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Abstract

We demonstrate that, through appropriate prompting, GPT-3 can be triggered1

to perform iterative behaviours necessary to execute (rather than just write or2

recall) programs that involve loops, including several popular algorithms found in3

computer science curricula or software developer interviews. We trigger execution4

and description of iterations by regimenting self-attention (IRSA) in one (or a5

combination) of three ways: 1) Using strong repetitive structure in an example6

of an execution path of a target program for one particular input, 2) Prompting7

with fragments of execution paths, and 3) Explicitly forbidding (skipping) self-8

attention to parts of the generated text. On a dynamic program execution, IRSA9

leads to larger accuracy gains than replacing the model with the much more10

powerful GPT-4. IRSA has promising applications in education, as the prompts11

and responses resemble student assignments in data structures and algorithms12

classes. Our findings hold implications for evaluating LLMs, which typically target13

the in-context learning: We show that prompts that may not even cover one full task14

example can trigger algorithmic behaviour, allowing solving problems previously15

thought of as hard for LLMs, such as logical puzzles. Consequently, prompt design16

plays an even more critical role in LLM performance than previously recognized.17

1 Introduction18

Large language models (LLMs) [2, 27, 5, 21] are trained on large text datasets, which typically19

include descriptions of procedures and even computer programs [4]. However, their performance20

on complex reasoning tasks remains limited despite using advanced prompting methods, such as21

Chain-of-Thought (CoT) [31, 40, 20, 38, 37, 42, 6, 36, 15, 11, 12]. This implies that despite the22

massive number of parameters and self-attention to all previous tokens, current LLMs are unlikely to23

solve problems that require many (or iterated) reasoning steps in a direct, savant-like manner. New24

benchmarks target these more complex tasks, such as logical deduction and logical grid puzzles25

in BIG-bench Lite [32], and in-context learning of these problems is typically poor. Practical26

applications like GitHub Copilot show a mix of promise and limitations: Copilot can auto-generate27

substantial amounts of code [25, 4], but falls short of expert programmers, lacking execution, state28

tracking, and debugging abilities (apart from anecdotal evidence, e.g. Fig. 3.7 in [3]; see Section A.3).29

LLMs generate tokens in order, each based on many previous tokens in the sequence, whether these30

tokens were part of the prompt or had just been generated by the LLM itself. Such self-attention31

could allow an LLM to use all previously generated tokens as the scratchpad for tracking reasoning32

steps, states, etc.1. Such use of generated tokens would resemble a classical Turing Machine with its33

memory tape [34]. In principle, a non-trivial recurrent transformer model with infinite attention could34

1This is likely to be one of the reasons for the increased performance of CoT prompting.
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be Turing-complete and capable of executing arbitrary routines, as long as the attention mechanism35

can be controlled stringently enough. But, even in relatively simple settings, LLMs appear to resist36

strict controls, e.g., slight changes in prompts can yield dramatically different responses [14, 17, 30],37

because many recurrent patterns in the training data are encoded into a single model, and learned38

patterns overlap and vary in the context size. Thus it is easy to mislead with a prompt with accidental39

alphabetical or numerical ordering, or some undetectable semantic bias [41, 16, 19].40

In Section 2, we introduce much stricter attention controls that instruct LLMs to unroll reasoning41

steps of a procedure with the initially undetermined length, and decide when the solution is found:42

Iteration by Regimenting Self-Attention (IRSA). The basic way to achieve such deliberate self-43

attention control is through highly structured prompting with an example of execution path for one44

example, as illustrated for Bubble Sort algorithm in Prompt 1, which encourages an LLM to output45

not just the sorted sequence but also the swap count (response in Prompt A.1 in Appendix), which is46

a challenging task to solve in a savant manner. We further explore fragmented prompting which47

combines multiple fragments of execution paths, as well as the strategy of skipping parts of generated48

text when performing self-attention. We also discuss interpreter/compiler prompts that can translate49

an algorithm in a high-level programming language into an IRSA prompt that GPT-3 can execute50

