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ABSTRACT

Despite significant advancements in general artificial intelligence, such as GPT-4,
their effectiveness in the medical domain (general medical AI, GMAI) remains
constrained due to the absence of specialized medical knowledge. To address
this challenge, we present GMAI-VL-5.5M, a comprehensive multimodal medical
dataset created by converting hundreds of specialized medical datasets into metic-
ulously constructed image-text pairs. This dataset features comprehensive task
coverage, diverse modalities, and high-quality image-text data. Building upon this
multimodal dataset, we propose GMAI-VL, a general medical vision-language
model with a progressively three-stage training strategy. This approach signifi-
cantly enhances the model’s ability by integrating visual and textual information,
thereby improving its ability to process multimodal data and support accurate di-
agnosis and clinical decision-making. Experimental evaluations demonstrate that
GMAI-VL achieves state-of-the-art results across a wide range of multimodal
medical tasks, such as visual question answering and medical image diagnosis.
Our contributions include the development of the GMAI-VL-5.5M dataset, the in-
troduction of the GMAI-VL model, and the establishment of new benchmarks in
multiple medical domains.

1 INTRODUCTION

Large-scale Vision-Language Models (LVLMs) have rapidly evolved in recent years, effectively in-
tegrating visual perception with language understanding by leveraging large-scale multimodal data,
which enables them to capture complex visual and textual patterns and drive significant advance-
ments in image recognition, natural language processing, and multimodal tasks. With the advance-
ment of multimodal integration technologies, the demand for high-precision processing of diverse
data types in the medical field has become increasingly critical. The ability to effectively integrate
and analyze various data modalities, such as medical images, clinical text, and structured clinical
records, is pivotal for achieving accurate and comprehensive diagnostic and treatment decisions.

However, existing LVLMs, such as GPT-4 (Achiam et al., 2023), are limited in medical applications
due to their lack of domain-specific knowledge, highlighting the need for specialized solutions that
effectively integrate medical expertise. Addressing this challenge requires constructing a compre-
hensive medical vision-language dataset and developing domain-specific models. For the medical
dataset, it should provide high-quality medical knowledge, including the following three aspects:

Comprehensive Medical Task. To enhance the model’s applicability across various medical sce-
narios, the dataset should cover a wide range of medical contexts, such as disease types, symptoms,
and treatments. Comprehensive task coverage can improve the model’s generalization ability and
increase its reliability in real-world applications. However, existing models often focus on specific
domains (He et al., 2024; Li et al., 2024b; Xin Yan, 2023; Thawakar et al., 2024; Kapadnis et al.,
2024), limiting their broader applicability. Expanding the dataset’s scope will further enhance the
model’s utility in clinical practice.
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Rich Multimodal Representation. A well-rounded medical multimodal dataset should encompass
various modalities, including different medical imaging types (such as CT, MRI, and X-rays) and
diverse forms of textual data (such as medical records and imaging reports). This would allow mod-
els to better integrate multi-source information and improve their analytical capabilities. However,
existing methods tend to focus on a single type of medical imagery (Johnson et al., 2019; Wu et al.,
2023b; Lu et al., 2024b), limiting the model’s adaptability to diverse clinical scenarios. A more
diverse multimodal dataset would provide a foundation for developing more comprehensive models,
better suited to the complexity of real-world medical environments.

High-Quality Image-Text Data. High-quality training data is crucial for model performance. For
medical applications, ideal image-text data should include a large collection of medical images with
precise textual descriptions, enhancing the model’s understanding of key medical concepts, includ-
ing diagnosis, treatment, and clinical workflows, ultimately improving clinical outcomes. Although
progress has been made by collecting data from sources like PubMed (Li et al., 2024a; Moor et al.,
2023; Wu et al., 2023b), which has inconsistent data quality, imprecise alignment and lack of stan-
dardization, limiting its potential.

Based on above observations, we propose a methodology for developing a comprehensive multi-
modal medical datasets. The methodology begins by collecting large-scale, open-source medical
imaging datasets and extracting key details such as modality, task type, labels, and bounding boxes.
A vision-language model (e.g., GPT-4o) is then used to transform these datasets, covering tasks like
lesion detection, segmentation, and disease diagnosis, into high-quality image-text pairs for training
LVLMs. To ensure data quality, extracted image information is incorporated into the prompt design,
improving model performance across various clinical tasks. This results in a comprehensive mul-
timodal dataset with 5.5M samples, named GMAI-VL-5.5M, which supports the development of
general medical LVLMs. Fig. 1(a) illustrates the sources, departments, modalities, task types, and
instruction formats of the constructed dataset.

With the constructed GMAI-VL-5.5M dataset, we develop a general medical vision-language model,
GMAI-VL. To enhance its integration of visual and linguistic features and its instruction-following
abilities, a three-stage training strategy is proposed in this paper. Specifically, we sequentially im-
plement shallow and deep alignments in the first two stages, gradually building associations between
visual (medical images) and language (medical texts) elements from basic features to high-level se-
mantics. Next, we fine-tune the model with cross-modal instructions, improving its understanding of
visual-language interactions and instruction-following in complex tasks. With this strategy, GMAI-
VL shows strong performance in medical tasks like visual question answering and medical image
diagnosis, providing a solid foundation for advancing multimodal models in the medical field.

Our contributions are as follows:

• We propose a methodology for constructing the GMAI-VL-5.5M, a comprehensive vision-
language dataset with extensive coverage of medical tasks, diverse multimodal representations,
and high-quality image-text pairs, forming a robust foundation for model training.

• With GMAI-VL-5.5M, we propose a versatile medical vision-language model, named GMAI-VL.
Our proposed three-stage training strategy enhances its ability to integrate visual and language
features, significantly improving the abilities of instruction-following and generalization across
various medical tasks.

• GMAI-VL outperforms previous models in multimodal question-answering tasks, including
PMC-VQA and VQA-RAD, setting new benchmarks on OmniMedVQA, GMAI-MMBench, and
the health and medicine subset of MMMU. Specifically, GMAI-VL achieves an average score of
88.48% on OmniMedVQA, 62.43% on the GMAI-MMBench test set, and 51.3% on the health
and medicine subset of MMMU.

2 RELATED WORK

Large-scale Medical Vision-language Datasets of high quality and multiple modalities are the
basis of Large Vision-Language Models (LVLMs) in the medical domain. While natural language
and vision datasets are easily accessible online, biomedical datasets often focus on text or images
only and many of them are limited to specific tasks or modalities, thus with unsatisfactory general-
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…

Task (n>800)

…

◆ CT ◆ MR ◆ Ultrasound

◆ Endoscopy ◆ Dermoscopy

Source (n>10)

◆ COVID-19 diagnosis

◆ Kaggle

◆ GitHub

Instructions(n=5.5M)

…

(a)

GMAI-VL

◆ Grand Challenge

(b)

◆ Huggingface

…
◆ Radiology

◆ Pathology

◆ Dermatology

◆ Oncology

Department (n=18)

Large

Language

Model
Projector

Vision

Encoder Vision Encoder

Large Language Model

Projector Vision Encoder

Large Language Model

Projector Vision Encoder

Large Language Model

Projector

11.7M Image-Text pairs 11.7M Image-Text pairs 10.0M Instruction-following 

data

Stage2: Deep Alignment Stage3: Instruction turning

Modality (n=13)

Image-level Caption Region-level Caption

Conversation

A: This histopathology image reveals a 

dense aggregation of cells charact-erized by 

prominent nucleoli. Within the image, the 

tissue exhibits a notable degree of cellularity, 

with numerous cells closely packed 

together…

Text Only

Q: Please generate a 

detailed description of 

this image .

