
Published as a conference paper at ICLR 2024

ON THE HARDNESS OF LEARNING UNDER
SYMMETRIES

Bobak T. Kiani†12, Thien Le†1, Hannah Lawrence†1, Stefanie Jegelka13, Melanie Weber2
1 MIT EECS, 2 Harvard SEAS, 3 TU Munich, † co-first author

ABSTRACT

We study the problem of learning equivariant neural networks via gradient de-
scent. The incorporation of known symmetries (“equivariance”) into neural net-
works has empirically improved the performance of learning pipelines, in do-
mains ranging from biology to computer vision. However, a rich yet separate
line of learning theoretic research has demonstrated that actually learning shallow,
fully-connected (i.e. non-symmetric) networks has exponential complexity in the
correlational statistical query (CSQ) model, a framework encompassing gradient
descent. In this work, we ask: are known problem symmetries sufficient to alle-
viate the fundamental hardness of learning neural nets with gradient descent? We
answer this question in the negative. In particular, we give lower bounds for shal-
low graph neural networks, convolutional networks, invariant polynomials, and
frame-averaged networks for permutation subgroups, which all scale either super-
polynomially or exponentially in the relevant input dimension. Therefore, in spite
of the significant inductive bias imparted via symmetry, actually learning the com-
plete classes of functions represented by equivariant neural networks via gradient
descent remains hard.

1 INTRODUCTION

In recent years, the purview of machine learning has expanded to non-traditional domains with
geometric inputs, from graphs to sets to point clouds. Correspondingly, it is now common practice
to tailor neural architectures to the symmetries of the input – for example, graph neural networks
are invariant to permutations of the input nodes, while networks operating on molecules and point
clouds are invariant to permutation, translation, and rotation. Empirically, encoding such structure
has led to computational benefits in applications (Wang et al., 2021; Batzner et al., 2022; Bronstein
et al., 2021). From the perspective of generalization, previous research has quantified the benefits
of imposing symmetry during learning (Long & Sedghi, 2019; Bietti et al., 2021; Sannai et al.,
2021; Weber et al., 2020; Mei et al., 2021), often achieving rather tight bounds for simple models
(Elesedy, 2021; Tahmasebi & Jegelka, 2023). At their core, these results are bounds on sample
complexity, i.e. how much data is needed to learn a given task. In contrast, the effect of symmetries
on the computational complexity of learning algorithms has not been previously studied. Broadly
speaking, generalization bounds are necessary but not sufficient to show efficient learnability, as
there can be exponentially large gaps between sample complexity and runtime lower bounds.

Indeed, an active line of research in learning theory studies the hardness of learning fully-connected
neural networks via “correlational statistical query” (CSQ) algorithms (defined in Sec. 2.1), which
notably encompass gradient descent. In particular, for a Gaussian data distribution, Diakonikolas
et al. (2020) proved exponential lower bounds for learning shallow neural networks. Such works
provide valuable impossibility results, demonstrating that one cannot hope to efficiently learn any
function represented by a small neural networks under simple data distributions.

In this work, we ask: does invariance provide a restrictive enough subclass of neural network func-
tions to circumvent these impossibility results? Our main finding, shown in various settings, is that
an inductive bias towards symmetry is not strong enough to alleviate the fundamental hardness of
learning neural nets via gradient descent. We view this result as a guide for future theoretical work:
additional function structure is generally needed, even in the invariant setting, to achieve guarantees
of efficient learnability. Our proof techniques largely rely on extending techniques from the general
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setting to symmetric function classes. In many of our lower bounds, imposition of symmetry on a
function class reduces the computational complexity of learning by a factor proportional to the size
of the group. Some of our lower bounds use simple symmetrizations of existing hard families, while
others require bona fide new classes of hard invariant networks. For example, intuition from mes-
sage passing GNN architectures seems to indicate that complexity would grow exponentially with
the number of such message passing steps; however, our results show that even a single message
passing layer gathers sufficient features to form exponentially hard functions (Liao et al., 2020).

Our Contributions We consider various interrelated questions on the computational hardness of
learning, focusing primarily on how hard it is to learn data generated by invariant architectures.

Question (primary). Given Gaussian i.i.d. inputs in n variables, how hard is it to learn the class of
shallow single hidden layer invariant architectures in the correlational statistical query model?

We answer this question in various settings. As a warm-up, we give general (SQ) lower bounds
for learning invariant Boolean functions in Sec. 3. Next, we show that graph neural networks with a
single message passing layer are exponentially hard to learn, either in the number of nodes or feature
dimension (Theorem 3 and Theorem 4, respectively). Hardness in the feature dimension results from
careful symmetrization of the hard functions in Diakonikolas et al. (2020). This technique did not
extend to the node dimension hardness result in Theorem 3, for which we instead constructed a
customized set of hard functions whose outputs are parities in the degree counts of the graph. Since
adjacency matrices of graphs are often Boolean valued, this setting also offers general SQ lower
bounds scaling exponentially with the number of nodes n. For subgroups of permutations, we prove
CSQ hardness results for “symmetrized” (frame-averaged) neural network classes encapsulating
CNNs (Theorem 7 of Sec. 5). The proofs here are based on constructions in Goel et al. (2020)
and Diakonikolas et al. (2020), ensuring that properly chosen frames retain the underlying structure
necessary (e.g., sign invariance) to guarantee orthogonality of hard functions.

These lower bounds constitute our main results, but we provide two complementary results to pro-
vide an even more complete picture. First, we show that classes of sparse invariant polynomials
can be learned efficiently, but not by gradient descent, via a straightforward extension of the algo-
rithm in Andoni et al. (2014) for arbitrary polynomials (Sec. 6). This learning algorithm is SQ, and
we give various nΩ(logn) CSQ lower bounds for learning over nΩ(logn) many orthogonal invariant
polynomials of degree at most O(log(n)). Second, we take a classical computational complexity
perspective to establish the NP hardness of learning GNNs. The work of Blum & Rivest (1988)
established that even 3-node feedforward networks are NP hard to train, and later expanded to av-
erage case complexity for improper learning by various works (Daniely et al., 2014; Daniely, 2016;
Klivans & Kothari, 2014). Although it is perhaps not surprising that these hardness results can be
extended to invariant architectures, for the sake of completeness (and since we were unaware of an
extension in the literature), in Sec. 4.3 we give an NP hardness result for proper learning of the
weights of a GNN architecture. Finally, Sec. 7 provides a few experiments verifying that the hard
classes of invariant functions we propose are indeed difficult to learn.

1.1 RELATED WORK

A long line of research studies the hardness of learning neural networks. We briefly review the most
relevant works here, and refer the reader to App. A for a more holistic review.

Our work is largely motivated to extend hardness results for feedforward networks to equivariant
and symmetric neural networks. Early results showed that there exist rather artificial distributions
of data for which feedforward networks are hard to learn in worst-case settings (Judd, 1987; Blum
& Rivest, 1988; Livni et al., 2014). Interest later grew into studying hardness for more natural set-
tings via the statistical query framework (Kearns, 1998; Shamir, 2018). Goel et al. (2020) showed
superpolynomial CSQ lower bounds for learning single hidden layer ReLU networks, subsequently
strengthened to exponential lower bounds in Diakonikolas et al. (2020). We use the hard class of
networks in Diakonikolas et al. (2020) as a basis for the frame averaged networks in our work. Hard-
ness results for learning feedforward neural networks have also been shown by proving reductions
to average case or cryptographically hard problems (Chen et al., 2022a; Daniely & Vardi, 2020).

Though our work is focused on runtime lower bounds, some algorithms exist for learning restricted
classes of geometric networks efficiently such as CNNs (Brutzkus & Globerson, 2017; Du et al.,
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2017; 2018a). Zhang et al. (2020); Li et al. (2021) give algorithms learning one hidden layer GNNs
via gradient based algorithms, which are efficient when certain factors such as the condition number
of the weights are bounded. We should also note that for practical separations between SQ and CSQ
algorithms, Andoni et al. (2014) show that learning sparse polynomials of degree d in n variables
requires Ω(nd) CSQ queries, but often only Õ(nd) SQ queries. We extend this to polynomials in
the invariant polynomial ring in Sec. 6.

2 BACKGROUND AND NOTATION

We use a, a, and A to denote scalars, vectors, and matrices. In denotes the identity matrix of
dimension n. We denote groups by G and graphs by G. We denote the normal distribution supported
over Rn with mean v ∈ Rn and covariance matrix M ∈ Rn×n as N (v,M), often abbreviated as N
for N (0, In). We also denote by Gn the set of graphs on n vertices and, when clear from context, E
an arbitrary distribution over Gn. To ease notation, we often use [n] to denote the set {1, . . . , n}.

Let X be an input space and D a distribution on X . Given functions f, g : X → R, their inner
product is ⟨f, g⟩D = ED[fg] with corresponding norm ∥f∥D =

√
⟨f, f⟩D. For functions f, g :

X → {−1,+1} whose outputs are Boolean, the classification error is Px∼D[f(x) ̸= g(x)].

2.1 SQ LEARNING FRAMEWORK

The well-studied statistical query (SQ) model offers a restricted query complexity based model for
proving hardness, which encapsulates most algorithms in practice (Kearns, 1998; Reyzin, 2020).
Given a joint distribution D on input/output space X ×Y , any SQ algorithm is composed of a set of
queries. Each query takes as input a function g : X × Y → [−1, 1] and tolerance parameter τ > 0,
and returns a value SQ(g, τ) in the range:

E(x,y)∼D [g(x, y)]− τ ≤ SQ(g, τ) ≤ E(x,y)∼D [g(x, y)] + τ. (1)

A special class of queries are correlational statistical queries (CSQ), where the query function
g : X → [−1, 1] is only a function of x, and the oracle returns E(x,y)∼D [g(x) · y] the correlation of
g with y up to error τ .

Hardness is quantified as the number of queries required to learn a function y = c∗(x), drawn from a
function class C up to a desired maximal error. Notably, SQ hardness results imply hardness for any
gradient based algorithm, as gradients with respect to a loss can be captured by statistical queries.
Furthermore, only CSQ oracles are required for the mean-squared error (MSE) loss.
Example 1 (GD from CSQ). Given a function Nθ : X → R with parameters θ, gradients of the
MSE loss with respect to θ can be estimated with a correlational statistical query for each parameter:

E(x,y)∼D
[
∇θ

1
2 (y −Nθ(x))

2
]
= E [Nθ(x)∇θNθ(x)]︸ ︷︷ ︸

y− independent

−E [y∇θNθ(x)]︸ ︷︷ ︸
CSQ with∇θNθ

. (2)

Access to the distribution D is typically provided through samples, and the tolerance τ in part
captures the error in statistical sampling of quantities such as the gradient. In fact, by drawing
O(log(1/δ)/τ2) samples, standard Hoeffding bounds guarantee estimates of a given query are
within tolerance τ with probability 1 − δ. In the SQ (CSQ) framework, the complexity of learn-
ing is determined by the tolerance bound and number of queries (loosely corresponding to “steps”
in an algorithm) needed to learn a function class.
Definition 1 (SQ (CSQ) Learning). Given a function class C and distribution D over input space X ,
an algorithm SQ (CSQ) learns C up to classification error (ℓ2 squared loss) ϵ if, given only SQ (CSQ)
oracle access to (x, c∗(x)),x ∼ D for some unknown c∗ ∈ C, the algorithm outputs a function f
such that Px∼D [f(x) ̸= c∗(x)] ≤ ϵ (i.e. ∥f − c∗∥D ≤ ϵ).

SQ lower bounds for Boolean functions are typically shown by finding a set of roughly orthogonal
functions that lower bound the so-called statistical dimension. For real-valued function classes,
lower bounds on the statistical dimension imply CSQ lower bounds. Applying more general SQ
lower bounds is challenging, unless one reduces the problem of learning a real-valued function to
that of learning a subset therein of (say) Boolean functions within the class (Chen et al., 2022a). We
cover this in more detail and also discuss other learning theoretic frameworks in App. B.
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3 WARM UP: INVARIANT BOOLEAN FUNCTIONS

Before detailing our main results concerning real-valued functions, we explore the foundational
context of Boolean functions where the SQ formalism originated (Kearns, 1998; Blum et al., 1994).
This illustrative analysis will serve as a warm-up for the more complex scenarios later. It is known
that many classes of Boolean functions have exponential query complexity (e.g., the class of parity
functions) arising from the orthogonality properties of Boolean functions. Enforcing invariance
under a given group G, the number of orbits of the 2n bitstrings gives an analogous hardness metric,
though care must be taken in dealing with the distribution of these orbits.

More formally, in the Boolean setting, let input distribution D be uniform over X = {−1,+1}n.
For a group G with representation ρ, let Oρ = {{ρ(g) · x : g ∈ G} : x ∈ {−1,+1}n} denote
the orbits of the inputs under the representation. For any given orbit O ∈ Oρ, let xO denote an
orbit representative (i.e., some fixed element in the set O). We can represent any symmetric function
f : On → {−1,+1} as a function of these orbits, where the correlation of two functions f, g is

⟨f, g⟩D = E [fg] = 2−n
∑

Ok∈Oρ

|Ok|f(xOk
)g(xOk

). (3)

The probability pOρ
: Oρ → [0, 1] of a random bitstring falling in orbit OK ∈ Oρ is equal to

pOρ
(Ok) = |Ok|/2n. With this notation, we have a general lower bound on the SQ hardness of

learning invariant Boolean functions.
Theorem 2 (Boolean SQ hardness). For a given symmetry group G with representation ρ : G →
GL({−1,+1}n), let ∥pOρ∥ :=

(∑
Ok∈Oρ

(
|Ok|
2n

)2)1/2
and let Hρ be the class of symmetric

Boolean functions, defined as

Hρ = {f : {−1,+1}n → {−1,+1} : ∀g ∈ G,∀x ∈ {−1,+1}n : f(ρ(g) · x) = f(x)} . (4)

Any SQ learner capable of learning Hρ up to sufficiently small classification error probability ϵ
(ϵ < 1/4 suffices) with queries of tolerance τ requires at least τ2∥pOρ

∥−2/2 queries.

