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Abstract
Transformer-based large language models001
(LLMs) play a vital role in various NLP002
tasks, but the internal neurons are rather un-003
predictable, functioning in a black box style.004
Thus, in this work, we introduce the Neuron005
Predictability Lens (NPL), an analytical frame-006
work that focuses on the way how neurons work007
through feed-forward networks (FFNs), to un-008
derstand and analyze transformer-based LLMs.009
Based on the proposed framework, we conduct010
extensive experiments on LLaMA-2 and GPT-011
J. Firstly, we show that neuron activations are012
predictable and for the first time we introduce013
the concept of Neuron Predictability. Secondly,014
we apply NPL to both global and local analysis.015
For global analysis, we investigate how FFNs016
contribute to model behaviors explicitly and017
implicitly with the aid of NPL. For local analy-018
sis, we explore the connection between neuron019
predictability and neuron interpretability. We020
examine various functional neurons under NPL021
and uncover the existence of “background neu-022
rons.” With the findings mentioned above, we023
demonstrate the value of NPL as a novel analyt-024
ical tool and shed light on its future application025
on model efficiency and/or effectiveness for026
improved language modeling.027

1 Introduction028

Large Language Models (LLMs) exhibit human-029

level proficiency in completing multiple natural lan-030

guage tasks (Vaswani et al., 2017; OpenAI, 2022;031

Touvron et al., 2023). However, these models are032

often regarded as “black boxes” since how their033

inner neuron function is mysterious (Bommasani034

et al., 2021). Insufficient understanding of LLMs035

hinders further optimization and responsible de-036

ployment of such powerful tools. Thus, paving the037

way towards a more transparent internal structure038

of LLMs becomes increasingly important.039

Efforts to understand and analyze LLMs range040

from global examinations of model behaviors to lo-041

cal dissections of specific modules (Luo and Specia,042
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Figure 1: Neuron Predictability: The basis of NPL. The
predicted version of neurons in layer j (in orange) can
be extracted from the actual neurons in layer i (in blue),
and vice versa.

2024). From a global view, researchers delve into 043

comprehending the model’s output and decision- 044

making processes, e.g. detect how the activations 045

in feed-forward neural network (FFN) contribute 046

to the logits(Geva et al., 2021). In contrast, the 047

local analysis seeks to unravel the mysteries of spe- 048

cific modules. For example, neuron interpretability 049

research has dived into the relationship between 050

individual neurons and specific linguistic tasks or 051

functions (Dai et al., 2022a). Bridging these two 052

perspectives, our work introduces a novel concept 053

called Neuron Predictability Lens, which poten- 054

tially encapsulates both the broader granularity and 055

the finer granularity of LLM analysis. Figure 1 is 056

an illustration of Neuron Predictability. 057

Neuron Predictability Lens (NPL) is an analyt- 058

ical framework devised to provide a new perspec- 059

tive for understanding the behavior of transformer- 060

based LLMs. NPL is performed through linear 061

transformation, mapping FFN neurons across dif- 062

ferent layers. This method provides new insights 063

when being used, renewing the interpretability of 064
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vast concepts for transformer-based LLMs, such065