Q: What is the outlook for ovarian germ cell 

tumors?

Free Instruction

A: The outlook for ovarian germ cell 

tumors can vary depending on several 

factors, including ...

Q: Based on the symptoms of malnutrition, 

recommend treatment prescriptions: 1. 

Please consider all symptoms. 2. Please 

provide a step-by-step reasoning process..

A: **Malnutrition in children** is a pediatric 

condition ... It mainly mani-fests as poor 

appetite.... Treatment should 

consider ....\n**Principles for selecting 

treatment prescriptions**:\n\n 1. **Improve 

appetite and …

Visual Perception
◆ Liver Tumor Segmentation

(c)

Q: What are some common treatments for 

ovarian germ cell tumors?

A: Common treatments for ovarian germ 

cell tumors include surgery to ...

Q: Are there any preventative measures 

for ...?

Training

Stage1: Shallow Alignment

Q: Focus on the square- 

highlighted area <box> 

[[0.31, 0.51, 0.74, 0.83]] 

</box> of this 

microscopy image. 

What target is most 

likely depicted?

A: The highlighted area most likely depicts 

<ref>white blood cell</ref>.

A:The fundus photo shows a significant 

depression of the optic nerve head, which is 

a typical feature of glaucoma. The optic 

nerve cup appears enlarged relative to the 

optic nerve disc…

Q: Describe the key 

pathological features 

visible in the provided 

fundus photography 

images to support the 

diagnosis of glaucoma.

A: This region on the X-ray, highlighted 

on the right side of the chest (patient's 

left), shows key features indicating an 

abnormality. The area lacks the usual 

lung markings, appearing more …

Q: Observe the X-ray 

image focusing on the 

area within <box>[[0.18, 

0.16, 0.5, 0.43]]</box>. 

Could you describe the 

area within the box?

Figure 1: Overview of GMAI-VL and GMAI-VL-5.5M. (a) illustrates the sources, departments,
modalities, task types, and instruction formats of the GMAI-VL-5.5M dataset. (b) Architecture of
GMAI-VL, integrating a Vision Encoder, Projector, and Large Language Model. (c) Three-stage
training process of GMAI-VL, including shallow alignment, deep alignment, and instruction tuning
with corresponding data sizes and training components. The flame symbol denotes the training
part, while the snowflake symbol indicates frozen part.

ization ability. Notable datasets like MIMIC-CXR (Johnson et al., 2019) and CheXpert (Chambon
et al., 2024) have advanced radiology models but are restricted to single image modality (X-ray),
which hinders their use as general-purpose medical LVLMs. To address this, researchers have begun
scraping public sources like PubMed and textbooks to construct large-scale vision-language datasets.
Examples include datasets proposed in LLaVA-Med (Li et al., 2024a), Med-Flamingo (Moor et al.,
2023), and PubMedVision (Chen et al., 2024b), with PubMedVision optimizing LLaVA-Med dataset
for higher-quality medical data. In addition to scraping, open-source image datasets with annotations
can also be converted into image-text pairs for model training. Specifically, image information like
modalities and annotations are input into large language models, e.g., GPT series, to generate text
paired with the corresponding image. Some popular examples include the datasets constructed in
RadFM (Wu et al., 2023b), MedDr (He et al., 2024), MedTrinity-25M (Xie et al., 2024), ChiMed-
VL (Liu et al., 2023b), BiomedGPT (Zhang et al., 2024), Med-Gemini (Saab et al., 2024), and
Med-PaLM (Singhal et al., 2023).

These efforts usually suffer from either limited modalities, data sources, or task coverage. Thus,
their dataset quality needs further improvement. To this end, we propose to construct a comprehen-
sive medical vision-language dataset with extensive coverage of medical tasks, diverse multimodal
representations, and high-quality image-text pairs, forming a robust foundation for model training.

Medical Vision-Language Models are usually based on general-purpose Large Vision-Language
Models (LVLMs). Most of them adapt LVLMs to specific medical applications using specialized
medical datasets. For instance, Med-Flamingo (Moor et al., 2023) enhances OpenFlamingo-9B
using 0.8 million interleaved and 1.6 million paired medical image-text data, highlighting the crit-
ical need for multimodal data in medical image analysis and automated report generation tasks.
RadFM (Wu et al., 2023b) improves PMC-LLaMA (Wu et al., 2023a) by leveraging 16 million
radiology images with text descriptions from diverse sources. Similarly, Med-PaLM (Tu et al.,
2024) adapts PaLM-E (Driess et al., 2023) to the medical domain with approximately one mil-
lion medical data samples, achieving state-of-the-art performance in diagnostic support and medical
knowledge Q&A. LLaVA-Med (Li et al., 2024a) utilizes a large-scale biomedical figure-caption
dataset extracted from PubMed Central to enhance LLaVA (Touvron et al., 2023a;b) to better under-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Comparison of various medical multimodal datasets, including details on the dataset size,
modality type, language, data traceability, and sources of information.

Datasets Data Size Modality Language Traceability Data Source

PathVQA (He et al., 2020) 32.7k Pathology EN × Textbooks
MIMIC-CXR (Johnson et al., 2019) 227k X-Ray EN ✓ Hospital
quilt-1M (Ikezogwo et al., 2024) 1M Pathology EN × YouTube & PubMed
MedDr VQA (He et al., 2024) 197k Multimodal EN ✓ 13 medical datasets
PMC-OA (Lin et al., 2023) 1.65M Multimodal EN × PubMed
PMC-VQA (Zhang et al., 2023) 413k Multimodal EN × PubMed
LLaVA-Med VQA (Li et al., 2024a) 56,702 Multimodal EN × PubMed
ChiMed-VL (Liu et al., 2023b) 1.05M Multimodal CN × PubMed
PMC-CaseReport (Wu et al., 2023b) 438k Multimodal EN × PubMed
PubMedVision (Chen et al., 2024b) 1.29M Multimodal EN&CN × PubMed

GMAI-VL-5.5M (ours) 5.5M Multimodal EN&CN ✓
219 specialized medical

imaging datasets

stand biomedical images and facilitate open-ended conversational interactions. Med-Gemini (Saab
et al., 2024) leverages long-format question-answering datasets to improve the multimodal and
long-contextual capabilities of the baseline Gemini model, enabling superior performance in com-
plex medical Q&A and multimodal reasoning tasks. Additionally, HuatuoGPT-Vision (Chen et al.,
2024b) and MedDr (He et al., 2024) build medical multimodal datasets to adapt general-purpose
LVLMs like LLaVA and InternVL to various medical modalities, including radiology, pathology,
dermatology, and endoscopy.

Previous studies usually focus on constructing medical datasets to adapt general-purpose LVLMs
but pay less attention to the adaptation strategies. However, naive training/adaptation strategies may
not successfully adapt general-purpose LVLMs to the medical data, due to the large gap between the
natural image-text pairs and the medical ones. Moreover, these strategies can hardly align the broad
imaging modalities and various types of medical text (e.g., prescriptions, radiology reports, and elec-
tronic health records) to obtain generalizable features, thus limiting the models’ performance. Our
work thus proposes a novel three-stage training strategy to better integrate the visual and language
features to enhance generalization ability.

3 GMAI-VL-5.5M: A COMPREHENSIVE MULTIMODAL DATASET

In the context of rapid advancements in medical vision-language models (VLMs), the construction
of high-quality datasets is essential for developing general-purpose medical VLMs. Unlike previous
methods that primarily rely on published literature to build medical vision-language datasets, our ap-
proach focuses on utilizing specialized medical datasets to develop a more robust and high-quality
dataset. We introduce the GMAI-VL-5.5M, a comprehensive medical vision-language dataset that
aggregates data from a wide range of sources, including both open-source and proprietary resources.
The dataset encompasses 13 medical imaging modalities and covers 18 medical specialties, effec-
tively addressing a broad spectrum of common medical imaging tasks. This dataset is designed to
significantly enhance the model’s capacity to understand and process complex medical information,
thus contributing to advancements in precision medicine and intelligent diagnostics.