(with details in Section 2.4 in the Appendix).51

We present results on a wide range of algorithms taught in computer science curricula and used to test52

software engineers in coding interviews, including string manipulations, dynamic programming, and53

stack operations in Section 3. Our findings point to broader applications for LLMs beyond existing54

uses like Copilot in areas like software engineering and education [7, 24, 28, 18]. More pressingly,55

they point out a critical issue in evaluating in-context learning of LLMs, suggesting that current56

evaluations may underestimate LLMs’ abilities if prompts can combine natural language instructions57

with algorithmic iterative reasoning. The sensitivity of the performance to prompt design may be58

amplified by the iterative reasoning triggered by the prompt, which will then beg the question: If59

one LLM beats the other on a task, is it simply because we have not found the right prompt for60

the second model? For example, IRSA prompting increases the performance of GPT-3 family on61

logical deduction puzzles from 32% to 76% (Table 1. The discussion in the Appendix also includes62

an experiment with GPT-4 [21] on a well-known dynamic programming task showing that even the63

latest member in the family cannot consistently execute code without prompting in IRSA style.64

2 Iteration by Regimenting Self Attention (IRSA)65

Prompt 1, as well as the prompts 2, A.4, A.5, and A.6 in the Appendix, illustrate the basic IRSA. In66

each of these examples, a single prompt is provided for a task, which, when combined with a new67

instance of the task, trigger the execution of an iterative algorithm. The algorithms are single loop68

(Prompts A.5 and A.6) or double loop (Prompts 1, A.4, and 2); and may have a known or unknown69

number of iterations until termination.70

Crucially, the prompts show all state changes and explain each change before it occurs. Although71

the explanation is colloquial, the structure of it is both rigid and repetitive, strictly regimenting the72

attention to the rules (corresponding to program instructions) and state changes. In all these examples,73

this strategy hardens the attention sufficiently to facilitate disciplined procedural reasoning, while74

leaving non-regimented content open to interpretation. For example, Prompt 1 shows how a sequence75

of 4 integers can be sorted in some detail, but the same prompt can also be used to sort characters76

alphabetically or animals by size, and the procedure typically works for both shorter and longer lists.77

These prompts could be thought of as an instance of Chain-of-Thought prompting [38, 37, 42, 6, 36,78

15, 11]. However, a significant distinction lies in the number of reasoning steps, which is limited79

and fixed in usual CoT applications. In contrast, the algorithms explored here require an unspecified80

number of iterations required to complete the execution, and may even incorporate double loops. The81

prompt contains the condition for declaring the end of execution.82

2.1 Using IRSA to reason over logical puzzles.83

Iterative reasoning is required in solving a number of NLP word prolems, (e.g., [32]), not just in84

execution of standard algorithms, as these algorithms can be employed after parsing the world85

problem. The BIG-bench Logical Deduction task asks for the ordering of several objects given86

their pairwise relationships described in natural language (e.g., a robin is standing on a branch to87
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Prompt 1. Bubble Sort: The prompt describes iterative state evolution, including counting swaps,
and making the determination when to stop. Playground link (use with 0 temperature)
Problem: 2, 3, 1, 5

EXECUTION

Prep

Length of the list: 4

Number of consecutive pairs: 3

a=[2 3 1 5]

set n_swaps=0

EndPrep

Iteration:

set swap_flag=false. The state is:

State: a=[2 3 1 5], n_swaps=0, swap_flag=false EndState

Pair a[1,2] = [2 3] Check if 2<3. Is it true? Yes.

Because of that, we leave state as is

State: a=[2 3 1 5], n_swaps=0, swap_flag=false

Pair a[2,3]= [3 1] Check if 3<1. Is it true? No.

Thus, we swap_flag=true, increase n_swaps by one,

and in the latest a=[2 3 1 5]

swap 3 and 1 to get into state:

State: a=[2 1 3 5], n_swaps=1, swap_flag=true EndState

Pair a[3,4]= [3 5] Check if 3<5. Is it true? Yes.

Because of that, we leave state as is

State: a=[2 1 3 5], n_swaps=1, swap_flag=true EndState

swap_flag is true, so do another iteration

Iteration:

set swap_flag=false. The state is:

State: a=[2 1 3 5], n_swaps=1, swap_flag=false EndState

Pair a[1,2] = [2 1] Check if 2<1. Is it true? No.

Thus, we set swap_flag=true, increase n_swaps by one,

and in the latest a=[2, 1, 3, 5]

swap 2 and 1 to get into state:

State: a=[1 2 3 5], n_swaps=2, swap_flag=true EndState

Pair a[2,3] = [2 3] Check if 2<3. Is it true? Yes.