Proof sketch. We show that 1 − ∥pOρ∥2 is the probability that, over independently drawn inputs
x,x′, the distribution (f(x), f(x′)) is uniformly random over f drawn uniformly from Hρ. From a
proof technique in Chen et al. (2022a), this connects the task to one of distinguishing distributions,
for which the SQ complexity is at least the stated amount. See App. C for complete proof.

For a more direct lower bound, we can use Hölder’s inequality such that ∥pOρ
∥2 ≤

1
2n maxOk∈Oρ

|Ok| ≤ |G|2−n. This gives query complexity of at least 2n−1|G|−1τ2. For com-
monly studied groups, assuming τ = O(1), the SQ complexity generally aligns with the number of
orbits. Table 1 summarizes these hardness lower bounds for commonly studied groups1.

Group maxOk∈Oρ
|Ok| Query Complexity

Symmetric group on n bits ( n
n/2)
2n = 1

Θ(
√
n)

Θ(
√
n)

Symmetric group on n× n graphs n!
2n2 = 2−n2+n logn+O(n) Ω(2O(n2))

Cyclic group on n bits n Ω(2n/n)

Table 1: Query complexity of learning common invariant Boolean function classes.

4 LOWER BOUNDS FOR GNNS

We now show statistical query lower bounds for graph neural networks, which are invariant to
node permutations, in three settings: (1) SQ lower bounds scaling with the number of nodes n
for Erdős–Rényi distributed graphs with trivial node features, (2) CSQ lower bounds scaling in the
node feature dimension for a fixed graph, and (3) a simple extension of NP hardness in a proper
learning task (deciding if fitting a training set with a given GNN is possible).

1Certain sub-classes of Hρ may suffice to attain hardness, much like how Parity functions suffice to prove
exponential lower bounds in the traditional Boolean setting. We do not consider this strengthening here.

4



Published as a conference paper at ICLR 2024

4.1 HARDNESS IN NUMBER OF NODES

We consider a class of two hidden layer GNNs that are only a function of the adjacency matrix, and
show hardness in the number of nodes n. This covers a commonly used procedure where one learns
node-level equivariant features in the first layer, aggregates these features, and passes them through
an MLP (Dwivedi et al., 2020). We consider a Boolean function class of GNNs over the uniform
distribution Unif({0, 1}n×n), which can be viewed as the Erdős–Rényi random graph model with
p = 0.5.2 Node features x ∈ Rn are trivial and always set to x = 1.

2 hidden layer GNN family We consider two layer GNNs f = f (2) ◦ f (1). These take the
commonly used form of message passing f (1) : {0, 1}n×n → Rk1 which aggregates k1 permutation
invariant features for the graph, followed by a single hidden layer ReLU MLP f (2) : Rk1 → {0, 1}.

[f
(1)
a,b(A)]i = 1⊤

n σ (ai + biAx) (output of channel i ∈ [k1])

f
(2)
u,v,W (h) =

∑k2

i=1
uiσ(⟨W:,i,h⟩+ vi),

(5)

with subscripts for trainable weights. For our hard class of functions, k1 = O(n) and k2 = O(n),
so there are at most O(n2) parameters (proportional to the number of edges).

Family of hard functions We define the hard functions in terms of degree counts cA ∈ [n]n+1,
where entry [cA]i counts the number of nodes that have i− 1 outgoing edges in A:

[cA]i =
∑n

k=1
1 [[A1]k = i− 1] . (6)

The hard functions in HER,n are enumerated over subsets S ⊆ [n+ 1] and a bit b ∈ {0, 1}:

HER,n = {gS,b : S ⊆ [n+ 1], b ∈ {0, 1}}, gS,b(A) = b+
∑

i∈S
[cA]i mod 2. (7)

gS,b(A) is a sort of parity function supported over integers in cA in S. We show in Lemma 15 that
the GNNs in Eq. (5) can construct these functions. Additionally, the class HER,n is Boolean, so
hardness lower bounds apply in the general SQ model.
Theorem 3 (SQ hardness of HER,n). Any SQ learner capable of learning HER,n up to classifica-
tion error probability ϵ sufficiently small (ϵ < 1/4 suffices) with queries of tolerance τ requires at
least Ω

(
τ2 exp(nΩ(1))

)
queries.

Proof sketch. We form networks that in the message passing layer calculate cA, which is passed to
the MLP calculating Eq. (7) as a sum of ReLUs via hat-like functions that mimic parities. Based on
concentration properties of the Erdős–Rényi model, we show that for some p < 0.5, at least Θ(np)
entries of cA will have values scaling roughly as O(

√
n) and the probability that any such entry

is odd converges to 1/2. Also using concentration properties, we condition on a high probability
region (where probability of these entries being odd are roughly independent from each other), and
use hardness of learning parity functions to get SQ lower bounds.

4.2 HARDNESS IN FEATURE DIMENSION

In this section, we derive correlational statistical query lower bounds (CSQ) for commonly used
graph neural network architectures (GNNs), and state the corresponding learning-theoretic hardness
result. The techniques in this section extend those of Diakonikolas et al. (2020), resulting in an
exponential (in feature dimension) lower bound for learning one-hidden layer GNNs.

1-hidden layer GNN For a fixed directed, unweighted graph G with n ∈ N vertices, let A(G) ∈
Rn×n be the adjacency matrix or the Laplacian of G. For input feature dimension d ∈ N and width
parameter k ∈ N, we consider the following set of functions:

F d,k
G :=

{
f : Rn×d → R, f(X) = 1⊤

n σ(A(G)XW )a | W ∈ Rd×2k,a ∈ R2k
}
, (8)

for some nonlinearity σ. When the graph itself is part of the input, we have the function class:
F d,k
n :=

{
f : Rn×d × Gn → R, f(X,G) = 1⊤

n σ(A(G)XW )a | W ∈ Rd×2k,a ∈ R2k
}
. (9)

2Our exponential lower bounds arise from the wide range of possible degrees of nodes in the graph. Though
we do not generalize this result, this fact means that it is likely extendable to restricted sparse Erdős–Rényi
models G(n, pn) where pn = ω(1/n) (i.e. average degree grows arbitrarily with n).
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Family of hard functions First, we define functions fG : Rn×2 → R and fn : Rn×2 × Ḡn → R as

fG(X) = 1⊤
n σ (A(G)XW ∗)a∗, fn(X,G) = 1⊤

n σ (A(G)XW ∗)a∗, (10)

where W ∗ :=

[
(cos(πj/k))

⊤
j∈[2k]

(sin(πj/k))
⊤
j∈[2k]

]
∈ R2×2k, a∗ =

(
(−1)j

)
j∈[2k]

∈ R2k. (11)

Given a set of matrices B ⊂ Rd×2, our family of hard functions can now be written as:

CB
G :=

{
gBG : X 7→ fG(XB)

∥fG∥N
| B ∈ B

}
, CB

n :=

{
gBn : (X,G) 7→ fn(XB,G)

∥fn∥N×E
| B ∈ B

}
.

(12)

Below, we show exponential lower bounds 3 for learning F d,k
G and F d,k

n :
Theorem 4 (Exponential CSQ lower bound for GNNs). For any number of vertices n independent
of input dimension d and width parameter k, let ϵ > 0 be a sufficiently small error constant and E
a distribution over Gn, independent of N , with PrE({∅}) < Ω(1) < 1. Then there exists a set B
of size at least 2Ω(dΩ(1)) such that any CSQ algorithm that queries from oracles of concept f ∈ CB

G
(resp. CB

n ) and outputs a hypothesis h with ∥f − h∥N ≤ ϵ (resp. ∥f − h∥N×E ≤ ϵ) requires either
2d

Ω(1)

queries or at least one query with precision d−Ω(k) + 2−dΩ(1)

.

Proof sketch. Full details of the proof can be found in App. E. From Lemma 17 of Diakonikolas
et al. (2020), there exists a set B ⊂ Rd×2 of size at least 2Ω(dΩ(1)) such that

∥B⊤B′∥2 = O(d−Ω(1)) < 1 if B ̸= B′ (13)
and B⊤B = 12 which we use to index CB

G . We design a specialized class of invariant orthogonal
Hermite polynomials, such that the correlation in low degree moments vanishes and is bounded as:

|⟨fG(·B), fG(·B′)⟩N | ≤ ∥B⊤B′∥k2
∑

m>k
∥f [m]

G ∥2N = ∥B⊤B′∥k2∥fG∥2N . (14)

Finally, we use Eq. (13) to get the desired almost uncorrelatedness of elements in CB
G and use a

simple total probability argument to extend this to CB
n .

4.3 NP HARDNESS OF PROPER LEARNING OF GNNS

The classic work of Blum & Rivest (1988) showed that there exist datasets for which determining
whether or not a 3-node neural network can fit that dataset is NP hard. It is straightforward to prove
a similar result for invariant networks. We map the task of training a single hidden layer GNN to
the NP hard problem of learning halfspaces with noise (Guruswami & Raghavendra, 2009; Feldman
et al., 2012). Here, one is given a set of N labeled examples {xi, yi}Ni=1 and must determine whether
there exists a halfspace parameterized by vector v and constant θ that correctly classifies a specified
fraction of the labels such that sign (⟨v,xi⟩ − θ) = yi. We map a GNN learning problem to this
task, as informally described below and formally detailed in App. D.
Proposition 5 (NP hardness of GNN training; informal). There exists a sequence of datasets in-
dexed by the number of nodes n, each of the form {Ai,xi, yi}Ni=1 where yi ∈ {−1,+1}, such that
determining whether a GNN with parameters a, b ∈ Rk, c ∈ R and k = O(n) of the form

fa,b,c(x,A) = c+
∑k

i=1
1⊤ relu (x+ aiAx) bi (15)

can correctly classify a specific fraction of the data is NP hard.

5 CSQ LOWER BOUND FOR CNNS AND FRAME AVERAGING

Several commonly used invariant architectures take the form of symmetrized neural networks over
permutation subgroups G ≤ Sn, which can be generalized as frame-averaging architectures (Puny
et al., 2023). This includes translation invariant CNNs, group convolutional networks, and networks
with preprocessing steps such as sorting. We study the hardness of learning these invariant functions.

3To have a meaningful set of functions, gBG and gBn must not vanish, which holds when σ is not a low-degree
polynomial (ReLU suffices, see Remark 12 of Diakonikolas et al. (2020)) and G ̸≡ ∅ (graph with no edges).
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Frame averaging and its connection with CNNs. Let G be a subgroup of the permutation group
Sn that acts on Rn×d by permuting the rows. A frame is a function F : Rn×d → 2G\∅ satisfying
F(g·X) = gF(X) set-wise. As noted in Puny et al. (2023), given some frame F , one can transform
an arbitrary function (or neural network) h(X) into an invariant function by averaging its values as

1
|F(X)|

∑
g∈F(X) h(g

−1X). For instance, setting ∀X : F(X) = G recovers the Reynolds (or
group-averaging) operator. Given a fixed frame F , we will first show CSQ lower bounds for the
following class of frame-averaged one-hidden-layer fully connected nets:

HF :=

{
f : Rn×d → R, f(X) =

1√
|F(X)|

∑
g∈F(X)

a⊤σ(W⊤(g−1X))1d | W ∈ Rn×k,a ∈ Rk

}
,

for some nonlinearity σ.
Example 2 (Frame for CNN). Set d = 1 and let G be the cyclic group acting on Rn via cyclic
shifts of its elements with frame F(X) = G,∀X ∈ Rn. Then, Fd

n consists of CNNs with one
convolutional layer and k hidden channels.
Remark 6 (Difficulty of frames). Since the frame F(X) may vary by datapoint X , the distribution
Unif(F(X)−1) ◦ X can be significantly different from the original distribution over X , even if
X ∼ gX for all g. For example, consider the frame F(X) containing all permutations that sort
X lexicographically (where |F(X)| > 1 if X contains a repeated row). Even if X ∼ N with N
invariant to row-permutation, the resultant distribution is not row permutation invariant.

We focus on certain cases where such effects are not too pronounced. For instance, it is simple to
check that if F(X) is constant over X , then F(X) = G ∀X (Lemma 28). In the following, we
assume that G is a polynomial-sized (in n) subgroup of Sn.

Family of hard functions. Recall the low-dimensional function from the proof of Theorem 4:

f∗
exp : R2×d → R with f(X) = (a∗)⊤σ((W ∗)⊤X)1d (16)

for some special parameter a∗ ∈ R2k and W ∗ ∈ R2×2k in Eq. (11). We now define the family of
hard functions, indexed by a set of matrices B ⊂ Rn×2 obtained from Lemma 29:

CB
F =

{
gB : Rn×d → R with gB(X) =

∑
g∈G f∗

exp(B
⊤g−1X)√

|G| · ∥f∗
exp∥N

| B ∈ B ⊂ Rn×2
}
. (17)

Theorem 7 (Exponential CSQ lower bound for polynomial-sized group averaging). For feature
dimension d independent of inputs n and width parameter k = Θ(n), let ϵ > 0 be a sufficiently
small error constant. Then there exists a set B′ of size at least 2Ω(dΩ(1))/|G|2 such that: for any
target g ∈ CB′

F with ∥g∥N = 1, any CSQ algorithm outputting a hypothesis h with ∥g − h∥N ≤ ϵ

requires either 2n
Ω(1)

/|G|2 queries or at least one query with precision |G|2−nΩ(1)

+
√
|G|n−Ω(k).

Proof sketch. Using a union bound argument over the original set B from Diakonikolas et al. (2020),
and concentration of inner product between permuted unit vectors, we obtain from Lemma 29 a set
of orthogonal matrices B′ such that both ∥B(B′)T ∥ and ∥gB(g′B′)T ∥ are small ∀B ̸= B′ ∈ B′,
∀g ̸= g′ ∈ G. This construction costs a factor of |G|2 in |B′|. The rest of the proof proceeds
similarly; see App. F.1.

