
Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models

Jiaqi Cao^{1,4*} Jiarui Wang^{1*} Rubin Wei¹ Qipeng Guo²
Kai Chen² Bowen Zhou^{2,3} Zhouhan Lin^{1,2†}

¹LUMIA Lab, School of Artificial Intelligence, Shanghai Jiao Tong University

²Shanghai AI Laboratory ³Tsinghua University

⁴SJTU Paris Elite Institute of Technology

maximus.cao@outlook.com, lin.zhouhan@gmail.com

code & model available at <https://github.com/LUMIA-Group/MemoryDecoder>

Abstract

Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces *Memory Decoder*, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model’s parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks (Grattafiori et al., 2024; Yang et al., 2024; Liu et al., 2024; Guo et al., 2025). Pretrained on vast corpora of general text data, LLMs have revolutionized how we approach language understanding and generation tasks. However, despite their impressive general capabilities, adapting LLMs to perform optimally in specific domains remains a significant challenge. Domain-specific adaptation is crucial for applications in specialized fields such as biomedicine, finance, and law (Chen et al., 2023; Liu et al., 2023b; Colombo et al., 2024), where domain expertise and terminology are essential for accurate and reliable performance.

Domain adaptation for pretrained language models has traditionally followed several approaches, each with distinct advantages and limitations. Domain Adaptive Pre-Training (DAPT) involves continued pre-training of the LLM on domain-specific corpora (Gururangan et al., 2020).

*Equal contribution.

†Corresponding author.

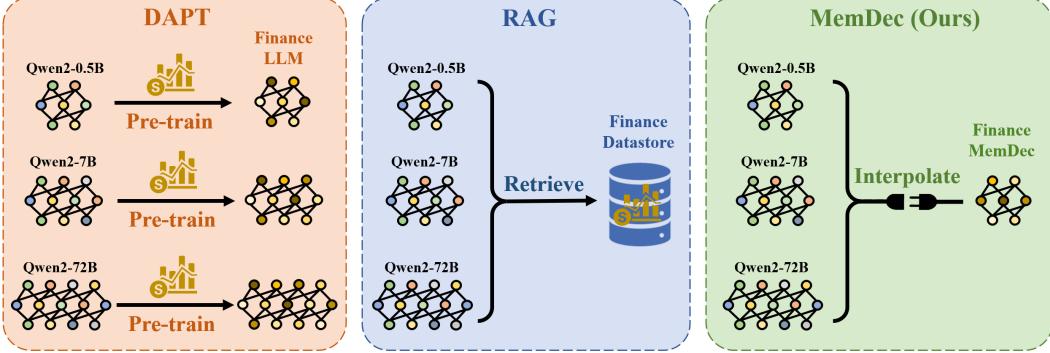


Figure 1: Comparison of domain adaptation approaches. DAPT (left) requires separate pre-training for each model size, modifying original parameters. RAG (middle) maintains model parameters but requires expensive retrieval from external datastores during inference. Memory Decoder (right) offers a plug-and-play solution where a single pretrained memory component can be interpolated with models of different sizes, avoiding both parameter modification and retrieval overhead.

While effective, this approach suffers from substantial computational costs associated with full-parameter training, especially as model sizes continue to grow into billions of parameters. Furthermore, adapting multiple models to the same domain requires separate training runs for each model, leading to resource inefficiency. Even with successful DAPT implementation, these models often encounter catastrophic forgetting, where the adaptation process diminishes the model’s general capabilities (Kirkpatrick et al., 2017; Ven van de et al., 2024).

Retrieval-Augmented Generation (RAG) offers an alternative approach by enhancing model outputs with relevant retrieved information (Lewis et al., 2020; Izacard et al., 2023). While this method preserves the original model parameters, it introduces substantial computation overhead during inference due to expensive nearest neighbor (kNN) searches across large datastores and extended context (He et al., 2021).

These two approaches present a fundamental dilemma in domain adaptation: DAPT requires costly training procedures and cannot efficiently adapt multiple models to the same domain, while RAG introduces significant computation and storage overhead during inference. This inherent trade-off between the plug-and-play nature of RAG and the inference efficiency of DAPT highlights the research gap for a solution offering both adaptability across models and computational efficiency during deployment. To address this challenge, we propose *Memory Decoder* (MemDec), a plug-and-play pretrained memory designed for efficient domain adaptation of large language models without modifying their parameters. Our approach draws inspiration from retrieval-based methods like kNN-LM (Khandelwal et al., 2019), but overcomes their limitations through a different paradigm. Rather than building and searching model-specific datastores during inference, Memory Decoder employs a small transformer decoder that is specially pretrained to **imitate the behavior of non-parametric retrievers** by aligning its output distribution with the ones of non-parametric retrievers. Figure 1 illustrates how our approach differs fundamentally from both DAPT and RAG.

The key innovation of our approach lies in its plug-and-play functionality: once trained, a single Memory Decoder can be seamlessly integrated with any large language model that shares the same tokenizer, without requiring model-specific adaptations or additional training. This architectural design enables immediate deployment across diverse model architectures, significantly reducing the computational resources needed for domain adaptation pre-training. Furthermore, unlike RAG methods, Memory Decoder achieves domain-specific performance improvements with minimal impact on inference latency, combining versatility with computational efficiency.

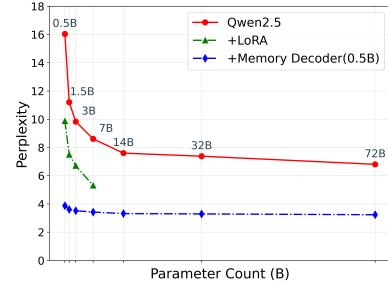


Figure 2: Perplexity comparison of Qwen2.5 models augmented by Memory Decoder and LoRA adapter of the same param count on the finance domain.

Experimental results across three specialized domains (biomedicine, finance, and law) and multiple model architectures demonstrate the versatility of Memory Decoder. As shown in Figure 2, the same Memory Decoder with only 0.5B parameters consistently enhances performance across seven different models from the Qwen2.5 model family on the finance domain. Our comprehensive analysis confirms that Memory Decoder successfully preserves the advantages of non-parametric approaches while eliminating their computational overhead, establishing a new paradigm for efficient domain adaptation of LLMs.

Our contributions can be summarized as follows:

- We introduce *Memory Decoder*, a plug-and-play pretrained memory that enables efficient domain adaptation for large language models without modifying their original parameters.
- We present the first approach that replaces traditional non-parametric retrievers with a compact parametric model, achieving superior performance while eliminating costly retrieval operations during inference.
- We demonstrate *Memory Decoder*’s generalizability, where a single domain-specific pretrained memory can be seamlessly integrated across all models with the same tokenizer.

2 Background

2.1 Problem Formulation

Domain adaptation aims to enhance a pretrained language model’s performance on specialized text. Formally, given a pretrained model \mathcal{M}_{PLM} with parameters θ and a domain corpus $\mathcal{D}_{\text{domain}}$, the goal is to optimize the next-token prediction distribution $p_{\text{PLM}}(y_t|x; \theta)$ for the target domain. Here, $x = (x_1, x_2, \dots, x_{t-1})$ represents the context sequence and y_t denotes the target token.

2.2 Nearest Neighbor Language Models

The k -nearest neighbor language model (kNN-LM) (Khandelwal et al., 2019) enables non-parametric domain adaptation without modifying the pretrained model’s parameters.

For a domain corpus, kNN-LM first constructs a key-value datastore:

$$(K, V) = \{(\phi(x_i), y_i) \mid (x_i, y_i) \in \mathcal{D}_{\text{domain}}\} \quad (1)$$

where $\phi(\cdot)$ extracts hidden representations from the pretrained model.