Because of that, we leave state as is

State: a=[1 2 3 5], n_swaps=2, swap_flag=true EndState

Pair a[3,4] = [3 5] Check if 3<5. Is it true? Yes.

Because of that, we leave state as is

State: a=[1 2 3 5], n_swaps=2, swap_flag=true EndState

swap_flag is true, so do another iteration

Iteration:

set swap_flag=false. The state is:

State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState

Pair a[1,2] = [1 2] Check if 1<2. Is it true? Yes.

Because of that, we leave state as is

State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState

Pair a[2,3] = [2 3] Check if 2<3. Is it true? Yes.

Because of that, we leave state as is

State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState

Pair a[3,4] = [3 5] Check if 3<5. Is it true? Yes.

Because of that, we leave state as is

State: a=[1 2 3 5], n_swaps=2, swap_flag=false EndState

swap_flag is false, so stop the iteration

Final List: 1, 2, 3, 5

Number of swaps: 2

END OF EXECUTION

Problem: 0, 3, 8, 5, 6

EXECUTION
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Prompt 2. Logical deduction puzzle IRSA prompt. Playground link (use with 0 temperature)
PUZZLE: The following objects need to be ordered. obj1 is the biggest. obj2 is smaller than obj3.
obj1 is bigger than obj2. QUESTION: Which object is the biggest?
START
Parsing step:

Items: obj1, obj2, obj3
Numbe of items: 3
Statement 1: obj1 is the biggest.
Statement 2: obj2 is smaller than obj3.
Statement 3: obj1 is bigger than obj2.

Scoring identification step:
Scores will refer to size.
Since we have 3 items, let’s assume that the biggest gets a score of 3 pounds
and the smallest gets the score of 1 pound.

Translation step:
Available variable names: x, y, z, a, b, c
Map item scores of ’obj1’, ’obj2’, ’obj3’ to variable names x, y, z
obj1 score is x; obj2 score is y; obj3 is z;
Statement 1: ’x’ is the biggest.
Statement 2: ’y’ is smaller than ’z’.
Statement 3: ’x’ is bigger than ’y’.

Initialization step:
Words used to qualify the realtionsips: smaller, bigger, biggest
Orientation step:

the biggest: refers to the score of 3
smaller: refers to smaller score
bigger: refers to larger score

Initialize so that all scores are different numbers between 1 and 3
Score_assignment_A:
x=2, y=3, z=1

Iterative reasoning
Iteration 1:

update_flag=false
Statement 1: ’x’ is the biggest, meaning: x should be 3
In Score_assignment_A, x is 2
x is not what it should be, so we need to make a change, so we set update_flag=true and we need to make a swap.
In the statement there is only one variable and it is x. We need to find another. We want x to be 3,
but we see that in Score_assignment_A that 3 is assigned to y, so we swap values of x and y to make
Score_assignment_B:
x=3, y=2, z=1
Statement 2: ’y’ is smaller than ’z’, meaning: y<z
In Score_assignment_B, y is 2 and z is 1, so y<z maps to 2<1
2<1 is false, so we need to make a change, so we set update_flag=true and we need ot make a swap.
In the statement there are two variables and those are y and z so we swap in Score_assignment_B to make
Score_assignment_C:
x=3, y=1, z=2
Statement 3: ’ x’ is bigger than ’y’, meaning x>y
In Score_assignment_C, x is 3 and y is 1, so x>y maps to 3>1
3>1 is true, so we don’t need to make a change.

End of iteration. Since update_flag is true, we need more iterations.
Iteration 2:

update_flag=false
Statement 1: ’x’ is the biggest, meaning: x=3
In Score_assignment_C, x is 3, so x=3 maps to 3=3
3=3 is true, so we don’t need to make a change.
Statement 2: ’y’ is smaller than z, meaning: y<z
In Score_assignment_C, y is 1 and z is 2, so y<z maps to 1<2
1<2 is true, so we don’t need to make a change.
Statement 3: ’x’ is bigger than y, meaning x>y
In Score_assignment_C, x is 3 and y is 1, so x>y maps to 3>1
3>1 is true, so we don’t need to make a change.