We also obtain superpolynomial lower bounds for more general frames using the technique of Goel
et al. (2020). Here, we drop the assumption that G is polynomially-sized. The hard functions are
based on parity functions, similar to Goel et al. (2020) (but with an extra input dimension for X):

fS : Rn×d → R with fS(X) = 1⊤
d

( ∑
w∈{−1,1}m

χ(w)σ(⟨w,XS⟩/
√
m)
)
, S ⊆m [n]. (18)

where ⊆m indicates a size m subset, χ is the parity function χ(w) =
∏

i wi and XS ∈ Rm×d

denotes entries of X in S. Here, ⟨w,XS⟩ :=
∑m

i=1 wi(XS)i,: and σ : Rd → Rd is an activation
function. The hard invariant function class consists of frame-averages of the functions above:

HS,F :=

f̃S : Rn×d → R with f(X) =
1√

|F(X)|

∑
g∈F(X)

fS(g
−1X) | S ⊂m [n]

 . (19)
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Below, we show a hardness result for this class inspired by that of Goel et al. (2020), whenever the
frame F is sign invariant: F(X) = F(X ◦ z) for almost all X and for all z ∈ {−1, 1}n.

Theorem 8 (Superpolynomial CSQ lower bound for sign-invariant frame averaging). If F is a sign-
invariant frame, then for any c > 0, any CSQ algorithm that queries from an oracle of concept
f ∈ HS,F and output a hypothesis h with ∥f − h∥N ≤ Θ(1) needs at least Ω(nΩ(logn)/M(n))

queries or at least one query with precision O(n−c/2), where M(n) is the size of the largest orbit of
size m ≤ log(n) subsets of [n] under G. If moreover |F(X)| = 1 for almost all X (a “singleton”
frame), then the same result holds with M(n) replaced by 1.

Proof sketch. The proof hinges on the structure of fS , and in particular that applying g to the input
of fS yields fgS . The sign-invariance of F is necessary to ensure that the proof of Goel et al. (2020),
which involves introducing random sign-flips, goes through. See Lemma 33 for the full proof.

Example 3 (Singleton frames). An example of such a frame is the lexicographical sorting of
X ∈ Rn×d according to the absolute value of the entries (to make the frame sign-invariant). With
probability 1, X does not have any repeated values, and thus there is a unique lexicographical sort
for X almost surely. In fact, for any group G, a singleton frame exists if X has no self-symmetry
with probability 1, i.e. X ̸= gX for all g ∈ G.

For the hard class function to be nonvanishing, we show in Corollary 39 that at least a
superpolynomial-sized subset of HS,F has norm lower-bounded by Ω(poly(n)−1), assuming that
|F(X)| is polynomial in n almost surely (|G| does not have to be polynomial in n).

6 SEPARATION BETWEEN SQ AND CSQ FOR INVARIANT FUNCTION CLASSES

A natural question is whether there exist real-valued function classes which are hard to learn in the
CSQ setting (and hence by gradient descent with mean squared error loss), but efficient to learn
via a more carefully constructed non-CSQ algorithm. In the general (non-invariant) setting, one
such separation is that of learning k-sparse polynomials, i.e., degree d polynomials in n variables
expressible as sums of only k unique monomials over inputs drawn from a product distribution D =

×n

i=1
µi. Here, an efficient SQ (but not CSQ) algorithm called the GROWING-BASIS algorithm

is known from Andoni et al. (2014). CSQ algorithms require Ω(nd) queries corresponding to the
number of degree d orthogonal polynomials, but the GROWING-BASIS algorithms learns with
O(nkf(d)) SQ queries, where f(d) may be exponential in d but independent of n. We informally
illustrate the invariant extension of this here, leaving complete details to App. G.

To perform this extension, we apply GROWING-BASIS to more general spaces (so-called ‘rings’)
of invariant polynomials whose basis consists of independent invariant functions or ‘generators’
{gi ∈ R[x]G}i∈[r], for some r ∈ N. Independence here asserts that any gi cannot be written as a
polynomial in the others. The space of all polynomials in gi(x) with degree d and sparsity k (both
in gi’s expansion) is denoted by R[g1(x), . . . , gr(x)]d,k. We have the following separation result:

Lemma 9 (informal). Let x ∼ D such that the induced distribution of (gi(x))i∈[r] is a product
distribution. Then any CSQ algorithm that learns f ∈ R[g1(x), . . . , gr(x)]d,k of degree at most d =
O(log n) to a small constant error requires Ω(rd) CSQ queries of bounded tolerance. However, the
GROWING-BASIS algorithm learns f with O(kr2 log r) SQ queries of precision Ω(1/(k poly(r))).

A more rigorous exposition and proof is prepared in App. G. Finding independent generators it-
self can be a challenging task; however, we provide an example below, and more in App. G, for
separations over groups where r = Ω(n) generators are known (Derksen & Kemper, 2015).

Example 4. The sign group G flips the sign of input elements and is commonly used to study
eigenvectors (Lim et al., 2022). G is indexed by vectors v ∈ {−1,+1}n with representation ρ(v) ·
x = x ⊙ v where ⊙ represents pointwise multiplication. Consider generators g1, . . . , gn where
gi(x) = |xi|. For inputs x ∼ Unif([−1,+1]n), the distribution of [g1(x), . . . , gn(x)] is a product
distribution Unif([0, 1]n) with the “shifted” Legendre polynomials as the orthogonal polynomials.
For d at most O(log n), any CSQ algorithm requires Ω(nd) queries of bounded tolerance to learn
these polynomials, whereas the GROWING-BASIS algorithm learns in O(kn2 log n) SQ queries.
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Figure 1: Overparameterized GNN (a) and CNN (b) fail to learn functions from the class HER,n and
CB

F respectively by either failing to fit the training set or overfitting the data. Plots are aggregated
and averaged over five random realizations.

7 EXPERIMENTS

We train overparameterized GNNs and CNNs on the hard functions from Sec. 4 and Sec. 5, respec-
tively. Specifically, we attempt to learn relatively small instances drawn from the function classes
HER,n for graphs (Theorem 3) and CB

F for translationally invariant data (Theorem 7). For the func-
tion class HER,n, we consider n = 15 node inputs and the target function gS,b where S ⊆ [n] is a
random subset of size 7 and b is either 0 or 1 at random. For the function class CB

F , we choose a
random orthogonal matrix B and then symmetrize the function class as per Eq. (17).

Fig. 1a and 1b plot the performance of the GNN and CNN respectively. The GNN is unable to fit
even the training data consisting of 225 n = 15 node graphs drawn uniformly from the Erdős–Rényi
model (i.e., p = 0.5). The CNN trained on n = 50 dimension inputs fits the training set of size
500 appropriately, but fails to generalize in the mean squared error loss. The GNN/CNN were
overparameterized with 3 layers of graph/cyclic convolution followed by a two layer ReLU MLP on
the aggregated invariant features. We refer the reader to App. H for further details.

8 DISCUSSION

Our study asked how hard it is to learn relatively simple function classes constrained by symme-
try. Setting aside mathematical formality, one may conjecture that such function classes are good
representations or approximations of the data observed in nature. Our results indicate that such an
assumption is unlikely to be a realistic one — at least in worst-case settings, where we show such
functions would be exponentially hard to learn. Provable guarantees of learning will have to incor-
porate further assumptions in the model class or biases in training to better account for the practical
success of learning algorithms (Lawrence et al., 2021; Gunasekar et al., 2018; Le & Jegelka, 2022).

We now state potential directions for future work and conjectures. It would be interesting to extend
our hardness results beyond the SQ setting or to apply to continuous groups. For example, a natural
question is whether symmetric functions are cryptographically hard to learn, as shown in Chen et al.
(2022a) for two hidden layer ReLU networks. A line of work in probability and statistics has identi-
fied barriers to many algorithms solving average-case settings of classic optimization problems, such
as max cut or largest independent set. These include the overlap gap property (Gamarnik, 2021) and
bounds on low degree algorithms (Hopkins & Steurer, 2017; Brennan et al., 2020). Whether these
barriers extend to the types of problems studied in geometric deep learning is an open question. We
should note that there are restricted settings where learning neural networks is possible (see App. A).
Recent work (Chen et al., 2022b; Chen & Narayanan, 2023) has shown that ReLU networks with
O(1) hidden nodes are learnable in polynomial time. Extending this result to invariant network
classes with O(1) channels would similarly expand the set of learnable invariant networks.
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A EXTENDED RELATED WORKS

Restricted learning algorithms for CNNs and GNNs Various works show that convolutional
and graph neural networks can be efficiently learned under various assumptions on the form of
the network. For given input distributions, Brutzkus & Globerson (2017); Du et al. (2017) give
an efficient learning algorithm for learning a single convolution filter and Zhong et al. (2017) give a
polynomial time algorithm for learning a sum of a polynomial number of convolution kernels applied
to an input. These can be viewed as a single hidden layer network where the last layer weights are all
equal to one. Du & Goel (2018) (improving on Goel et al. (2018)) give a polynomial time algorithm
for learning single layer convolutional networks (not necessarily invariant) with filters that have
stride at least half the filter width. These CNNs have a single channel but are not invariant to the
cyclic group due to the presence of weights in the second layer that vary by each patch of the filter.
Similarly, Du et al. (2018a) show that gradient descent can also learn networks of a similar form with
non-overlapping patches in the random setting (weights are random) with high probability. Oymak
& Soltanolkotabi (2018) learn convolutional networks of depth D layers with a single kernel per
layer and make a similar assumption that stride is at least as large as width. Zhang et al. (2020); Li
et al. (2021) provide learning algorithms for a class of one hidden layer GNNs via gradient descent
based algorithms whose sample complexity and runtime depend on factors like the condition number
or norm of the weights of the target function. These algorithms are only guaranteed to be polynomial
in runtime for the restricted instances when such factors are appropriately bounded.

Learning feedforward neural networks The study of the hardness of learning feedforward nueral
networks has a rich history dating back many decades. Judd (1987); Blum & Rivest (1988) show that
in the proper learning setting, it is NP complete to find a set of weights of a given network that fits a
given training set. These results were later expanded in (Zhang et al., 2017) to more realistic settings.
Many works study the hardness of improperly learning the class of ReLU feedforward networks. In
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the SQ setting, Goel et al. (2018); Diakonikolas et al. (2020); Song et al. (2017) show that at least
a superpolynomial number of queries are needed to learn even single hidden layer networks in the
correlational statistical query model. Chen et al. (2022a) show that networks with two hidden layers
are even hard in the general SQ setting by using the networks to round inputs to boolean inputs and
applying hardness results from Boolean learning theory and cryptography. We should remark that
there are also other papers that reduce the task of learning feedforward neural networks to average
case or cryptographically hard problems (Song et al., 2021; Daniely & Vardi, 2020). To sidestep
these hardness results and provide proofs of learnability in the PAC setting, a number of works
make assumptions on the networks or inputs/outputs to give efficient PAC learning algorithms for
single hidden layer neural networks (Bakshi et al., 2019; Goel et al., 2018; Shamir, 2018; Sedghi
et al., 2016; Vempala & Wilmes, 2019). Such assumptions include bounds on the condition number
(Bakshi et al., 2019), approximation guarantees of the network by polynomials (Vempala & Wilmes,
2019), positivity of the second layer weights Diakonikolas et al. (2020), and others. In perhaps the
most general setting, Chen & Narayanan (2023); Chen et al. (2023) give a polynomial time learning
algorithm for learning single hidden layer ReLU networks with O(1) hidden nodes (i.e. runtime is
exponential in the number of nodes but polynomial in other parameters such as the input size and
error).

Random neural network learnability Though the class of neural networks may be challenging to
learn, various works study the average case setting where one is interested in learning random neural
networks or random features from neural networks. In fact, prior work has shown that the complexity
of such random neural networks, measured via statistical measures, continuity, or robustness, is
rather low though this is by no means a guarantee of learnability (Kalimeris et al., 2019; De Palma
et al., 2019; Shah et al., 2020; Valle-Perez et al., 2018). Various hardness results exist for this setting
of learning random neural networks. Das et al. (2019) gives SQ hardness results for learning neural
networks with sign activation that shows query complexity increasing exponentially with the depth
of the network. Daniely & Vardi (2020) show that neural networks with random weights are hard
to learn if the input distribution is allowed to depend on the weights based on reductions to random
K-SAT. Nevertheless, recent work by Daniely et al. (2023) shows that random constant depth neural
networks with ReLU activation can be learned in error ϵ in time scaling as dpolylog(1/ϵ) where d is
the size of the network.

Sample complexity and generalization bounds Separate from the question of computational
complexity of learning is the question of how many samples are needed to learn a function class.
Specific to (exactly or approximately) invariant neural network architectures, there exist papers
studying the sample complexity of learning convolutional neural networks (Du et al., 2018b; Zhou
& Feng, 2018; Cao & Gu, 2019) and graph neural networks (Zhang et al., 2020).

Various papers consider how generalization bounds improve when enforcing equivariance. These
include generalization bounds based on covering numbers or the complexity of the invariant function
space Sokolic et al. (2017); Petrache & Trivedi (2023), based on invariant kernel method algorithms
Bietti et al. (2021); Tahmasebi & Jegelka (2023); Elesedy (2021), and based on equivariant ver-
sions of norm-based PAC-Bayesian generalization bounds (Behboodi et al., 2022). For the group
of translations, there also exist papers studying generalization bounds for architectures with convo-
lutional layers though these architectures are not strictly invariant (Long & Sedghi, 2019; Zhou &
Feng, 2018). Similarly, there are various generalization bounds as well for the class of graph neural
networks (Lv, 2021; Verma & Zhang, 2019).