During inference, for context x , it computes $k_t = \phi(x)$, retrieves k -nearest neighbors, and constructs a probability distribution:

$$p_{\text{kNN}}(y_t|x) \propto \sum_{(k_i, v_i) \in \mathcal{N}(k_t, k)} \mathbb{1}_{y_t=v_i} \exp(-d(k_t, k_i)/\tau) \quad (2)$$

The final prediction interpolates between the pretrained model and kNN distributions:

$$p_{\text{kNN-PLM}}(y_t|x) = \lambda \cdot p_{\text{kNN}}(y_t|x) + (1 - \lambda) \cdot p_{\text{PLM}}(y_t|x) \quad (3)$$

While effective, kNN-LM introduces substantial computational and storage overhead during inference. For instance, the Wikitext-103 datastore requires nearly 500GB storage even for GPT2-small model (He et al., 2021). These limitations motivate our Memory Decoder, a compact parametric model pretrained to mimic retrieval behavior while eliminating the need for large datastores.

3 Memory Decoder

In this section, we present Memory Decoder (MemDec), a plug-and-play pretrained memory designed for efficient domain adaptation of large language models. Our method consists of two primary components: a specialized pre-training procedure that aligns the output distribution of Memory Decoder with those of non-parametric retrievers (Section 3.1), and an efficient inference mechanism that enables plug-and-play domain adaptation (Section 3.2). As illustrated in Figure 3, Memory Decoder first learns to mimic non-parametric retrieval distributions during pre-training (upper part), then seamlessly integrates with any compatible language model during inference (lower part), eliminating the computational overhead associated with datastore maintenance and nearest neighbor search.

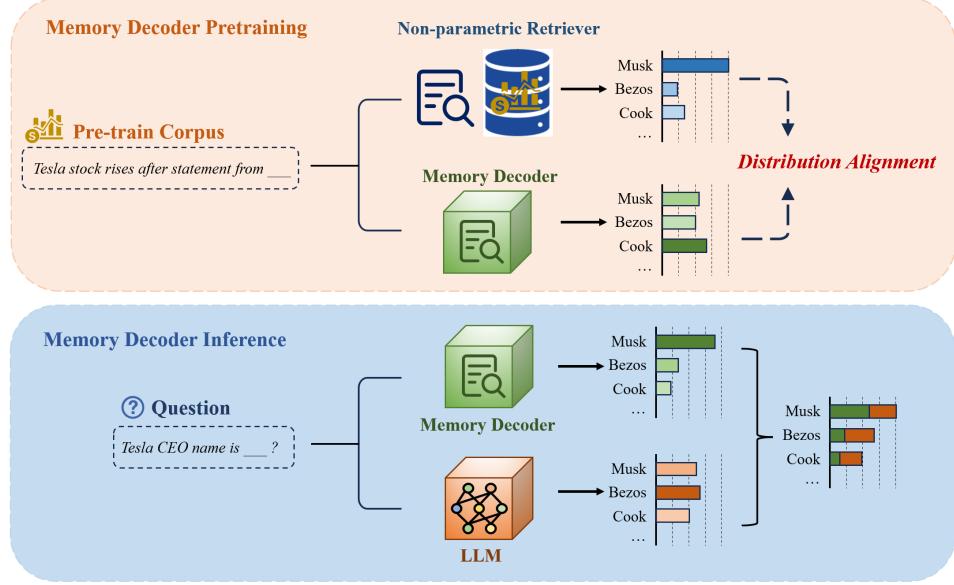


Figure 3: Overview of Memory Decoder architecture. **Upper**§ 3.1: During pre-training, Memory Decoder learns to align its output distributions with those generated by non-parametric retrievers through distribution alignment loss. **Lower**§ 3.2: During inference, Memory Decoder processes input in parallel with the base LLM, and their distributions are interpolated to produce domain-enhanced predictions without retrieval overhead.

3.1 Pre-training

Our primary goal during pre-training is to enable Memory Decoder \mathcal{M}_{Mem} to produce probability distributions that closely resemble those generated by non-parametric retrievers when encountering the same context. This approach effectively encodes the domain knowledge captured in large key-value datastores into the parameters of our compact model.

Data Construction Since we require non-parametric distributions as supervision signals, we construct training pairs of $(x_i, p_{\text{kNN}}(\cdot|x_i))$ in advance to enable efficient pre-training. Here, x_i represents the input context and $p_{\text{kNN}}(\cdot|x_i)$ denotes the probability distribution generated by the non-parametric retriever for that context. First, we build a key-value datastore $(K, V) = \{(\phi(x_i), y_i) \mid (x_i, y_i) \in \mathcal{D}_{\text{train}}\}$ using our domain-specific corpus, where $\phi(\cdot)$ extracts hidden representations from a specific layer of the pretrained model. For each context x_i in the corpus, we then perform k -nearest neighbor search against this datastore to identify similar contexts. To avoid trivial self-retrieval that would contaminate the learning signal, we exclude the top-1 neighbor where its key exactly matches the query key. Finally, we compute the non-parametric distribution $p_{\text{kNN}}(\cdot|x_i)$ for each context using the retrieved neighbors and cache these context-distribution pairs for training.

Pre-training Objective Unlike traditional language modeling with single-label targets, kNN distributions offer richer supervision signals by capturing the diversity of plausible continuations in the domain (Xu et al., 2023)(see Appendix C for detailed analysis on kNN distributions). Through extensive experimentation, we have identified that a hybrid objective yields optimal performance.

Our approach centers on a Distribution Alignment Loss that minimizes the KL divergence (Van Erven, Harremos, 2014) between Memory Decoder’s output distribution and the cached kNN distributions for each sample:

$$\mathcal{L}_{\text{KL}}(x_i) = \text{KL}(p_{\text{kNN}}(\cdot|x_i) \parallel p_{\text{Mem}}(\cdot|x_i)) \quad (4)$$

To prevent excessive deviation from the underlying corpus distribution, we integrate a complementary standard Language Modeling objective (Zhang, Sabuncu, 2018):

$$\mathcal{L}_{\text{LM}}(x_i) = -\log p_{\text{Mem}}(y_i|x_i) \quad (5)$$

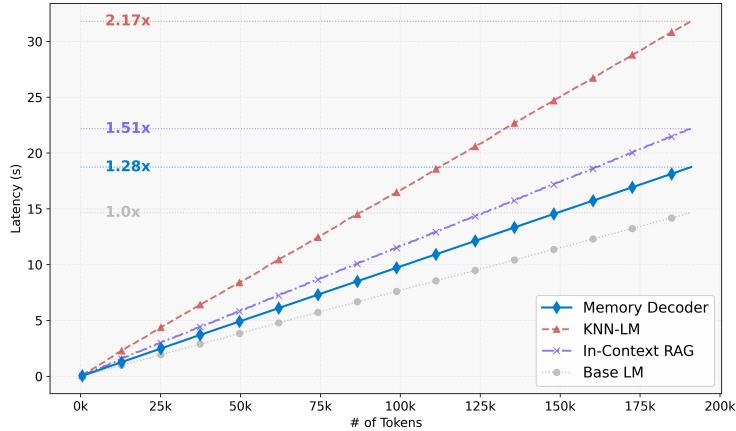


Figure 4: Inference latency comparison across domain adaptation methods. These measurements were conducted on Qwen2.5-1.5B (Yang et al., 2024) for biomedicine domain text, augmented by a 0.5B Memory Decoder.

The final loss function balances these two objectives through a hyperparameter β :

$$\mathcal{L}(x_i) = \beta \cdot \mathcal{L}_{\text{KL}}(x_i) + (1 - \beta) \cdot \mathcal{L}_{\text{LM}}(x_i) \quad (6)$$

Previous failed attempts to learn kNN distributions and our conjecture on why vanilla KL divergence with cross-entropy regularization succeeds are detailed in Appendix D.

