Improving Neural ODE Training with Temporal
Adaptive Batch Normalization

Su Zheng'; Zhengqi Gao®*, Fan-Keng Sun?, Duane S. Boning?, Bei Yu', Martin Wong'

1Department of CSE, CUHK 2 Department of EECS, MIT

Abstract

Neural ordinary differential equations (Neural ODEs) is a family of continuous-
depth neural networks where the evolution of hidden states is governed by learnable
temporal derivatives. We identify a significant limitation in applying traditional
Batch Normalization (BN) to Neural ODEs, due to a fundamental mismatch — BN
was initially designed for discrete neural networks with no temporal dimension,
whereas Neural ODEs operate continuously over time. To bridge this gap, we
introduce temporal adaptive Batch Normalization (TA-BN), a novel technique that
acts as the continuous-time analog to traditional BN. Our empirical findings reveal
that TA-BN enables the stacking of more layers within Neural ODEs, enhancing
their performance. Moreover, when confined to a model architecture consisting
of a single Neural ODE followed by a linear layer, TA-BN achieves 91.1% test
accuracy on CIFAR-10 with 2.2 million parameters, making it the first unmixed
Neural ODE architecture to approach MobileNetV2-level parameter efficiency.
Extensive numerical experiments on image classification and physical system

modeling substantiate the superiority of TA-BN compared to baseline methods.

1 Introduction

Originally derived as the continuous limit of a residual con-
nection [4], neural ordinary differential equations (Neural
ODEs) [4] [7), 137, 451 8] 142, 30} [18] 32} [19, 31]] is a family
of continuous-depth neural networks where the evolution of
hidden states is governed by learnable temporal derivatives.
These models exhibit several intriguing features, such as the
capability of temporal reversibility, which enables generative
modeling [4} [15].

Previous studies on Neural ODEs parameterize the learnable
temporal derivatives using a shallow neural network with a lim-
ited number of parameters [7, 30]]. Without special treatment,
merely stacking additional layers in the temporal derivatives
does not necessarily enhance Neural ODE performance. Fur-
thermore, deeper networks might increase the stiffness of the
ODE system, leading to challenges with the ODE solver, such
as excessively small step sizes or even failures due to infinite
state values, as shown in Figure|T]

In efforts to deepen the model and address instabilities, one

0.95 T T T T T T
/,,,/‘ W
A
“C 0.8 7 24 B
s
3]
S 0.65 /’ — NODE w/ TA-BN (Ours, 18 layers) ||
- { NODE w/ Mini-batch BN (18 layers)
2 |
& 0.5# : (
NODE w/o BN (8 layers)
i NODE w/o BN (4 layers)
2K T T T T T T
0-35 20 40 60 80 100 120
Epoch

Figure 1: Test accuracies are de-
picted over the training epochs on
CIFAR-10, utilizing Neural ODEs
with different numbers of convo-
lution layers as the backbones for
learnable derivatives. Dashed hor-
izontal lines denote instances of
training failures.

might instinctively consider Batch Normalization (BN) [15,[29} 16, 39} 2] as a remedy to stabilize the
intermediate state values of Neural ODE:s [13}35]], because BN was originally proposed to accelerate

*The first two authors contribute equally. Correspond to Bei Yu at byu@cse.cuhk.edu.hk.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:byu@cse.cuhk.edu.hk

the training of (discrete) neural networks and consolidate them against internal covariate shift [29].
However, preliminary works surprisingly found that the introduction of BN into Neural ODEs can
even degrade performance, an effect for which the underlying causes remain unclear [13}35].

In this paper, we demystify the aforementioned phenomenon and demonstrate that directly applying
traditional BN to Neural ODE:s is fundamentally flawed. The primary complication arises because
the forward pass of Neural ODEs employs an adaptive step size solver that discretizes time variably.
Consequently, it is not assured that two forward passes will coincide with the same discretized
time grids. This variability precludes the possibility of retrieving population statistics [16] at test
time. Additionally, relying on mini-batch statistics for BN renders the outputs of Neural ODEs
non-deterministic and vulnerable to outliers and small batch size.

Motivated by these observations, we introduce temporal adaptive BN (TA-BN), a novel technique
designed as the continuous-time counterpart to traditional BN, tailored specifically for Neural ODE:s.
Our empirical findings demonstrate that TA-BN facilitates the up-scaling of Neural ODE model sizes
without encountering performance saturation (See Figure[T). Moreover, when confined to a model
architecture consisting of a single Neural ODE followed by a linear layer, TA-BN achieves 91.1%
test accuracy on CIFAR-10 with 2.2 million parameters, making it the first unmixed Neural ODE
architecture to approach MobileNetV2-level parameter efficiency. Extensive numerical experiments
on image classification and physical system modeling substantiate the superiority of TA-BN compared
to baseline methods.

2 Preliminary

Neural ODEs Neural ODEs [4}, [7] [37} 145] 18}, 142, [30} [18}, 132} |19} 31] forge a significant linkage
between differential equations and neural networks. They model the continuous dynamics of hidden
states with a learnable ODE system:

dh(t)
= = fy(h(t), 1) M)
where fo(-,-) € RP” x R — RP is a neural network parameterized by learnable parameter 6
controlling the temporal evolution, and h(t) € RP is the ODE state variable at time ¢. The practical
usage of Neural ODEs is by solving an initial value problem: given the initial state h(0) as input,
the state h(7T') at a later time 7" is computed using an ODE solver and returned as the output. The
gradients required for training are computed via the adjoint method [4} 31} [18] reverse in time.

Subsequent works have expanded the capabilities and scope of Neural ODEs by introducing modifi-
cations, such as improving expressivity through state augmentation [[7], coupling the evolution of
both weights and activations [43]], accelerating convergence via semi-norm techniques [18]], extend-
ing to graph neural networks [37] and second-order ODEs [34]], adapting to irregular time-series
data [19} 32], and drawing connections to diffusion models [[15} 28]. Of particular interest, two
preliminary studies [[13[35]] have indicated that applying BN within Neural ODEs may compromise
model performance. Our work aims to unravel this phenomenon and propose a version of BN tailored
to operate effectively with Neural ODEs.