Other related topics Though not directly a statement of computational hardness, various papers
give no-go theorems for learning function classes by studying expressivity limitations of graph neu-
ral networks (Jegelka, 2022; Wu et al., 2020; Loukas, 2019). These expressivity results provide a
set of functions that a graph neural network cannot express and thus by definition also cannot learn
to arbitrary accuracy. The most well known set of results are related to limitations of graph neural
networks in distinguishing non-isomorphic graphs via the Weisfeiler-Lehman hierarchy (Xu et al.,
2018; Morris et al., 2019; Geerts & Reutter, 2022). Other work show expressivity limitations of
GNNs by studying their power in expressing invariant polynomials (Puny et al., 2023), identifying
graph biconnectivity (Zhang et al., 2023), counting substructures (Chen et al., 2020), and through
various other means.
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Various works study the implicit bias of neural networks primarily to help address why neural net-
works can even learn in overparameterized settings (Vardi, 2023; Chizat & Bach, 2020; Ji & Telgar-
sky, 2020). Here, the aim of these works is to show that gradient descent will converge to specific
regularized functions that fit a given training set. Implicit bias results have been proven for linear
but multi-layer classes of convolutional neural networks (Gunasekar et al., 2018; Yun et al., 2020;
Le & Jegelka, 2022) and equivariant neural networks (Lawrence et al., 2021; Chen & Zhu, 2023).
Generally, these results show that gradient descent on the parameter space of such neural networks
is implicitly regularized under some norm or semi-norm depending on properties of the group. Ex-
tending these results to more realistic settings is likely challenging.

In Boolean learning theory, there are various results on the problem of learning a symmetric k-junta
(Mossel et al., 2003; Lipton et al., 2005; Kolountzakis et al., 2005). Here, we are promised that
the Boolean function only depends on k variables, and within that k variable subset, the function is
symmetric and thus only depends on the number of 1s in that subset. For this problem, Kolountzakis
et al. (2005) achieve a runtime nO(k log k) that is polynomial in n for fixed k. Note, that the functions
we study in the Boolean setting are assumed to be symmetric over the whole input space and not just
on a size k subset of the inputs bits which drastically simplifies the problem. In fact, the hardness of
the symmetric k-junta learning problem largely arises from challenges in finding which k bits are in
the support of the Boolean function.

Finally, in quantum machine learning, there has been a recent interest in studying quantum varia-
tional algorithms or quantum neural networks that are constrained under symmetries (Meyer et al.,
2023; Ragone et al., 2022; Skolik et al., 2023; Cong et al., 2019). Some recent theoretical work
has quantified the hardness and sample complexity associated with these models that are generally
linear though acting on high dimensional Hilbert spaces (Pesah et al., 2021; Schatzki et al., 2022;
Anschuetz & Kiani, 2022; Nguyen et al., 2022; Anschuetz et al., 2022). Since these quantum models
typically operate in a different regime than classical models and are typically focused on quantum
tasks, they are out of the scope of our current work.

B EXTENDED BACKGROUND INTO LEARNING FRAMEWORKS

There are various models used to rigorously quantify the hardness of learning. We recommend the
review in Reyzin (2020) for an overview of the SQ formalism and its connections to other learning
models. Here, we briefly mention the PAC model and overview further the background into the SQ
framework from the main text.

Perhaps the most widely used framework for quantifying hardness of learning is the provably ap-
proximately correct (PAC) model (Valiant, 1984).

Definition 10 (PAC Learning (Mohri et al., 2018)). A concept class C is PAC-learnable if there
exists an algorithm such that for any ϵ > 0 and δ > 0, for all distributions D on X , and for any
target concept c∗ ∈ C, the algorithm takes at most m = poly(1/ϵ, 1/δ, n) samples drawn i.i.d. from
(x, c(x)) with x ∼ D, and returns a function f satisfying ∥f − c∗∥D ≤ ϵ with probability at most
1 − δ. If the algorithm runs in time at most poly(1/ϵ, 1/δ, n), then C is efficiently PAC learnable.
The algorithm is a proper learner if it returns f ∈ C, and otherwise denoted an improper learner.

Proving computational hardness in the PAC model typically requires reducing learning tasks to
cryptographically or complexity theoretically hard problems. Unconditional hardness results for
learning with neural networks would imply P ̸= NP: Abbe & Sandon (2023) show that the task of
training neural networks via gradient descent is P-Complete, i.e. any poly-time algorithm in P can
be reduced to the task of training a given poly-sized neural network with stochastic gradient descent.

Given the above, the statistical query formalism sidesteps these challenges by constraining algo-
rithms to be composed of a set of noisy queries. Perhaps the most important restriction in the SQ
framework is that algorithms do not have access to individual data points but only noisy queries
averaged across the input/output distribution. The classic example of an efficient non-SQ algorithm
is Gaussian elimination for learning parities (Blum et al., 1994). Nevertheless, the SQ formalism
naturally captures most algorithms used in practice including gradient descent as shown for example
in Example 1 of the main text for gradients over the mean squared error loss.

18



Published as a conference paper at ICLR 2024

For boolean functions, correlational statistical queries can capture any general statistical query since
any query can be split into its +1 or −1 output cases (Reyzin, 2020). For example, assume one
performs an SQ query with query function q : X × {−1,+1} → [−1,+1], then

E(x,y)∼D [g(x, y)] = E

[
g(x,+1)

1 + y

2
+ g(x,−1)

1− y

2

]
, (20)

which decomposes into two correlational statistical queries and two functions independent of the
target.

We remarked in the main text that generalizing real-valued hardness results proven in the CSQ
framework to the SQ framework is in general challenging. In fact, Vempala & Wilmes (2019) more
rigorously underscored this challenge (see their Proposition 4.1) by providing a rather unnatural, yet
efficient, SQ algorithm that learns any finite real-valued function class satisfying a non-degeneracy
assumption that the set of points f(x) = g(x) is measure zero for any pair of functions f, g in the
class. Namely, they show the following no-go theorem.

Theorem 11 (Limitations on SQ hardness for real-valued functions (Vempala & Wilmes, 2019)).
Given a concept class C of functions f : X → R of size |C| where for all f, g ∈ C the set of inputs
where f(x) = g(x) is measure zero, the family C can be learned with O(log |C|) queries to SQ with
a constant error tolerance τ .

Proof. We aim to choose a query g : C → [−1, 1] which maps the target function f ∈ C to a
unique value in the range [−1, 1]. For our target function f ∈ C, let us call this value v. To specify
the form of this query, it suffices to send each pair (x, f(x)) to its corresponding unique value in
[−1,+1], i.e. output v for every input (x, f(x)). Since outputs of disjoint functions in C are equal
only on a support of measure zero, this mapping can be performed with probability one. Thus, we
can query the value v and receive an output, say v′ up to error τ . Repeating this procedure iteratively
to only include functions in the tolerance range [v′ − τ, v′ + τ ], we can select the target function
after O(log |C|) queries.

Loosely, the above theorem shows that real-valued classes of functions are only hard in SQ settings
when there exist sufficiently many hard functions with finitely many outputs. Chen et al. (2022a)
achieved such a result for two-hidden layer networks by constructing networks that round inputs to
the nearest boolean bitstring.

C BOOLEAN STATISTICAL QUERY SETTING

As discussed in Sec. 3, the Boolean function setting provides a nice illustration of the types of results
obtainable via SQ lower bounds. For further background into the boolean SQ setting, we recommend
the review in Reyzin (2020). Here, we will prove Theorem 2 restated below for convenience.

Theorem 2 (Boolean SQ hardness). For a given symmetry group G with representation ρ : G →
GL({−1,+1}n), let ∥pOρ

∥ :=
(∑

Ok∈Oρ

(
|Ok|
2n

)2)1/2
and let Hρ be the class of symmetric

Boolean functions, defined as

Hρ = {f : {−1,+1}n → {−1,+1} : ∀g ∈ G,∀x ∈ {−1,+1}n : f(ρ(g) · x) = f(x)} . (4)

Any SQ learner capable of learning Hρ up to sufficiently small classification error probability ϵ
(ϵ < 1/4 suffices) with queries of tolerance τ requires at least τ2∥pOρ

∥−2/2 queries.

For a simple proof of the above statement, we will follow the proof technique in Appendix B of Chen
et al. (2022a). The above statement will follow as a consequence of the pairwise independence of
functions in Hρ defined below.

Definition 12 (Boolean Case of Definition C.1 of Chen et al. (2022a)). Let C be a hypothesis class
mapping {−1,+1}n to {−1,+1}, and let D be a distribution on X . C is a (1−η)-pairwise indepen-
dent function family if with probability 1− η over the choice of x,x′ drawn independently from D,
the distribution of (f(x), f(x′)) for f drawn uniformly at random from C is the product distribution
Unif({−1,+1}2).
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Pairwise independent function families offer a convenient means to bound the number of queries
needed to distinguish the outputs of a given unknown function f∗ versus uniformly random outputs
from the function class.
Theorem 13 (Theorem C.4 of Chen et al. (2022a)). Let function class C mapping {−1,+1}n to
{−1,+1} be a (1− η)-pairwise independent function family w.r.t. a distribution D on {−1,+1}n.
For any f ∈ C, let Df denote the distribution of (x, f(x)) where x ∼ D. Let DUnif(C) denote
the distribution of (x, y) where x ∼ D and y = f(x) for f ∼ Unif(C). Any SQ learner able
to distinguish the labeled distribution Df∗ for an unknown f∗ ∈ C from the randomly labeled
distribution DUnif(C) using bounded queries of tolerance τ requires at least τ2

2η such queries.

Finally, we are ready to prove Theorem 2.

Proof of Theorem 2. Since the symmetric function is constant on orbits, we can represent any sym-
metric function as f : On → {−1,+1} and the correlation between two functions f, g can be
written as

⟨f, g⟩SQ = E [fg] = 2−n
∑

Ok∈Oρ

|Ok|f(xOk
)g(xOk

). (21)

The probability pOρ
: Oρ → [0, 1] of a uniformly random bitstring falling in orbit OK ∈ Oρ is

equal to pOρ(Ok) = |Ok|/2n. Note that the distribution of (f(xO), f(xO′)) is equal to the uniform
distribution whenever xO ̸= xO′ since we have a uniform distribution over all possible symmetric
functions. This occurs with probability

η =
∑

Ok∈Oρ

(
|Ok|
2n

)2

= ∥pOρ
∥2. (22)

Therefore, Hρ is a (1− η)-pairwise independent function family with parameter η as above.

To apply Theorem 13, note that for a given function f∗ ∈ Hρ, to distinguish Df∗ from DUnif(Hρ),
it suffices to return a function f that has classification error at most 1/4 with respect to f∗. Since
distinguishing the two distributions requires τ2

2η queries, we arrive at the final result.

D COMPLEXITY THEORETIC HARDNESS EXTENSION

In this section, we would like to show a reduction from the task of training an invariant neural
network on a given dataset to a previously NP hard problem. This extends the classic result of Blum
& Rivest (1988) showing that there exists a sequence of datasets such that determining whether or
not a 3-node neural network can fit that dataset is hard. Though we consider extending this to a
simple graph neural network here for simplicity, we remark that we chose this only for convenience
and similar extensions can be found for other classes of networks.

The particular NP hard problem we consider is the decision version of the learning halfspaces with
noise problem (Guruswami & Raghavendra, 2009; Feldman et al., 2012).
Problem 1 (Learning halfspaces with noise (Guruswami & Raghavendra, 2009)). Given a set of
N labeled examples {xi, yi}Ni=1 where xi ∈ {0, 1}n and yi ∈ {−1,+1} and constants δ, ϵ where
0 < δ ≤ ϵ < 1, we distinguish between the following two cases:

• Case 1: There exists a vector v ∈ Rn, constant θ ∈ R, and set S ⊆ [N ] of size at least
|S| ≥ (1− δ)N such that yi (⟨v,xi⟩ − θ) ≥ 0 for all i ∈ S.

• Case 2: For all v ∈ Rn, θ ∈ R, and sets S ⊆ [N ] such that |S| ≥ (1 − ϵ)N , there exists
some i ∈ S such that yi (⟨v,xi⟩ − θ) < 0.

Consider the following class of message passing GNNs with a single hidden layer and k channels
which acts on an adjacency matrix A ∈ {0, 1}n×n and node features x ∈ Rn:

fa,b,c(x,A) = c+

k∑
i=1

1⊤ relu (x+ aiAx) bi. (23)
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We will map the below problem of fitting the weights a, b, c of the GNNs above to a given dataset
consisting of a set of graphs and their corresponding outputs.

Problem 2. Given a labeled set of graphs, node features, and outputs {Ai,xi, yi}Ni=1 where Ai ∈
{0, 1}n×n, xi ∈ Rn and yi ∈ {−1,+1} and constants δ, ϵ where 0 < δ ≤ ϵ < 1, distinguish
between the following two cases:

• Case 1: There exists weights a1, . . . , ak, b1, . . . , bk, c ∈ R and set S ⊆ [N ] of size at least
|S| ≥ (1− δ)N such that yifa,b,c(xi,Ai) ≥ 0 for all i ∈ S.

• Case 2: For all weights a1, . . . , ak, b1, . . . , bk, c ∈ R, and sets S ⊆ [N ] such that |S| ≥
(1− ϵ)N , there exists some i ∈ S such that yifa,b,c(xi,Ai) < 0.

Proposition 14 (NP hardness of GNN training). Training the GNN in Eq. (23) to solve Problem 2
is NP hard.

Proof. We show that solving Problem 2 is equivalent to solving Problem 1 which is previously
shown to be NP hard (Guruswami & Raghavendra, 2009; Feldman et al., 2012). Given a dataset
{xi, yi}Ni=1 for Problem 1 over n-bit Boolean strings, we map this to a dataset over graphs
{Ai,x

′
i, y

′
i}Ni=1 of

∑n
k=1 k = n(n + 1)/2 nodes where x′

i = −1 for all inputs and yi = y′i are
the same for both datasets. Adjacency matrix Ai is constructed by including a disconnected k-
clique (including self loops) in the graph whenever [xi]k = 1. Since there are n(n + 1)/2 nodes,
there are sufficient nodes to construct any such graph. E.g., for x = (1, 0, 1)⊤, a corresponding
adjacency matrix is

A =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

 . (24)

We also assume that the GNNs have k = n channels. In this setting, we have that for any i ∈ [N ]

fa,b,c(x
′
i,Ai) = c+

n∑
j=1

1⊤ relu (x′
i + ajAix

′
i) bj

= c+

n∑
j=1

bj

n∑
ℓ=1

ℓ1[∃ ℓ− clique ∈ Ai] relu(−1− ℓaj),

(25)

where 1[∃ ℓ− clique ∈ Ai] is the indicator function for whether or not a ℓ-clique is in the graph Ai.
The above is clearly a linear function in the vector ri ∈ {0, 1}n where [ri]ℓ = 1[∃ ℓ− clique ∈ Ai].
Furthermore, the graph is chosen so that ri = xi. Thus, any choice of weights a, b, c corresponds
to a halfspace for xi.