3.2 Inference

Once pretrained, Memory Decoder exhibits a key plug-and-play capability that allows it to adapt any language model with a compatible tokenizer to the target domain via simple interpolation. During inference, both the pretrained language model \mathcal{M}_{PLM} and Memory Decoder \mathcal{M}_{Mem} process the same input context in parallel, and their output distributions are interpolated:

$$p_{\text{Mem-PLM}}(y_t|x) = \alpha \cdot p_{\text{Mem}}(y_t|x) + (1 - \alpha) \cdot p_{\text{PLM}}(y_t|x) \quad (7)$$

where $\alpha \in [0, 1]$ controls the influence of domain-specific knowledge.

Unlike traditional retrieval-augmented approaches that introduce substantial latency from nearest neighbor search and extended context processing, Memory Decoder requires only a single forward pass through a relatively small transformer decoder. As demonstrated in Figure 4, our method achieves significant improvements in inference efficiency compared to alternative domain adaptation techniques. With just 1.28x overhead relative to the base model, Memory Decoder substantially outperforms both In-Context RAG (Ram et al., 2023) (1.51x) and kNN-LM (Khandelwal et al., 2019) (2.17x). This computational advantage, combined with Memory Decoder’s model-agnostic design, makes our approach particularly valuable for production environments where both performance and efficiency are critical considerations.

4 Experimental Setup

Overview We evaluate Memory Decoder across four complementary settings: (1) Language modeling on WikiText-103 (§5.1) to demonstrate effectiveness across GPT-2 model scales; (2) Downstream tasks (§5.2) to verify preservation of general capabilities during domain adaptation; (3) Cross-model adaptation (§5.3) showing a single Memory Decoder enhancing Qwen models from 0.5B to 72B parameters; (4) Cross-vocabulary adaptation (§5.4) demonstrating efficient transfer between tokenizer families; These experiments establish Memory Decoder as a versatile, plug-and-play solution for efficient domain adaptation across diverse architectures and applications.

Datasets For language modeling experiments, we use Wikitext-103 (Merity et al., 2016), a standard benchmark containing over 100M tokens from Wikipedia articles. For downstream evaluation,

	GPT2-small	GPT2-med	GPT2-large	GPT2-xl
base	24.89	18.29	15.80	14.39
<i>Non-parametric methods</i>				
+ <i>In-Context RAG</i>	18.46	14.01	12.09	11.21
+ <i>kNN-LM</i>	15.62	12.95	12.21	11.30
<i>Parametric methods</i>				
+ <i>DAPT</i>	<u>14.76</u>	<u>12.78</u>	11.10	10.16
+ <i>LoRA</i>	18.63	13.88	11.77	10.67
+ <i>MemDec</i>	13.36	12.25	<u>11.53</u>	<u>10.93</u>

Table 1: Perplexity comparison of domain adaptation methods across GPT2 model sizes on Wikitext-103. The best performing results are highlighted in **bold**, while the second-best results are underlined. Notably, applying our Memory Decoder(**124M**) to GPT2-medium(**345M**) outperforms DAPT of GPT2-medium(345M), demonstrating the effectiveness of our approach in capturing domain knowledge without modifying original parameters.

following the kNN-prompt framework, we assess performance across nine NLP tasks: sentiment analysis (SST2 (Socher et al., 2013), MR (Pang, Lee, 2005b), CR (Hu, Liu, 2004), RT (Pang, Lee, 2005a)), textual entailment (HYP (Kiesel et al., 2019), CB (De Marneffe et al., 2019), RTE (Dagan et al., 2010)), and text classification (AGN (Zhang et al., 2015a), Yahoo (Zhang et al., 2015b)). For domain-specific adaptation, we utilize three specialized corpora: (1) biomedical text from MIMIC-III (Johnson et al., 2016) clinical notes covering over 46,000 patients, (2) financial news (Liu et al., 2023a) from April 2024 to October 2024, and (3) legal text from the Asylex corpus (Barale et al., 2023) containing 59,112 documents of refugee status determination in Canada from 1996 to 2022.

Baselines We compare Memory Decoder against several established domain adaptation methods: **In-Context RAG** (Ram et al., 2023), which implements a BM25 retriever that processes 32 query tokens, with retrieval occurring every 4 tokens. **kNN-LM** (Khandelwal et al., 2019), configured with interpolation parameter $\lambda = 0.25$ and temperature settings of $\tau = 1$ for GPT-2 small and medium, and $\tau = 13$ for large and xl models. **LoRA** (Hu et al., 2022), applied to query, key, value and MLP layers, with rank adjusted for each model to achieve parameter counts comparable to Memory Decoder. **Domain Adaptive Pretraining(DAPT)** (Gururangan et al., 2020), which involves complete retraining of all model parameters on the domain-specific corpus.

Training Details We conduct our experiments on an 8xA800 80GB GPU setup. For language modeling and downstream evaluations, we use a GPT2-xl model(finetuned on wikitext) to build the key-value datastore and non-parametric distributions for training, and continue training on a GPT2-small model(finetuned on wikitext) with learning rate 1e-3. For cross-model adaptation, we use Qwen2.5-1.5B (Yang et al., 2024) to build the datastore, and continue training on Qwen2.5-0.5B with learning rate 1e-4. For cross-vocabulary adaptation, we use Llama3.2-1B (Grattafiori et al., 2024) to build the datastore, and continue training on the Memory Decoder trained from cross-model experiments, with its embedding layer and language model head re-initialized. All experiments use a training budget equivalent to the computational cost of training a 7B parameter model for 1 epoch, with DAPT and LoRA baselines using the same maximum training FLOPS but early stopped to prevent overfitting. The training hyperparameter β is set to 0.5 across all tasks.

Evaluation Metrics For language modeling, cross-model, and cross-tokenizer experiments, we use sliding window perplexity. Following Baevski, Auli (2018), in each test example, the context length is set to 1024 where only the latter 512 tokens are scored. For downstream evaluation, following methodology from Shi et al. (2022), we report results using the domain-conditional PMI scoring rule (Holtzman et al., 2021). The interpolation hyperparameter α is tuned on the validation split of each task following Khandelwal et al. (2019), see more details in Appendix A.

	SST2	MR	CR	RT	HYP	CB	RTE	AGN	Yahoo	Avg
base	81.98	78.40	84.40	76.54	63.75	41.07	52.70	78.79	49.40	67.45
<i>Non-parametric methods</i>										
+kNN-LM	81.98	77.95	83.80	77.95	64.14	39.28	52.70	77.73	49.63	67.24
<i>Parametric methods</i>										
+DAPT	83.52	80.15	80.45	77.39	36.04	50.00	51.26	64.31	24.40	60.84
+LoRA	80.88	76.90	83.95	76.07	64.14	39.28	53.79	81.06	49.46	67.28
+MemDec	82.43	78.35	84.35	77.30	64.15	57.14	55.24	79.80	49.37	69.79

Table 2: Performance on nine diverse NLP tasks including sentiment analysis, textual entailment, and text classification.

5 Results

5.1 Language Modeling on Wikitext-103

Table 1 demonstrates the exceptional effectiveness of Memory Decoder across all GPT2 model sizes. A single Memory Decoder with only 124M parameters consistently enhances the entire GPT2 family, showcasing its plug-and-play capability regardless of base model size. For smaller models, our approach delivers superior results compared to all adaptation methods—notably maintaining an advantage for GPT2-medium despite utilizing only one third of the parameters. Even when applied to larger models where DAPT has inherent advantages due to full model updates, Memory Decoder remains highly competitive while consistently outperforming all other parameter-efficient methods without modifying any original parameters. These results validate that a small parametric decoder can effectively capture the benefits of non-parametric retrieval while eliminating computational overhead.