Batch Normalization BN [5} 129, (16,39, 2| 21]] performs a re-centering and a re-scaling operation
on the given input by subtracting the mean and dividing by the standard deviation:

BN(z;) = BN, o(x;) = %’y +)

where ¢ € R ensuring division validity, {y € R, € R} are learnable parameters, and z; €
R represents the i-th data in one batch of size B. During training, the mini-batch statisticsE]
p=1/BX" x; and 0 = 1/BY 2 (x; — p)? are used for efficiency. In contrast, at test time,
BN uses population statistics aggregated across the entire training dataset to ensure deterministic
outputs [16]]. BN can be extended to multiple dimensions/channels by processing each one separately.

BN has been widely applied in training deep neural networks, as it can stabilize the training process
and accelerate convergence. Despite its strong empirical performance, the underlying mechanisms

Throughout our paper, statistics refer to mean and standard deviation (std) or equivalently variance.

of BN have been subject to various interpretations, such as reducing internal covariate shift [16]],
smoothing the optimization landscape [39], and decoupling the learning of length and direction [21].
Originally, BN [[16] was developed for neural networks with hidden units that do not explicitly depend
on time. However, recent advancements have extended BN to accommodate time-dependent models,
including recurrent neural networks (RNNs)[5, 23] and spiking neural networks (SNNs) [20} 144116, [17]).
Unlike these models, Neural ODEs exploit adaptive time discretization, necessitating a specialized
modification of BN for its application.

3 Traditional Batch Normalization in Neural ODEs

Let us consider a simplified one-dimensional Neural ODE when incorporating BN as example:

% = BN, o(wh +b) 3)
where 0 = {v € R,a € R,w € R,b € R} are the learnable parameters. Given a batch of
input {h;(0)}2., (i.e., initial values of the ODE), the forward process employs an ODE solver to
discretize Eq. (3) over time, visiting N sequential points 7 = (to = 0,t1,t2, -+ ,txy = T) and
computing the outputs {h;(T)}2 ;. An adaptive step size solver (e.g., Runge-Kutta method) is
usually preferred because of its higher efficiency compared to a fixed step size solver (e.g., Forward
Euler method). Thus, the differences between two consecutive time steps might not be identical (e.g.,
to —t1 # t1 — tp), and the value of N also depends on the batch of data. The temporal discretization
indicates that we need to invoke BN at every ¢t € T for every sample:

BN(l‘i,j) = BN%a(l‘iJ) = M’y + «, where Ti; =W - hi(tj) +b “4)
A /sz_ + €
forevery j =1,2,--- ,Nand:=1,2,--- , B, where ;1; and 0]2- are statistics associated with ;.

During training To perform the normalization shown in Eq. (@), BN applies mini-batch mean
u; =1/B Ef;l z;; and variance o7 =1/B Zil(%i —)2, Although the training can proceed
under normal conditions, the statistics cannot be successfully accumulated across batches. For
instance, the time grid 7 utilized for the first batch might differ significantly from the grid 7" used
for a subsequent batch. Consequently, specific time points t} € T might not coincide with any time
points in 7, and vice versa. This might result in an impractical collection of infinite statistics £; and
0’?. Moreover, except those associated with ¢ = 0 and ¢ = T', most stored statistics will be calculated
and updated based on a limited number of batches.

- — t pp Batch 4 — t >
2 to | t1 t2 tn-1 N Data [, 1 o tn_1 tn
£ N~/ Use(a’) Update(u',o"?)

! Pop BN Pop-TI BN

: Misalign (u,0%)

1

/ / / \ Use (7%, %) Use (p*,0*?)

Figure 2: Left: The failure of Pop BN in Neural ODEs stems from the misalignment of discretized time
grids. Pop-TI BN aggregates all running mini-batch statistics into a single pair of (1, 2), implicitly
assuming time-independent population statistics. Right: Our proposed TA-BN automatically conducts
temporal interpolation to accumulate statistics and update parameters during training and testing.

During inference Conventionally, BN should perform the normalization shown in Eq. () using
population statistics during inference. However, as shown in the left part of Figure 2} the population
statistics associated with the time point t’j € T, required by the temporal discretization during
inference, might not be available if the time value t; is never encountered during training. Moreover,
even if the population statistics exist, they are likely to be inaccurate as discussed above.

0.92 — 0.88 — 02
pe A M " v S
oy N Al
B 0.72 //‘ — g sl o T ‘“\'
:Ev' 5 4 \ " { u ! g
g 0.52¢ 3 I Z01f
= | —— NODE w/ TA-BN, B-agnostic = [=
2 NODE w/ Mini-batch BN, B =2 Z 0.68F (== NODE w/ TA-BN (Ours, w/ noise) 0
=032+ / Mini-batch BN, B = 256 |{ & | NODE w/ Mini-batch BN (:)
Pop-TT BN, B-agnostic NODE w/ TA-BN (Ours, w/o noisc)
N NODE w/ Mini-batch BN (w/o ise)
0.12 . = . n T : 0.58 T " = T T T . . L
20 40 60 80 100 120 20 40 60 80 100 120 0 0.2 0.4 0.6
Epoch Epoch Time

Figure 3: Left: We train a Neural ODE with a U-Net backbone as the learnable derivatives on
CIFAR-10. Mini-batch BN shows degraded accuracies with a batch size of 2, while TA-BN can
maintain high accuracies under varying batch sizes, because it uses the estimated population statistics
during testing. Pop-TI BN aggregates running statistics encountered at any time points into a single
pair of ;2 and 2. This approach assumes time-independent statistics, leading to erroneous predictions
and erratic test loss curves. Middle: When noisy data exist on average in one out of every test batch,
Mini-batch BN’s performance deteriorates, because the noise affects the mini-batch statistics. The
backbone for learnable derivatives in this experiment consists of 6 convolution layers. Right: We plot
the output statistics from the first layer of U-Net over time; they are time-dependent.