as logits contribution (i.e. the contribution of spe-066

cific modules to the final logits, same hereafter)067

and neuron activation.068

To make it clearer, we use neuron activation to069

denote the intermediate representation of the FFN070

module (further demonstrated in Sec.2). We estab-071

lish mappings between different layers and project072

activations in either a forward or a backward direc-073

tion. We need to answer a natural research question074

(RQ1): can neuron activation be predicted? To075

answer this question, we train neuron mappings076

across possible layer pairs on LLaMA-2 and GPT-077

J. Extensive experiments demonstrate that neuron078

activations are indeed predictably interconnected;079

the predictability persists even when transferring080

to data distribution away from the training data.081

With the feasibility of neuron predictability es-082

tablished, we then raise the second research ques-083

tion (RQ2): how to use NPL for model analysis?084

We utilize NPL to analyze LLMs in both global085

and local ways, unveiling significant findings in086

both branches: (1) In the global analysis, we substi-087

tute the predicted neuron activations for the actual088

ones and record the corresponding performance089

changes. Through this analysis, explicit and im-090

plicit contributions are investigated along with var-091

ious substitution strategies. The main experiment092

reveals that shallow layers contribute to the final093

logits more implicitly while deep layers contribute094

more explicitly. The follow-up experiment delves095

deeper into the phenomenon and demonstrates that096

neurons with lower variance are more predictable,097

playing a crucial role in model performance. (2)098

Local analysis is conducted where we explore the099

relationship between neuron predictability and neu-100

ron interpretability. Through the lens of neuron101

predictability, we examine a variety of “functional”102

neurons pinpointed by prior research (Dai et al.,103

2022a), uncovering common characteristics among104

these functionally specialized neurons. From this105

analysis, we uncover a special category of “back-106

ground neurons” – neurons that are vital to model107

performance, easy to predict, but do not exhibit108

explicit functional roles.109

Overall, our contributions are as follows:110

• The NPL framework: we propose and verify111

the effectiveness of Neuron Predictability Lens to112

analyze transformer-based LLMs;113

• Findings from the global analysis with NPL:114

we find that shallow layers have more implicit log-115

its contributions while deep ones have more ex- 116

plicit contributions; neurons with lower variance 117

contribute more to the final logits; 118

• Findings from the local analysis with NPL: 119

our proposed method measures the predictability 120

of functional neurons, and reveals the existence of 121

“background neurons”, which are discovered – to 122

the best of our knowledge – for the first time. 123

2 Neuron Predictability Lens 124

A major LLMs family is implemented based on 125

transformer-based auto-regressive language mod- 126

els, which is our primary focus in this paper. Mod- 127

els are comprised of layers, and each layer con- 128

tains two modules: a multi-head self-attention mod- 129

ule (MHSA), and a feed-forward network module 130

(FFN). Let hl denote the input vector of lth layer, 131

the computations within lth layer can be formulated 132

as follows: 133

al = MHSAl(hl),

ml = FFNl(hl + al),

hl+1 = hl + al +ml.

(1) 134

al and ml represents the output of MHSA and FFN. 135

Based on these equations, the whole computation 136

process is (L denotes the number of layers): 137

hfinal = h1 +

L∑
l=1

al +

L∑
l=1

ml. (2) 138

We focus on the FFN module specifically, which 139

has been proven to bear vast information (Suau 140

et al., 2020; Geva et al., 2021, 2022; Dai et al., 141

2022a; Wang et al., 2022; Luo and Specia, 2024; 142

Gurnee et al., 2024). The inner structure of FFN 143

comprises two full-connection feed-forward layers 144

with the activation function sandwiched between 145

them. Formally: 146

FFN (x) = WO · σ
(
W I · x

)
, (3) 147

where σ is the activation function, and W I ∈ 148

Rd×dffn and WO ∈ Rdffn×d are learnable weight 149

matrices. d is the hidden size and dffn is the inter- 150

mediate dimension of FFN. For simplicity, the bias 151

terms of linear layers are ignored. 152

Neurons in FFN NPL is proposed based on the 153

Neurons in FFN. To elaborate the neurons, we 154
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rewrite Equation 3 as:155

FFN (x) =

dffn∑
i=1

[g]iW
O
:,i ,

g = σ(W I · x).

(4)156

Just like the previous studies (Dai et al., 2022a;157

Wang et al., 2022; Zhang et al., 2023), neurons158

are defined here as the column vectors WO
:,i . We159

denote g as the activation vector, indicating the160

activation of neurons. The ith element of g is the161

activation of the ith neuron.162

The Neuron Predictability indicates a mapping163

between neurons in different FFN modules. Given164

two layers i and j, we establish projection Mi→j :165

Rdffn → Rdffn which projects from the activation166

vector gi of layer i to the activation vector gj167

of layer j. From this projection, we could get168

g̃j = Mi→j(g
i), where g̃j is a predicted item of169

real gj . NPL measures how well g̃j fits gj . We use170

two metrics to evaluate the prediction, the L2 dis-171

tance and the Pearson Correlation (Pearson, 1895).172

The prediction mapping is implemented by a lin-173

ear transformation and is optimized by minimizing174

the mean square error (MSE). Below are the corre-175

sponding equations.176

Mi→j(g
i) := WMi→j · gi (5)177

178
WMi→j = argmin

W
E||W · gi − gj ||2 (6)179

3 Preliminary Analysis: Predictability of180

Neuron Activations181

In this section, we implement NPL in real settings182

to answer RQ1. The results prove the existence of183

neuron predictability in tested models.184

3.1 Experimental Setup185

We establish mapping Mi→j across every other186

layer on LLaMA-2-7b (Touvron et al., 2023) and187

GPT-J-6b (Wang and Komatsuzaki, 2021) (∀i, j ∈188

{2k | 2k < L, k ∈ N}; L is the number of layers).189

Not all layers are utilized due to constraints by190

computational resources. Here, i could be either191

smaller than, larger than, or equal to j.192

We use the training set of WikiText2 (Merity193

et al., 2016) to train the mappings. Since a quick194

and consistent convergence emerges while training,195

we sample a subset (consisting of about 107 tokens)196

instead of utilizing the entire dataset in the real pro-197

cess. We employ the Adagrad optimizer (Duchi198

et al., 2011) and set the initial learning rate as 0.01. 199

The training is completed for a single epoch with 200

a batch size of 104 tokens. Please refer to Ap- 201

pendix A for more details. 202
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Figure 2: (a, b)Performance evaluation of learned neu-
ron mappings for LLaMA-2 and GPT-J, respectively.
(c, d) Averaged training curve on LLaMA-2, M∗→j

denotes mapping from any layer to layer j and Mi→∗
denotes mapping layer i to any layer.