5.2 Downstream Performance

Table 2 reveals Memory Decoder’s ability to enhance domain adaptation while preserving general language capabilities in zero-shot evaluation settings. Unlike DAPT, which suffers catastrophic forgetting on several tasks (particularly HYP and Yahoo where performance drops by nearly half; see Appendix B for detailed analysis), Memory Decoder maintains or improves performance across all evaluated tasks. Our approach achieves the highest average score across all nine tasks, outperforming the base model, kNN-LM, and LoRA while demonstrating particular strength on textual entailment tasks like CB and RTE. These results validate a key advantage of our plug-and-play architecture: by keeping the original model parameters intact while augmenting them with domain knowledge, Memory Decoder achieves domain adaptation without sacrificing general capabilities. Importantly, all experiments are conducted in a zero-shot setting, and our method should be viewed as orthogonal to in-context learning approaches.

5.3 Cross-Model Adaptation

Table 3 demonstrates Memory Decoder’s exceptional plug-and-play capabilities across diverse model sizes and architectures. A single Memory Decoder (0.5B parameters) consistently enhances performance across all models in both the Qwen2 and Qwen2.5 families, spanning from 0.5B to 72B parameters. For smaller models like Qwen2-0.5B, our approach achieves dramatic perplexity reductions—transforming domain-specific performance to state-of-the-art results on both biomedical and financial text. Even for the largest models in the family, Memory Decoder provides substantial improvements, demonstrating that retrieval-augmented knowledge remains valuable regardless of model scale. These results validate Memory Decoder’s core strength: a single pretrained memory component can enhance multiple models sharing the same tokenizer, providing efficient domain adaptation that scales from the smallest to the largest models while consistently outperforming existing approaches.

5.4 Cross-Vocabulary Adaptation

Table 4 demonstrates Memory Decoder’s ability to generalize across different tokenizers and model architectures. By re-initializing only the embedding layer and language model head of our Qwen2.5-trained Memory Decoder, we successfully adapt it to the Llama model family with just 10% of the original training budget. This efficient transfer enables substantial performance improvements across

Model	Bio	Fin	Law	Avg
<i>Qwen2 Family</i>				
Qwen2-0.5B	18.41	16.00	10.23	14.88
+LoRA	7.28	9.70	5.82	7.60
+MemDec	3.75	3.84	4.57	4.05
Qwen2-1.5B	12.42	10.96	7.69	10.36
+LoRA	5.73	7.37	4.84	5.98
+MemDec	3.68	3.61	4.32	3.87
Qwen2-7B	8.36	8.31	5.92	7.53
+LoRA	4.47	5.64	4.02	4.71
+MemDec	3.59	3.38	4.00	3.66
Qwen2-72B	6.15	6.62	4.84	5.87
+MemDec	3.45	3.20	3.69	3.45
<i>Qwen2.5 Family</i>				
Qwen2.5-0.5B	17.01	16.04	9.86	14.30
+LoRA	7.02	9.88	5.75	7.55
+MemDec	3.74	3.87	4.57	4.06
Qwen2.5-1.5B	11.33	11.20	7.42	9.98
+LoRA	5.59	7.50	4.82	5.97
+MemDec	3.67	3.61	4.29	3.86
Qwen2.5-3B	9.70	9.83	6.68	8.74
+LoRA	5.07	6.71	4.45	5.41
+MemDec	3.63	3.52	4.16	3.77
Qwen2.5-7B	8.19	8.61	5.94	7.58
+LoRA	4.03	5.31	3.81	4.38
+MemDec	3.57	3.42	4.01	3.67
Qwen2.5-14B	7.01	7.60	5.35	6.65
+MemDec	3.51	3.31	3.86	3.56
Qwen2.5-32B	6.65	7.38	5.18	6.40
+MemDec	3.48	3.29	3.81	3.53
Qwen2.5-72B	5.90	6.80	4.84	5.85
+MemDec	3.44	3.23	3.70	3.46

Table 3: Cross-model adaptation results across three specialized domains. A single 0.5B Memory Decoder enhances models ranging from 0.5B to 72B parameters.

Model	Bio	Fin	Law	Avg
<i>Llama3 Family</i>				
Llama3-8B	7.95	8.63	5.96	7.51
+LoRA	4.38	5.68	4.12	4.73
+MemDec	3.92	4.32	4.46	4.23
Llama3-70B	5.92	6.87	4.90	5.90
+MemDec	3.74	4.01	4.07	3.94
<i>Llama3.1 Family</i>				
Llama3.1-8B	7.82	8.46	5.88	7.39
+LoRA	4.38	5.72	4.10	4.73
+MemDec	3.91	4.30	4.42	4.21
Llama3.1-70B	5.85	6.68	4.89	5.81
+MemDec	3.73	3.97	4.06	3.92
<i>Llama3.2 Family</i>				
Llama3.2-1B	12.81	11.85	8.23	10.96
+LoRA	5.97	7.83	5.21	6.34
+MemDec	4.06	4.85	5.11	4.67
Llama3.2-3B	9.83	9.70	6.83	8.79
+LoRA	5.11	6.55	4.59	5.42
+MemDec	3.99	4.45	4.76	4.40

Table 4: Cross-vocabulary adaptation results demonstrating efficient knowledge transfer between model families. Memory Decoder trained on Qwen2.5 can be adapted to Llama models with minimal additional training (10% of original budget), achieving substantial perplexity reductions across all Llama variants and consistently outperforming LoRA in biomedical and financial domains.

all Llama variants. For Llama3-8B, Memory Decoder achieves roughly 50% perplexity reduction on both biomedical and financial domains. Similar improvements extend to the Llama3.1 and Llama3.2 families, with our method consistently outperforming LoRA on biomedical and financial domains, though showing room for improvement on legal text. These findings illustrate Memory Decoder’s versatility beyond a single tokenizer family, demonstrating that domain knowledge learned from one architecture can be efficiently transferred to another with minimal additional training. This capability expands the practical utility of our approach, offering a streamlined path to domain adaptation across diverse model ecosystems.

6 Analysis

6.1 Case Study: Bridging Parametric and Non-Parametric Methods

Memory Decoder fundamentally learns to compress the knowledge stored in large non-parametric datastores into a compact parametric model, combining the memorization capabilities of retrieval methods with the efficiency and generalization of parametric approaches. To validate this hypothesis, we conducted case studies on WikiText-103 examining how different methods assign probabilities to specific tokens.

As shown in Table 5, Memory Decoder exhibits two crucial capabilities:

Long-tail Knowledge: For factual information like "Jacobi" and "1906", Memory Decoder assigns dramatically higher probabilities than the base model (68.94% vs. 0.12% and 98.65% vs. 1.57%), successfully capturing the memorization benefits of non-parametric methods.

Semantic Coherence: For function words and logical continuations like "on" and "C", Memory Decoder maintains probabilities closer to the base model rather than following kNN-LM’s lower probabilities, demonstrating its ability to preserve coherent language modeling capabilities that pure retrieval methods sacrifice.

These observations confirm that Memory Decoder occupies a unique position: it enhances memorization of domain-specific and long-tail knowledge like non-parametric methods, while maintaining the generalization and reasoning capabilities inherent to parametric models.