Summary A seemingly straightforward remedy could be to consistently use mini-batch statistics
during both training and inference, thus avoiding the need for accumulating population statistics.
However, this approach has a critical limitation: the output h;(T") becomes highly dependent on their
respective batch’s specific characteristics. This will make the outputs inaccurate when batch size is
very small (e.g., B = 2) or the occurrence of outliers in batch, and even fail in single-run scenarios
(B = 1) because running standard deviation cannot be calculated. As shown in the left of Figure[3]
when the batch size is reduced to 2, mini-batch BN displays degraded accuracies. Furthermore, when
noisy data exist, mini-batch BN performance deteriorates, as shown in the middle of Figure [3]

For clarity, we will henceforth refer to the use of population statistics at test time as Pop BN, and
the use of mini-batch statistics as Mini-batch BN. Notably, both methods utilize mini-batch statistics
during training. It is important to emphasize that in practice, when implementing BN in Neural
ODEs with popular deep learning frameworks (e.g., PyTorch with TorchDiffeq [4]), actually a variant
of Pop BN is used, which we will refer to as Pop-TI BN. Pop-TI BN accumulates statistics at all
encountered time points during training into a single pair of 1 and o2, which implicitly assumes that
all time points share the same statistics. This aggregation approach can result in outputs during test
time without errors concerning missing population statistics which we would anticipate as in Pop BN.
Unfortunately, these predictions are meaningless and often lead to poor performance, as illustrated in
the left of Figure[3] This issue highlights the challenges identified in recent studies [1335].[] In a
nutshell, our observations can be succinctly summarized as follows:

* Pop BN fails when Neural ODEs employ an adaptive step size solver.
* Pop-TI BN implicitly assumes time-independent statistics, leading to erroneous outputs.

* Mini-batch BN fails when Neural ODEs operate with small batch sizes or outliers exist.

4 Temporal Adaptive Batch Normalization

The fundamental reason why Pop-TI BN and Mini-batch BN fail in Neural ODE:s is attributed
to the added temporal dimension, where the distributions at different time points vary, effectively
constituting a stochastic process as depicted in the right of Figure [3] This observation suggests
that BN should be defined to be time-dependent in Neural ODEs. Ideally, we would want BN to
store population statistics at every ¢ € [0, T'], with corresponding learnable parameters ~v(¢) and 3(t)
defined at every t. However, implementing such a model is impractical, because not every ¢ will be
encountered in training, and the update of (¢), 8(t), and the population statistics will be naturally
sparse on t, resulting in inefficiency.

3We examined several open-source codes provided by previous works. They align with this implementation
and exhibit similar erratic behavior to the Pop-TI BN’s test loss curve in the left of Figure E}

To address the aforementioned problem, we propose an intuitive method termed temporal adaptive
BN (TA-BN) for usage in Neural ODEs. Let us illustrate it with the example shown in Eq. (3). To
begin with, we evenly divide the time span [0, 7'] defining (M + 1) time grids 7* = (t§ = 0,5 =

Lty = %, .-+, th; =T). We associate the time grid ¢}, with population mean 1, and population
variance 07,2, as well as learnable parameters 7%, and %, for every m = 0,1,2,--- , M. For later
simplicity, we denote v* = [v§,75, - ,75)t and a* = [af,af,- -+ ,a%,]T. Similar notations

apply to u* and o*.

During training As shown in the right of Figure [2| given a batch of data {h;(0)}2 ,, the forward
pass of Neural ODE might discretize the time as 7 = (¢o, t1, - - , tnx) which differs from the grids
T of TA-BN. However, TA-BN can calculate the temporal derivative for the ¢-th data at ¢;:

Lo s — q1s
0 vaj_i_aj
,/J?—l—e

where (117, 02) are still the mini-batch mean and variance based on {x; ;}2 ;. Here ~; and «; are
interpolated l])ased on v* and o, respectively:

v =G, Y T"), o =G(t;,a",T") 6)

TABN»Y*’a* (,Ti’j) = where L5 = W - hi(tj) +b (5)

where G(t,a, T) is a function to interpolate the value a(t) given an array of values a € RM*! and
their corresponding (A + 1) time points 7. There are many choices for G(-, -, -), such as linear, cubic
spline, and kernel smoothing. We empirically observe that linear interpolation based on two nearest
neighbors suffices for our experiments, and we advocate it due to its implementation simplicity:

tip1—t t—1
a
tiy1 — 1 tiy1 — b

G(t,a,T) =

Aj4+1 (7)

where [is the index which makes ¢; to be the largest value smaller than ¢ in 7. Using a linear G(-, -, -)
implies that we approximate the underlying a(t) in a piece-wise linear manner, and as long as the
number of time grids is sufficiently large, G(t, a, T') can approximate any continuous a(t) arbitrarily
well, i.e., |G(t,a,T) — a(t)] — 0 when M — oco. In practice, we set M close to the number of
ODE-discretized time grids. Please refer to Sectionfor ablations on the choice of G(-, -, -).

During training, we also need to accumulate the encountered running mini-batch statistics (1, O'JQ-) to

the population statistics (u5,, 0%;2), so that later they can be used for inference. As shown in the right

part of Figure 2] this requires the interpolation to be performed in the opposite direction:

t, < (L=n) -y, +n- Gty 1, T), po=[p1, p2, e, pn]”
0;’;2 < (1_77) *24'77 G(m> 27T)7 0-2:[0'%7057"'7012\/]T

®)

where 7 € [0, 1] is a momentum constant to perform moving averaging to update the population
statistics based on current estimate of 7, and 0%;% using the new observed values G(t%,, u, 7) and
G(t%,, 02, T), respectively. Note that the training does not involve the gradients with respect to .

During inference After the training phase, TA-BN will have well-trained parameters v* and a*,
and accurately record population statistics g and o*. During inference, when provided with a batch
of data and denoting the discretized time grids as 7”, as depicted in the right part of Figure |2 we
again proceed with the interpolation step:

Param. v; =Gt~y T"), oy = G(th, o, T")

©))

Pop. Stat. wy = Gt ", T"), a;’Q = G(t;,a*’Q,T*)
This interpolation differs from the training phase in that now the interpolation directions are the same
for parameters and the population statistics, because now we utilize them for the new time grids 7.

Implementations and summary In practice, we observe that the interpolations during training
outlined in Eq. (6)-(8) have opposite directions, potentially leading to increased computational
overhead. To elaborate, when encountering a time point ¢; discretized by the ODE solver during
training, the interpolation for obtaining ~; and c; in Eq. (6) using Eq. (7) can be immediately executed
by identifying the index [such that ¢} is the largest value smaller than ¢;. However, the interpolation

in Eq. (8) cannot be carried out at this time. It becomes feasible only after the ODE solver completes
its execution and we gather all ¢;’s into 7. This sequential nature degrades computational efficiency.
To mitigate this issue, we have slightly adjusted the interpolation for population statistics during
training so that it can be performed concurrently with the parameter interpolation at time ¢;. The key
steps of our proposed TA-BN are summarized in Algorithm[I] It will be called as a subroutine for
every discretized time point ¢; € 7 required by the ODE solver.