3.2 Results and Analysis 203

Figure 2 (a, b) is the visualization of NPL imple- 204

mentation. They illustrated the layer-wise neuron 205

predictability on LLaMA-2-7b and GPT-J-6b mea- 206

sured by L2 distance. In the results, the overall 207

L2 distances are around or less than 0.05, and the 208

largest L2 distance is no more than 0.07. This 209

decent result shows that neurons demonstrate a 210

predicting relation between layers, and the phe- 211

nomenon exists in both models. 212

The predictability varies among layers. Shallow 213

layers tend to yield better predictability than deeper 214

ones regardless of the projecting direction. Simi- 215

lar results are shown in the averaged training loss 216

in Figure 2 (c, d), where shallow layers converge 217

quicker and better in both projecting directions. 218

Furthermore, we calculate the average L2 er- 219

ror for three different cases: 0.037 for shallow-to- 220

deep prediction (i < j), 0.024 for deep-to-shallow 221

prediction (i > j), and 0.020 for self-prediction 222

(i = j). These results indicate that deep-to-shallow 223

prediction is more accurate than the reverse, with 224

self-prediction yielding the best performance. This 225

means deeper layer FFN activations encapsulate 226

information from shallower layers, which accounts 227
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Settings LLaMA-2 GPT-J

Mapping Substitution Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 1 Chunk 2 Chunk 3 Chunk 4

Random
Complete > 1000 47.54 54.49 55.82 > 1000 403.02 45.23 580.48
Partial 33.98 33.37 42.52 112.89 25.09 27.77 53.09 282.60

Zero
Complete > 1000 43.56 50.07 55.14 > 1000 383.30 43.88 557.31
Partial 33.33 33.40 42.34 109.47 24.98 27.38 49.32 286.14

Identical
Complete > 1000 58.96 65.19 62.35 > 1000 94.99 41.20 246.34
Partial 34.83 33.56 43.59 114.07 24.21 27.48 58.72 231.28

NPL
Complete 47.23 37.78 38.51 47.17 247.76 58.73 34.92 46.82
Partial 33.41 33.54 37.49 49.66 23.64 24.60 32.01 50.30

Table 1: Perplexities of various mapping and substitution settings. For the random mapping, we run the evaluation 5
times and compute the average. We split all transformer layers into four equal-sized chunks and enumerate them
from shallow to deep. Take the LLAMA-2-7b model as an example, with 32 layers, there are 8 contiguous layers in
each chunk and Chunk 1 contains the first 8 contiguous layers.

for the greater ease of predicting shallower layer228

outputs from deeper FFN activations.229

3.3 Follow-up: Cross-Domain Genreralization230

Datasets in different domains from the training set231

are used to test the generalization of the NPL frame-232

work. Results show that the NPL framework per-233

forms well in different tasks (See App.B.1). More234

interesting experiments are listed in AppendixB.235

4 Global Analysis: Analyzing the Logits236

Contribution of Predicted Neurons237

This is our first step to answer RQ2. Through NPL,238

we evaluate how the predicted activations affect the239

model performance, which both provides a global240

LLM analysis and validates the effectiveness of241

NPL. Specifically, we substitute the actual neuron242

activations with those predicted by the NPL Map-243

ping. Given a mapping Mi→j where the activation244

of layer i serves as the stimulus for predicting the245

response in layer j, we substitute the authentic ac-246

tivations in layer j with the predicted ones.247

4.1 Experimental Setup248

Recalling Equation 2, due to the existence of resid-249

ual connection, the model’s final representation250

hfinal can be viewed as a summation of the outputs251

from each layer’s FFN and MHSA modules. This252

final representation is normalized and projected to253

the “logits” over vocabulary via the language mod-254

eling head. We refer to the FFN output ml as the255

explicit contribution from the FFNl to the logits256

as ml is explicitly added to the final output hfinal.257

There is also an implicit contribution from FFNl,258

as deeper layer representations are computed based 259

on the outputs of shallower layers. Thus, ml also 260

contributes to hfinal implicitly by involving the 261

computation of all its subsequent layers. 262

In this section, we conduct substitution exper- 263

iments to study how the predicted neuron activa- 264

tions affect the explicit and implicit contributions. 265

Figure 3 shows the two substitution settings.