3.1 DATA CURATION

To construct a comprehensive multimodal medical dataset, we sourced 219 datasets from diverse
platforms. Fig. 1(a) highlights key data sources, including Kaggle, Grand Challenge, and Hugging-
face, which enable extensive data collection. These datasets cover various imaging modalities, such
as fundus, CT, MRI, and ultrasound (US), and span a range of medical tasks, including diagnosis,
severity assessment, and organ recognition. Additionally, the datasets encompass multiple clini-
cal departments, including pathology, dermatology, ophthalmology, otolaryngology, and oncology,
further enhancing their diversity.

After data collection, we apply a preprocessing workflow to extract 2D medical images from the
videos and 3D medical volumes. The preprocessed data are then standardized and organized into a
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[General Prompt]:

As a medical 

expert, you are 

given a 

<Modality> 

image belong to 

<Department>, 

where the bbox 

<Bounding box> 

labeled as 

<Label category>.

[Image-level Caption]: 

This image displays a bilateral chest 

view, with a region on the left side 

demonstrating a notable absence of 

normal lung markings, indicative of …

Instructions

[Region-level Caption]: 

Q: Analyze the characteristics of the 

left lung area and describe any 

observed abnormalities.

A: In this X-ray image, the left lung …

[Free Instruction]: 

Q: Examine the clear lung fields and 

the absence of abnormal air 

collections. How does …

A: The absence of abnormal air 

collections in the pleural space …

GPT4o

PromptsMedical Imaging Datasets

&

[Images]

[Annotations]

[Image-level Caption Prompt]:

Based on this information, 

generate a very detailed 

description related to given 

image. When generating …

. . .
<Modality>: 

X-ray

<Department>: 

Pulmonary Medicine

<Label category>: 

Pneumothorax

<Bounding box>: 
[179,164,500,434]

[Free Instruction Prompt]:

Based on this information, 

generate a complex questions 

and corresponding answer by 

combining the image and …

[Region-level Caption Prompt]:

Based on this information, 

generate a very detailed 

description related to the 

region within the box …

. . .

Figure 2: The proposed prompt-driven data generation methodology. Given a medical image, key
annotation information is extracted into a structured format <image, modality, label,
department, bbox [optional]> to generate a general prompt. Combined with general
prompt, six specific prompts are desiged to produce six kinds of instruction-following data through
GPT-4o.

structured format: <image, modality, label, department, bbox [optional]>.
Subsequently, the data are categorized into two primary types: classification datasets and detec-
tion/segmentation datasets. Each category is further refined using specific prompts tailored for
large model training. For data generation, large vision-language models (GPT-4o) are employed
to produce detailed image descriptions and corresponding instruction-following data based on the
designed prompts. For classification datasets, detailed descriptions of the entire image are gen-
erated, while for detection datasets, the focus is on specific regions enclosed by bounding boxes,
providing comprehensive functional analyses of these areas. Notably, the segmentation dataset was
transformed into a detection dataset using external bounding boxes, and data generation followed
detection dataset protocols. Furthermore, to improve the model’s multilingual capability, we trans-
lated a portion of English image-text data into Chinese. Incorporating multilingual data helps to
enhance the generalization capabilities of domain-specific multimodal models. The resulted data
is utilized for medical Visual Question Answering (VQA) tasks, forming the comprehensive VQA
dataset, named GMAI-VL-5.5M. The detailed pipeline for generating prompt-driven data is illus-
trated in Fig. 2.

As depicted in Fig. 1(a), it contains six kinds of instrcuction-following formats, including image-
level captions, region-level captions, free instructions, dialogue, visual perception and text-only
tasks. The specific composition of GMAI-VL-5.5M can be found in Appendix (Table. 6). These
formats enable VLMs to better understand and process complex visual and textual information
in medical contexts. The GMAI-VL-5.5M dataset significantly enhances the model’s cross-modal
reasoning ability, enabling it to handle complex multimodal inputs in real clinical scenarios. The
richness of the instruction formats allow the model to progress from basic question answering to
advanced medical image analysis, ultimately providing strong support for clinical diagnosis and
decision-making.

3.2 DATA PROPERTY

Data Statistics. These datasets encompass diverse medical imaging tasks and modalities, forming
a solid foundation for developing and evaluating medical LVLMs. Fig. 3 illustrates the distribution
of modalities, tasks, clinical departments, and specific medical challenges represented within the
collected datasets. This visualization highlights the extensive diversity and coverage of our data
collection efforts. After careful standardization and integration, these datasets form the core of our
comprehensive medical image-text dataset, GMAI-VL-5.5M, which serves as a crucial resource for
advancing precision medicine and intelligent diagnostic systems.

Compared with other medical multimodal dataset. The GMAI-VL-5.5M dataset, as high-
lighted in Table. 1, stands out due to its unmatched scale, encompassing over 5.5 million samples
from more than 219 specialized medical imaging datasets. Unlike other datasets listed, GMAI-
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Pathology
11.2%

Microscopy 2.4%

Ultrasound 3.0%

CT

26.8%

PET

0.2%

MR
24.7%

Ophthalmoscope
0.1%

Endoscopy

12.6%

X-Ray

6.7%

OCT

1.4%
Fundus Photography

5.3%
Infrared Reflectance Imaging

2.0%Dermoscopy
3.5%

Modality

(a) Modality distribution of GMAI-VL-5.5M

2D Classification

50.4%

2D Segmentation12.7%

3D Segmentation

30.3%
2D Detection

6.6%

Original Task

(b) Original task distribution of GMAI-VL-5.5M

Gastroenterology 
and Hepatology

9.7%

Neurosurgery 1.6%
Nephrology and 

Hypertension 1.6%

Hematology
9.2%

Laboratory Medicine 
and Pathology

5.6%

Dermatology

3.5%

Ophthalmology

7.7%

Oncology (Medical)

5.4% Sports Medicine

8.2%
Infectious Diseases

0.3%
Urology

5.1%

Obstetrics and 
Gynecology

1.5%

Pulmonary Medicine9.0%

Endocrinology
1.3%

Orthopedic Surgery

12.9%

General Surgery

10.3%
Otolaryngology / 

Head and Neck Surgery

5.4%Cardiovascular Surgery

1.8%

Department

(c) Department distribution of GMAI-VL-5.5M

Microorganism Recognition

3.9%

Severity Grading

6.1%
Image Quality Grading

1.2%

Disease Diagnosis
40.4%

Nervous Tissue

0.7%

Bone Recognition

8.5% Muscle

1.3% Attribute Recognition

4.1%

Organ Recognition16.0%

Surgical Workflow Recognition
2.5%

Blood Vessels Recognition
2.4%

Counting

1.8%

Cell Recognition

2.3%

Surgical Instrument Recognition

2.7%

Surgeon Action Recognition

6.0%

Clinical Task

(d) Clinical task distribution of GMAI-VL-5.5M

Figure 3: Distribution of GMAI-VL-5.5M across tasks, modalities, departments, and clinical tasks.
(a) Original Task Distribution: The dataset includes 2D Classification (50.4%), 3D Segmentation
(30.3%), 2D Segmentation (12.7%), and 2D Detection (6.6%). (b) Modality Distribution: In addi-
tion to CT (26.8%) and MR (24.7%), X-ray (12.6%), Pathology (11.2%), and less common modali-
ties like Dermoscopy (3.5%), Microscopy (2.4%), and PET (0.2%) are represented. (c) Department
Distribution: While Orthopedic Surgery (12.9%) and General Surgery (10.3%) are the top contribu-
tors, departments like Endocrinology (1.3%), Infectious Diseases (0.8%), and Urology (0.7%) also
provide data. (d) Clinical Task Distribution: Besides Disease Diagnosis (40.4%) and Organ Recog-
nition (16.0%), tasks such as Muscle Recognition (3.3%), Nervous Tissue Recognition (1.5%), and
Microorganism Recognition (1.2%) are included.