Long-tail Knowledge Learning			
Context (target token underlined)	MemDec	kNN	Base LM
he starred alongside actors Mark Strong and Derek Jacobi	68.94%	9.39%	0.12%
The launch of HMS Dreadnought in 1906 by the Royal Navy raised the stakes	98.65%	40.62%	1.57%
Semantic Coherence and Reasoning			
Context (target token underlined)	MemDec	kNN	Base LM
In 2000 Boulter had a guest-starring role on the television series The Bill	40.11%	8.07%	45.51%
...three tank squadrons for special overseas operations, known as 'A', 'B' and ' C ' Special Service Squadrons	50.10%	10.76%	63.04%

Table 5: **Probability assignments for specific tokens by different methods.** *Orange section* : Memory Decoder excels at capturing long-tail factual knowledge, assigning dramatically higher probabilities than the base model. *Cyan section* : For semantic coherence, Memory Decoder intelligently balances between kNN-LM and base model probabilities, preserving linguistic fluency.

	GPT2-small	GPT2-medium	GPT2-large	GPT2-xl	Avg
Base	24.89	18.29	15.80	14.39	18.34
DAPT	14.76	12.78	11.10	10.16	12.20
+ <i>MemDec-small (124M)</i>	13.36	12.25	11.53	10.93	12.01
+ <i>MemDec-medium (345M)</i>	12.08	11.59	10.92	10.43	11.26
+ <i>MemDec-large (774M)</i>	11.67	11.23	10.83	10.28	11.00

Table 6: Performance comparison with different Memory Decoder sizes. Even small Memory Decoders achieve competitive performance with full-parameter DAPT while maintaining plug-and-play capability.

6.2 Impact of Memory Decoder Size

Table 6 examines how Memory Decoder size affects performance across the GPT2 family. As Memory Decoder size increases, performance consistently improves across all base models, with the large variant achieving the best average perplexity. These results validate that Memory Decoder provides an efficient alternative to full model fine-tuning: practitioners can choose the decoder size based on their computational constraints while maintaining the crucial advantage of preserving the original model’s capabilities.

6.3 Ablation on the pre-training objective

We compare Memory Decoder against logit interpolation with a DAPT model. Table 7 shows Memory Decoder consistently outperforms DAPT interpolation across all GPT2 scales, with an average gain of 1.90 perplexity points. Notably, the gains persist even at larger scales, confirming that our hybrid pre-training objective provides complementary value beyond what standard language modeling objectives can achieve, regardless of model size.

7 Related Work

Retrieval-Augmented Generation Retrieval-Augmented Generation (RAG) enhances language models by incorporating knowledge from external sources, with retrieval granularity ranging from documents (Chen et al., 2017) to passages (Guu et al., 2020; Lewis et al., 2020; Izacard et al., 2023) to tokens (Khandelwal et al., 2019; He et al., 2021; Min et al., 2022; Yogatama et al., 2021). Token-level retrieval achieves superior performance for rare patterns and out-of-domain scenarios but introduces substantial computation overhead during inference. While non-differentiable retrieval mechanisms prevent end-to-end optimization and memory token approaches (Chevalier et al., 2023) enable differentiable access but are limited to local contexts, Memory Decoder provides both differentiable

Base Model	Baseline PPL	+ DAPT-small	+ MemDec-small
GPT2-small	24.89	15.95	13.36 (-2.59)
GPT2-medium	18.29	14.26	12.25 (-2.01)
GPT2-large	15.80	13.13	11.53 (-1.60)
GPT2-xl	14.39	12.30	10.93 (-1.37)
Average	18.34	13.91	12.01 (-1.90)

Table 7: Memory Decoder vs. DAPT model interpolation on WikiText-103. Both use 124M parameter models with different training objectives.

optimization and full-dataset knowledge access without expensive retrieval operations or model-specific datastores.

Domain Adaptation Domain adaptation techniques have evolved from domain-specific pre-training (SciBERT (Beltagy et al., 2019), BioBERT (Lee et al., 2020), ClinicalBERT (Huang et al., 2019)) to parameter-efficient methods like LoRA (Hu et al., 2022) and adapters (Wang et al., 2020; Diao et al., 2021, 2023). However, these approaches require model-specific modifications, preventing generalization across architectures. Memory Decoder addresses this limitation by providing a domain-specific memory module that enhances multiple frozen language models without parameter modifications, enabling cross-model adaptation within tokenizer families and efficient cross-tokenizer transfer with minimal additional training.

8 Conclusion

In this paper, we introduced Memory Decoder, a novel plug-and-play approach for domain adaptation of large language models. By pre-training a small transformer decoder to emulate the behavior of non-parametric retrievers, Memory Decoder effectively adapts any compatible language model to a specific domain without modifying its parameters. Our comprehensive experiments across multiple model families and specialized domains demonstrate that Memory Decoder consistently outperforms both parametric adaptation methods and traditional retrieval-augmented approaches.

The key innovation of Memory Decoder lies in its versatility and efficiency. A single pretrained Memory Decoder can seamlessly enhance any model that shares the same tokenizer, and with minimal additional training, can be adapted to models with different tokenizers and architectures. This capability enables efficient domain adaptation across model families, dramatically reducing the resources typically required for specialized model development. Our results confirm that Memory Decoder preserves the performance benefits of retrieval-augmented methods while maintaining the general capabilities of the base models, avoiding the catastrophic forgetting often observed with fine-tuning approaches.

Memory Decoder introduces a new paradigm for domain adaptation that fundamentally reimagines how we specialize language models for particular domains. By decoupling domain expertise from model architecture through a pretrained memory component, our approach creates a more modular, efficient, and accessible framework for enhancing language model performance in specialized fields.

9 Limitations

While Memory Decoder demonstrates significant advantages for domain adaptation, we acknowledge several limitations in our current approach. The pre-training phase requires searching in key-value datastores to obtain kNN distributions as training signals, introducing computational overhead during the training process. Although this cost is incurred only once per domain and is amortized across all adapted models, it remains a bottleneck in the pipeline. Additionally, while cross-tokenizer adaptation requires minimal training compared to training from scratch, it still necessitates some parameter updates to align embedding spaces, preventing truly zero-shot cross-architecture transfer.

Acknowledgement

This work is sponsored by the National Key Research and Development Program of China (No. 2023ZD0121402), Shanghai Fundamental Research Program for General AI Models (No. 2025SHZDZX0251101), and the National Natural Science Foundation of China (NSFC) grant (No.62576211).

References

Baevski Alexei, Auli Michael. Adaptive input representations for neural language modeling // arXiv preprint arXiv:1809.10853. 2018.

Barale Claire, Rovatsos Michael, Bhuta Nehal. Automated refugee case analysis: An nlp pipeline for supporting legal practitioners // arXiv preprint arXiv:2305.15533. 2023.

Beltagy Iz, Lo Kyle, Cohan Arman. SciBERT: A pretrained language model for scientific text // arXiv preprint arXiv:1903.10676. 2019.

Chen Danqi, Fisch Adam, Weston Jason, Bordes Antoine. Reading wikipedia to answer open-domain questions // arXiv preprint arXiv:1704.00051. 2017.

Chen Yirong, Wang Zhenyu, Xing Xiaofen, Xu Zhipei, Fang Kai, Wang Junhong, Li Sihang, Wu Jieling, Liu Qi, Xu Xiangmin, others . Bianque: Balancing the questioning and suggestion ability of health llms with multi-turn health conversations polished by chatgpt // arXiv preprint arXiv:2310.15896. 2023.

Cheng Daixuan, Huang Shaohan, Wei Furu. Adapting large language models via reading comprehension // The Twelfth International Conference on Learning Representations. 2023.

Chevalier Alexis, Wettig Alexander, Ajith Anirudh, Chen Danqi. Adapting language models to compress contexts // arXiv preprint arXiv:2305.14788. 2023.

Colombo Pierre, Pires Telmo Pessoa, Boudiaf Malik, Culver Dominic, Melo Rui, Corro Caio, Martins Andre FT, Esposito Fabrizio, Raposo Vera Lúcia, Morgado Sofia, others . Saullm-7b: A pioneering large language model for law // arXiv preprint arXiv:2403.03883. 2024.