End of iteration. Since update_flag is false, we have finished all iterations and found the correct order.
The correct score assignment is the last (Score_assignment_C):
x=3, y=1, z=2
Reverse translation step:
Map items ’obj1’, ’obj2’, ’obj3’ to variable names x, y, z
so we replace x by obj1, y by obj2, and z by obj3 to get size scores:
obj1 has the score 3; obj2 has the score 1; obj3 has the score 2

Question: Which object is the biggest?
Answer: obj1
Sorting all by score starting with obj1:
with score 3, obj1
with score 2, obj3
with score 1, obj2
END

PUZZLE: On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book.
The red book is to the right of the gray book. The black book is to the left of the blue book.
The blue book is to the left of the gray book. The purple book is the second from the right.
QUESTION: Which is leftmost?
START
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the right of a raven, but a sparrow is the left-most). Despite the low number of objects (e.g., five)88

in these puzzles, LLMs struggle to solve them in zero- or few-shot settings, much like how human89

solvers typically cannot just see the correct answer instantly without scratch paper. This task is not90

solved well by LLMs without external search/reasoning/inference algorithms, such as ThinkSum [22].91

However, a variant of BubbleSort algorithm adapted to this problem and shown in Prompt 2 can be92

used to solve 76% of these puzzles. The prompt has a CoT structure that translates the problem into a93

canonical form, and then, in IRSA style, describes an iterative swapping procedure that rearranges94

the objects.95

2.2 Fragmented prompting.96

Another way to trigger iterative behaviour is through fragmented prompting, illustrated in Prompt 3),97

which relies on:98

• Complete state specification. In contrast to Prompt 1 where iterative behaviour is induced indirectly99

through worked-out examples of multiple full loops, Prompt 3 explicitly describes state content in100

state-to-state transitions, including the iterator i.101

• Fragmentation. Prompt 3 does not fully cover the entire execution path of any single example.102

Instead, it follows the first three state changes2 for the sequence 2, 3, 1, 5, and then stops in the103

middle of a sentence. Then it shows 6 additional fragments of execution paths for different problems.104

Interestingly, fragmented prompting can also trigger iterative behaviour, where the language model105

accurately executes the algorithm on a given input and outputs END OF EXECUTION when the106

termination condition (no new updates on the sequence) is met. Viewing this prompt as an instance107

of in-context learning, it is challenging to classify it in usual terms. It goes beyond 0-shot learning108

as it contains explanations specific to the algorithmic sorting task. Yet, as opposed to what the109

few-shot CoT prompting might do, it does not work out any single example of array sorting. Instead,110

it provides fragments of patterns that can be stitched together to execute the algorithm (and GPT-3111

CODE-DAVINCI-002 does execute it correctly for new inputs).112

The potential advantage of such fragmented prompting is that the prompt can be shorter and include a113

greater variety of situations that may be encountered in new problems. A potential disadvantage is that114

the language model may get confused by the fragmentation and start hallucinating new independent115

fragments. In this case, we managed to avoid that by having the first fragment starting from the start116

of execution, going through several state transitions, and ending mid-sentence. Because of this, when117

a new problem is given, the language model starts running the execution path from the beginning,118

and later refers to various cases in the prompt for guidance on how to proceed.119

2.3 Skip attention.120

Prompt 3 also illustrates the idea of attention skipping. Whether using a single-execution or a121

fragmented prompt, if the state in the <state>*</state> structure is complete, the attention122

mechanism can generate the next token without attending to all the generated text. It is sufficient to123

attend to the prompt and the text generated after and including the last state.124

If the skipping is implemented on the server side, akin to stop word functionality, then skipping125

unnecessary attention saves computation: The state of the model at the end of the prompt is cached and126

used to continue processing from the latest generated <state> marker, ignoring the text generated127

in-between. Skip-to-state can also be implemented on the client side, iteratively updating the original128

prompt by concatenating the latest <state>*</state> structure to the original prompt and calling129

the generative model with </state> as a stop sequence (We did the latter in our experiments). In130

both cases, the skip-to-state strategy should increase the number of tokens that can be generated,131

as self-attention, which grows linearly with the generated text, is the primary cause for the token132

limitations. Skip-to-state strategy keeps the self-attention cost constant. As IRSA requires the133

unrolling of potentially long iterative algorithms, these savings are important. For example, running134

a dynamic program that keeps track of 2D matrices is only practical in this manner. (See also [29]135

on an external memory approach to dealing with limited attention length. Here we deal with it by136

skipping parts of generated text, instead). Another advantage of skip-to-state attention is that by137

only attending to the necessary information, the generative model is less likely to get confused by138

accidental patterns created in its own generated text. (See more in Section A.3 and Figure A.1.)139