Algorithm[T]outlines the case involving a single one-dimensional neuron and one TA-BN layer within
the Neural ODE. In more general cases, we may have () TA-BN layers within a Neural ODE, and
each neuron may possess D dimensions. In such cases, we can perform the normalization in a
dimensional-wise manner. Thus, we must maintain 2(M + 1)@ population statistics and 2(M + 1)Q
learnable parameters, each with D dimensions. In contrast, a traditional feedforward neural network
with @ BNs has 2@) population statistics and 2¢) learnable parameters, each with D dimensions. Note
that for image inputs, we perform channel-wise normalization, so D will be the number of channels.

Finally, since our linear interpolation in Algorithm[I]relies on two nearest neighbors, it is prudent to
ensure that the number of TA-BN time grids (A + 1) are roughly at the same level as the number
of ODE-discretized time grids. Denser grids would be unnecessary as those not adjacent to any ¢;
would remain unused. Alternatively, as our numerical results will demonstrate, employing other
interpolation methods that require all time grids may lead to increased computational overhead
without significant improvements. Additionally, we employ L2 regularization ||v* — 1||? and ||a*||?
to avoid significant discrepancies among the elements in v* and ¢, making the training more stable.

Algorithm 1 The forward pass of a TA-BN layer at time ¢;

Input: Batched input x = {z; ;}2 ; at time ¢;
1: Get ¢} and t7, | such that ¢} is the largest value smaller than ¢; in 7 ;
tp1—ts ti—t

2w =, W = > Compute the weights for linear interpolation;
+17 U +1~ 49

3: if the model is in the training mode then

4 (; = mean(x), crj2- = var(x) ; > Compute the mini-batch statistics;

55y =w Fw2hy, 0 =wia) Fwaagy

6y (L=mrw)pf +n-wipg, g < (L—n-w2)piy + 10 wapy s

7: Jl*’2 —~1-n- w1)05*’2 +n-wo?, al*_fl +~1-n- wg)al*_fl +1-wyo?;

8: else if the model is in the evaluation mode then
_ * * 2 _ *,2 *,2 .

9: Wi = w1y + Wallj1q, O0F = W10 + W20 3

10: 9 =wiy] Fwa Yy, @ = wia] +wea

11: end if

X—Mj
12: return ——ELr; + aj;

A /a?-&-efy]l

5 Numerical Results

Various network architecture designs have been explored in existing Neural ODE studies. For instance,
the original study [4] integrates a feature extractor (e.g., CNN-based), a Neural ODE module, and
an MLP in sequence for classification. Another study structures neural networks with alternating
Neural ODE modules and convolutional/linear layers [11]. While these solutions represent viable
approaches for optimizing performance on given ML tasks through the synergy of conventional
(discrete) neural networks and Neural ODEs, they become inappropriate for investigating the effect
of specific architectural modifications (i.e., TA-BN) on Neural ODEs. This is because the Neural
ODE module can be entirely bypassed if its trained weights approach zero in extreme cases, thereby
overshadowing the intended modification. Hence, our model comprises a Neural ODE module
followed by a single linear layer as advocated by [7]], which we refer to as the unmixed Neural
ODE architecture. Our code is developed based on PyTorch [36], TorchDiffeq [3]], and a customized
TA-BN layer. All experiments are run on a Linux server with RTX 3090 GPUs.

5.1 Image Classification

Being consistent in experimental scales of previous Neural ODE studies, we conduct image clas-
sification across datasets including MNIST [26], SVHN [33], CIFAR-10, CIFAR-100 [22], and

Tiny-ImageNet [24]. We employ the dopri5 solver with a tolerance of 10~2 for ODE solving and
adopt the AdamW optimizer [27] with a learning rate of 10~3 to train the neural networks for 128
epochs. The training batch size is 256. We set M = 100 for TA-BN.

Table [I] compares the test top-1 accuracy and number 09 Belter R
of parameters of various Neural ODEs. TA-BN outper- . g

forms Mini-batch BN and Neural ODE w/o BN on SVHN, 2 osl 1
CIFAR-10, CIFAR-100, and Tiny-ImageNet. Moreover, ; e
TA-BN achieves superior accuracies over Aug-NODE [7] @ ol , M buch B and w/o DY
and STEER [12]]. On MNIST and CIFAR-10, TA-BN has & . AnsNODE and STEER
fewer parameters than Aug-NODE and STEER, which indi- ‘ ‘ ‘
cates that TA-BN can also help training in the small Neural 00 10° 100

ODE regime. We also visualize Neural ODEs’ performance #Parameters .
changes as the number of parameters varies in Figure[d] by Figure 4: Comparison between differ-
including four additional baselines IL-NODE, 2nd-Ord [30], ¢nt Neural ODEs on CIFAR-10. The
HBNODE, and GHBNODE [41]). For reference, the popu- baselines marked by yellow triangles
lar convolutional-based MobileNetV?2 [38]], known for its 40 not adhere to the unmixed struc-
parameter efficiency, achieves approximately 94% accuracy ~ture and are not strictly comparable to
with about 2M parameters. Our TA-BN assisted Neural ~Ours. Itis unknown whether increasing
ODE is the first to approach this level of performance using the number of parameters inside their
the unmixed architecture, while most previous Neural ODE ODEs can lead to better accuracy.
literature either falls short of this performance or/and does not follow this unmixed architecture.

Table 1: Comparison of test accuracies and number of parameters between different Neural ODEs!.

