden Gnome 2014 AL Manager of the Year.\" The event is clearly
associated with the Baltimore Orioles. To confirm that the event is a game day and the distribution is specifically for the manager's
2014 achievement, | need a better look at the frames where the man is being interviewed. The\u5165\u624b at timestamp 12s seems
most relevant. | will request a higher frame rate clip from there to see the specific moment when the product is presented and the
reason for the giveaway is mentioned.</think>

<video_zoom>{\"segment\": [12.0, 14.0], \"fps\": 8}</video_zoom>

<think>\nThe previous tool call was incorrect because it focused on an interview segment that did not contain the necessary informatio
n to answer the question. The question requires identifying both the event and the specific commemorative item. While the video
generally shows an Orioles event, the previous call from 12s-14s only shows a fan talking and provides no details about the item
itself. The crucial information is presented on the boxes being given away. Frame 11 at 22.02s and frame 12 at 24.02s clearly show
the item's box.\nNow | will zoom in to inspect the 'text on the commemorative box' between 21.0s and 23.0s with a higher temporal
resolution to clearly read the details.\n</think>

<video_zoom> {\"segment\": [21.0, 23.0], \"fps\": 8} </video_zoom>

+

<think>\nIn the corrected high-frame-rate clip, the camera zooms in on the boxes being given away. The text on the box is now perfectl
y clear. Frame 4 at 21.52s and subsequent frames show the Baltimore Orioles logo and the text \“BUCK SHOWALTER GARDEN
GNOME\” and \“2014 AL MANAGER OF THE YEAR\”. The crowd is wearing Orioles gear, and the sign for \“EUTAW STREET\” (frame 4)
confirms the location is Oriole Park at Camden Yards. This confirms all parts of option A: the team (Orioles), the location (Camden
Yards), the item (garden gnome), and the achievement (2014 AL Manager of the Year).\n</think>

<answer>\n\\boxed{AN\n</answer>

Figure 12: Demostration of cold start data.
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Based on the video‘s content, which activity shown in the scenes is **not** one of the restrictions Saudi
Arabian women face according to the \“10 Things that Saudi Arabian Women Still Cannot Do\"?

A. Driving a car independently

B. Votingin elections

C. Competing freely in sports

D. Marrying without male guardian consent

<think>\n1. The video lists \“10 Things That Saudi Arabian Women Still Cannot Do\”.\n2. The user wants to identify the activity among
the given list that is not one of the restrictions.\n3. | need to confirm what the video explicitly states as a restriction.\n\nLet‘s examine
the provided frames to see which of these activities appear in the video as a restriction:\n- Frame at 7 seconds: Shows a woman
driving, which is labeled \“NO. 7\”.\n- Frame at 115 seconds: Shows text \“VOTING\”.\n- Frame at 144 seconds: Shows women at a
market, with text \“MAKE-UP\” on the left.\n- Frame at 194 seconds: Shows women\u8ca0\u3051,f looking at an abaya, with text \“3.
WOMEN" S LOYLIY\"\n- Other frames like 150s, 205s, 286s, 317s, 356s, and 362s also introduce other restrictions. However, there is
no explicit mention of the specific activity of protected \“white men so they can rightfully protect them\”.\n\nThe restriction about men
having to be present for certain of women‘s actions to be protected explicitly mentions men. It’s clear from the provided frames that
voting appears explicitly as a restriction (\“VOTING\” at 115s). This directly answers the question as B. Voting in elections is explicitly
mentioned as a restriction, and other options are mentioned previously in the video. | can see the relevant point about voting and
confirm it by requesting a higher frame rate clip.\n\nLet's inspect the segment around 100 seconds where \“VOTING\” is first
presented. A request for more detailed frames here is appropriate.\n</think>

<video_zoom>{\“segment\”: [101.0, 103.0], \“fps\”: 7}</video_zoom>

<think>\nThe previous tool call was incorrect because it focused on a completely irrelevant time segment. The call zoomed i

nto 101.0s to 103.0s, which shows a woman getting her makeup done. This segment has no connection to any of the activities listed in
the question (driving, voting, sports, marriage). The analysis was therefore based on a flawed premise and a misaligned tool call.\n\nTo
answer the question correctly, | must first understand that the video lists all four options\u2014A, B, C, and D\u2014as restrictions. The
question asks which one is *not* a restriction, implying that the video itself provides visual evidence to contradict one of its own
points.\n\n- **Driving (A)** is listed as a restriction, but the video shows a woman driving, smiling, and making a peace sign (Frame 9,
53.39s).\n- **Voting (B)** is listed as a restriction (Frame 53, 314.48s).\n- **Competing in sports (C)** is listed as a restriction, but the
video shows female athletes at the Olympics (Frame 36, 213.61s and Frame 40, 237.34s).\n- **Marrying without consent (D)** is listed
as a restriction (Frame 46, 272.94s).\n\nBoth driving and sports show visual contradictions. However, the scene of the woman driving
and giving a peace sign is a very direct and celebratory piece of footage that strongly suggests this \"restriction\" is being overcome or is
no longer in place. | will zoom in on this specific moment to confirm the celebratory nature of the action, which would explain why
it's the correct answer. The previous analysis completely missed this.\n\nNow | will zoom in to inspect the motion of 'the woman
driving the car' between 52.0s and 54.0s with a higher temporal resolution.\n</think>

<video_zoom>{\"segment\": [52.0, 54.0], \"fps\": 8} </video_zoom>

®) G| W i
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an in a headscarf and sunglasses is sitting in the driver‘s seat of a car. She turns towards the camera, smiles confidently, and
then raises her hand to make a \“peace\” or \“victory\” sign. The action is deliberate and celebratory. The video presents this scene,
along with others of women driving, immediately after listing \“Driving a Car\” as restriction number 7. This visual evidence of a woman
driving happily and triumphantly directly contradicts the video’s claim that this is something they \“still cannot do.\” While other
activities like \“competing in sports\” are also shown, the footage of the woman driving with a peace sign is a more direct and personal
refutation of the restriction presented in the video. The other listed restrictions do not have such a clear, contradictory visual
representation.\n</think>

<answer>\boxed{A}</answer>"

‘ "<think>\nIn the corrected high-frame-rate clip, | can now clearly see the sequence of events between 52.0s and 54.0s. Awom

Figure 13: Example of cold start data.
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