VL-5.5M supports a wider variety of modalities and languages, making it a truly global resource
that caters to diverse clinical needs. Additionally, GMAI-VL-5.5M emphasizes traceability of its
data, ensuring a high standard of clinical relevance and reliability. This comprehensive and diverse
dataset is critical for pushing the boundaries of medical multimodal research, enabling more ef-
fective training of LVLMs that can generalize across multiple medical tasks and scenarios, thereby
driving innovations in precision medicine and intelligent diagnostics.

4 GMAI-VL: A GENERAL MEDICAL VISION-LANGUAGE MODEL

4.1 ARCHITECTURE

The GMAI-VL model is a vision-language model built upon the LLaVA architecture (Liu et al.,
2023a; Li et al., 2024a), incorporating three key components: a large language model (LLM), a
vision encoder, and a projector (MLP), as illustrated in Fig. 1(b). These components are designed to
work together seamlessly, enabling the model to deliver exceptional performance in medical appli-
cations.

We utilize InternLM2.5-7B (Team, 2023) as our language processing module, which offers out-
standing reasoning capabilities. With a context window up to one million tokens, it can handle com-
plex medical tasks and generate coherent, accurate responses. Its support for advanced instruction-
following makes it particularly effective in addressing intricate medical queries, thereby enhancing
the model’s ability to understand and respond to a wide range of instructions.
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For vision processing, GMAI-VL employs a CLIP-based vision encoder (Radford et al., 2021),
which transforms visual inputs into high-dimensional feature representations. CLIP’s strong perfor-
mance in aligning image and text representations ensures that medical image features are accurately
extracted and effectively integrated with linguistic information, significantly enhancing the model’s
ability to handle multimodal medical data.

The MLP, as a projector, serves as a bridge between the vision encoder and the LLM, optimizing
high-dimensional outputs and further enhancing feature representation. The seamless integration
of these components enables GMAI-VL to excel in processing and understanding complex medical
multimodal data.

4.2 OPTIMIZATION STRATEGY

As illustrated in Fig. 1(c), the training process of the GMAI-VL model is divided into three stages:
shadow alignment, deep alignment, instruction tuning, respectively. The detailed hyper-parameter
settings can be found in Appendix (Table. 8). To enhance the training of GMAI-VL, we supplement
our GMAI-VL-5.5M dataset with additional medical datasets. This supplemented data increases
the diversity of training data, exposing the model to a wider range of medical scenarios and visual-
language patterns, enhancing its generalization to complex clinical tasks and ensuring robustness
in real-world applications. Fig. 4 (in Appendix) provides a complete distribution of the utilized
datasets during the training stage. The detailed data proportions for each training stage are detailed
in Table. 7 (in Appendix).

Stage I: Shadow alignment. In the shallow alignment phase, we utilize a large-scale medical
image-text dataset comprising approximately 11.7 million image-text pairs, sourced from a combi-
nation of publicly accessible datasets and proprietary in-house data. To achieve shallow alignment,
we freeze both the large language model and the vision encoder, optimizing only the projector. With
this optimization stage, the model establishes an initial alignment between medical images and their
corresponding textual descriptions. All input images are resized to 336×336 pixels, and the training
objective is to minimize the cross-entropy loss of the text tokens.

Stage II: Deep alignment. Since most vision encoders in multimodal models are pre-trained on
natural images, we address the domain differences between medical and natural images in the deep
alignment stage. In this stage, we fine-tune both the vision-language projector and the vision encoder
to achieve better alignment between the visual features of medical images and the feature space of
the language model.

Stage III: Instruction tuning. At this stage, we fine-tune our GMAI-VL model (including the
vision encoder, the language model, and the projector parts) by instruction tuning to enhance its
instruction-following and dialogue capabilities. The multimodal instruction tuning data is primarily
derived from the training data in previous stages, by filtering high-quality and more suitable data for
fine-tuning. Additionally, we incorporate medical text dialogue data to ensure the model’s versatility
in handling various dialogue scenarios. Thus, our instruction tuning data comprises approximately
10 million samples.

5 EXPERIMENTS

To evaluate our model, we employed several established multimodal medical benchmarks, each
targeting specific aspects of medical image understanding and question answering. Below is a brief
overview of the benchmarks used in our experiments:

• Traditional Medical VQA Benchmarks: Traditional multimodal medical question-answering
benchmarks, such as VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021), and PM-
CVQA (Zhang et al., 2023), span various imaging modalities tasks, primarily assessing the
model’s ability to extract information from medical images and answer clinical questions. They
evaluate the model’s performance in understanding medical imaging and integrating multimodal
information.

7
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• OmniMedVQA: OmniMedVQA (Hu et al., 2024) provides a rich dataset of paired medical im-
ages and text, designed to evaluate the model’s ability to recognize and understand fundamental
medical imaging concepts, with a particular focus on cross-modal reasoning and information in-
tegration.

• GMAI-MMBench: GMAI-MMBench (Chen et al., 2024c) focuses on assessing the model’s abil-
ity to identify fine-grained objects in complex clinical scenarios, challenging its capacity to handle
long-context tasks and accurately recognize and reason over detailed medical features.

• Health and Medicine Subset of the MMMU: The health and medicine subset of the
MMMU (Yue et al., 2024) benchmark spans a wide range of medical fields, derived from univer-
sity exams, quizzes, and textbooks. It evaluates the model’s reasoning ability in complex medical
scenarios and the specialized knowledge in health and medicine.

Fuethermore, we present several examples of our model’s performance across various tasks in Fig. 5
(Appendix).

5.1 EXPERIMENTS ON TRADITIONAL MEDICAL VQA BENCHMARKS

Table 2: Results on the Traditional Medical VQA Benchmarks. The best performance in each
column is highlighted in red, and the second-best performance is highlighted in blue.

Model VQA-RAD SLAKE PMC-VQA Avg.
Med-Flamingo (Moor et al., 2023) 45.4 43.5 23.3 37.4
RadFM (Wu et al., 2023b) 50.6 34.6 25.9 37.0
LLAVA-Med-7B (Li et al., 2024a) 51.4 48.6 24.7 41.6
Qwen-VL-Chat (Bai et al., 2023) 47.0 56.0 36.6 46.5
Yi-VL-34B (Young et al., 2024) 53.0 58.9 39.5 50.5
LLAVA-v1.6-7B (Liu et al., 2024) 52.6 57.9 35.5 48.7
LLAVA-v1.6-13B (Liu et al., 2024) 55.8 58.9 36.6 50.8
LLAVA-v1.6-34B (Liu et al., 2024) 58.6 67.3 44.4 56.8
HuatuoGPT-Vision-7B (Chen et al., 2024b) 63.8 74.5 52.7 63.7
GMAI-VL(ours) 66.3 72.9 54.3 64.5

The performance of various VLMs on popular medical VQA benchmark datasets is summarized in
Table. 2, including VQA-RAD(Lau et al., 2018), SLAKE(Liu et al., 2021), and PMC-VQA(Zhang
et al., 2023). Our model, GMAI-VL, demonstrates a strong performance, achieving the highest
score on the VQA-RAD(Lau et al., 2018) dataset with 66.3%, outperforming other models such as
HuatuoGPT-Vision-7B. This result highlights GMAI-VL’s superior capability in handling radiolog-
ical image question-answering tasks. For the PMC-VQA(Zhang et al., 2023) dataset, GMAI-VL
achieves 54.3%, and 72.9% on SLAKE(Liu et al., 2021), demonstrating its capability in handling
medical VQA tasks across diverse modalities.