2The full execution path in this style is shown in Prompt A.4.
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Prompt 3. Fragments: An incomplete path for the first few Buble Sort state transitions for one
sequence is followed by state transitions involving different sequences at different execution points.
Initial part of the response is marked green. Skip attention: The part of the response up to the last
state is not needed to continue the generation. Only the prompt, the last <state>*</state>, and
the text after it are necessary to generate the next token. Playground link (use with 0 temperature)

A
tte

nd

Problem: 2, 3, 1, 5
EXECUTION

Length of the list: L=4
Number of pairs: P=3
a=[2 3 1 5]
set n_swaps=0. set i=P=3. set swap_flag=true.

<state> a=[2 3 1 5] i=3 P=3 n_swaps=0 swap_flag=true </state>
Since i=3 and P=3, i and P are equal, so this iteration is done, but swap_flag is true,
so we need another iteration
Iteration:

set swap_flag=false. set i=0. The state is:
<state> a=[2 3 1 5] i=0 P=3 n_swaps=0 swap_flag=false </state>
Since i=0 and P=3, these two are different, so we continue
a[i]=a[0]=2 a[i+1]=a[1]=3
Because 2<3 is true we keep state as is and move on by increasing i
<state> a=[2 3 1 5] i=1 P=3 n_swaps=0 swap_flag=false </state>
Since i=1 and P=3, these two are different, so we continue
a[i]=a[1]=3 a[i+1]=a[2]=1
Because 3<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[2 3 1 5]
swap 3 and 1, and increase i, and keep P as is to get
<state> a=[2 1 3 5] i=2 P=3 n_swaps=1 swap_flag=true </state>
Since i=2 and

<state> a=[6 5 8 9 1 2] i=2 P=5 n_swaps=5 swap_flag=false </state>
Since i=2 and P=5 i and P are different, so we continue
a[i]=a[2]=8 a[i+1]=a[3]=9
Because 8<9 is true we we keep state as is and move on by increasing i
<state> a=[6 5 8 9 1 2] i=3 P=5 n_swaps=5 swap_flag=false </state>

<state> a=[9 1] i=0 P=1 n_swaps=2 swap_flag=true </state>
Since i=0 and P=1 i and P are different, so we continue
a[i]=a[0]=9 a[i+1]=a[1]=1
Because 9<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[9 1] swap 9 and 1
and increase i, and keep P as is to get
<state> a=[1 9] i=1 P=1 n_swaps=3 swap_flag=true </state>

<state> a=[6 7 3 5] i=3 P=3 n_swaps=7 swap_flag=false </state>
Since i=3 and P=3 i and P are equal, so this iteration is done, swap_flag is false, so stop

Final List: 6, 7, 3, 5
Number of swaps: 7
END OF EXECUTION

<state> a=[3 5 6 8] i=3 P=3 n_swaps=1 swap_flag=true </state>
Since i=3 and P=3 i and P are equal, so this iteration is done, but swap_flag is true,
so we need another iteration

Iteration:
sset swap_flag=false. set i=0. The state is:
<state> a=[3 5 6 8] i=0 P=3 n_swaps=1 swap_flag=false </state>

<state> a=[2 8 1 3 5 7 4] i=1 P=6 n_swaps=5 swap_flag=false </state>
Since i=1 and P=6 i and P are different, so we continue
a[i]=a[1]=8 a[i+1]=a[2]=1
Because 8<1 is false we set swap_flag=true,increase n_swaps by one, and in a=[2 8 1 3 5 7 4]
swap 8 and 1 and increase i, and keep P as is to get
<state> a=[2 1 8 3 5 7 4] i=2 P=6 n_swaps=6 swap_flag=true </state>

<state> a=[4 8] i=0 P=1 n_swaps=7 swap_flag=true </state>
Since i=0 and P=1 i and P are different, so we continue
a[i]=a[0]=4 a[i+1]=a[1]=8
Because 4<8 is true we we keep state as is and move on by increasing i
<state> a=[4 8] i=1 P=1 n_swaps=7 swap_flag=true </state>

Problem: 3, 1, 8, 9, 6
EXECUTION

D
on

’t
at

te
nd

Length of the list: L=5
Number of pairs: P=4
a=[3 1 8 9 6]
set n_swaps=0. set i=P=4. set swap_flag=true.