Model MNIST CIFAR10 SVHN CIFAR100 Tiny-Imagenet
ode Accuracy #Params Accuracy #Params Accuracy #Params Accuracy #Params Accuracy #Params
Aug-NODE [7] 0.982 84k 0.606 172k 0.835 172k N/A N/A N/A 366k
STEER [12] 0.986 84k 0.621 172k 0.841 172k N/A N/A N/A N/A

w/o BN 0.989+0.001 37k 0.517£0.049 22M 0.096+0.025 22M 0.24640.084 2.2M - 2.2M
w/Pop-TIBN 0.973+0.011 37k 0.548+0.087 22M 0.241+0.123 22M 0.251£0.112 22M 0.044+0.007 2.2M
w/ Mini-batch BN 0.962+0.013 37k 0.822+0.095 22M 0.906+0.031 22M 0.4924+0.176 2.2M 0.200£0.006 2.2M

w/ TA-BN 0.988+0.001 37k 0.74840.059 70k 0.953£0.002 220k 0.576+0.016 220k 0.436+0.013 220k
(ours) 0.988+0.001 220k 0.910+0.010 2.2M 0.958+0.004 22M 0.664+0.025 22M 0.512+0.008 2.2M

T“N/A’ indicates values are not available in the original literature. ‘-” indicates training failure at the first epoch. Results are reported with a test
batch size of 256. The error bars are shown using the format mean-+std.

1 T T T T T T 0.64 T T T T T N 0.52
, ST
s e
‘ [}
g 08, 2 0.48 ,_',w"'yﬂ A Al & 0.39
g g i g
= E =
£ 06 Sos < 0.26
f —— NODE w/ TA-BN, B-agnostic - J = NODE w/ TA-BN, B-agnostic f = NODE w/ TA-BN, B-agnostic
204 NODE w/ Mini-batch BN, B Z NODE w/ Mini-batch BN, B = z NODE w/ Mini-batch BN, B = 2
= NODE w, -batch BN B 0.16 NODE w/ Mini-batch BN, B = 2 =013 NODE w/ Mini-batch BN, B = 256 |~
NODE w TI BN, B-ag f NODE w/ Pop-TI BN, B-agnostic NODE w/ Pop-TI BN, B-agnostic
0.2 NODE w/o BN - ‘ NODE w/o BN ‘ NODE w/o BN
20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Epoch Epoch Epoch

Figure 5: Comparison between Neural ODEs w/ TA-BN, w/ Mini-batch BN, w/ Pop-TI BN, and w/o
BN, using an 18-layer U-Net backbone for learnable derivatives. The total number of parameters
including the outside linear layer is 2.2M. The datasets are SVHN (left), CIFAR-100 (middle), and
Tiny-ImageNet (right). The results on CIFAR-10 have been shown in the left part of Figure E}

The left part of Figure 3]in Section [3|monitors the test accuracy over training epochs on CIFAR-10.
It indicates that training a large Neural ODE without special processes might fail due to numerical
instability. Pop-TI BN performs poorly because of the time-independent statistics assumption. While
Mini-batch BN achieves satisfactory accuracy, our TA-BN outperforms it without encountering the
issues associated with Mini-batch BN, such as batch-dependent outcomes and vulnerability to outliers.
Similarly, the left and middle parts of Figure[5]display test accuracy versus training epochs on the
SVHN and CIFAR-100 datasets. TA-BN consistently shows better and more stable accuracy than
Mini-batch BN on these datasets. On the Tiny-ImageNet dataset (right part of Figure [3)), TA-BN
demonstrates superior accuracy and faster convergence.

Neural ODE Up-scaling Enabled by TA-BN As shown in the left part of Figure[6] Neural ODEs
with a limited number of layers perform normally with acceptable accuracy; however, when the layer
count exceeds 10, training fails due to numerical instability. In contrast, the incorporation of TA-BN
enables deeper layers within Neural ODE as the learnable derivatives, scaling up the model size
and enhancing accuracy, as exemplified by the middle and right sections of Figure [6] Please see
Appendix [A T for architecture details.

0.92 0.92 e memansemem 0.92
M NA
ey *N
R
£ 0.75 s 0.75F) £ 0.75
=] =] =]
S — NODE w/0 BN (18 layers) | | 2 = NODE w/ TA-BN (18 layers) [3 —— NODE w/ TA-BN (18 layers)
= NODE w/o BN (12 layers) | | NODE w/ TA-BN (12 layers) | | NODE w/ TA-BN (12 layers)
Z2 0.58 NODE w/o BN (10 layers) [-| % 0.58 NODE w/ TA-BN (10 layers) |1 % 0.58 NODE w/ TA-BN (10 layers) |
= NODE w/o BN s 3 NODE w/ TA-BN (s) = NODE w/o BN (18 layers)
------------ NODE w/o BN (6 layers NODE w/ TA-BN (NODE w/o BN (12 layers)
| NODE w/o BN (4 layers) NODE w/ TA-BN (4 layers) NODE w/o BN (10 layers)
041 I it It I " " 041 L T T T T T O_ll it I I " "
20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120
Epoch Epoch Epoch

Figure 6: CIFAR-10 accuracies with increasing sizes of the backbones for learnable derivatives.
These figures illustrate the scaling up of Neural ODEs without BN (left) and Neural ODEs with
TA-BN (middle). We also compare the accuracies of these two settings in one figure (right).

Ablations on TA-BN We integrate TA-BN - Table 2: Comparison between Neural ODE varia-
into Aug-NODE [[7], HBNODE [41]], and SON- tjons with and without TA-BN on CIFAR-10".
ODE [34]. Table@]reports model accuracies w/

and w/o TA-BN. It indicates that our method Accuracy Aug-NODE HBNODE SONODE
can also work in compatible with existing Neu- ~/ 1A BN 0.848 0.851 0302
ral ODE variants and boost their performances. w/ TA-BN 0.862 0.867 0.853

To show the impact of different interpolation
functions G, we test the following interpolation
methods: (1) Linear interpolation demonstrated
by Eq. (7). (2) Cubic interpolation: We use cubic spline interpolation [I]]. (3) Kernel smoothing:
Given time ¢, we calculate G(t, a, T) by the weighted sum of elements in a. The weight coefficient
for t; is K (t,t;) = exp(—0.5b2(t — t;)?) with b = 0.17. (4) Gaussian process: We fit a Gaussian
process [[10] to perform interpolation in each forward pass. As illustrated by Figure[7] in addition
to linear interpolation, the cubic interpolation and kernel smoothing methods also achieve good
performance. However, these methods can be much slower than linear interpolation due to more
complicated interpolation mechanisms. With a larger network architecture, we observe that these
methods suffer from unaffordable running time and instable performance. Thus, we adopt linear
interpolation as our default setting. Please see Appendix [B]for further discussion. Future work can
focus on improving the interpolation strategy for TA-BN.