Implicit

Explicit
Residual 
Connection

Forward 
Propagation

Original

Affected Contribution

Implicit

Explicit
Residual 
Connection

Forward 
Propagation

(a) Complete Substitution

Original Substituted Influenced by substitution

Implicit

Explicit
Residual 
Connection

Forward 
Propagation

(b) Incomplete Substitution

Figure 3: An illustration of the substitution settings: (a)
Complete Substitution where both explicit and implicit
contributions are substituted, (b) Partial Substitution
where only implicit contribution is substituted.

266
As forward propagation proceeds from shallow 267

layers to deep ones, we only consider the mapping 268

Mi→j , i.e. when i < j (if not specified, i = j − 1). 269

We split all layers into four chunks. In each trial, 270
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we substitute neuron activations of one chunk of271

layers. For each setting, the following three types272

of mappings are compared with NPL Mapping:273

• Random Mapping substitutes actual activa-274

tions with activations obtained through a ran-275

domized mapping. (See caption in Tab.1)276

• Zero Mapping zero-outs actual activations.277

• Identical Mapping substitutes actual activa-278

tions with activations from its previous layer.279

4.2 Results and Analysis280

Table 1 presents the results extracted in various281

substitution settings in LLaMA-2 and GPT-J. The282

NPL Mapping exerts the most negligible impact283

on the logits, corroborating that neuron predictabil-284

ity indeed captures information intrinsically linked285

to the model’s capabilities. In contrast, the Ran-286

dom Mapping and Zero Mapping either introduce287

meaningless noise or remove the activations within288

certain chunks, both resulting in a substantial per-289

turbation of the logits.290

There is a strong correlation between the depth291

of substituted layers and the resultant effect. Sub-292

stituting activations within the two middle chunks293

causes a relatively minor impact on the final log-294

its, whereas substitution at either the bottom or top295

chunks introduces a more pronounced effect. Ad-296

ditionally, our findings indicate that this correlative297

relationship manifests differentially when assess-298

ing explicit versus implicit contributions. Here is a299

bulleted list of our findings:300

• Only FFN in deep layers (Chunk 4) exhibit301

a significant explicit contribution to the log-302

its. Conversely, substituting the activations303

in the shallow layers, particularly layers in304

Chunk 1, demonstrate an almost negligible305

explicit contribution to the logits regardless of306

the substitution setting.307

• The trend is reversed for implicit contribu-308

tions. FFN in shallow layers (Chunk 1) con-309

tribute more implicitly than those in deep310

layers (Chunk 4). Since the shallow layers311

play foundational roles and influence all the312

subsequent computations, this phenomenon313

is explainable. Thus, if these layers are com-314

promised, the ability of the model would be315

severely impaired. On implicit contribution,316

NPL Mapping shows an evident advantage317

over other substitution strategies, again sug- 318

gesting that NPL captures anticipated mean- 319

ingful semantic information to some extent. 320

• Another intriguing finding is that in Chunk 321

4, complete substitution outperforms partial 322

substitution in all mappings for LLaMA-2 and 323

in NPL Mapping for GPT-J. This phenomenon 324

suggests that in deep layers, the presence of 325

a “fake” explicit contribution appears to 326

elicit a negative effect on the actual implicit 327

contribution, which is abnormal. 328

4.3 Finer-grained Neuron Substitution 329

As different neuron performs differently, we fur- 330

ther investigate the relation between neuron perfor- 331

mance and the substitution results. This time, for 332

each layer in one chunk, a subset of the neurons is 333

substituted. The subset is sampled by the neuron 334

performance. Four distinct metrics are utilized to 335

guide our selection: the Pearson correlation and L2 336

distance between the predicted activation g̃ and the 337

actual one g, coupled with the mean and variance 338

of g. Through this investigation, we can explore 339

more fine-grained connections between neuron pre- 340

dictability and model behaviors. 341

Results As depicted in Figure 4, a strong relation- 342

ship exists between neuron predictability and all 343

measured metrics except for the mean. Comparing 344

top 50% predicted; bottom 50% zero with top 50% 345

zero; bottom 50% predicted, we find that preserv- 346

ing the information from low-variance neurons is 347

sufficient for maintaining acceptable performance, 348

even if the remaining neurons are masked. Besides, 349

the actual vs. predicted comparison reveals the 350

significance of neurons that are easily predicted (as 351

indicated by a lower L2 distance) for performance, 352

while those that are hard to predict (with a higher 353

L2 distance) appear to be less important. In sum- 354

mary, concerning performance impact, we observe 355

that bottom 50% zero > top 50% zero > bottom 356

50% predicted > top 50% predicted. 357