Dagan Ido, Dolan Bill, Magnini Bernardo, Roth Dan. Recognizing textual entailment: Rational, evaluation and approaches—erratum // Natural Language Engineering. 2010. 16, 1. 105–105.

De Marneffe Marie-Catherine, Simons Mandy, Tonhauser Judith. The commitmentbank: Investigating projection in naturally occurring discourse // proceedings of Sinn und Bedeutung. 23, 2. 2019. 107–124.

Diao Shizhe, Xu Ruijia, Su Hongjin, Jiang Yilei, Song Yan, Zhang Tong. Taming pre-trained language models with n-gram representations for low-resource domain adaptation // Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021. 3336–3349.

Diao Shizhe, Xu Tianyang, Xu Ruijia, Wang Jiawei, Zhang Tong. Mixture-of-domain-adapters: Decoupling and injecting domain knowledge to pre-trained language models memories // arXiv preprint arXiv:2306.05406. 2023.

Grattafiori Aaron, Dubey Abhimanyu, Jauhri Abhinav, Pandey Abhinav, Kadian Abhishek, Al-Dahle Ahmad, Letman Aiesha, Mathur Akhil, Schelten Alan, Vaughan Alex, others . The llama 3 herd of models // arXiv preprint arXiv:2407.21783. 2024.

Guo Daya, Yang Dejian, Zhang Haowei, Song Junxiao, Zhang Ruoyu, Xu Runxin, Zhu Qihao, Ma Shirong, Wang Peiyi, Bi Xiao, others . Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning // arXiv preprint arXiv:2501.12948. 2025.

Gururangan Suchin, Marasović Ana, Swayamdipta Swabha, Lo Kyle, Beltagy Iz, Downey Doug, Smith Noah A. Don't stop pretraining: Adapt language models to domains and tasks // arXiv preprint arXiv:2004.10964. 2020.

Guu Kelvin, Lee Kenton, Tung Zora, Pasupat Panupong, Chang Mingwei. Retrieval augmented language model pre-training // International conference on machine learning. 2020. 3929–3938.

He Junxian, Neubig Graham, Berg-Kirkpatrick Taylor. Efficient nearest neighbor language models // arXiv preprint arXiv:2109.04212. 2021.

Holtzman Ari, West Peter, Shwartz Vered, Choi Yejin, Zettlemoyer Luke. Surface form competition: Why the highest probability answer isn't always right // arXiv preprint arXiv:2104.08315. 2021.

Hu Edward J, Shen Yelong, Wallis Phillip, Allen-Zhu Zeyuan, Li Yuanzhi, Wang Shean, Wang Lu, Chen Weizhu, others . Lora: Low-rank adaptation of large language models. // ICLR. 2022. 1, 2, 3.

Hu Mingqing, Liu Bing. Mining and summarizing customer reviews // Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery, 2004. 168–177. (KDD '04).

Huang Kexin, Altosaar Jaan, Ranganath Rajesh. Clinicalbert: Modeling clinical notes and predicting hospital readmission // arXiv preprint arXiv:1904.05342. 2019.

Izacard Gautier, Lewis Patrick, Lomeli Maria, Hosseini Lucas, Petroni Fabio, Schick Timo, Dwivedi-Yu Jane, Joulin Armand, Riedel Sebastian, Grave Edouard. Atlas: Few-shot learning with retrieval augmented language models // Journal of Machine Learning Research. 2023. 24, 251. 1–43.

Johnson Alistair EW, Pollard Tom J, Shen Lu, Lehman Li-wei H, Feng Mengling, Ghassemi Mohammad, Moody Benjamin, Szolovits Peter, Anthony Celi Leo, Mark Roger G. MIMIC-III, a freely accessible critical care database // Scientific data. 2016. 3, 1. 1–9.

Khandelwal Urvashi, Levy Omer, Jurafsky Dan, Zettlemoyer Luke, Lewis Mike. Generalization through memorization: Nearest neighbor language models // arXiv preprint arXiv:1911.00172. 2019.

Kiesel Johannes, Mestre Maria, Shukla Rishabh, Vincent Emmanuel, Adineh Payam, Corney David, Stein Benno, Potthast Martin. SemEval-2019 Task 4: Hyperpartisan News Detection // Proceedings of the 13th International Workshop on Semantic Evaluation. Minneapolis, Minnesota, USA: Association for Computational Linguistics, VI 2019. 829–839.

Kirkpatrick James, Pascanu Razvan, Rabinowitz Neil, Veness Joel, Desjardins Guillaume, Rusu Andrei A, Milan Kieran, Quan John, Ramalho Tiago, Grabska-Barwinska Agnieszka, others . Overcoming catastrophic forgetting in neural networks // Proceedings of the national academy of sciences. 2017. 114, 13. 3521–3526.

Lee Jinyuk, Yoon Wonjin, Kim Sungdong, Kim Donghyeon, Kim Sunkyu, So Chan Ho, Kang Jaewoo. BioBERT: a pre-trained biomedical language representation model for biomedical text mining // Bioinformatics. 2020. 36, 4. 1234–1240.

Lewis Patrick, Perez Ethan, Piktus Aleksandra, Petroni Fabio, Karpukhin Vladimir, Goyal Naman, Küttrler Heinrich, Lewis Mike, Yih Wen-tau, Rocktäschel Tim, others . Retrieval-augmented generation for knowledge-intensive nlp tasks // Advances in neural information processing systems. 2020. 33. 9459–9474.

Liu Aixin, Feng Bei, Xue Bing, Wang Bingxuan, Wu Bochao, Lu Chengda, Zhao Chenggang, Deng Chengqi, Zhang Chenyu, Ruan Chong, others . Deepseek-v3 technical report // arXiv preprint arXiv:2412.19437. 2024.

Liu Xiao-Yang, Wang Guoxuan, Yang Hongyang, Zha Daochen. Data-centric FinGPT: Democratizing Internet-scale Data for Financial Large Language Models // NeurIPS Workshop on Instruction Tuning and Instruction Following. 2023a.

Liu Xiao-Yang, Wang Guoxuan, Yang Hongyang, Zha Daochen. Fingpt: Democratizing internet-scale data for financial large language models // arXiv preprint arXiv:2307.10485. 2023b.

Merity Stephen, Xiong Caiming, Bradbury James, Socher Richard. Pointer Sentinel Mixture Models. 2016.

Min Sewon, Shi Weijia, Lewis Mike, Chen Xilun, Yih Wen-tau, Hajishirzi Hannaneh, Zettlemoyer Luke. Nonparametric masked language modeling // arXiv preprint arXiv:2212.01349. 2022.

Pang Bo, Lee Lillian. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales // Proceedings of the ACL. 2005a.

Pang Bo, Lee Lillian. Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales // Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. USA: Association for Computational Linguistics, 2005b. 115–124. (ACL '05).

Ram Ori, Levine Yoav, Dalmedigos Itay, Muhlgay Dor, Shashua Amnon, Leyton-Brown Kevin, Shoham Yoav. In-context retrieval-augmented language models // Transactions of the Association for Computational Linguistics. 2023. 11. 1316–1331.

Shi Weijia, Michael Julian, Gururangan Suchin, Zettlemoyer Luke. Nearest neighbor zero-shot inference // Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. 2022. 3254–3265.

Socher Richard, Perelygin Alex, Wu Jean, Chuang Jason, Manning Christopher D., Ng Andrew, Potts Christopher.
 Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank // Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle, Washington, USA: Association for Computational Linguistics, X 2013. 1631–1642.

Van Erven Tim, Harremos Peter. Rényi divergence and Kullback-Leibler divergence // IEEE Transactions on Information Theory. 2014. 60, 7. 3797–3820.