T We use 6 convolution layers as the backbone for learn-
able derivatives.

5.2 Physical System Modeling

54

3

We first evaluate TA-BN on physical dynamical system model-
ing tasks using the Walker2d-v2 [25]] and HalfCheetah-v2 [14]]

e

S
=

datasets. These datasets consist of trajectories of 3D robot sys-
tems generated by the Mujoco physics engine [40]]. Following
[42], we perform temporal autoregressive prediction and use
the treatments from [42] to avoid collisions. We employ TA-BN
in conjunction with a 12-layer MLP serving as the backbone for
learnable derivatives. TA-BN with M = 100 is applied to the
first 5 layers, as is done with Mini-batch BN and Pop-TI BN.
We utilize the dopri5 solver with its default settings for solv-
ing ODEs and employ the RMSprop optimizer with a learning
rate of 10~ for training the neural networks over 100 epochs.
The batch size is 64 for Walker2d-v2 and 32 for HalfCheetah-
v2. Figure 8] presents the mean absolute error (MAE) along the
training epochs on these datasets. Compared with Neural ODEs
w/o BN, w/ Mini-batch BN, and w/ Pop-TI BN, using TA-BN
can achieve lower errors and faster convergence. Moreover,

Table [3| summarizes the MAE results and compares them with the results in [42].

Test Accuracy

I
o

G

Saussian Proc

I
04 20 40

60
Epoch

80 100 120

Figure 7: Ablations on interpola-
tion method using CIFAR-10 with 6
convolution layers as the backbone
for learnable derivatives. Linear in-
terpolation has a gap of only 0.01
compared to the best result. How-
ever, other methods have degraded
accuracies and unaffordable run-
time when we up-scale the model.

1072

o
=3

T T T T T
—— NODE w/ TA-BN (Ours)
NODE |

NODE batch BN
NODE w/ Pop-TI BN

T T T T
| —— NODE w/ TA-BN (Ours)
NODE w/o BN

INg
=~

ODE Mini-batch BN
‘ NODE w/ Pop-TI BN

N
o

Test Loss

Test Loss
=
@
(=]

=}
©
1=
(
[—
—_
®© [

1.26 w w 16—

20 40 60 so 1o L2 20 40 60 80 100 2 4 6 8 10 12 11 16
Epoch Epoch Epoch

Figure 8: Comparison of Neural ODEs with TA-BN and base- Figure 9: Comparison of dif-

lines on Walker2d-v2 (left) and HalfCheetah-v2 (right). The ferent Neural ODEs on Charge

Neural ODE backbone for learnable derivatives is an MLP with ~ Pump circuit modeling. The

12 layers. Please see Appendixfor architecture details. backbone for learnable deriva-
tives is an 8-layer MLP.

Table 3: MAE comparison between different Neu-
Additionally, we investigate the effectiveness ral ODEs on Walker2d-v2 and HalfCheetah-v2.
of TA-BN by modeling the temporal electrical

current of a Charge Pump (CP) circuit [9]. The Dataset Walker2d-v2 HalfCheetah-v2
CP is an analog integrated circuit composed of Baseline [42] 1.02 1.46
MOS transistors and is commonly utilized in w/o BN 0.959 1.40
commercial electrical products. To simulate the / Mini-batch BN 0.953 1.38
semiconductor manufacturing impact on the CP, w/ Pop-TI BN 0.962 1.37
we generate 200 circuit instances based on the w/ TA-BN (ours) 0.946 1.28

process design kit (PDK) file. Concretely, we
simulate the CP’s behavior from 0 seconds to 200 nanoseconds using a time grid of 2 picoseconds
and record the electrical currents at the CP output every 200 picoseconds.

In this experiment, we utilize 16 circuit features (representing the widths of the MOS transistors)
and the electrical currents at the present 20 time points (with each point comprising 2 values) as the
Neural ODE input, resulting in 56 input features in total. Our objective is to train the Neural ODE
to predict the electrical currents at the subsequent 20 time points, yielding 40 outputs in total. To
construct the dataset, we randomly sample 20k data from the simulation results. The training set
includes 90% of them, and the remaining data are used as the testing set. We use 8 linear layers to
parameterize the derivative of the Neural ODE, with each layer containing 56 neurons. Mini-batch
BN, Pop-TI BN, and TA-BN are applied to the first 3 layers. We use M = 100 for TA-BN. The final
linear layer outside the Neural ODE maps the 56 features to 40 prediction values. For ODE solving,
we use the dopri5 method with a tolerance level of 10~3. We use the SGD optimizer with a learning
rate of 1072 to train the model for 16 epochs. The batch size is 200.

Figure 0] presents the mean square error (MSE) results of Neural ODEs w/o BN, w/ Mini-batch BN,
w/ Pop-TI BN, and w/ TA-BN. BN can improve the prediction, and TA-BN surpasses Mini-batch BN.
It indicates that TA-BN is suitable for the circuit modeling task.

6 Conclusions and Limitations

In this paper, we demystify the previously unknown reason why batch normalization (BN) may lead to
performance degradation when used with Neural ODEs. The fundamental mismatch arises from BN
being initially designed for discrete neural networks without a temporal dimension, whereas Neural
ODE:s operate continuously over time. To address this challenge, we propose temporal adaptive batch
normalization (TA-BN), specifically tailored for Neural ODEs. Our key is associating population
statistics and learnable parameters with predefined regular time grids, with temporal interpolation
automatically performed during training and testing. As a continuous-time counterpart to traditional
BN, TA-BN ensures training stability, thereby facilitating the scaling of Neural ODE model sizes.
Our extensive experiments demonstrate TA-BN’s ability to enhance the performance of Neural ODEs
compared to baseline methods in tasks such as image classification and physical system modeling.

The interpolation process used in TA-BN inevitably introduces runtime overhead, which slows down
the execution of Neural ODEs. The parameter-free linear interpolation technique is empirically
found to be stable, time-efficient, and capable of providing performance improvement. However,
future work can focus on enhancing the temporal interpolation used in TA-BN to further optimize its
efficiency and performance.