Insights This experiment reveals several findings: 358

(1) Neurons with lower variance in their activations 359

are vital for the performance. (2) These vital neu- 360

rons also tend to be more predictable, as indicated 361

by their lower L2 distance between the predicted 362

and the real activations. (3) This also implies that 363

NPL Mapping is not random but rather related to 364

the intrinsic properties of the neuron, such as its 365

stability and role within the network. 366
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Figure 4: Comparison of evaluation performance for different neuron substitution strategies. We categorize all
neurons into two groups based on four metrics and then implement varying substitution techniques in these groups.
For instance, top 50% predicted; bottom 50% zero indicates that the top 50% of neurons, according to one of the
four metrics, are replaced with predicted activations, while the rest is set to zero.

4.4 Interim Summary367

With NPL, the above global analysis delves into368

LLMs’ inner structures by detecting correspond-369

ing contribution to the model’s logits. Apart from370

the analysis itself, this section validates the effec-371

tiveness of the NPL framework as the neuron pre-372

dictability indeed captures information relevant to373

model capability instead of learning irrelevant fea-374

tures. Besides, our experiment reveals that a simple375

linear network is sufficient to capture certain gen-376

eral neuron activation patterns within LLMs, which377

is noteworthy.378

5 Local Analysis: Analyzing the379

Predictability of Functional Neurons380

This section demonstrates how the NPL framework381

could adapt to the local LLMs analysis and steps382

further to answer RQ2. We classify neurons accord-383

ing to their specialties and detect the predictabil-384

ity of functional neurons. Following the previous385

works, we use “functional neuron” to denote neu-386

rons whose activation patterns correlate to specific387

functions, including token identification, position388

encoding, knowledge storing, and others (Gurnee389

et al., 2024; Voita et al., 2023; Dai et al., 2022b).390

We conduct further analysis on functional neurons391

and examine their characteristics under NPL. To392

this end, we first need to locate functional neurons,393

and then evaluate their predictability. We follow394

the procedure of Gurnee et al. (2024) to locate these395

neurons, which assess the variance reduction when396

conditioned on specific functionality. For a given397

neuron i in layer l, we compute:398

µl,i
P = 1− (1− β)σ2([gl]i|P(x)) + βσ2([gl]i|¬P(x))

σ2([gl]i)
,

(7)399

where P represents the property function that de-400

termines whether the input token x exhibits the401

functionality under investigation, and β is the pro-402

portion of tokens that possess this functionality.403

The resulting µl,i
P serves as the importance score of404

neuron i in layer l concerning the functionality P . 405

Then, we set a threshold θP to filter the neurons 406

that exhibit relatively high importance scores. Af- 407

terward, we compute the mean predictability score 408

over the neurons with high importance scores: 409

Sl
P =

1

|N l
P |

∑
i∈N l

P

sl,i, (8) 410

where N l
P = {i|µl,i

P > θP} is the subset of filtered 411

neurons and sl,i is the predictability of neuron i 412

in layer l, measured by L2 distance. As a result, 413

higher Sl
P means lower predictability for neurons 414

with property P . For comparison, we also com- 415

pute the predictability score on all evaluation data 416

Sl
O and on a random subset of tokens Sl

R. In our 417

experiments, we explore the setting where the pres- 418

ence of the specific functionality is considered as 419

the sufficient condition for high activation. In each 420

following section, we examine one specific kind of 421

functional neuron. 422

5.1 N-gram-Sensitive Neurons Pn−gram 423

Some neurons are found to activate exclusively 424

when specified n-grams are present in the input, 425

as a result, they are named as “n-gram detecting” 426

neurons (Voita et al., 2023). 427

We examine n-grams with n ranging from 1 to 428

3 and conduct a comprehensive analysis of all n- 429

grams present within the test corpus, filtering out 430

meaningless ones, and selecting the 1,000 most fre- 431

quent ones for each n for further investigation As 432

shown in Figure 5(a), there is a clear distinction 433

between n-gram sensitive neurons and the random 434

baseline across most of the layers, while the dis- 435

tinctions between different choices of n are subtle. 436

This finding verifies the feasibility of pinpointing 437

“n-gram sensitive neurons” within LLMs, as these 438

neurons exhibit significantly higher predictability 439

scores compared to others, indicating a heightened 440

level of unpredictability. Considering that our map- 441

ping network is simple, the results appear plausible. 442
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Figure 5: Summary of functional neuron experiments in LLaMA-2. (a-c) Predictability score for n-
gram/difficulty/position sensitive neurons. (d) Percentage of background neurons across different layers.