It only remains to be shown that any such halfspace can be written in the form of Eq. (25). Note that

fa,b,c(xi,Ai) = c′ + [b1 b2 · · · bn]Mri, (26)

where c′ is an updated constant and

M =


relu(−1− a1) 2 relu(−1− 2a1) · · · n relu(−1− na1)
relu(−1− a2) 2 relu(−1− 2a2) · · · n relu(−1− na2)

...
...

. . .
...

relu(−1− an) 2 relu(−1− 2an) · · · n relu(−1− nan)

 . (27)

Setting ak = (1/2− k)−1 makes the above matrix have non-zero entries on the diagonal and every
entry above the diagonal. Such a matrix is invertible by Gaussian elimination so every possible
halfspace can be constructed by proper choice of the weights b1, . . . , bn, c′.
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E GNN HARDNESS PROOFS

E.1 LOWER BOUND FOR ERDŐS–RÉNYI DISTRIBUTED GRAPHS

Here, we will consider a model over graphs of n nodes where adjacency matrices A ∼
Unif({0, 1}n×n) are drawn uniformly from all possible directed graphs. This distribution can be
viewed as an Erdős–Rényi G(n, p) over directed graphs including self edges with p = 0.5. Node
features are fixed in this model to x ∈ Rn where we set x = 1 in all instances (i.e., node features
are trivial). Note, that we consider Boolean functions here w.l.o.g. as {0, 1} valued as opposed to
{−1,+1} valued as in previous sections since using {0, 1} valued functions in this section makes
the story easier to follow.

Our aim is to prove Theorem 3 copied below.

Theorem 3 (SQ hardness of HER,n). Any SQ learner capable of learning HER,n up to classifica-
tion error probability ϵ sufficiently small (ϵ < 1/4 suffices) with queries of tolerance τ requires at
least Ω

(
τ2 exp(nΩ(1))

)
queries.

The function class HER,n that achieves the desired lower bound are Boolean valued functions that
depend on the counts of the degrees or number of neighbors of the nodes. To describe this class,
we first introduce some notation. For a given graph A ∈ {0, 1}n×n, let dA ∈ [n]n be a vector
with entry [dA]i equal to the number of outgoing edges (or degree) for node i. From here, let
cA ∈ [n]n+1 denote the count of the degrees where entry [cA]i counts the number of nodes that
have i− 1 outgoing edges in A or more formally

[cA]i =

n∑
k=1

1 [[dA]k = i− 1] . (28)

Note that cA is a length n + 1 vector since the number of outgoing edges can be anything from
{0, 1, . . . , n}. Also note that this vector is an invariant vector as permuting the nodes leaves the
counts invariant. Given a subset S ⊆ [n+1] and a bit b ∈ {0, 1}, the functions we aim to learn take
the form

gS,b(A) = b+
∑
i∈S

[cA]i mod 2, (29)

which are a sort of parity function supported over the elements of the degree counts cA in S. There-
fore, our hypothesis class H consists of 2n+2 functions:

HER,n = {gS,b : S ⊆ [n+ 1], b ∈ {0, 1}}. (30)

First, we will show below that the class HER,n is exponentially hard to learn in the SQ setting.
Later in Lemma 15, we show that the functions in H can be constructed by the GNN architecture
thus completing our proof.

Proof of Theorem 3. To simplify the function gS,b even further, let ĉA ∈ {0, 1}n+1 be a boolean
valued version of cA where entry [ĉA]i = [cA]i mod 2. Then the function gS,b is equivalently a
parity function in ĉA:

gS,b(A) = b+
∑
i∈S

[cA]i mod 2 = (−1)b
∏
i∈S

(−1)[ĉA]i . (31)

We will prove an SQ lower bound using Theorem 13 based on the (1 − η)-pairwise independence
property of the function class HER,n in Definition 12. Namely, note that for two graphs A,A′ ∈
{0, 1}n×n, if ĉA ̸= ĉA′ , then the distribution of (gS,b(A), gS,b(A

′)) for gS,b drawn uniformly from
HER,n is equal to the product distribution Unif({0, 1}2). This follows from the fact that gS,b(A) =

(−1)b
∏

i∈S(−1)[ĉA]i is a parity function of the entries in ĉA. Since HER,n spans uniformly over
all possible parity functions in {0, 1}n+1, the pairwise independence properties follows from this
whenever ĉA ̸= ĉA′ .

Thus, the parameter 1 − η in the pairwise independence is equal to the probability that ĉA ̸= ĉA′ .
We will establish that this probability is at least 1 − O(exp(−nΩ(1))) at the end of this proof thus
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guaranteeing η−1 = Ω
(
exp(nΩ(1))

)
. Once this is established, we can apply Theorem 13 and note

that for a given function f∗ ∈ HER,n, to distinguish Df∗ from DUnif(Hρ) as in Theorem 13, it
suffices to return a function f that has classification error at most 1/4 with respect to f∗. Since
distinguishing the two distributions requires τ2

2η queries, we arrive at the final result by noting that
η−1 = Ω

(
exp(nΩ(1))

)
.

To finish this proof, we must establish that

PA∼Unif({0,1}n×n)[ĉA ̸= ĉA′ ] ≥ 1−O(exp(−nΩ(1))). (32)

We will show this result by proving that for some constant C > 0 and p < 1/2, for large enough n,
there are at least Cnp entries of ĉA′ such that the probability of those entry being even or odd is at
most 1/2 + o(1). To continue, let us denote this region

∆p = {0, 1, . . . , n} ∩ [n/2− Cnp, n/2 + Cnp], p < 1/2, (33)

as the set of integers within the range [n/2 − Cnp, n/2 + Cnp]. This range is chosen to coincide
with the largest entries of cA.

The degree of any node is independently distributed as binomial with distribution bin(n, 0.5). To
asymptotically expand i around the peak of the binomial coefficient, let us index i = n/2 + r for
given r such that i ∈ ∆p. Therefore, for any such n/2 + r = i ∈ ∆p, we have that any given node
j ∈ [n] has degree dk = i with probability

P[dk = i] = 2−n

(
n

n/2 + r

)
=

2√
πn

(1 +O(1/n)). (34)

In the above, we use the asymptotic approximation (Spencer, 2014) for the binomial coefficient
around its peak

(
n

n/2

)
of(
n

n+r
2

)
= (1 +O(1/n))

√
2

πn
2n exp

(
− r2

2n
+O(r3/n2)

)
. (35)

Thus, the marginal distribution of any entry i ∈ ∆p of [cA]i ∼ bin
(
n, 2√

πn
(1 +O(1/n))

)
is

also binomial distributed with probability converging to 2√
πn

. For entry i ∈ ∆p, this implies that
E[cA]i = O(

√
n). From the Chernoff concentration bound for the binomial distribution, we also

have that for any i ∈ ∆p and for any δ > 0:

P
[
|[cA]i − E[cA]i| ≥ n1/4+δ

]
≤ 2 exp

(
−n1/2+2δ(E[cA]i)

−1

2

)
= 2 exp

(
−Ω(n2δ)

)
. (36)

By a union bound over all i ∈ ∆p, we therefore have that with exponentially high probability,
|[cA]i − E[cA]i| ≤ n1/4+δ for all i ∈ ∆p.

Summarizing the previous results, we have that there are 2Cnp entries of [cA] where for any entry
i ∈ ∆p, it holds that for some arbitrarily small δ > 0

2√
π

√
n(1 +O(1/n))− n1/4+δ ≤ [cA]i ≤

2√
π

√
n(1 +O(1/n)) + n1/4+δ. (37)

Since the probability that [cA]i is equal to any number m is at most O(n−1/4), the probability that
[cA]i is odd is at most 1/2+O(n−1/4). We now aim to show that conditioned on other entries of cA,
the probability that a given entry of cA is odd or even is roughly independent of this conditioning.

Given a set of known values Sknown ⊂ ∆p equal to [cA]k = mk for k ∈ Sknown, the marginal
distribution of any entry of [cA]j for j /∈ Sknown conditioned on [cA]k for k ∈ Sknown is also
binomial. We now estimate the parameters of this binomial distribution. Given the convergence
guarantee in Eq. (37),

∑
k∈Sknown

[cA]k = O(|Sknown|n1/2) = O(n1/2+p) which is o(n) since
p < 1/2. Therefore for any set Sknown ⊆ ∆p, there are at least n − o(n) remaining nodes whose
degree or number of outgoing edges are left to distribute. These remaining nodes cannot have
degrees whose values fall in Sknown, but note that since |Sknown| ≤ O(np) and p < 1/2, there are
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still Ω(
√
n) buckets (values of the possible degrees) remaining each with probability proportional to

Θ(1/
√
n) by Eq. (35). Therefore, from the convergence guarantee of Eq. (37), we have

([cA]j | [cA]k = mk, k ∈ Sknown) ∼ bin
(
n− o(n),Θ(1/

√
n)
)
. (38)

Thus, the conditional probability that [cA]j is equal to any number m is at most O(n−1/4), and this
implies that the probability that [cA]j is odd is at most 1/2 + O(n−1/4) even when conditioned on
entries in Sknown.

Finally, let us calculate the desired probability that ĉA = ĉA′ . For ease of notation, let us index the
elements of ∆p as r1, . . . , rN . We have for large enough n that

P[ĉA = ĉA′ ] ≤ P [[ĉA]r1 = [ĉA′ ]r1 , . . . , [ĉA]rN = [ĉA′ ]rN ]

= P [[ĉA]r1 = [ĉA′ ]r1 ] P
[
[ĉA]r2 = [ĉA′ ]r2 | [ĉA]r1 = [ĉA′ ]r1

]
×

× · · ·P
[
[ĉA]rN = [ĉA′ ]rN | [ĉA]r1 = [ĉA′ ]r1 , . . . , [ĉA]rN−1

= [ĉA′ ]rN−1

]
≤
(
1

2
+O(n−1/4)

)|∆p|

= O(exp(−Ω(|∆p|)))
= O(exp(−Ω(np))).

(39)

Since PA∼Unif({0,1}n×n)[ĉA ̸= ĉA′ ] = 1 − PA∼Unif({0,1}n×n)[ĉA = ĉA′ ], this completes the
proof.

Finally, we need to show that the functions gS,b can be constructed as ReLU networks. Before
proceeding to give this construction, we should note that it is known that any Boolean function that
can be computed in time O(T (n)) can also be expressed by a neural network of size O(T (n2))
(Parberry, 1994; Shamir, 2018). Our construction will be specific to the GNN class we consider and
show that the boolean functions in gS,b are similarly efficiently constructible.
Lemma 15 (gS,b as GNN). For a GNN f(·) of the form of Eq. (5) with hidden layer widths equal to
k1 = O(n) and k2 = O(n), there exist weights a, b ∈ Rk1 ,u,v ∈ Rk2 ,W ∈ Rk2×k1 such that for
any S ⊆ [n+ 1], b ∈ {0, 1}, gS,b(A) = f(A;a, b,u,v,W ) for all inputs A ∈ {0, 1}n×n.

Proof. Let us fix a given S ⊆ [n+ 1], b ∈ {0, 1}. The function we want to represent is

gS,b(A) = b+
∑
i∈S

[cA]i mod 2, (40)

where as a reminder, [cA]i counts the number of nodes that have i−1 outgoing edges (see Eq. (28)).

For the construction, we will set k1 = k2 = n + 1. As a reminder, the two layers of the GNN take
the form:

[f
(1)
a,b(A)]i = 1⊤

n σ (ai + biAx) (output of channel i ∈ [k1])

f
(2)
u,v,W (h) =

k2∑
i=1

uiσ(⟨W:,i,h⟩+ vi).
(41)

Throughout this construction, the node features x = 1 are constant.

For the first layer, we will choose ai = 2 − i and bi = 1 for all i. This first layer can only be a
function of dA = A1 where entry i is a count of the number of outgoing edges. Since entries in
dA take values in {0, 1, . . . , n}, we can equivalently write this first layer output as a function of the
counts cA. In fact, this first layer is linear as a function of cA and equal to

h = McA =


1 2 · · · n n+ 1
0 1 · · · n− 1 n
...

...
. . .

...
...

0 0 · · · 1 2
0 0 · · · 0 1

 cA, (42)
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h(x) for n = 8

Figure 2: Sample form of function h(x) used in constructing gS,b(A) as a GNN. For the construc-
tion, we will have x =

∑
i∈S [cA]i.

where the matrix M is clearly full rank and invertible since it strictly positive along the diagonal
and in entries above the diagonal.

Our aim in the second layer is to take the sum b+
∑

i∈S [cA]i and take its parity (i.e. mod 2). To
achieve this via sums of ReLUs σ we can consider the function h(·) of the form below:

h(x) = σ(x+ b)− 2σ(x+ b− 1) + 2σ(x+ b− 2)− · · ·+ (−1)nσ(x+ b− n). (43)

A sample version of this plot is in Fig. 2. Setting x = b +
∑

i∈S [cA]i achieves the end goal with
O(n) hidden nodes.

To provide actual values for the second layer parameters, let 1S ∈ 0, 1n+1 denote the vector where
entry i is equal to 1 if i ∈ S and equal to 0 otherwise. Then, in the second layer, we have

• W:,i = (M−1)⊤1S for all columns i ∈ [n+ 1]

• a1 = 1 and ai = 2(−1)i−1 for all i ∈ {2, . . . , n+ 1}

• vi = b− i+ 1 for all i ∈ [n+ 1]

Using the values above, we have

f
(2)
u,v,W (h) = σ(⟨(M−1)⊤1S ,McA⟩+ b) +

k2∑
i=2

(−1)i−12σ(⟨(M−1)⊤1S ,McA⟩+ b− i+ 1)

= σ

(
b+

∑
i∈S

[cA]i

)
+

k2∑
i=2

(−1)i−12σ

(∑
i∈S

[cA]i + b− i+ 1

)
= h ([cA]i) .