Ven Gido M van de, Soures Nicholas, Kudithipudi Dhireesha. Continual learning and catastrophic forgetting // arXiv preprint arXiv:2403.05175. 2024.

Wang Ruize, Tang Duyu, Duan Nan, Wei Zhongyu, Huang Xuanjing, Cao Guihong, Jiang Daxin, Zhou Ming, others . K-adapter: Infusing knowledge into pre-trained models with adapters // arXiv preprint arXiv:2002.01808. 2020.

Xu Frank F, Alon Uri, Neubig Graham. Why do nearest neighbor language models work? // International Conference on Machine Learning. 2023. 38325–38341.

Yang An, Yang Baosong, Zhang Beichen, Hui Binyuan, Zheng Bo, Yu Bowen, Li Chengyuan, Liu Dayiheng, Huang Fei, Wei Haoran, others . Qwen2.5 technical report // arXiv preprint arXiv:2412.15115. 2024.

Yogatama Dani, Masson d'Autume Cyprien de, Kong Lingpeng. Adaptive semiparametric language models // Transactions of the Association for Computational Linguistics. 2021. 9. 362–373.

Zhang Xiang, Zhao Junbo, LeCun Yann. Character-level convolutional networks for text classification // Advances in neural information processing systems. 2015a. 28.

Zhang Xiang, Zhao Junbo, LeCun Yann. Character-level convolutional networks for text classification // Advances in neural information processing systems. 2015b. 28.

Zhang Zhilu, Sabuncu Mert. Generalized cross entropy loss for training deep neural networks with noisy labels // Advances in neural information processing systems. 2018. 31.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer **[Yes]** , **[No]** , or **[NA]** .
- **[NA]** means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "**[No]**" or "**[NA]**" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer **[Yes]** to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- **Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”**,
- **Keep the checklist subsection headings, questions/answers and guidelines below.**
- **Do not modify the questions and only use the provided macros for your answers.**

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope?

Answer: **[Yes]**

Justification: Our method 3 accurately reflects the paper’s main contribution.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: **[Yes]**

Justification: Please see section 9

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: Our method doesn't require theoretical result.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed training hyperparameters is provided in 4.

Guidelines:

- The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: **[Yes]**

Justification: Code and checkpoint has been released at <https://github.com/LUMIA-Group/MemoryDecoder>.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: **[Yes]**

Justification: Please refer to Section 4

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: **[No]**

Justification: All experiments of downstream task evaluation and perplexity evaluation are deterministic.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: **[Yes]**

Justification: Please refer to 4

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.

- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: **[Yes]**

Justification: We have ensured anonymity in our paper.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: **[No]**

Justification: Our work mainly focused on a particular field of NLP that doesn't have much societal impacts in general.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: **[No]**

Justification: Our work on domain adaptation doesn't require safeguards.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Please refer to the citations in 4

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: Currently, our work doesn't contain assets that will be uploaded.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The experiments in our work don't require interaction with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The experiments in our work don't require interaction with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our works doesn't use LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

A Interpolation hyperparameter α of all tasks

A.1 Language Modeling on WikiText-103

For language modeling on WikiText-103 (section 5.1), we use the following α values for different GPT-2 model sizes:

Model	α
GPT-2-small	0.80
GPT-2-medium	0.60
GPT-2-large	0.55
GPT-2-xl	0.55

Table 8: Interpolation hyperparameter α for GPT-2 models on WikiText-103.

The trend of smaller α for larger GPT models aligns with intuition—stronger base models require less augmentation from the memory component. The general pattern centers around $\alpha=0.6$, confirming it as a robust default choice.

A.2 Downstream Performance

Table 9 presents the optimal α values for downstream tasks in section 5.2.

Task	α
SST-2	0.30
MR	0.30
CR	0.05
RT	0.20
HYP	0.20
CB	0.30
RTE	0.60
AGN	0.20
Yahoo	0.20

Table 9: Optimal interpolation hyperparameter α for downstream tasks.

The general pattern centers around $\alpha=0.3$, which is consistent with the findings in Shi et al. (2022).

A.3 Cross-Model and Cross-Vocabulary Adaptation

For domain-specific language modeling tasks (section 5.3 and 5.4), we tune α on the validation set by searching over $\{0.4, 0.6, 0.8, 0.9\}$.

B Analysis of DAPT Performance on Downstream Tasks

Previous work has shown that domain-adaptive pretraining can adversely affect a model’s prompting ability (Cheng et al., 2023). Our experiments reveal that this effect is particularly pronounced when using domain-conditional PMI (DCPMI) scoring for evaluation, especially on tasks where label verbalizers overlap with the pretraining domain vocabulary.

As shown in Table 10, while direct language modeling evaluation reveals only modest performance drops with DAPT, the DCPMI scores show dramatic degradation for smaller models. This discrepancy arises because we employ fuzzy verbalizers following Shi et al. (2022), and the label spaces for Yahoo and AGN tasks contain terms (e.g., “politics,” “technology”) that appear frequently in WikiText-103. When DAPT increases the domain probability for these terms, it causes the conditional PMI scores to drop substantially, as the denominator in the DCPMI calculation becomes inflated.

The results for GPT-2-xl demonstrate that larger models exhibit greater robustness to this evaluation artifact, maintaining relatively stable DCPMI scores after domain adaptation. This suggests that

Model	Yahoo (LM)	Yahoo (DCPMI)	HYP (LM)	HYP (DCPMI)	Avg
GPT-2-small	0.466	0.495	0.639	0.638	0.559
+DAPT	0.429	0.244	0.608	0.361	0.410
Δ	-0.037	-0.251	-0.031	-0.277	-0.149
GPT-2-xl	0.520	0.499	0.628	0.609	0.564
+DAPT	0.490	0.491	0.624	0.618	0.556
Δ	-0.030	-0.008	-0.004	+0.009	-0.008

Table 10: Comparison of standard language modeling (LM) scores versus domain-conditional PMI (DCPMI) scores for DAPT models on Yahoo and HYP tasks.

the apparent failure of DAPT on certain downstream tasks is partly an artifact of the evaluation methodology rather than a fundamental limitation of the approach, though the phenomenon highlights an important interaction between domain adaptation and prompt-based evaluation methods.

C Characteristics of k -NN Distributions

C.1 Extreme Sparsity and Concentration

k -NN distributions exhibit fundamentally different characteristics from standard language model outputs. While LM distributions maintain smooth probability mass across vocabulary with extensive long tails, k -NN distributions demonstrate extreme sparsity—typically assigning non-zero probabilities to only 2–3 tokens from a 50,257-dimensional vocabulary.

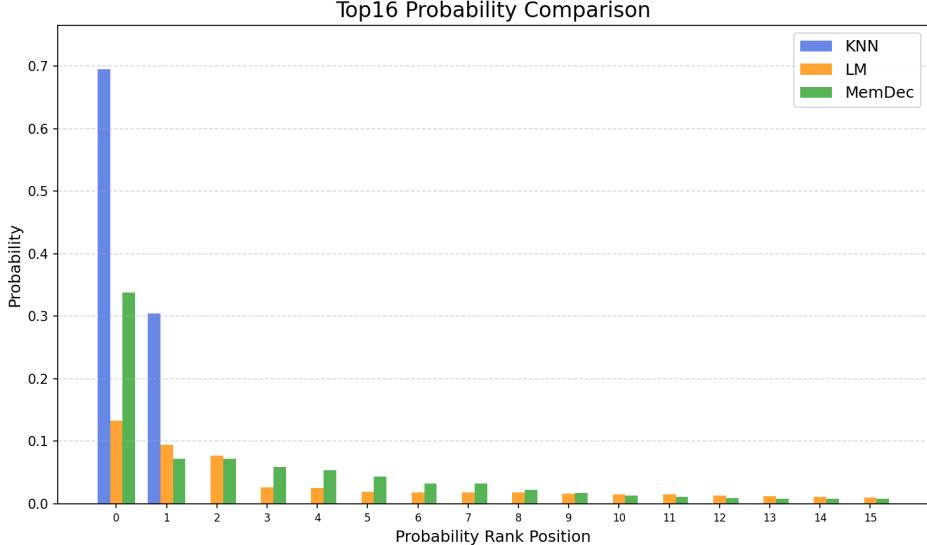


Figure 5: Probability distributions from k -NN retrieval, standard LM, and Memory Decoder for GPT-2-Large. The k -NN distribution shows extreme sparsity with concentrated probability mass.