References

(1]

(2]

3

—

[4

—

[5

—

[6

—_

[7

—

[8

—_—

[9

[

(10]

(1]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

Interpolating natural cubic splines using PyTorch. https://github.com/patrick-kidger/
torchcubicspline.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normalization.
Advances in Neural Information Processing Systems, 31, 2018.

Ricky T. Q. Chen. torchdiffeq. https://github.com/rtqichen/torchdiffeq, 2018.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in Neural Information Processing Systems, 31, 2018.

Tim Cooijmans, Nicolas Ballas, César Laurent, Caglar Giilgcehre, and Aaron Courville. Recurrent batch
normalization. In International Conference on Learning Representations, 2017.

Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang. Temporal effective batch
normalization in spiking neural networks. Advances in Neural Information Processing Systems, 35:34377—
34390, 2022.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in neural
information processing systems, 32, 2019.

Chris Finlay, Jorn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your neural ode:
the world of jacobian and kinetic regularization. In International conference on machine learning, pages
3154-3164. PMLR, 2020.

Zhengqi Gao, Jun Tao, Fan Yang, Yangfeng Su, Dian Zhou, and Xuan Zeng. Efficient performance
trade-off modeling for analog circuit based on bayesian neural network. In 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1-8. IEEE, 2019.

R Jacob Gardner, Geoff Pleiss, Bindel David, Kilian Q Weinberger, and Andrew Gordon Wilson. GPyTorch:
Blackbox matrix-matrix gaussian process inference with GPU acceleration. Advances in Neural Information
Processing Systems, 2018.

Amir Gholami, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-efficient
gradients for neural odes. arXiv preprint arXiv:1902.10298, 2019.

Arnab Ghosh, Harkirat Behl, Emilien Dupont, Philip Torr, and Vinay Namboodiri. STEER: Simple
temporal regularization for neural ode. Advances in Neural Information Processing Systems, 33:14831—
14843, 2020.

Julia Gusak, Larisa Markeeva, Talgat Daulbaev, Alexandr Katrutsa, Andrzej Cichocki, and Ivan Oseledets.
Towards understanding normalization in neural odes. arXiv preprint arXiv:2004.09222, 2020.

Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid time-constant
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 7657-7666,
2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pages 448—-456. PMLR, 2015.

Haiyan Jiang, Vincent Zoonekynd, Giulia De Masi, Bin Gu, and Huan Xiong. Tab: Temporal accumulated
batch normalization in spiking neural networks. In International Conference on Learning Representations,
2024.

Patrick Kidger, Ricky TQ Chen, and Terry J Lyons. " hey, that’s not an ode": Faster ode adjoints via
seminorms. In ICML, pages 5443-5452, 2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations for
irregular time series. Advances in Neural Information Processing Systems, 33:6696—-6707, 2020.

Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency deep
spiking neural networks from scratch. Frontiers in neuroscience, 15:773954, 2021.

10

https://github.com/patrick-kidger/torchcubicspline
https://github.com/patrick-kidger/torchcubicspline
https://github.com/rtqichen/torchdiffeq

[21]

(22]
(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Thomas Hofmann, Ming Zhou, and Klaus Neymeyr.
Exponential convergence rates for batch normalization: The power of length-direction decoupling in
non-convex optimization. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 806-815. PMLR, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

César Laurent, Gabriel Pereyra, Philémon Brakel, Ying Zhang, and Yoshua Bengio. Batch normalized
recurrent neural networks. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2657-2661, 2016.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. 2015.

Mathias Lechner and Ramin Hasani. Mixed-memory RNNs for learning long-term dependencies in
irregularly sampled time series. 2022.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural Information
Processing Systems, 35:5775-5787, 2022.

Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin Peng. Towards understanding regularization in batch
normalization. arXiv preprint arXiv:1809.00846, 2018.

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting neural
odes. Advances in Neural Information Processing Systems, 33:3952-3963, 2020.

Takashi Matsubara, Yuto Miyatake, and Takaharu Yaguchi. Symplectic adjoint method for exact gradient of
neural ode with minimal memory. Advances in Neural Information Processing Systems, 34:20772-20784,
2021.

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equations for
long time series. In International Conference on Machine Learning, pages 7829-7838. PMLR, 2021.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and
unsupervised feature learning, volume 2011, page 7. Granada, Spain, 2011.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Lido. On second order
behaviour in augmented neural odes. Advances in neural information processing systems, 33:5911-5921,
2020.

Viktor Oganesyan, Alexandra Volokhova, and Dmitry Vetrov. Stochasticity in neural odes: An empirical
study. arXiv preprint arXiv:2002.09779, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park.
Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4510—4520, 2018.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normalization
help optimization? Advances in Neural Information Processing Systems, 31, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
IEEE/RSJ international conference on intelligent robots and systems, pages 5026-5033. IEEE, 2012.

Hedi Xia, Vai Suliafu, Hangjie Ji, Tan Nguyen, Andrea Bertozzi, Stanley Osher, and Bao Wang. Heavy
ball neural ordinary differential equations. Advances in Neural Information Processing Systems, 34:18646—
18659, 2021.

11

[42] Wei Xiao, Tsun-Hsuan Wang, Ramin Hasani, Mathias Lechner, Yutong Ban, Chuang Gan, and Daniela
Rus. On the forward invariance of neural odes. In International conference on machine learning, pages

38100-38124. PMLR, 2023.

[43] Tianjun Zhang, Zhewei Yao, Amir Gholami, Joseph E Gonzalez, Kurt Keutzer, Michael W Mahoney, and
George Biros. Anodev2: A coupled neural ode framework. Advances in Neural Information Processing
Systems, 32, 2019.

[44] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained larger
spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 11062-11070, 2021.

[45] Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Papademetris, and James

Duncan. Adaptive checkpoint adjoint method for gradient estimation in neural ode. In International
Conference on Machine Learning, pages 11639-11649. PMLR, 2020.

12

A Implementation Details

A.1 Image Classification

Our model comprises a Neural ODE module followed by a single linear layer, which we refer to
as the unmixed Neural ODE architecture. The single linear layer maps the activations provided by
Neural ODE to the final class probability (or logit). We have 3 settings for the Neural ODE module.

Multilayer Perceptron (MLP): We use 2 linear layers inside the Neural ODE module. On MNIST,
each linear layer has 28 x 28 hidden features, matching the number of pixels in an MNIST image.