(44)

As
∑

i∈S [cA]i only takes values in {0, 1, . . . , n}, the above is supported on all of its inputs and this
completes the proof.

E.2 INVARIANT HERMITE POLYNOMIAL

Multivariate Hermite polynomials To handle the graph setting with scaling feature dimension,
we first extend the technical machinery related to Hermite polynomials to the invariant settings we
consider.

Recall from Diakonikolas et al. (2020) that the d-variate normalized Hermite polynomial is defined
for every multi-index J = (J1, . . . , Jd) ∈ Nd as:

HJ : Rd → R : (x1, x2, . . . , xd) 7→
d∏

j=1

HJj
(xj), Hi : R → R : x 7→ Hei(x)√

i!
, i ∈ N, (45)
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where Hei is the usual probabilist Hermite polynomial.

Graph-invariant Hermite polynomial Fix a graph G on n vertices and let A := A(G) ∈ Rn×n

be a graph shift operator (say the Laplacian). Define, for any multi-index J ∈ Nd:

HA
J : Rn×d → R : X 7→ 1√

n

n∑
v=1

HJ((AX)v). (46)

We have the following orthogonality property:
Lemma 16 (Orthogonality of invariant Hermite polynomial). For a fixed A ∈ Rn×n such that∑n

u=1 A
2
vu = 1 for all v ∈ [n], ⟨HA

J , HA
J′⟩L2(N ) = δJ=J′ · cJ for all J, J ′ ∈ Nd\{0} for some

cJ ∈ Θ(1) that depends only on A.

Proof. Let Σ = Σ(ρ) =

[
1 ρ
ρ 1

]
for some ρ ∈ (−1, 1). We will also use Mehler’s formula (Kibble,

1945) which states:
pN (0,Σ)(x, y)

pN (x)pN (y)
=

∞∑
m=0

ρmHm(x)Hm(y), (47)

where pN (0,Σ) is the pdf of the bivariate normal distribution with mean 0 and covariance Σ and pN
is the pdf of the univariate standard normal distribution.

We first show orthogonality of Hermite polynomials evaluated on dependent random variables. For
all i, j ∈ N:

E(x,y)∼N2(0,Σ)[Hi(x)Hj(y)] =

∫
R

∫
R
Hi(x)Hj(y)pN (0,Σ)(x, y)dxdy (48)

=

∫
R

∫
R
Hi(x)Hj(y)pN (x)pN (y) ·

pN (0,Σ)(x, y)

pN (x)pN (y)
dxdy (49)

=

∫
R

∫
R
Hi(x)Hj(y)

∞∑
m=0

ρmHm(x)Hm(y)dP (x)dP (y) (50)

=

∞∑
m=0

ρm
(∫

R
Hi(x)Hm(x)dP (x)

)(∫
R
Hj(y)Hm(y)dP (y)

)
(51)

=

∞∑
m=0

ρmδi=mδj=m (52)

= ρiδi=j . (53)

We are now ready to present the proof of Lemma 16. Pick J, J ′ ∈ Nd\{0}. We have:

⟨HA
J , HA

J′⟩L2(N ) =
1

n

∑
v,v′∈[n]

EX∼Nn×d [HJ((AX)v)HJ′((AX)v′)] (54)

=
1

n

∑
v,v′∈[n]

EZ∼P [HJ(zv)HJ′(zv′)], (55)

where zv is the v-th row of Z ∈ Rn×d and P is a multivariate normal distribution over Rn×d with
mean 0 and covariance:

Cov(Zvj ,Zv′j′) =

{
0, if j ̸= j′∑n

u=1 AvuAv′u =: ρvv′ , otherwise.
(56)

Furthermore, for any v and any j ̸= j′, Zvj is independent of Zv′j′ . This is because columns of X
are independent from one another. Note that when v = v′ and j = j′ the variance is

∑n
u=1 A

2
vu = 1

by our assumption on A.
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By the dependence structure of P , one can write:

EZ∼P [HJ(zv)HJ′(zv′)] =

d∏
j=1

EZ∼P [HJj (Zvj)HJ′
j
(Zv′j)] (57)

=

d∏
j=1

E(Zvj ,Zv′j)∼N (0,Σ(ρvv′ ))[HJj
(Zvj)HJ′

j
(Zv′j)] (58)

=

d∏
j=1

ρJi

vv′δJi=J′
i

(59)

= ρ
|J|
vv′δJ=J′ . (60)

Therefore,

⟨HA
J , HA

J′⟩L2(N ) = δJ=J′ · 1
n

∑
v,v′∈[n]

ρ
|J|
vv′ = δJ=J′ · cJ , (61)

where cJ = 1
n

∑
v,v′∈[n] ρ

|J|
vv′ .

Remark 17. The quantity ρvv′ deserves an explanation. Essentially, ρvv′ measures how similar two
nodes v and v′ are, in term of composition of its incoming edges. Algebraically, it is the (vv′)-
th entry of the gram matrix AA⊤. We can get the correct normalization of A in the premise of
Lemma 16 by starting with a graph G, adding a self-loop to each node of G and set A = (D†)

1
2M

where M is the adjacency matrix of G (with self-loops) and D is the in-degree matrix, we can
ensure that ρvv′ ∈ [0, 1] for each v ̸= v′:

ρvv′ =

n∑
u=1

AvuAv′u =
|Nv ∩Nv′ |√
deg(v) deg(v′)

≤ 1, (62)

where Nv is the set of vertices with an incoming edge to v ∈ [n].

This immediately gives a bound maxJ cJ ≤ n2. Finally, it is also worth noting that cJ does not
vanish under the above normalization, since adding self-loops before the normalization to G ensures
that ρvv = 1 for all v ∈ [n] even if v was an isolated vertex in the original graph. Therefore, without
loss of generality, we can assume that cJ ∈ Θ(1).

It is possible to use a different normalization, such as the Laplacian, as long as one can ensure that
ρvv′ , cJ = Θ(1). The requirement that rows of A sums to 1 is also not strictly necessary but does
greatly simplify our exposition.

Note that we are not claiming a complete orthonormal basis for the space L2(Rn×d,Nn×d). How-
ever, all of the functions we care about will lie in H(d) := span

(
HA

J

)
J∈Nd . For a fixed n and

a function f ∈ H(d), we define f̂J = ⟨f,HA
J ⟩L2(N ) and the degree m part of f : f [m](X) =∑

|J|=m f̂JH
A
J (X).

Facts about gradients of Hermite polynomial also carry over to invariant Hermite polynomials:

Lemma 18. For a fixed graph G on n vertices and corresponding A, we have:

1. ∂
∂Xvj

HA
M (X) = 1√

n

∑n
v′=1

√
MjHM−Ej

((AX)v′)Av′v , for all v ∈ [n], j ∈ [d],M ∈
Nd, where Ej is the vector with 1 at the j′-th position and 0 everywhere else.

2. EX∼Nn×d [⟨∇HA
M (X),∇HA

L (X)⟩] = δM=L · |M |cM .

3. EX∼Nn×d [⟨∇lHA
M (X),∇lHA

L (X)⟩] = δM=L · |M |(|M | − 1) . . . (|M | − l + 1)cM .

In the above, cM = n−1
∑n

v′,v′′=1 ρ
|M |
v′v′′ .
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Proof. 1. We have:

∂

∂Xvj
HA

M (X) =
1√
n

n∑
v′=1

(∇HM ((AX)v′))jAv′v (63)

=
1√
n

n∑
v′=1

√
MjHM−Ej ((AX)v′)Av′v, (64)

where Ej′ is the vector with 1 at the j′-th position and 0 everywhere else. The second
equality is a known fact for the multivariate Hermite polynomials (See Appendix C of
Diakonikolas et al. (2020)).

2. Sum the above over all pairs v, v′ and take expectation to get:

EX∼Nn×d [⟨∇HA
M (X),∇HA

L (X)⟩] (65)

=

n∑
v=1

d∑
j=1

1

n
EX∼Nn×d

 n∑
v′,v′′=1

(∇HM ((AX)v′))j Av′v (∇HL((AX)v′′))j Av′′v

 .

(66)

By the orthogonality property of Hermite multivariate polynomial under dependent multi-
variate Gaussian (equation 60), we can compute:

EX∼Nn×d [HM−Ej ((AX)v′)HL−Ej ((AX)v′′)] = ρ
|M |−1
v′v′′ δM=L, (67)

and,

EX∼Nn×d [⟨∇HA
M (X),∇HA

L (X)⟩] = 1

n

n∑
v,v′,v′′=1

Av′vAv′′vρ
|M |−1
v′v′′ δM=L

d∑
j=1

Mj

(68)

= δM=L · |M |
n

n∑
v′,v′′=1

ρ
|M |−1
v′v′′

n∑
v=1

Av′vAv′′v (69)

= δM=L · |M |
n

n∑
v′,v′′=1

ρ
|M |
v′v′′ . (70)

3. Recursively apply the first part to get:

∂l

∂Xv1j1 , . . . ,Xvljl

HG
M (X) (71)

=
1√
n

n∑
v′=1

 l∏
p=1

Av′vp

√√√√√
M −

p∑
p′=1

Ejp′


jp

HM−
∑l

p=1 ejp
((AX)v′). (72)

Summing indices and passing through the expectation to get:

EX∼Nn×d [⟨∇lHA
M (X),∇lHA

L (X)⟩] (73)

=
δM=L

n

 ∑
j1,...,jl

M −
p∑

p′=1

Ejp′


jp

 ∑
v′,v′′

(
n∑

v=1

Av′vAv′′v

)l

ρ
|M |−l
v′v′′ (74)

=δM=L|M |(|M | − 1) . . . (|M | − l) · 1
n

n∑
v′,v′′=1

ρ
|M |
v′v′′ . (75)
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Corollary 19. Fix k, d, e ∈ N. Let p, q be linear combinations of HA
M : Rd → R with M ∈ Nd

varying among all multi-indices of size k = |M |. Then,〈
∇kp(X),∇kq(X)

〉
= k! · EX∼Nn×d [p(X)q(X)]. (76)

Proof. Let p(X) =
∑

M :|M |=k bMHA
M (X) and q(X) =

∑
K:|K|=k fKHA

K (X). Then:

EX∼Nn×d [p(X)q(X)] =
∑

M :|M |=k

fMbMcM , (77)

where as before, cM = n−1
∑n

v′,v′′=1 ρ
|M |
v′v′′ .

From the previous lemma,

⟨∇kp(X),∇kq(X)⟩ = EX∼Nn×d

〈 ∑
M :|M |=k

bM∇kHA
M (X),

∑
K:|K|=k

fM∇kHA
K (X)

〉 (78)

=
∑

M,K:|M |=|K|=k

bMfMk!δM=KcM (79)

= k!
∑

M :|M |=k

bMfMcM (80)

= k! · EX∼Nn×d [p(X)q(X)]. (81)

E.3 PROOF OF THEOREM 4

The proof of Theorem 4 is derived from the construction in Diakonikolas et al. (2020). Hence, much
of the setup will be taken from their construction. However, care must be taken to use the proper
invariant Hermite polynomial basis we derived in the previous subsection. For completeness, we
extend their formalism here as needed and note where proofs are directly derived from their work.

We first verify that the orthogonal system of invariant Hermite polynomial subsumes 1-hidden-layer
GNNs. We formally show this below to continue the proof later on in the basis of the invariant
Hermite polynomials. As a reminder, we defined H(d) := span

(
HA

J

)
J∈Nd .

Lemma 20 (Inner product decomposition). For every k ∈ N and G ∈ Gn, F d,k
G ⊂ H(d).

Proof. Pick f ∈ F d,k
G , with a corresponding W and a. Let g : Rd → R : x 7→

∑2k
c=1 acσ(⟨x,wc⟩)

where wc is the c-th column of W . Then we have f(X) =
∑n

v=1 g((AX)v) where the subscript
represents the row of the corresponding matrix. Since ρ ∈ L2(N ), g is in L2(N ) and we can write
uniquely:

g(x) =
∑
J∈Nd

ĝJHJ(x). (82)

Therefore,

f(X) =

n∑
v=1

g((AX)v) =

n∑
v=1

∑
J∈Nd

ĝJHJ((AX)v) =
∑
J∈Nd

(ĝJ
√
n)HA

J (X) ∈ H(d). (83)

Now we verify that the special function fG in our construction of the family of hard functions has
vanishing low degree moments:

Lemma 21 (Low degree moment vanishes). For any k ∈ N, for any G and appropriate A, fG ∈
H(2). Furthermore, (f̂G)J = 0 for every |J | < k.
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Proof. The first part follows from specializing Lemma 20 for d = 2. The second part follows from
the fact that the corresponding g function in the proof of Lemma 20 for f is the function fφ,σ in
Diakonikolas et al. (2020), whose low degree moments vanish.

It is also easy to verify that CB
G ⊂ F d,k

G :

Lemma 22. For any k, d, n ∈ N, for some activation σ that is not a low-degree polynomial, CB
G ⊂

F d,k
G .

Proof. Pick B ∈ B arbitrarily and let h(X) = fG(XB). We have:

h(X) = fG(XB) = 1⊤
n σ (A(XB)W ∗)a∗ = 1⊤

n σ (AX(BW ∗))a∗. (84)

Since BW ∗ is in Rd×2k and a∗ is in R2k, we have h ∈ F d,k
G . Functions in FB

k also do not vanish, as
long as A does not have vanishing rank and the activation function σ is not a low-degree polynomial,
by the same argument as in Diakonikolas et al. (2020).