5.2 Difficulty-Sensitive Neurons Ploss443

During the investigation, we found that the acti-444

vations of certain neurons are correlated with the445

performance of the causal language modeling ob-446

jective. Tokens that are hard to predict, manifest-447

ing in high cross-entropy loss (denoted as hard to-448

ken), tend to activate specific neurons. Conversely,449

another set of neurons is similarly activated in re-450

sponse to tokens that are easy to predict (denoted as451

easy token). We get hard and easy tokens by filter-452

ing tokens based on their cross-entropy loss, upon453

which we compute the predictability score Sl
P . As454

depicted in Figure 5(b), regardless of whether we455

consider easy or hard tokens, difficulty-sensitive456

neurons exhibit significantly lower predictability457

scores than the random baseline. Furthermore,458

it is observable that the predictability associated459

with neurons corresponding to hard tokens exhibits460

greater fluctuations across different layers. This is461

a logical phenomenon, as these tokens represent462

greater challenges for the model, and thus the in-463

formation flow related to them within the model is464

more unstable.465

The identification of difficulty-sensitive neurons466

is intriguing, as it suggests that the LLM possesses467

a form of self-awareness regarding its confidence468

in predicting the next tokens. By probing its inter-469

nal representations, we can uncover such "mental470

states" of LLMs without external signals.471

5.3 Position-sensitive Neurons Ppos472

Another branch of neurons is those associated with473

positional information, which activates in response474

to the position rather than the token or its context.475

Inspired by Voita et al. (2023), we hypothesize that476

positional neurons can work in teams and collec-477

tively respond to various positional patterns. We478

explored three types of positional pattern: (1) an479

arbitrary pattern, where we randomly select a sub-480

set of all positions; (2) a successive pattern, where481

we choose a fixed-length span of consecutive po-482

sitions; (3) an oscillatory pattern, where we select 483

positions at regular intervals. In this experiment, 484

we clip the maximum input length to 1024 and 485

examine positions ranging from 1 to 1024. As illus- 486

trated in Figure 5, only the predictability scores for 487

successive patterns exhibit significant deviations 488

from the random baseline. The rest two position 489

patterns are too complex to be captured. 490

5.4 “Background” Neurons 491

In the above examination, all neurons associ- 492

ated with specific functionalities exhibit high pre- 493

dictability scores, indicating that they are hard to 494

predict. Conversely, we are also interested in those 495

who are more predictable. To this end, we set the 496

predictability score of the random baseline as a 497

threshold to filter out neurons whose predictabil- 498

ity score falls below. As depicted in Figure 5(d), 499

a substantial proportion of neurons (ranging from 500

40% to 80%) fall into this category, suggesting that 501

a majority of the neurons within FFNs are rela- 502

tively easy to predict. The precise function of these 503

neurons is challenging to define, but their critical 504

importance is evident based on the results from 505

Figure 4. Masking highly predictable neurons (b2) 506

leads to a significant drop in performance, whereas 507

masking neurons with lower predictability (b1) has 508

a milder impact. Due to their less apparent roles, 509

we refer to these neurons as "background" neurons. 510

The mysterious nature of background neurons 511

challenges our conventional approach to interpret- 512

ing model behavior, which often revolves around 513

identifying various types of functional neurons. 514

Given that a considerable proportion of neurons 515

contribute to model behavior while “working in the 516

dark”, it prompts us to rethink how we credit the 517

success of the model’s performance. How should 518

we attribute the model’s effectiveness solely to 519

those functional but rare neurons amidst a back- 520

drop of numerous "invisible" contributors? 521

7



5.5 Interim Summary522

In this section, a variety of functional neurons523

are examined through NPL, within which difficult-524

sensitive neurons are first identified. Besides, we525

name a special kind of neuron as the “background526

neuron.” This utilization of NPL further proves the527

effectiveness of the framework. See more details528

in Appendix (App.C.1 and Fig.8).529

6 Discussions and Implications530

The above analysis reveals NPL as an effective531

analytical tool for LLMs. Here, we discuss the532

following applications and implications:533

Inference Acceleration by Short-Cutting Trans-534

formers Previous research has investigated accel-535

erating inference by establishing linear shortcuts536

across transformer blocks (Din et al., 2023). NPL537

bears a resemblance to these efforts with a distinct538

focus – NPL is set to predict the activations of FFN539

neurons instead of hidden representations. Besides,540

we investigate the logits contributions of FFNs and541