In conclusion, GMAI-VL demonstrates competitive performance across multiple benchmarks,
showcasing its versatility in medical image understanding and question-answering.

5.2 EXPERIMENT ON OMNIMEDVQA

Table. 3 summarizes the performance of various large vision-language models (LVLMs), including
our proposed GMAI-VL, across five question types: Modality Recognition, Anatomy Identifica-
tion, Disease Diagnosis, Lesion Grading, and Other Biological Attributes. GMAI-VL demonstrates
outstanding accuracy across multiple tasks, achieving 98.64% in Modality Recognition, 92.95% in
Anatomy Identification, and 88.71% in Disease Diagnosis. It outperforms both open-source LVLMs
and medical-specific models, underscoring its capability to accurately identify anatomical structures
and diagnose diseases from visual data. In Lesion Grading, GMAI-VL attained the highest score of
87.21%, and it also delivers a strong performance of 82.95% in Other Biological Attributes, show-
casing its versatility across diverse biological contexts. With an average accuracy of 88.48%, the
highest among all evaluated models, GMAI-VL excels not only in general medical question-answer
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Table 3: Comparison of performance between representative LVLMs and GMAI-VL on OmniMed-
VQA across five different question type. The best performance in each column is highlighted in red,
and the second-best performance is highlighted in blue.

Model Modality
Recognition

Anatomy
Identification

Disease
Diagnosis

Lesion
Grading

Other Biological
Attributes Overall

Random Guess 25.00 25.84 28.41 25.40 37.49 28.28
Open-Source LVLMs

MiniGPT-4 (Zhu et al., 2023) 36.98 32.68 24.19 20.45 26.14 27.59
LLaVA (Liu et al., 2023a) 52.30 35.27 11.80 9.77 24.70 22.86
LLaMA Adapter v2 (Gao et al., 2023) 58.45 38.18 29.12 23.73 30.97 35.08
InstructBLIP (Dai et al., 2024) 72.35 39.90 32.01 43.80 47.91 41.14
BLIP-2 (Li et al., 2023) 57.48 49.83 46.21 30.52 73.52 50.77
Qwen-VL-Chat (Bai et al., 2023) 33.69 10.95 16.27 6.71 41.68 20.29
mPLUG-Owl2 (Ye et al., 2023) 78.01 48.52 39.68 20.56 59.36 48.44
LLaVa-NeXT (Liu et al., 2024) 68.23 46.74 41.21 18.43 39.57 45.57
DeepSeek-VL (Lu et al., 2024a) 74.01 51.94 45.46 21.06 29.04 48.76
Yi-VL (Young et al., 2024) 59.56 44.81 48.97 32.93 24.63 47.28
InternVL2-40B (Chen et al., 2024d) 96.76 64.25 76.28 76.50 76.27 78.70

Medical Special Model
MedVInT-TE (Zhang et al., 2023) 62.62 41.03 40.57 12.17 45.17 43.83
LLaVA-Med (Li et al., 2024a) 48.41 27.96 23.72 16.10 21.94 27.82
Med-Flamingo (Moor et al., 2023) 26.74 25.10 23.80 28.04 16.26 23.82
RadFM (Wu et al., 2023b) 27.45 21.65 23.75 16.94 20.05 23.48
MedDr (He et al., 2024) 91.37 51.62 65.56 73.18 74.52 68.27
HuatuoGPT-Vision-34B (Chen et al., 2024b) 95.06 75.67 66.51 72.83 74.92 73.23

Our Model
GMAI-VL(ours) 98.64 92.95 88.7 87.21 82.95 88.48

tasks but also in complex reasoning requiring domain-specific knowledge, surpassing models like
HuatuoGPT-Vision-34B and InternVL2-40B.

These results verify our GMAI-VL is a leading model in multimodal medical image understanding,
setting a new benchmark for medical VQA tasks. Its consistent top performance across question
types highlights its potential for broader applications in medical question answering.

5.3 EXPERIMENTS ON MMMU HEALTH & MEDICINE TRACK

Table 4: Performance on the val set for the MMMU Health & Medicine track. This track is divided
into five categories: BMS (Basic Medical Science), CM (Clinical Medicine), DLM (Diagnostics
and Laboratory Medicine), P (Pharmacy), and PH (Public Health). The best performance in each
column is highlighted in red, and the second-best performance is highlighted in blue.

Model BMS CM DLM P PH MMMU
Health & Medicine

Med-Flamingo (Moor et al., 2023) 33.6 30.2 23.3 29.3 25.8 28.4
RadFM (Wu et al., 2023b) 31.6 28.6 26.7 26.2 26.8 27.9
LLaVA-Med-7B (Li et al., 2024a) 33.8 32.3 26.7 40.7 43.3 38.6
Qwen-VL-Chat (Bai et al., 2023) 32.7 20.6 19.3 29.6 33.3 31.7
Yi-VL-34B (Young et al., 2024) 48.1 55.6 36.7 35.4 31.3 48.2
LLaVA-v1.6-7B (Liu et al., 2023a) 46.4 43.4 30.0 29.6 26.7 33.1
LLaVA-v1.6-13B (Liu et al., 2023a) 53.6 46.7 33.3 22.2 40.0 39.3
HuatouGPT-Vision-7B (Chen et al., 2024b) 50.0 63.3 36.7 48.1 53.3 50.3

GMAI-VL(ours) 50.0 60.0 43.3 50.0 53.3 51.3

The MMMU benchmark, a widely recognized standard for evaluating multimodal models, was uti-
lized to assess our proposed GMAI-VL model on the Health & Medicine track. The experimen-
tal results, presented in Table 4, show the model’s performance across five key categories: Basic
Medical Science (BMS), Clinical Medicine (CM), Diagnostics and Laboratory Medicine (DLM),
Pharmacy (P), and Public Health (PH). GMAI-VL performs strongly across multiple categories,
achieving top scores in DLM (43.3%), P (50.0%), and PH (53.3%), surpassing competitive models
like LLaVA-v1.6 and HuatuoGPT-Vision-7B. These results highlight the model’s proficiency in han-
dling complex tasks requiring diagnostic reasoning, pharmaceutical knowledge, and public health
expertise. In BMS, GMAI-VL scores 50.0%, achieve the state-of-the-art performance, demonstrat-
ing the model’s the capacity of understanding medical knowledge. In CM, the model achieves

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

60.0%, remaining competitive with other leading models. These results underscore the model’s
ability in processing both clinical and foundational medical information effectively.

Overall, GMAI-VL achieves an average score of 51.3% across the Health & Medicine track, which
is a top performance among other models, verifying its versatility in specialized medical domains.

5.4 EXPERIMENTS ON GMAI-MMBENCH

Table 5: Results on the val and test sets of GMAI-MMBench for clinical VQA tasks. The full names
of the evaluated tasks can be found in Table.5 in literature (Chen et al., 2024c). The best model in
each category is highlighted in red, while the second-best model is indicated in blue.