From Diakonikolas et al. (2020), we know the following facts about matrices in Rd×2:
Lemma 23 (Lemma 4.7 in Diakonikolas et al. (2020)). Fix c ∈ (0, 1

2 ). Then there is a set S ⊂ Rd×2

of size at least 2Ω(dc) such that for each A,B ∈ S, ∥A⊤B∥2 ≤ O(dc−
1
2 ).

The following Lemma generalizes Lemma 4.6 in Diakonikolas et al. (2020):
Lemma 24. Fix a function H(2) ∋ p : Rn×2 → R and U ,V ∈ Rd×2 such that U⊤U = V ⊤V =
12. Then: ∣∣⟨p(·U)p(·V )⟩L2(N )

∣∣ ≤ ∞∑
m=0

(
2
√
n∥U⊤V ∥2

)m · ∥p[m]∥2L2(N ), (85)

where p[m] is the degree m part of p.

Proof. Let f, g : Rn×d → R be defined as f(X) = p(XU) and g(X) := p(XV ). Let f [m], g[m]

and p[m] be the degree m part of the corresponding function.

From Corollary 19,
∞∑

m=0

1

m!
⟨∇mf [m](X),∇mg[m](X)⟩ =

∞∑
m=0

EX∼Nn×d [f [m](X)g[m](X)] (86)

= EX∼Nn×d [f(X)g(X)] (87)
= EX∼Nn×2 [p(XU)p(XV )] (88)

=

∞∑
m=0

EX∼Nn×2 [p[m](XU)p[m](XV )] (89)

=

∞∑
m=0

1

m!
⟨∇m

Xp[m](XU),∇m
Xp[m](XV )⟩. (90)

Fix m ∈ R, for each indices v1, . . . , vm ∈ [n], s1, . . . , sm ∈ [d], in Einstein notation,

(∂v1,s1 . . . ∂vm,smf [m])(X)(∂v1,s1 . . . ∂vm,smg[m])(X) (91)

=∂v1,j1 . . . ∂vm,jmp[m](XU)∂v1,j′1 . . . ∂vm,j′m
p[m](XV )Us1j1 . . .UsmjmVs1j′1

. . .Vsmj′m
(92)

(93)

Taking the sum over all v1, . . . , vm ∈ [n], s1, . . . , sm ∈ [d], while still in Einstein notation, to get:

|⟨∇m
Xp[m](XU),∇m

Xp[m](XV )⟩| (94)

=|∂v1,j1 . . . ∂vm,jmp[m](XU)∂v1,j′1 . . . ∂vm,j′m
p[m](XV )(U⊤V )j1j′1 . . . (U

⊤V )jmj′m
| (95)

≤2m∥∇m
Xp[m](XU)∥22 ·

√
nm∥U⊤V ∥m2 (96)

=m! · EX∼Nn×d [(p[m](X))2] ·
(
2
√
n∥U⊤V ∥2

)m
, (97)
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where we used 3-variable Cauchy-Schwarz inequality |aijkbijkcijk| ≤
√

a2i′j′k′b2i′′j′′k′′c2i′′′j′′′k′′′ to
obtain the inequality and Corollary 19 to obtain the last line.

Notice that in the previous derivation, inequality only occurs at the Cauchy-Schwarz inequality step.
We can do a more careful analysis to get:

Corollary 25. In the same setting as Lemma 24, we have:

⟨p(·U)p(·V )⟩L2(N ) (98)

=

∞∑
m=0

1

m!

n∑
v1,...,vm=1

2∑
j1,j′1,...,jm,j′m=1

∂v1,j1 . . . ∂vm,jmp[m](XU)∂v1,j′1 . . . ∂vm,j′m
p[m](XV )(U⊤V )j1j′1 . . . (U

⊤V )jmj′m
.

(99)

As the last ingredient, we need the following lemma that connects the family of hard functions to
lower bounds on CSQ algorithms:

Lemma 26 (Lemma 15 of Diakonikolas et al. (2020)). Let X be the input space and D some
distribution over X . For a finite set of functions C = {f : X → R}, define:

ρ(C) := 1/|C|2
∑

f,g∈C

⟨f, g⟩L2(D). (100)

The correlational statistical query dimension is defined as:

SDA(C,D, τ) := max{m | ρ(C′) ≤ τ,∀C′ ⊂ C, |C′|/|C| ≥ 1/m}. (101)

Suppose that SDA(C,D, τ) ≥ m for some C,D, τ and m, then there is a small enough ϵ such
that any CSQ algorithm that queries from an oracle of f ∈ C and learn a hypothesis h ∈ C with
⟨f − h⟩L2(D) ≤ ϵ either requires Ω(m) queries or at least one query with precision more than

√
τ .

We can now proceed to the proof of the main theorem:

Theorem 27. Any correlational SQ algorithm that, for every concept g ∈ CB
G learns a hypothesis

h such that ∥g − h∥L2(N ) ≤ ϵ for some small ϵ > 0 requires either 2d
Ω(1)

queries or queries of

tolerance at most d−kΩ(1) + 2−dΩ(1)

.

Proof. This proof mirrors that in Diakonikolas et al. (2020). Fix c ∈ (0, 1/2). To upper bound
pairwise correlation between different functions in CB

G , consider for any Bi ̸= Bj ∈ B:

∣∣⟨fG(·Bi), fG(·Bj)⟩L2(N )

∣∣ ≤ ∞∑
m=0

(2
√
n∥B⊤

i Bj∥2)m · ∥f [m]
G ∥2L2(N ) (102)

=

∞∑
m>k

(2
√
n∥B⊤

i Bj∥2)m · ∥f [m]
G ∥2L2(N ) (103)

≤ (2
√
n∥B⊤

i Bj∥2)k
∞∑

m>k

∥f [m]
G ∥2L2(N ) (104)

≤ O(dk(c−1/2))∥fG∥2L2(N ). (105)

In the above derivation, the first line uses Lemma 24; the second line uses Lemma 21; and the
last two lines use Lemma 23 and the fact that we can choose an appropriate parameter to make
∥B⊤

i Bj∥2 < 1. Dividing both sides by ∥fG∥L2(N ) gives∣∣∣⟨gBi

G , g
Bj

G ⟩L2(N )

∣∣∣ ≤ O(dk(c−1/2)). (106)

Now, since B⊤
i Bi = 12, we have ∥fG(·Bi)∥L2(N ) = ∥fG∥L2(N ) and therefore ∥gBi

G ∥L2(N ) = 1.
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We are in a position to apply Lemma 26. Let τ := maxBi ̸=Bj
⟨gBi

G , g
Bj

G ⟩L2(N ). Computing average
pairwise correlation of CB

G yields:

ρ(CB
G ) = 1/|B|+ (|B| − 1)τ/(2|B|) ≤ 1/|B|+ τ. (107)

Finally, setting τ ′ := 1/|B| + τ gives SDA(CB
G ,N , τ ′) = 2Ω(dc) and an application of Lemma 26

completes the proof for F d,k
G .

To get the proof for F d,k
n , by law of total expectation:∣∣E(X,G)∼N×E [fn(XBi,G)fn(XBj ,G)]

∣∣ (108)

= |EEEN×E [fn(XBi,G)fn(XBj ,G)|G]| (109)

≤
∑
G∈Gn

PrE(G) |EN [fG(XBi)fG(XBj)]| (110)

≤
∑
G∈Gn

PrE(G) ·
(

max
Bi ̸=Bj∈B

(2
√
n∥B⊤

i Bj∥2)k
)
· ∥fG∥2L2(N ) (111)

≤O(dk(c−1/2))∥fn∥2L2(N×E), (112)

where in the third line, we use the fact that fG(Z) = fn(Z,G) and triangle inequality; in the
fourth line, we use Eq. (105) and in the last line, we use another instance of total expectation to get
∥fn∥L2(N×E) = EG∼E∥fG∥L2(N ). It is worth pointing out that the only instance of G for which we
cannot apply Eq. (105) in the fourth line (assuming we use the normalized Laplacian as A(G)) is
when G is the empty graph. However, in that case, ∥fG∥L2(N ) = 0 since fG ≡ 0 and the inequality
in the fourth line still holds.

Lastly, proceed identically to the proof for F d,k
G to use Lemma 26 and get the final bound.

F FRAME-AVERAGING HARDNESS PROOFS

Frame averaging. Let G be a subgroup of the permutation group Sn that acts on Rn×d by per-
muting the rows and e its identity element. Let ρ : G → GL(n) with ρ(g) the representation of g as
a matrix in Rn×n. For any group element g ∈ G and X ∈ Rn×d, we will write gX as a shorthand
for ρ(g)X where the product is matrix multiplication. A frame is a function F : Rn×d → 2G\{∅}
satisfying F(gX) = gF(X) set-wise. For given frames F , we will show a hardness result for the
following class of functions:

HF :=

{
f : Rn×d → R with f(X) =

1√
|F(X)|

∑
g∈F(X)

a⊤σ(W⊤(g−1X))1d |

W ∈ Rn×k,a ∈ Rk

}
, (113)

for given nonlinearity σ that is not a polynomial of low degree.

F.1 EXPONENTIAL LOWER BOUND FOR CONSTANT FRAME AND REYNOLDS OPERATOR

Lemma 28 (Constant frame must be whole group). If F(X) is a constant function, i.e. F(X) is
independent of X , then F(X) = G ∀X .

Proof. When F(X) is a constant function, say F ⊆ G for all X , then the frame property mandates
that F ̸= ∅ and there is some f ∈ F . The frame property also tells us that since f−1 ∈ G (and G
is a group), f−1F = F and thus e ∈ F . Pick any element g ∈ G and observe that since e ∈ F and
gF = F , g must also be in F . As this is true for all elements g ∈ G, F must be the whole group G
itself.

In the following, we will therefore assume that G is a polynomial-sized (in n) subgroup of Sn. We
will slightly modify Lemma 17 of (Diakonikolas et al., 2020) to show:
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Lemma 29. For any 0 < c < 1/2, and small ϵ ∈ (0, 1), for any polynomial-sized subset F ⊂ Sn,
there exists a set B′ of at least 2Ω(nc)/|F |2 matrices in Rn×2 such that for each pair B,B′ ∈ B′

and for each g, g′ ∈ F , it holds that:

1. (gB)⊤(gB) = I;

2. ∥(gB)⊤(g′B′)∥2 ≤ O(nc−1/2) when B ̸= B′; and

3. when g ̸= g′, (gB)⊤(g′B))ij =:

[
a1 b1
b2 a2

]
where bi ≤ O(nc−1/2) and,

ai −
Fg,g′

n
√
1− ϵ

≤ O(nc−1/2), (114)

ai −
√
1− ϵ

Fg,g′

n
≥ −O(nc−1/2), (115)

for i ∈ [2]. Here Fg,g′ is the number of fixed points of g−1g′ (number of cycles of length
one).

The proof is delayed to App. F.3 for a more streamlined read.

Family of hard functions. Recall the low-dimensional function from the proof of Theorem 4:

f∗
exp : R2×d → R with f(X) = (a∗)⊤σ((W ∗)⊤X)1d (116)

for some special parameter a∗ ∈ R2k and W ∗ ∈ R2×2k in Eq. (11). We now define the family of
hard functions, indexed by a set of matrices B ⊂ Rn×2 obtained from Lemma 29:

CB
F =

{
gB : Rn×d → R with gB(X) =

∑
g∈G f∗

exp(B
⊤g−1X)√

|G| · ∥f∗
exp∥N

| B ∈ B′ ⊂ Rn×2
}
. (117)

Theorem 30. For any feature dimension d = Θ(1) and width parameter k = Θ(n). Let G be
a subgroup of Sn with |G| = Θ(poly(n)). Pick a set B′4 ⊂ Rn×2 of size at least 2Ω(dΩ(1))/|G|2
according to Lemma 29 and normalize each function in the hard function family CB′

F to have ∥ · ∥N
norm 1. Let ϵ′ > 0 be a sufficiently small error constant. Then for any g ∈ CB′

F , any CSQ algorithm
that queries from oracles of concept f ∈ CB′

F and outputs a hypothesis h with ∥f − h∥N ≤ ϵ′

requires either 2n
Ω(1)

/|G|2 queries or at least one query with precision |G|2−nΩ(1)

+
√
|G|n−Ω(k).

Proof. First we review properties of the constructed objects. By Lemma 29, gB and g′B′ are almost
orthogonal for any B ̸= B′ ∈ B′ and g, g′ ∈ G.

Then by Theorem 27 with matrix A = Id, for any B ̸= B′ ∈ B′ and any g, g′ ∈ G, noting that
B⊤(g−1X) = (gB)⊤X since a permutation matrix is orthonormal, we have

|EX∼N [f∗
exp((gB)⊤X)f∗

exp((g
′B′)⊤X)]| ≤ O(nk(c−1/2))∥f∗

exp∥2N , (118)

for the same c that was chosen in the statement of Lemma 29.

Now we verify that ∥gB∥N = Ω(1) for each gB ∈ CB′

FA(G). Let B = [x y] and Bg :=

gB,Bg′ := (g′)B.

∥gB∥2N (119)

=
1

∥f∗
exp∥2N

EX∼N

∑
g∈G

(f∗
exp(B

⊤
g X))2

|G|
+

∑
g ̸=g′∈G

f∗
exp((B

⊤
g X)f∗

exp(B
⊤
g′X)

|G|

 (120)

=1 +
1

|G|∥f∗
exp∥2N

∑
g ̸=g′∈G

EX∼N
[
f∗
exp(B

⊤
g X)f∗

exp(B
⊤
g′X)

]
(121)

4The different notation highlights the fact that we are using a slightly different set of matrices from
Lemma 23 and (Diakonikolas et al., 2020).
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Now we split the sum into two parts. In the first part, we examine g ̸= g′ such that
max(|⟨gx, g′x⟩|, |⟨gy, g′y⟩|) < c1 for some constant 0 < c1 < 1/

√
3, and leave the remaining

cases for the other part. Collect the pairs g, g′ in the first part into a set G1. Then∣∣∣∣∣∣ 1

|G|∥f∗
exp∥2N

∑
g ̸=g′∈G1

EX∼N
[
f∗
exp(B

⊤
g X)f∗

exp(B
⊤
g′X)

]∣∣∣∣∣∣ (122)

≤ 1

|G|∥f∗
exp∥2N

∑
g ̸=g′∈G1

∣∣EX∼N
[
f∗
exp(B

⊤
g X)f∗

exp(B
⊤
g′X)

]∣∣ (123)

≤ 1

|G|
∑

g ̸=g′∈G

∥B⊤
g Bg′∥k2 , (124)

where k is the number of neurons in the hidden layer of f∗
exp. The second line comes from the

triangle inequality and the last line comes from Theorem 27.