<state> a=[3 1 8 9 6] i=4 P=4 n_swaps=0 swap_flag=true </state>
Since i=4 and P=4 i and P are equal, so this iteration is done, but swap_flag is true,
so we need another iteration

Iteration:
set swap_flag=false. set i=0. The state is:

A
tte

nd <state> a=[3 1 8 9 6] i=0 P=4 n_swaps=0 swap_flag=false </state>
Since i=

6

https://platform.openai.com/playground/p/R10IV9sCAfyU1D4dpiwZys4b?model=code-davinci-002


2.4 GPT as a machine language: Prompting to interpret/compile a program.140

A general-purpose computer can execute algorithms that convert the text of a program into its machine141

code. Analogously, we can design prompts with instructions on how to turn code in some language142

into execution paths that can then be used in prompting. The details are given in Section A.1 in the143

Appendix. In fact, we used a “GPT compiler” in Prompt A.2 to create an execution path for the144

double loop DP algorithm for finding the longest common subsequence (LCS) which we used in our145

experiments.146

3 Experiments147

We evaluated two versions of iteration by regimenting self-attention (IRSA):148

• Basic IRSA: Prompting with highly structured single execution path examples (Table 1). Although149

similar to CoT prompting, there are notable differences. CoT prompts typically provide multiple150

steps of reasoning shown for a few examples and have the LLM perform the same steps on a new151

example. Conversely, IRSA prompts are designed to trigger iterative reasoning that is repeated until152

the stop condition is reached and the solution is found. Furthermore, the execution path example153

for each task is deliberately chosen to be out-of-distribution (e.g., the Bubble Sort prompt features154

a worked-out example of sorting a four-number sequence in just three passes, while the dataset155

consists of five-number sequences requiring 2 to 5 iterations and up to 20 state transitions, with156

varying complexity across problems). Thus in terms of information they provide, these prompts can157

be seen as somewhere between single-shot and zero-shot prompts.158

• Skip-to-state IRSA: Prompting as above, but with additional forced attention skipping. In this159

approach, the LLM is forced to attend only to the prompt and the last generated state as it iterates160

through the input to find the solution (illustrated at the end of Prompt 3). We also evaluate fragmented161

prompts (Table 2), where the prompt does not consist of a single complete execution path for an162

example, but instead shows several state-to-state transitions for different inputs.163

Baselines. To make fair comparisons and avoid unnecessary recomputation, we reused existing164

baselines from [32] wherever possible, denoted by an asterisk (*) (especially considering that these165

baselines typically perform close to random guessing on certain tasks). We reused these datasets and166

baselines for the following tasks: Logical deduction, Balanced parenthesis, and Longest common167

subsequences for long sequences. We created our own datasets and ran baselines for the following168

tasks: Bubble sort, Longest substring without repeating characters, and Longest common subsequence169

for short sequences. We include the best result from [32] for the GPT family, as our experiments170

were mainly conducted using GPT-3. Our baselines included zero or few (5) shot prompting with or171

without relevant code added to the description of the task in the prompt (e.g. Prompt A.9). Few shot172

baselines were made with 5 different random choices of examples to be included in the prompt. The173

’Guessing’ strategy refers to picking the most frequently correct answer for a given task as a guess174

for each problem in the task, which is different from truly random guessing. Few-shot prompting175

could prime the answers to pick the most frequently seen answer, even when no understanding of the176

problem occurs, which makes our ’Guessing’ strategy more reflective of the task difficulty.177

Models. We have briefly experimented with different members of the GPT-3 family, but ran complete178

experiments with CODE-DAVINCI-002 for two reasons: TEXT-DAVINICI-002 and 003 often produced179

qualitatively similar results, and experimentation with the CODE-DAVINCI-002 was easier due to180

better combination of token quota and availability. Having been tuned on code, this model may have181

slight advantages over models tuned for more natural language tasks. Nevertheless, as we show182

in the experiments and discuss in Section A.3, without IRSA, CODE-DAVINCI-002 cannot solve183

the problems discussed here, even when it can generate the code that could. To induce iterative184

reasoning in LLMs, it appears that attention needs to be highly regimented through strong structure,185

and possibly additional attention control, such as the skip-to-state strategy we described in Section186