conclude that employing predicted neurons in inter-542

mediary layers does not result in significant perfor-543

mance degradation (Sec.4), suggesting the potential544

of NPL as a promising avenue for bypassing the545

complicated computations of vanilla transformers.546

Connection to Knowledge Distillation Estab-547

lishing NPL Mapping across different FFN layers548

shares conceptual parallels with layer-wise knowl-549

edge distillation (Liang et al., 2023), where the orig-550

inal transformer blocks act as teacher models and551

the linear mappings act as student models. How-552

ever, with NPL, we have a different target from553

traditional knowledge distillation, which aims at554

replicating the teacher model’s performance with a555

more lightweight student model. Instead, we use556

the mapping as an analytical lens, through which557

we better understand LLMs internally.558

Rethinking the Role of FFN Previous research559

has offered varying interpretations regarding the560

role of FFN within LLMs. Some posit that FFN561

functions as key-value memories (Geva et al.,562

2021), while others suggest the role of FFN is to563

project hidden representations onto a distribution564

over the output vocabulary, thus amplifying the565

predicted probability of some words while dimin-566

ishing that of others (Geva et al., 2022; Belrose567

et al., 2023; Katz and Belinkov, 2023). Our in-568

vestigation reveals these arguments to be incom-569

plete. Under NPL, we observe that FFNs at various570

depths play diverse roles, and even within the same 571

layer, individual neurons exhibit varied behaviors. 572

Consequently, it is reductive to view the function 573

of FFNs through a singular point of view. 574

7 Related Work 575

Analyzing transformers has attracted much atten- 576

tion in recent years. Following Luo and Specia 577

(2024), we roughly categorize transformer analy- 578

sis into two streams: local analysis, which delves 579

into the intricacies of individual transformer com- 580

ponents, and global analysis, which seeks a holistic 581

understanding of the behaviors and capabilities of 582

the model. Among local analysis, we are inter- 583

ested in those targeting individual neurons. For in- 584

stance, Dai et al. (2022a) shed light on the storage 585

of knowledge within model parameters by iden- 586

tifying specific “knowledge neurons”. Similarly, 587

Voita et al. (2023) uncover a range of functional 588

neurons characterized by regular activation pat- 589

terns. Global analysis encompasses a variety of 590

approaches, including probing techniques (Rogers 591

et al., 2020; Petroni et al., 2019; Li et al., 2023), 592

mechanistic interpretability (Elhage et al., 2021; 593

Wang et al., 2023), and more. Among these, the 594

“Vocabulary lens”, which projects weights and ac- 595

tivations onto the vocabulary space, is a trending 596

analytical tool (Geva et al., 2021). This lens allows 597

researchers to explore the contributions of different 598

modules and inputs to model performance (Belrose 599

et al., 2023; Ram et al., 2023; Geva et al., 2023). 600

Another direction analyzes transformers through 601

simple mappings between modules. For example, 602

Dar et al. (2023) learn to project parameters into a 603

shared embedding space, while Din et al. (2023) ex- 604

plore linear shortcuts between layers, which bears 605

conceptual relevance to our approach. 606

In contrast to previous studies, our introduction 607

of the neuron predictability lens encompasses both 608

the local and global facets of transformer analysis. 609

8 Conclusion 610

In this work, we present and validate the Neuron 611

Predictability Lens (NPL) as a powerful analytical 612

framework for examining transformer-based LLMs. 613

By applying NPL to both global and local analysis 614

and conducting extensive experiments, we uncover 615

intriguing insights into the role of FFN and neuron 616

interpretability. Implications we gained from NPL 617

pave a new way for analyzing transformers and 618

informing potential future applications. 619
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Limitations620

Since NPL is a newly proposed analytical frame-621

work, more applications are to be explored. Our622

work is an initial attempt to analyze transformers623

with NPL, and even at this early stage, we have al-624

ready uncovered interesting insights. Due to space625

limitations, some experimental results are not fully626

elaborated. We attach part of them in the appendix.627

Moreover, we use linear mapping to implement the628

NPL framework, while other kinds of mappings629

could also be explored, though this would likely630

incur additional computational overhead. Future631

research may explore other mappings to further632

leverage the potential of NPL.633
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Mapping Substitution WikiText-2 Alpaca XSum

Random
Complete > 200 > 200 > 200
Partial 55.69 13.49 12.37

NPL
Complete 42.67 12.44 12.16
Partial 38.53 9.76 8.21

Original 33.35 8.63 6.23

Table 2: Averaged performance of Chunks 1-4
on WikiText-2, Alpaca (Taori et al., 2023), and
XSum (Narayan et al., 2018). See full results in App. C.