This concentration emerges from two factors: (1) the hard constraint of selecting only k nearest neighbors eliminates low-probability candidates, and (2) high-dimensional embedding spaces (e.g., 1280 dimensions for GPT-2-Large) amplify distance relationships through the curse of dimensionality, causing nearest neighbors to dominate disproportionately.

C.2 Scale-Dependent Behavior

Model scale dramatically affects k -NN distribution quality. GPT-2-small (124M) produces distributions marginally different from its LM outputs (top-1 probability 50%), while GPT-2-Large

(1.5B) generates radically sparse distributions with 93.48% average top-1 probability—a 67% relative increase over its baseline.

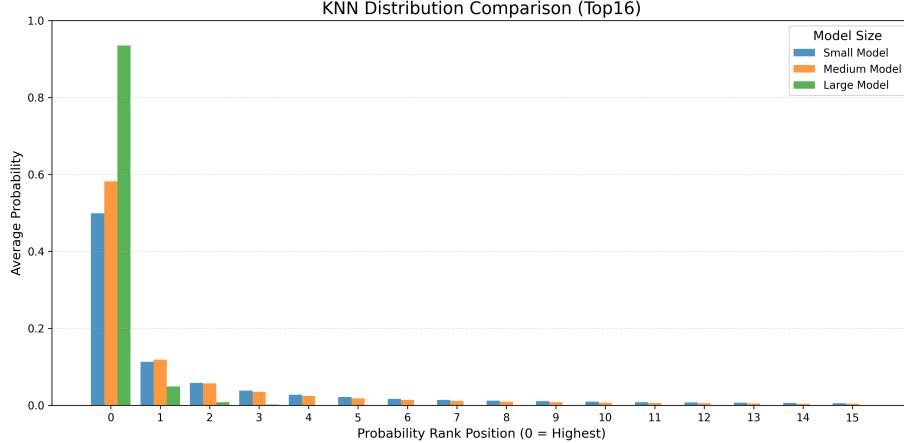


Figure 6: k -NN distribution sparsity across model scales. Despite identical retrieval parameters ($k = 1024$), larger models produce substantially sparser distributions.

Base Model	Baseline	PPL with MemDec from:		
		PPL	Small	Medium
GPT-2-Small	24.89	14.01	13.80	13.77
GPT-2-Medium	18.29	12.88	12.74	12.70
GPT-2-Large	15.80	12.05	11.95	11.93

Table 11: Perplexity with Memory Decoder (125M) trained using k -NN distributions from different source models

Larger models benefit from: (1) higher-dimensional spaces where distance concentration intensifies, and (2) superior contextual representations that better disambiguate polysemous tokens and preserve semantic distinctions, leading to more coherent nearest neighbor retrievals.

C.3 Domain Adaptation Effects

Fine-tuned models produce sharper k -NN distributions than base models. Domain adaptation creates specialized embedding clusters with reduced intra-cluster variance and increased inter-cluster separation, leading to more decisive retrievals. Memory Decoders trained with fine-tuned distributions consistently achieve lower perplexity, validating that domain-adapted representations provide superior retrieval targets.

D Alternative Loss Functions for Imitating k -NN Distributions

D.1 Failed Approaches

While KL divergence (combined with cross-entropy regularization) successfully matches k -NN distributions, we systematically evaluated several alternative loss functions that all demonstrated inferior performance:

D.1.1 Focal Loss

Adapted from object detection to handle class imbalance through gradient rescaling:

$$\mathcal{L}_{\text{Focal}} = - \sum_i [\alpha(1 - p_{\theta}(i))^{\gamma} p_{\text{kNN}}(i) \log p_{\theta}(i) + (1 - \alpha)p_{\theta}(i)^{\gamma}(1 - p_{\text{kNN}}(i)) \log(1 - p_{\theta}(i))] \quad (8)$$

With $\alpha = 0.5$ and $\gamma = 2$, focal loss theoretically emphasizes hard-to-classify sparse regions but failed to achieve sufficient distribution concentration in practice.

D.1.2 Jensen-Shannon Divergence

A symmetric alternative to KL divergence:

$$\text{JSD}(P \parallel Q) = \frac{1}{2}D_{\text{KL}}(P \parallel M) + \frac{1}{2}D_{\text{KL}}(Q \parallel M), \quad M = \frac{1}{2}(P + Q) \quad (9)$$

Despite avoiding the directional bias of KL divergence, JSD provided no advantage for our extremely sparse target distributions.

D.1.3 Bi-directional Logits Difference (BiLD)

BiLD focuses on relative rankings by computing pairwise differences among top- k logits:

$$\mathcal{L}_{\text{BiLD}} = D_{\text{KL}}[p_{\text{led}}^{\text{kNN}} \parallel p_{\text{cor}}^{\theta}] + D_{\text{KL}}[p_{\text{cor}}^{\text{kNN}} \parallel p_{\text{led}}^{\theta}] \quad (10)$$

While theoretically suited for distributions where relative ordering matters more than exact probabilities, BiLD consistently underperformed standard KL divergence.

D.1.4 Explicit Sparsity Penalty

Direct penalization of non-zero predictions in zero-probability regions:

$$\mathcal{L}_{\text{sparse}} = \mathcal{L}_{\text{KL}} + \alpha \sum_i \mathbb{I}_{\{p_{\text{kNN}}(i)=0\}} \cdot p_{\theta}(i), \quad \alpha = 0.01 \quad (11)$$

This approach created training instability without meaningfully improving output sparsity.

D.2 Why KL Divergence Succeeds

The superior performance of KL divergence (with cross-entropy regularization) for matching k -NN distributions likely stems from its unique mathematical properties that align with the retrieval-based nature of the target:

Asymmetric penalty structure: KL divergence $D_{\text{KL}}(P \parallel Q) = \sum_i P(i) \log \frac{P(i)}{Q(i)}$ heavily penalizes placing probability mass where the target has none (when $P(i) \approx 0$ but $Q(i) > 0$), while being more forgiving of missing mass where the target has some. This asymmetry naturally encourages sparsity—the model learns to aggressively zero out predictions outside the k -NN support.

Mode-seeking behavior: The forward KL divergence $D_{\text{KL}}(P \parallel Q)$ is inherently mode-seeking, preferring to capture a few high-probability modes rather than covering the entire distribution. For k -NN distributions with 2-3 dominant modes, this bias perfectly matches the desired behavior, unlike symmetric losses (JSD) or mode-covering alternatives.

Information-theoretic optimality: KL divergence directly minimizes the expected encoding length difference between distributions. For k -NN distributions that encode "retrieval-aware uncertainty," KL naturally preserves the information structure—maintaining both the sharp peaks (high retrieval confidence) and the specific ranking among top candidates that emerges from the datastore's empirical distribution.

The cross-entropy regularization component anchors the model to linguistically valid outputs, preventing collapse to degenerate solutions while the KL term drives sparsity. This combination uniquely balances the competing demands of extreme concentration and semantic coherence.