2.3. This also applies to GPT-4 [21]: In Section A.3.3 in Appendix, we show that prompting GPT-4187

with straight-forward Prompts A.10, A.11, A.12 does not match the performance of IRSA in GPT-3.188

Datasets. To test our proposed methods with various prompting baselines, we focus on challenging189

programming tasks including computer science algorithms from the school curricula and coding190

interviews for software engineers as follows.191

Bubble sort. We created a dataset of 100 random non-repeating digit sequences of length 5. For each192

sequence, we ran the bubble sort algorithm to establish the total number of element swaps it requires.193

The task is to predict the number of swaps for a given sequence.194
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Table 1: Iteration through Regimented Self-Attention (IRSA) compared with standard in-context
learning baselines, and with the strategy of always guessing the most frequent answer. (*) denotes
the best result for GPT-3 from the BIG-bench [32].

Task IRSA Baseline Guessing

Bubble sort
- Prompt 1 0.74 0.27 0.23
- Prompt A.4 1.00 0.27 0.23

Longest substring 1.00 0.60 0.59
Logical deduction 0.76 0.32⇤ 0.2
Parentheses 0.96 0.56⇤ 0.5

Longest substring without repeating characters. A classical coding interview question: Given195

a string of letters, find the longest contiguous substring such that no letter appears more than once.196

We created a dataset of 100 random strings of length 7, and for each found the length of the longest197

subsequence without repeating characters. The task is to predict that length for a given sequence.198

Logical deduction [32]. We include this task (Section 2.1) in experiments to emphasize the broad199

importance of triggering iteration in LLMs responses. Enabling LLMs to execute iterative algorithms200

through effective prompting could help solve numerous reasoning problems. In particualr, this task201

that involves solving a puzzle about an order of items/objects/persons, such as books on the shelf,202

birds on a branch, cars, golfers, etc., given several clues, such as “minivan is more expensive than203

the car”, or “the robin is to the left of the finch.” We focus on a subtask involving 5 items, with204

varying sets of items and the types of ordering across the puzzles. While in-context learning with205

LLMs consistently solves less than 35% of puzzles, a recent combination of GPT-3 and probabilistic206

reasoning [22] was able to solve 77% of the puzzles. We reach a similar performance through IRSA,207

without an additional external reasoning mechanism.208

Valid parentheses [32]. The task is the first of the two in the cs-algorithms challenge in BIG-209

bench. The goal is to evaluate LLMs ability to perform reasoning equivalent to the classical stack210

manipulations needed to check if a sequence of parentheses of different types is balanced. LLMs211

(including GPT) tend to do about the same as chance (50%), except for PaLM with 3 shots, which212

gets around 75% accuracy.213

Longest common subsequence (long) [32]. The second task in BIG-bench cs-algorithms involves214

solving the classical dynamic programming problem. Defining a subsequence of a sequence to be a215

sequence of symbols one could get by skipping arbitrary stretches in the original sequence, the task is216

to find the length of the longest subsequence common to two given sequences. LLMs do not do much217

better than chance on this task (⇠10%).218

Longest common subsequence (short). We created this dataset in the same manner as the above one219

from the BIG-bench, but with the constraint on the sequence lengths, limiting them to a maximum of220

6 characters. This allows us to evaluate IRSA on more cases, ensuring it does not run out-of-memory221

(tokens) in generation3.222

Basic IRSA results. The basic IRSA results are summarized in Table 1. For Bubble Sort evaluations,223

we show the results using both Prompt 1, and Prompt A.4. The latter is a single execution path for224

the same problem (2, 3, 1, 5), but in the style of Fragmented Prompt 3 by continuing the execution225

path initiated by Prompt 3, without incorporating fragments from other paths. The former had an226

accuracy of 74% for inferring the numbers of swaps necessary to sort different sequences, while the227

latter achieved 100%. Note that while the execution path for the example 2, 3, 1, 5 requires three228

iterations of the outer loop and three iterations in each inner loop, the dataset contains sequences of229

length 5 and thus requires four iterations in the inner loop and a variable number of iterations of the230

outside loop – anywhere from 2 to 5 – and yet the model can execute the correct number of iterations231

based on the stoppage criterion (that in the inner loop, no changes were made to the sequence).232