A Additional Implementation Details840

Implementing neuron mappings on LLaMA and841

GPT-J models needs to consider their slight archi-842

tectural variations from the standard transformer843

design. These deviations are noteworthy and must844

be considered when conducting such mappings.845

The FFN of LLaMA contains an extra linear layer,846

which can be formulated as follows:847

FFN (x) = W down · g,
g = σ

(
W gate · x

)
⊙ (W up · x) .

(9)848

The transformer block for GPT-J is as follows:849

al = MHSAl(hl),

ml = FFNl(hl),

hl+1 = hl + al +ml,

(10)850

where the MHSA and FFN within the same layer851

have no computation dependency.852

B More Analysis on Neuron853

Predictability854

B.1 Cross-Domain Generalization of NPL855

To demonstrate that NPL Mapping does not just856

imitate the distribution of the training data, we eval-857

uate its cross-domain generalization ability. The858

experimental setting is the same as Section 4. As859

shown in Table 2, while trained on Wikitext, NPL860

Mapping successfully generalizes to other data dis-861

tributions by outperforming Random Mapping and862

closely approximating the performance of real ac-863

tivations. These results suggest that NPL is not864

limited to the specificities of the training data but865

rather captures broader, more universal patterns866

that are applicable even in contexts that diverge867

from the original training domain or language.868

B.2 Context Length Affects Neuron 869

Predictability 870

We investigate scenarios where tokens are exposed 871

only to a constrained segment of the preceding con- 872

text. To achieve this, we employ a context window, 873

denoted by w, to limit the range of context accessi- 874

ble to each token. Subsequently, we train multiple 875

NPL mappings for various w values and visualize 876

the differences. As shown in Figure 6, a larger w 877

extends the context scope and also results in in- 878

creased predictability for neurons in shallower lay- 879

ers, while simultaneously decreasing predictability 880

in deeper layers. We hypothesize that an extended 881

context provides the NPL with more comprehen- 882

sive information, aiding in the accurate prediction 883

of neuron activations in shallow layers. Contrast- 884

ingly, the semantics in deeper layers may become 885

too complex to be captured by the NPL. 886

B.3 Cross-Model Neuron Predictability 887

Neuron mapping can be established not only within 888

a single but also across different models. To vali- 889

date this, we conduct experiments applying NPL 890

between the LLaMA-2-7b and LLaMA-2-13b mod- 891

els. Figure 7 shows that the neuron mapping across 892

models is learnable. Our observations reveal a 893

strong correlation between the layers of the two 894

models, with the most effective mappings estab- 895

lishing when layers of similar depth are used to 896

predict each other. Additionally, based on the L2 897

distance metric, we have noted that shallower lay- 898

ers tend to be more predictable than their deeper 899

counterparts, a similar phenomenon observed in 900

single-model experiments. 901

C Additional Experimental Results 902

Mapping Substitution Chunk 1 Chunk 2 Chunk 3 Chunk 4

Alpaca

Random
Complete > 1000 11.98 11.44 12.12
Partial 9.16 8.78 10.38 25.62

NPL
Complete 17.68 10.37 10.27 11.44
Partial 8.67 8.83 9.63 11.91

XSum

Random
Complete > 1000 10.38 11.56 13.47
Partial 6.94 6.68 9.08 26.78

NPL
Complete 19.57 8.45 9.57 11.06
Partial 6.63 6.67 8.30 11.25

Table 3: Full results for the substitution experiment on
Alpaca and XSum.
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Figure 6: L2-distance difference of NPL mappings on LLaMA-2-7b under the settings of different window sizes w.
The window sizes selected for this analysis include w ∈ {3, 7, 15, 30, 60, 120}.

C.1 Additional Details on Functional Neurons903

904

Outlier Neurons Outlier phenomenon has been905

observed across various LLMs (Puccetti et al.,906

2022). This phenomenon refers to the persistent907

emergence of extreme values within the models’908

activations and weights which, though comprising909

less than 0.1% of the values, can exceed the magni-910

tude of other values by several hundredfold and are911

thus termed “outliers”. For LLaMA-2-7b, we find912

the 7890-th neuron of layer 2 (shorted as L2.7890)913

to be an outlier. We observe that the occurrence of914

outliers is associated with meaningless tokens, such915

as <SOS>, <UNK>. As for neuron predictability,916

outlier neurons are extremely hard to predict.917
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Figure 7: NPL between LLaMA-2-7b and LLaMA-2-13b.
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Figure 8: Statistics of background neurons in layer 2,
10, 18, 28 in LLaMA-2-7b.
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