Model Name Overall
(val)

Overall
(test) AR BVR B CR C DD IQG MR M NT OR-A OR-HN OR-P OR-T SG SAR SIR SWR

Random Guess
Random 25.70 25.94 38.20 22.73 22.92 22.72 24.06 26.66 27.13 27.00 20.00 24.75 21.37 22.93 22.33 21.18 32.43 24.23 21.39 23.71

Medical Special Model
Med-Flamingo (Moor et al., 2023) 12.74 11.64 6.67 10.14 9.23 11.27 6.62 13.43 12.15 6.38 8.00 18.18 9.26 18.27 11.00 11.53 12.16 5.19 8.47 11.43
LLaVA-Med (Li et al., 2024a) 20.54 19.60 24.51 17.83 17.08 19.86 15.04 19.81 20.24 21.51 13.20 15.15 20.42 23.73 17.67 19.65 21.70 19.81 14.11 20.86
Qilin-Med-VL-Chat (Liu et al., 2023b) 22.34 22.06 29.57 19.41 16.46 23.79 15.79 24.19 21.86 16.62 7.20 13.64 24.00 14.67 12.67 15.53 26.13 24.42 17.37 25.71
RadFM (Wu et al., 2023b) 22.95 22.93 27.16 20.63 13.23 19.14 20.45 24.51 23.48 22.85 15.60 16.16 14.32 24.93 17.33 21.53 29.73 17.12 19.59 31.14
MedDr (He et al., 2024) 41.95 43.69 41.20 50.70 37.85 29.87 28.27 52.53 36.03 31.45 29.60 47.47 33.37 51.33 32.67 44.47 35.14 25.19 25.58 32.29

Open-Source LVLMs
Flamingo v2 (Awadalla et al., 2023) 25.58 26.34 37.74 21.50 20.62 22.00 22.41 27.29 25.91 27.45 18.00 28.79 25.16 22.13 22.00 22.00 34.61 22.88 20.44 27.43
VisualGLM-6B (Ding et al., 2021) 29.58 30.45 40.16 33.92 24.92 25.22 24.21 32.99 29.96 29.53 21.20 37.88 30.32 24.80 13.33 29.88 33.11 19.62 19.16 37.43
InstructBLIP-7B (Dai et al., 2024) 31.80 30.95 42.12 26.92 24.92 28.09 21.65 34.58 31.58 29.23 22.40 30.30 28.95 27.47 23.00 24.82 32.88 19.81 21.64 26.57
Qwen-VL (Bai et al., 2023) 34.80 36.05 37.05 37.24 35.85 28.98 24.81 43.60 24.70 30.12 19.20 44.44 29.68 31.87 25.00 31.18 30.26 21.54 20.10 26.86
Yi-VL-6B (Young et al., 2024) 34.82 34.31 41.66 39.16 26.62 30.23 31.88 38.01 26.72 24.93 25.20 37.37 29.58 31.20 32.33 30.59 36.71 24.81 23.18 31.43
LLaVA-NeXT-vicuna-7B (Liu et al., 2024) 34.86 35.42 40.62 38.64 21.08 35.42 23.91 41.22 32.39 28.04 20.53 44.95 27.92 34.98 20.22 32.82 33.63 23.08 25.06 34.86
CogVLM-Chat (Wang et al., 2023) 35.23 36.08 40.97 30.77 27.69 32.74 19.40 41.10 36.84 34.72 24.00 40.91 36.74 37.33 26.00 33.65 36.56 20.19 23.95 26.57
Monkey (Li et al., 2024d) 35.48 36.39 38.32 35.31 35.54 34.53 23.16 43.40 31.98 30.12 19.20 33.33 30.00 32.53 25.33 31.65 34.46 20.00 20.27 30.29
mPLUG-Owl2 (Ye et al., 2023) 35.62 36.21 37.51 41.08 30.92 38.10 27.82 41.59 28.34 32.79 22.40 40.91 24.74 38.27 23.33 36.59 33.48 20.58 23.01 32.86
ShareGPT4V-7B (Chen et al., 2023a) 36.71 36.70 43.96 37.59 21.54 37.57 18.80 43.26 32.39 27.30 22.80 43.43 29.47 37.33 22.00 31.76 34.98 24.42 25.06 30.00
InternVL-Chat-V1.1 (Chen et al., 2023b) 38.16 39.41 42.46 43.88 35.23 45.08 23.31 45.96 38.87 29.23 29.60 40.40 31.68 41.87 26.67 38.82 32.13 19.42 25.58 30.29
LLAVA-V1.5-7B (Liu et al., 2023a) 38.23 37.96 45.45 34.27 30.92 41.32 21.65 44.68 34.01 27.74 23.60 43.43 28.00 42.13 29.00 35.06 33.41 22.12 23.61 29.14
XComposer2 (Dong et al., 2024) 38.68 39.20 41.89 37.59 33.69 40.79 22.26 45.87 36.44 32.94 27.20 58.59 26.11 36.40 43.67 37.29 32.06 23.46 27.80 32.86
LLAVA-InternLM-7b (Contributors, 2023) 38.71 39.11 36.36 36.54 32.62 38.10 30.68 46.53 34.82 28.19 25.20 48.99 28.11 40.53 33.33 36.00 34.08 26.73 24.12 29.71
InternVL-Chat-V1.5 (Chen et al., 2024d) 38.86 39.73 43.84 44.58 34.00 33.99 31.28 45.59 33.20 38.28 32.40 42.42 31.89 42.80 27.00 36.82 34.76 23.27 24.72 32.57
InternVL-Chat-V1.2 (Chen et al., 2023b) 39.52 40.01 41.66 44.06 27.38 38.46 34.29 46.99 33.60 34.42 21.20 47.98 30.63 42.80 27.67 35.88 35.59 23.85 24.98 28.00
LLAVA-InternLM2-7b (Contributors, 2023) 40.07 40.45 39.82 37.94 30.62 35.24 29.77 48.97 34.01 25.96 20.80 53.03 30.95 42.67 32.00 39.88 32.43 21.73 24.38 38.00
DeepSeek-VL-1.3B (Lu et al., 2024a) 40.25 40.77 38.55 35.14 38.92 40.07 27.97 48.12 35.63 31.75 22.80 46.97 40.74 44.93 31.00 40.47 33.33 22.31 21.39 31.71
DeepSeek-VL-7B (Lu et al., 2024a) 41.73 43.43 38.43 47.03 42.31 37.03 26.47 51.11 33.20 31.16 26.00 44.95 36.00 58.13 36.33 47.29 34.91 18.08 25.49 39.43
MiniCPM-V2 (Xu et al., 2024) 41.79 42.54 40.74 43.01 36.46 37.57 27.82 51.08 28.74 29.08 26.80 47.47 37.05 46.40 25.33 46.59 35.89 22.31 23.44 31.71

Proprietary LVLMs
Claude3-Opus (Anthropic, 2024) 32.37 32.44 1.61 39.51 34.31 31.66 12.63 39.26 28.74 30.86 22.40 37.37 25.79 41.07 29.33 33.18 31.31 21.35 23.87 4.00
Qwen-VL-Max (Bai et al., 2023) 41.34 42.16 32.68 44.58 31.38 40.79 10.68 50.53 32.79 44.36 29.20 51.52 41.37 58.00 30.67 41.65 26.95 25.00 24.64 39.14
GPT-4V (Achiam et al., 2023) 42.50 44.08 29.92 48.95 44.00 37.39 12.93 52.88 32.79 44.21 32.80 63.64 39.89 54.13 37.00 50.59 27.55 23.08 25.75 37.43
Gemini 1.0 (Team et al., 2023) 44.38 44.93 42.12 45.10 46.46 37.57 20.45 53.29 35.22 36.94 25.20 51.01 34.74 59.60 34.00 50.00 36.64 23.65 23.87 35.43
Gemini 1.5 (Reid et al., 2024) 47.42 48.36 43.50 56.12 51.23 47.58 2.26 55.33 38.87 48.07 30.00 76.26 51.05 75.87 46.33 62.24 20.57 27.69 30.54 40.57
GPT-4o (Achiam et al., 2023) 53.53 53.96 38.32 61.01 57.08 49.02 46.62 61.45 46.56 56.38 34.00 75.25 53.79 69.47 48.67 65.88 33.93 22.88 29.51 39.43