For the logical deduction puzzles, we used the Prompt 2 Appendix. Note that the logic of the233

iterative reasoning there is faulty as it may enter an infinite loop. When that happens, the generation234

runs out of tokens and we simply used the answer after the 4th iteration in evaluation. Further235

3Buble sort, Longest substring, and LCS (short) datasets: https://github.com/anajojic/gpt-coding
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Table 2: IRSA with skip-attention, Bubble Sort and Longest Common Subsequence problems.
Fragmented prompting, Bubble Sort problems. (*) denotes the best GPT result in [32]

Baselines Bubble Sort LCS-S LCS-L

0-shot 0.20 0.09 0.14⇤

0-shot + code 0.20 0.11 -
few shot 0.25±0.05 0.07±0.01 0.16⇤

few shot + code 0.23±0.03 0.06±0.02 -
Guessing 0.23 0.44 0.10

IRSA skip-to-state

single path 0.95 0.93 0.28
7 fragments 0.99±0.02 - -
13 fragments 0.97±0.03 - -
19 fragments 0.99±0.02 - -
25 fragments 0.97±0.03 - -

discussion in Section A.3 suggests the potential for creating more effective prompts. Nevertheless,236

with this prompt to induce iterative reasoning, we still reach the state-of-the-art results, comparable237

only with [22], which uses an external reasoning mechanism in conjunction with prompting. To238

solve the longest substring without repeating characters problems, we developed Prompt A.5 based239

on asingle-pass algorithm (Section A.2), which, interestingly, trades computation for memory. To240

address the parentheses problem, we used the single execution path that demonstrates stack operations241

for determining whether the sequence is balanced or not. The beginning and the end are shown in242

Prompt A.6 and discussed in Section A.2.1 in the Appendix.243

Skip-to-state attention results. The dynamic programming solution to the longest common subse-244

quence (LCS) problem requires its state including a (M+1)⇥ (N+1) matrix storing the solution for245

all prefixes of the two sequences of lengths M and N . Without skip-to-state attention (Section 2.3),246

the API calls run out of tokens before reaching the end for all but the shortest problems. Using the247

approach described in Section 2.4, A.1, we compiled an execution path in Prompt A.3, and then used248

it to induce IRSA on LCS short (LCS-S) and LCS long (LCS-L) problems. Even with skip attention,249

the state was too large to fit the token limit for most of the problems in LCS-L from BIG-bench. Yet,250

IRSA with skip attention still beats the state-of-the-art significantly (Table 2). On shorter problems in251

LCS-S, where IRSA with skip-attention does not run out of tokens, the performance was a respectable252

93%. Note that even GPT-4, without IRSA, can only reach 69% accuracy on LCS-S (Section A.3.3).253

We tested fragmented prompting of Bubble Sort execution (Table 2). For each selected number of254

fragments – 7, 13, 19, 25 – at least one of five randomly generated prompts achieved 100% accuracy.255

These prompts followed the format in Prompt 3, starting with the few state transitions from the256

beginning for the sequence [2, 3, 1, 5] and then listing additional 6, 12, 18, or 24 fragments. Bubble257

Sort has 6 different transitions, and fully balanced instruction listing one, two, three, or four of258

each type, with a random sequence in the state, leads to a slightly better performance than having259

a completely randomly chosen execution path fragments. These six basic transitions, illustrated in260

Prompt 3, involve two ways of ending an iteration depending on the swap flag and four ways of261

changing the state: two possibilities for inequality being true or not, combined with two possible262

previous values of the swap flag. We found that the prompt sensitivity causes different prompts to fail263

for different test cases: Each of the fragmented prompt collections yields 100% as an ensemble.264

4 Conclusion265

We demonstrated that GPT-3 can be triggered to execute iterative algorithms, including double loops,266

with variable termination conditions. This has several consequences discussed in Appendix (Section267

A.3). For example, IRSA may find applications in sofware engineering and education. If LLMs are268

Turing Machines (in addition to being natural language translators and analyzers), their evaluation269

probably needs to be rethought, esp. in cases where models are expected to make inferences for270

which we have algorithms, because in-context learning would cover prompts designed to execute271

them (Section A.3). Regimenting self-attention for a given task may require a different level of effort272

(Section A.3.2, but even GPT-4 cannot execute programs consistently without IRSA (Section A.3.3).273
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