Convolutional Neural Network (CNN): We use 4 ~ 12 convolution layers inside the Neural ODE
module. The kernel size of all layers is 3 x 3. The numbers of output channels are:

4 layers: 3(input) — 32 — 64; — 324 — 3.
6 layers: 3(input) — 32, — 64; — 128, — 644 — 324 — 3.
7+ L. layers: 3(input) — 32, — 64; — 128 (— 256) x L. — 128 — 644 — 324 — 34.

Note that a layer with | downscales the feature maps using a stride of 2. A layer with 7 is a transposed
convolution layer that upscales the feature maps using a stride of 2.

U-Net: We use a U-Net with 18 convolution layers. The kernel size of all layers is 3 x 3. The
numbers of output channels are designed as 3(input) — 32, — 32 — 64, — 64 — 128, — 128 —
256 — 256 — 1284 — 128 — 128 — 644 — 64 — 64 — 324 — 32 — 32 — 3.

A.2 Physical Dynamical Systems Modeling

The HalfCheetah-v2 and Walker2d-v2 datasets consist of trajectories of 3D robot systems generated
by the Mujoco physics engine [40]. Each trajectory represents a sequence of a 17-dimensional vector
describing the system’s state, such as the robot’s joint angles and poses. The Neural ODEs are
required to predict the trajectories in an autoregressive manner, as in [25, 42]].

In these tasks, the input size is 17, and the Neural ODE module is designed as 17(input) (—
64) x 11 — 17. BN is applied to the first 5 layers. Based on the code from [42]], we do the prediction
via the invariance set propagation and data-controlled neural ODE proposed in [42]. Since the input
size is the same as the output size, we don’t need a linear layer outside the Neural ODE module.

o
=3
B
=)
=
he

'
3

Test Accuracy
P
]
Ch
Test Accuracy
&%

e IO, A

4 0.56

[Linear Interpolation ||
[Cubic Interpolation
[Gaussian Process

: : :

0.54

=
(=2}

0.52

Interpolation Method

T T L !
20 40 60 80 100 120 Linear Kernel 0 5 10 15 20

. . 20 40 60 S0 100 120
Epoch Interpolation Smoothing Epoch Runtime per Step (Last Epoch)
(@ (b) © (d)

Figure 10: (a) Kernel smoothing can achieve slightly better accuracy on CIFAR-100 with 6 convolu-
tion layers for learnable derivatives. (b) Linear interpolation achieves more stable performance across
5 runs. (c) Linear interpolation performs better with a larger model size. (d) We compare different
methods on the runtime per step at the last epoch to show the efficiency of linear interpolation.

B Discussion on Interpolation Methods

In Figure[/] we compare the performance of four interpolation methods, including linear interpolation,
cubic interpolation, kernel smoothing, and Gaussian process. The cubic interpolation and kernel
smoothing methods achieve good performance with 6 convolution layers for learnable derivatives.
The results on CIFAR-100 also support this point, as shown in Figure [[0[a). However, Figure [I0[b)
indicates that linear interpolation achieves more stable performance, and Figure [I0]c) clearly shows
the superiority of linear interpolation with a larger model size. Furthermore, linear interpolation is
more efficient than cubic interpolation and Gaussian process, as shown in Figure[T0[d). Therefore,
we use linear interpolation by default, which can provide superior performance and stability.

13

C Additional Ablation Studies

C.1 Ablation Study on ODE Solvers

We have conducted extra experiments on
CIFAR-10 using fixed-step solvers like Euler
method, with the 8-layer backbone. The results
are shown in Table[5] Regardless of the solver,
TA-BN achieves the best performance among
the techniques. We also explored midpoint and
rk4 solvers; however, they are much slower and
haven’t finished in the limited time constraint.

C.2 Ablation Study on Time Grids

Regarding the grid size hyperparameter M, we
ran experiments without BN and found that the
number of function evaluations (NFE) is around
hundreds. Thus, we set M = 100 in our paper.
We have performed extra ablation studies on
it, as reported in the following table. Using
M > 100 brings no improvement but too much

Table 4: Ablation study on ODE solvers.

Method ODE Solver Accuracy
w/o BN Euler 0.839+0.002
w/ Pop-TI BN Euler 0.63140.203
w/ Mini-batch BN Euler 0.864+0.002
w/ TA-BN (ours) Euler 0.872+0.003
w/o BN Dopri5 0.843+0.004
w/ Pop-TI BN Dopri5 0.3324+0.090
w/ Mini-batch BN Dopri5 0.86540.004
w/ TA-BN (ours) Dopri5 0.87440.001

Table 5: Ablation study on ODE solvers.

Method

Time Grids M Accuracy

w/ TA-BN (ours)
w/ TA-BN (ours)
w/ TA-BN (ours)
w/ TA-BN (ours)

10
50
100
500

0.851+0.015

0.85140.019

0.874+0.001
0.870

runtime overhead. We don’t have the confidence interval of M = 500 due to the time limit.

14

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly describe our main claims such as the findings, contributions, and
results in the abstract and introduction. They match our idea, methodology, and experimental
results that we present in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We describe the limitations of our method in Section 5 "Conclusion and
Limitations".

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15

Answer: [NA]

Justification: Our method is based on batch normalization. We do not introduce additional
assumptions and theories.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have fully disclosed the details of neural ODE architectures, ODE solvers,
and optimizers in the paper, along with the used Python packages and hardware platform.
Combined with the detailed experimental settings in our paper, the provided information
can be used to reproduce the main experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

16

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We put part of the code for reproduciblity in supplementary. It will be released
upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details in the experiment section and
the appendix. They follow existing papers and open-source code.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in the major result table. We also show box plots for
reporting error bars in some experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have described the hardware platform in the experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We strictly conform the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For the existing assets we use, we have cited the papers and repos. They are
all open-source.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

19

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

	Introduction
	Preliminary
	Traditional Batch Normalization in Neural ODEs
	Temporal Adaptive Batch Normalization
	Numerical Results
	Image Classification
	Physical System Modeling

	Conclusions and Limitations
	Implementation Details
	Image Classification
	Physical Dynamical Systems Modeling

	Discussion on Interpolation Methods
	Additional Ablation Studies
	Ablation Study on ODE Solvers
	Ablation Study on Time Grids