Our Model
GMAI-VL(ours) 61.74 62.43 75.26 59.66 67.24 56.86 54.29 67.14 42.80 79.97 41.60 75.00 60.45 75.48 53.33 58.12 42.09 72.31 37.40 59.14

The GMAI-MMBench benchmark is a comprehensive medical multimodal benchmark designed to
evaluate models on a range of clinical visual question-answering (VQA) tasks. Table. 5 presents the
results of various LVLMs, including open-source LVLMs and commercial models, evaluated on the
val and test sets across multiple clinical tasks. GMAI-VL outperforms other models, achieving the
highest scores on both the val set with 59.23% and the test set with 59.89%, surpassing the leading
commercial models such as GPT-4V and Gemini 1.5. Notably, GMAI-VL excels in specific tasks
such as abnormality recognition (73.78%), biological variation recognition (63.06%), and clinical
disease diagnosis (66.67%). These results demonstrates the model’s strong ability in understanding
and interpreting complex clinical images. In comparison to other models, GMAI-VL consistently
achieves either the best or second-best performance across most tasks. For instance, it ranks first in
16 out of 20 categories, including key tasks such as AR (Attribute Recognition) and DD (Disease
Diagnosis), where it achieved scores of 75.26% and 67.14%, respectively, suggesting GMAI-VL’s
strength in understanding medical scenarios.

Overall, GMAI-VL establishes a new benchmark in various clinical VQA tasks, demonstrating its
potential as a reliable and versatile tool in medical multimodal applications.

6 CONCLUSION

In this study, we introduce GMAI-VL, a large vision-language model, along with GMAI-VL-5.5M, a
comprehensive multimodal medical dataset aimed at advancing general medical AI (GMAI). GMAI-
VL-5.5M, which converts hundreds of medical image analysis datasets into high-quality image-text
pairs, enables GMAI-VL to effectively address a wide range of clinical tasks. Experimental re-
sults show that GMAI-VL-5.5M significantly enhances GMAI-VL’s performance on diverse clinical
tasks, achieving state-of-the-art results across several key benchmarks.
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A APPENDIX

A.1 DETAILS FOR GMAI-VL-5.5M

In Table. 6 , we provide sub-datasets information of the multimodal dataset GMAI-VL-5.5M we
have constructed. Based on the different data forms introduced in the paper, we have categorized the
data into five distinct sub-datasets. These include GMAI-MM-Caption-1.7M, GMAI-MM-Instruct-
0.9M, GMAI-MM-Percept-1.3M, GMAI-Text-Single-1M, and GMAI-Text-0.6M. Each sub-dataset
corresponds to specific components: image caption data, free instruction data, visual perception
data, text-only, and conversation.

Table 6: Sub-Dataset Details for GMAI-VL-5.5M

Dataset Sub-Dataset Name Description Size

GMAI-VL-5.5M

GMAI-MM-Caption-1.7M A curated set of detailed medical image captions. 1.7M

GMAI-MM-Instrunct-0.9M A diverse set of instructions for medical image analysis. 0.9M

GMAI-MM-Percept-1.3M A dataset of labels for medical image classification and segmentation. 1.3M

GMAI-Text-Single-1M A set of single-round medical dialogues on patient queries 1.0M

GMAI-Text-Multi-0.6M A dataset of multi-turn medical conversations on various topics. 0.6M

A.2 TRAINING DATA DETAILS

In this section, we provide a comprehensive overview of all datasets utilized for training the GMAI-
VL model. The details include the dataset names, their corresponding categories, the amount of
data used for training, and the proportion of training data allocated to each dataset during the three
phases of model training.

Table 7 summarizes the datasets employed, highlighting their respective categories and sizes. It is
important to note that for certain datasets, we performed data cleaning and bilingual translation. As
a result, the dataset sizes reported here may differ from the official numbers.
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Training Data

Medical-Caption (33.7%)
 GMAI-MM-Caption-1.7M [1.7M]
 PMC-OA [1.3M]
 PubMedVision [1.3M]
 QUILT-1M [643.5k]
 MedICaT [173.7k]
 MPx-Single [31.4k]
 Retina Image Bank [22.0k]
Medical-Instruct (31.8%)
 GMAI-MM-Percept-0.9M [1.3M]
 PubMedVision [1.3M]
 MAI-MM-Instrunct-1.2M [0.9M]
 Private [406.8k]
 PMC-Inline [288.1k]
 Medical-Diff-VQA [260.8k]
 PMC-VQA [251.2k]
 PMC-CaseReport [109.8k]
 ROCOv2 [60.2k]
 LLaVA-Med-60k [56.0k]
 VQA-Med-2019 [3.2k]
 PathVQA [2.6k]
 SLAKE [586]
 VQA-RAD [313]
Medical-Text (11.2%)
 GMAI-Text-Single-1M [1.0M]
 GMAI-Text-Multi-0.7M [0.7M]
General-Instruct (8.4%)
 ShareGPT4V [664.7k]
 DVQA [200.0k]

 LLaVA-Instruct-150K [157.7k]
 MMChemExam [123.5k]
 GeoQA+ [72.3k]
 SynthDoG [29.8k]
 ChartQA [18.3k]
 AI2D [12.4k]
 DocVQA [10.2k]
 ChemOCR [846]
General-Text (6.5%)
 Open Hermes 2.5  [200.3k]
 Firefly [189.9k]
 Orca-Math [189.9k]
 UltraChat [189.9k]
 Lima [83.3k]
 Alpaca-Instruct-52K [48.8k]
 Cosmopedia-100k [33.3k]
 ShareGPT4V [26.3k]
 Blossom Orca [20.0k]
 COIG-CQIA [14.9k]
 LogiQA [12.8k]
 Leetcode [1.8k]
Report Generation (4.6%)
 MIMIC-CXR [486.1k]
 CheXpertPlus [223.2k]
 OpenI [7.7k]
General-Caption (3.7%)
 ALLaVA [468.7k]
 ShareGPT4V [102.0k]

Figure 4: Distribution of Our Training Data.
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Table 7: List of datasets used in our model. We employ a large collection of image-text data and
instruction data for training stage.

Dataset
Category Dataset Name Size ratio in stage 1&2 ratio in stage 3

General
Captioning

ALLaVA(Chen et al., 2024a) 468k 100.0% 50.0%ShareGPT4V(Chen et al., 2023a) 102k

Medical
Captioning

GMAI-MM-Caption-1.7M 1.7M 100.0% 100.0%PubMedVision(Chen et al., 2024b) 1.3M
MedICaT(Subramanian et al., 2020) 173k

100.0% 5.0%
MPx-Single(Wu et al., 2023b) 31k
PMC-OA(Lin et al., 2023) 1.3M
QUILT-1M(Ikezogwo et al., 2024) 643k
Retina Image Bank(ASRS, 2024) 22k

Report
Generation

CheXpertPlus(Chambon et al., 2024) 223k
100.0% 30.0%MIMIC-CXR(Johnson et al., 2019) 486k

OpenI(Demner-Fushman et al., 2016) 7k

General
Instruction

GeoQA+(Cao & Xiao, 2022) 72k

100.0% 75.0%

AI2D(Kembhavi et al., 2016) 12k
SynthDoG(Kim et al., 2022) 29k
ChartQA(Masry et al., 2022) 18k
MMChemExam(Li et al., 2024c) 219k
LLaVA-Instruct-150K(Liu et al., 2023a) 157k
DVQA(Kafle et al., 2018) 200k
DocVQA(Mathew et al., 2021) 10k

Medical
Instruction

GMAI-MM-Percept-1.3M 1.3M

100.0% 100.0%GMAI-MM-Instruct-0.9M 0.9M
PubMedVision(Chen et al., 2024b) 1.28M
LLaVA-Med-60k(Li et al., 2024a) 56k
PMC-Inline(Wu et al., 2023b) 288k

100.0% 10.0%

VQA-Med-2019(Ben Abacha et al., 2019) 3.2k
Medical-Diff-VQA(Hu et al., 2023) 260k
PathVQA(He et al., 2020) 2.6k
PMC-CaseReport(Wu et al., 2023b) 109k
PMC-VQA(Zhang et al., 2023) 251k
ROCOV2(Rückert et al., 2024) 60k
SLAKE(Liu et al., 2021) 0.6k
VQA-RAD(Lau et al., 2018) 0.3k

General Text

blossom orca(Azure99, 2024) 20k

0.0% 100.0%

COIG-CQIA(Bai et al., 2024) 14.8k
Cosmopedia-100k(Ben Allal et al., 2024) 33k
ShareGPT4V(Chen et al., 2023a) 26k
Orca-Math(Mitra et al., 2024) 379k
Leetcode(Bernard, 2023) 1.7k
LogiQA(Liu et al., 2020) 12.7k
Lima(GAIR, 2023) 83k
Open Hermes 2.5(Teknium, 2023) 200k
Firefly(Yang, 2023) 189k
UltraChat(Ding et al., 2023) 189k
Alpaca-Instruct-52K(Taori et al., 2023) 49k

Medical Text GMAI-Text-Single-1M 1.0M 0.0% 100.0%GMAI-Text-Multi-0.6M 649k
Overall - 15.7M - -
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Table 8: Training settings of GMAI-VL’s stage I, stage II, and stage III.

Settings Stage I Stage II Stage III
freeze LLM True True False
freeze MLP False False False
freeze Vision Encoder True False False
packing type soft packing soft packing soft packing
learning rate 1e-3 1e-4 1e-5
learning rate schedule cosine decay cosine decay cosine decay
optimizer AdamW AdamW AdamW
optimizer hyper-parameters β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
input size 336x336 336x336 336x336
total batch size 32x8x2 32x4x4 32x4x4
drop rate 0.0 0.0 0.0
numerical precision DeepSpeed bf16 DeepSpeed bf16 DeepSpeed bf16
GPUs for training 32xA100 (80G) 32xA100 (80G) 32xA100 (80G)

A.3 MODEL TRAINING SETTINGS

The table. 8 presents the training settings for GMAI-VL across three stages, detailing key hyperpa-
rameters.

• Stage I (Shallow alignment). The large language model (LLM) is frozen, while the MLP is train-
able, and the vision encoder is frozen. The learning rate is set to 1e−3 with a cosine decay sched-
ule, using AdamW as the optimizer. Input size is 336× 336, and the total batch size is 32× 8× 2,
with no dropout.

• Stage II (Deep alignment). Both the LLM and MLP remain frozen, but the vision encoder is
unfrozen and trainable. The learning rate is lowered to 1e−4, and other settings remain consistent
with Stage 1.

• Stage III (Instruction tuning). None of the components are frozen, allowing the entire model to
be fine-tuned. The learning rate is further reduced to 1e−5, while other parameters, including
optimizer and batch size, remain unchanged across stages.

Each stage utilizes DeepSpeed for mixed-precision training (bf16) on 32 A100 (80GB) GPUs.

This image is a frontal chest X-ray showing the thoracic 
cavity. The lungs appear well-expanded and clear, with no 
visible signs of consolidation, pleural effusion, or 
pneumothorax. The heart size is within normal limits, and 
the mediastinal structures are unremarkable. The bony 
thorax, including the ribs and vertebral bodies, appears 
intact without any fractures or abnormalities. The 
diaphragmatic contours are sharp and well-defined. The soft 
tissue structures surrounding the thorax, including the 
subcutaneous tissues, are normal. Overall, the image 
demonstrates a clear and well-defined chest cavity with no 
significant abnormalities.

       

Please caption this 
image.

       

Please generate a detailed 
description of the image and 
provide a diagnostic 
conclusion.

       

D. lung nodule
       

Which of the following options 
best matches the symptoms of 
marked region shown in the CT 
image?
A. enhancing tumor
B. liver tumor
C. colon cancer primaries
D. lung nodule
E. brain aneurysm

B. bubbles

       

Assessing the boxed area in this 
endoscopy image, which artifact 
stands out?
A. blood artifacts
B. bubbles
C. low contrast
D. instrument artifacts
E. blood artifacts

该视网膜光学相干断层扫描（OCT）图像显示了视网膜

层中的明显液体积聚，这是黄斑水肿的特征。这种液
体积聚表现为视网膜层内囊状或圆形、低反射空间的
增加。这种OCT表现通常与黄斑水肿（DME）一致，这

是一种导致视网膜内液体积聚的疾病，与黄斑变性
（AMD）有关。

       

这张图像上是否存在DRUSEN、
CNV或者DME.

Preliminary Diagnostic Conclusion: The fundus image shows 
moderate non-proliferative diabetic retinopathy.
Detailed Description:
1.Retinal Background: The retinal background appears orange-red.
2.Vessels: The retinal vessels are clearly visible, with no significant 
dilation or narrowing.
3.Microaneurysms: Multiple tiny red dot-like lesions are visible on 
the retina, which are typical manifestations of microaneurysms.
4.Hard Exudates: Several small yellow or white spots are present 
on the retina, indicating hard exudates that suggest leakage from 
retinal vessels.
5.Retinal Hemorrhages: Multiple small dark red spots are visible on 
the retina, which are signs of retinal hemorrhages.
6.Optic Disc: The optic disc is clearly visible with sharp borders and 
shows no signs of edema or neovascularization. 
Based on the above observations, it can be concluded that the 
fundus image demonstrates moderate non-proliferative diabetic 
retinopathy…

请更加详细解释什么是DME.

黄斑水肿（DME）是一种疾病，由于液体在视网

膜黄斑区积聚，导致中央视力丧失。这种积聚可
能是由于多种因素引起的，包括糖尿病性黄斑变
性（DM）、中央静脉阻塞（CVA）和中央视网膜
静脉阻塞（CRVO）。黄斑水肿导致视网膜增厚和
肿胀，这可能导致视力模糊、扭曲和视力下降。

       

The image shows a series of chest CT scans highlighting the 
characteristic radiological findings of COVID-19 infection. The 
scans reveal bilateral pulmonary ground-glass opacities, which 
are typical manifestations of COVID-19 pneumonia. 
Additionally, consolidation and alveolar filling are observed, 
which are common radiological features of COVID-19 infection. 
These findings are consistent with the clinical manifestations 
and course of COVID-19 infection.

Analyze the 
diseases presented 
in the image.

Figure 5: Examples of our experimental results.
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A.4 RESULTS

Fig. 5 illustrates several examples of our model on various tasks including image description, dis-
ease diagnosis, free question answering, etc., demonstrating that our multimodal model has strong
general capabilities in the medical field. In addition, our model supports bilingual capabilities in
Chinese and English.
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