We have,

∥B⊤
g Bg′∥k2 ≤ ∥B⊤

g Bg′∥kF (125)

=
(
2z2 + ⟨gx, (g′)x⟩2 + ⟨gy, (g′)y⟩2

)k/2
(126)

≤ 3k/2−1
(
(2z)k + |⟨gx, (g′)x⟩|k + |⟨gy, (g′)y⟩|k

)
. (127)

The last line uses power mean inequality. By our assumptions,

3k/2−1
∑

g ̸=g′∈G

|⟨gx, (g′)x⟩|k < |G|(|G| − 1)
(c1

√
3)k

3
< |G|(|G| − 1)(c1

√
3)k (128)

and similarly 3k/2−1
∑

g ̸=g′∈G |⟨gy, (g′)y⟩|k ≤ |G|(|G| − 1)(c1
√
3)k.

Plugging back,

1

|G|∥f∗
exp∥2N

∣∣∣∣∣∣
∑

g ̸=g′∈G1

EX∼N
[
f∗
exp(B

⊤
g X)f∗

exp(B
⊤
g′X)

]∣∣∣∣∣∣ ≤ (|G| − 1)(c1
√
3)k. (129)

Since |G| = poly(n) and k = Θ(n), the final expression is o(1) in n.

We now consider the remaining part which is reproduced here:

1

|G|∥f∗
exp∥2N

∑
g ̸=g′∈G2\G1

EX∼N
[
f∗
exp((gB)⊤X)f∗

exp((g
′B)⊤X)

]
(130)

Zooming in, we have:∑
g ̸=g′∈G2\G1

EX∼N
[
f∗
exp(B

⊤
g X)f∗

exp(B
⊤
g′X)

]
(131)

=
∑

g ̸=g′∈G2\G1

∞∑
m=0

1

m!

d∑
v1,...,vm=1

2∑
j1,j′1,...,jm,j′m=1

∂v1,j1 . . . ∂vm,jm(f∗
exp)

[m](·)∂v1,j′1 . . . ∂vm,j′m
(f∗

exp)
[m](·)(B⊤

g Bg′)j1j′1 . . . (B
⊤
g Bg′)jmj′m

(132)

=
∑

g ̸=g′∈G2\G1

∞∑
m=k

1

m!

d∑
v1,...,vm=1

2∑
j1,j′1,...,jm,j′m=1

∂v1,j1 . . . ∂vm,jm(f∗
exp)

[m](·)∂v1,j′1 . . . ∂vm,j′m
(f∗

exp)
[m](·)(B⊤

g Bg′)j1j′1 . . . (B
⊤
g Bg′)jmj′m

,

(133)
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where the second line comes from Corollary 25 and the last line is because all low-degree moment
of f∗

exp vanishes.

Further zooming in, for each g ̸= g′ ∈ G2\G1, each m ≥ k and each v1, . . . , vm ∈ [2], denote
pJ as ∂v1,J1

. . . ∂vm,Jm
(f∗

exp)
[m](·) for each J ∈ [2]m, and the corresponding vector p ∈ R2m . We

have, using Einstein notation to sum over j1, . . . jm, j′1, . . . , j
′
m:

∂v1,j1 . . . ∂vm,jm(f∗
exp)

[m](·)∂v1,j′1 . . . ∂vm,j′m
(f∗

exp)
[m](·)(B⊤

g Bg′)j1j′1 . . . (B
⊤
g Bg′)jmj′m

,= p⊤(B⊤
g Bg′)⊗mp

(134)

By Corollary 43, it suffices to show that C := B⊤
g Bg′ satisfies z⊤Cz ≥ 0 for all z ∈ R2. However,

note that by concentration results of Lemma 29, for any small ϵ ∈ (0, 1),

⟨gx, g′x⟩ ∈
[√

1− ϵF̄g,g′ − δx,
F̄g,g′
√
1− ϵ

+ δx

]
(135)

⟨gy, g′y⟩ ∈
[√

1− ϵF̄g,g′ − δy,
F̄g,g′
√
1− ϵ

+ δy

]
(136)

⟨gx, g′y⟩ = ϵ1 (137)

⟨gy, g′x⟩ = ϵ2, (138)

for δx, δy ≥ 0,max(δx, δy, |ϵ1|, |ϵ2|) < O(nc−1/2) and F̄g,g′ = Fg,g′/n with Fg,g′ denotes the
number of fixed points of g−1g′ as in Lemma 29. Note that 1 ≥ F̄g,g′ > c1 is bounded away
from 0 (by definition of G1 and concentration result in Lemma 29). Choose ϵ small enough that√
1− ϵF̄g,g′ =: c2, c2 − δx, c2 − δy are all bounded away from 0 when n is large enough. Thus, for

any z ∈ R2,

z⊤Cz ≥ z2
1(c2 − δx) + z2

2(c2 − δy) + z1z2(ϵ1 + ϵ2) (139)

= (c2 − δx)

(
z1 −

ϵ1 + ϵ2
c2 − δx

z2

)2

+ z2
2

(
c2 − δy − (ϵ1 + ϵ2)

2

c2 − δx

)
, (140)

which is clearly nonnegative for large enough n as c2 is bounded away from 0. We conclude that
p⊤(B⊤

g Bg′)⊗mp is nonnegative and thus removing these terms leads to a lower bound on ∥gB∥2N .

For pairwise correlation, we have:

|⟨gB, gB′⟩N | ≤ 1

|G| · ∥f∗
exp∥2N

∣∣∣∣∣∣EX∼N
∑

g,g′∈G

f∗
exp((gB)⊤X)f∗

exp((g
′B′)⊤X)

∣∣∣∣∣∣ (141)

≤ 1

|G| · ∥f∗
exp∥2N

∑
g,g′∈G

∣∣EX∼N f∗
exp((gB)⊤X)f∗

exp((g
′B′)⊤X)

∣∣ (142)

≤ O(nk(c−1/2))|G|. (143)

Now we replace each gB by its normalization to make ∥gB∥2N = 1. Note that this only decreases
(or increases by at most a constant factor) the correlation between different hard functions since
∥gB∥2N = Ω(1). We are in position to apply Lemma 26. Let τ := maxBi ̸=Bj

|⟨gBi
, gBj

⟩L2(N )|.
Computing average pairwise correlation of CB′

G yields:

ρ(CB′

G ) = 1/|B′|+ (1− 1/|B′|)τ ≤ 2/|B′|+ τ. (144)

Finally, setting τ ′ := 2/|B′| + τ gives SDA(CB′

G ,N , τ ′) = 2Ω(nc)/|G|2 and an application of
Lemma 26 completes the proof.
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F.2 SUPERPOLYNOMIAL LOWER BOUNDS

Throughout, we will use the notation ⊆k to denote a subset of size k. The technique from this part
comes mainly from (Goel et al., 2020). Define:

fS : Rn×d → R, where fS(X) = 1⊤
d

 ∑
w∈{−1,1}k

χ(w)σ(⟨w,XS⟩/
√
k)

 , S ⊆k [n].

(145)
where χ is the parity function χ(w) =

∏
i wi, and XS ∈ X k, or alternatively XS ∈ Rk×d, denotes

the rows of X indexed by S. Here, ⟨w,XS⟩ :=
∑k

i=1 wi(XS)i,: = w ·XS and σ : Rd → Rd is an
activation function. Throughout, we will set k ≤ log2 n so that the above network has at most O(n)
hidden nodes. For any z ∈ {−1, 1}n, let X ◦ z be the matrix in Rn×d whose v-th row is zvXv,:.
We will use the following lemma, which is a basic consequence of properties proven in Goel et al.
(2020), but include the proofs here to be self-contained.
Lemma 31. For all S ̸= T ⊆k [n], g ∈ G, and z ∈ {−1, 1}n, we have:

1. fS(g · (X ◦ z)) = χg−1·S(z)fS(g ·X) = χg−1·S(z)fg−1·S(X).

2. ∥fS∥L2(N ) ≥ Ω(e−Θ(k)) and ⟨fS , fT ⟩L2(N ) = 0.

Proof. Fix S ̸= T ⊆k [n].

1. By definition:

fS(X) =

d∑
j=1

∑
w∈{−1,1}k

χ(w)σ(⟨w, (X;,j)S⟩/
√
k) (146)

where X:,j is the j-th column of X . G acts on the rows of X , i.e. (gX)i,: = Xg−1i,:.
Therefore, letting the order of S be fixed, we have (gX)S = Xg−1S,:.

We have, for any g ∈ G and any z ∈ {−1, 1}n:

fS(g · (X ◦ z)) =
d∑

j=1

∑
w∈{−1,1}k

χ(w)σ(⟨w, ((g · (X ◦ z));,j)S⟩/
√
k) (147)

=

d∑
j=1

∑
w∈{−1,1}k

χ(w)σ(⟨w, ((X ◦ z);,j)g−1·S⟩/
√
k) (148)

=

d∑
j=1

∑
w∈{−1,1}k

χ(w)σ(⟨w, (X;,j)g−1·S ◦ zg−1·S⟩/
√
k) (149)

= χg−1·S(z)

d∑
j=1

∑
w∈{−1,1}k

χ(w ◦ zg−1·S)σ(⟨w ◦ zg−1·S , (X;,j)g−1·S⟩/
√
k)

(150)

= χg−1·S(z)

d∑
j=1

∑
w∈{−1,1}k

χ(w)σ(⟨w, (X;,j)g−1·S⟩/
√
k) (151)

= χg−1·S(z)fg−1·S(X) (152)
= χg−1·S(z)fS(g ·X). (153)

In the above derivation, we use the definition of fS to get the first line. The second line
comes from the fact that permuting by g, then taking the subset S is equivalent to taking
the subset g−1 · S. The third line comes from the fact that each element of z is a scalar.
The fourth line comes from the fact that χ(w) = χg−1·S(z) · χg−1·S(w ◦ zg−1·S). The
fifth line is a change of variable w 7→ w ◦ zg−1·S . Finally, the last line comes from the
definition of fS , and noting that the dependence of fS on S only comes from which row of
X is selected by S; thus, fg−1·S(X) = fS(g ·X).
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2. We have, for any S ̸= T :

⟨fS , fT ⟩L2(N ) = EX∼L2(N )[fS(X)fT (X)] (154)

= Ez∼Unif({−1,1}n)EX [fS(X ◦ z)fT (X ◦ z)] (155)

= Ez∼Unif({−1,1}n)EX [fS(X)fT (X)χS(z)χT (z)] (156)

= EX [fS(X)fT (X)]Ez∼Unif({−1,1}n)[χS(z)χT (z)] (157)

= 0 (158)

by sign-invariance of N and orthogonality of parity functions under Unif({−1, 1}n).
When S = T , the same argument as Goel et al. (2020) Theorem 3.8 shows that fS does
not vanish.

Now, define the family of hard functions as:

HS,F :=

f̃S : X 7→ 1√
|F(X)|

∑
g∈F(X)

fS(g ·X) | [n] ⊇k S ∈ S

 , (159)

for some set S depending on F and G. The subsets in S such that these hard functions are orthogonal
will determine the size of the family of hard functions, and therefore the CSQ dimension lower
bound.
Definition 32 (Sign-invariant frame). A frame F is sign-invariant if F(X) = F(X ◦z) for almost
all X (under the given data distribution) and for all z ∈ {−1, 1}n.

Lemma 33. If F is any sign-invariant frame, then there exists S with |S| ≥ Ω(nΩ(logn))/M(n)
such that the functions in HS,F are pairwise orthogonal, where M(n) is the size of the largest
orbit of

(
[n]
m

)
where m = Ω(log n) under G. If moreover |F(X)| = 1 for almost all x, then

|S| = Ω(nΩ(logn)).

Proof. We have for any S ̸= T :

⟨f̃S , f̃T ⟩L2(N ) = EX∼N
1

|F(X)|
∑

g,g′∈F(X)

fS(g ·X)fT (g
′ ·X) (160)

= Ez∼Unif{−1,1}nEX∼N
1

|F(X ◦ z)|
∑

g,g′∈F(X◦z)

fS(g · (X ◦ z))fT (g′ · (X ◦ z))

(161)

= Ez∼Unif{−1,1}nEX∼N
1

|F(X ◦ z)|∑
g,g′∈F(X◦z)

χg−1·S(z)fg−1·S(X)χ(g′)−1·T (z)f(g′)−1·T (X) (162)

= Ez∼Unif{−1,1}nEX∼N
1

|F(X)|∑
g,g′∈F(X)

χg−1·S(z)fg−1·S(X)χ(g′)−1·T (z)f(g′)−1·T (X) (163)

= EX∼N
1

|F(X)|
fg−1·S(X)f(g′)−1·T (X)

∑
g,g′∈F(X)

Ez∼Unif{−1,1}nχg−1·S(z)χ(g′)−1·T (z)

(164)

Here, we have used that the frame is sign-invariant to replace F(X ◦ z) with simply F(X), and
rearrange the expectations accordingly. Now, if we have no further assumptions on F , then we
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require S and T to be m = Ω(log n)-sized subsets in different orbits (in other words, S ̸= gT for
all g ∈ G). Then, by Lemma 31, g−1S ̸= (g′)−1T for any g and g′, and the inner expectation over z
(and therefore the entire expression) is 0. This yields a lower bound on |S| of Ω(nΩ(logn)))/M(n),
from choosing one log n-sized subset from each orbit.

If we moreover have that F has size one almost everywhere, then S ̸= T suffices to ensure orthog-
onality, and we can set |S| = nm where m = Θ(log n) by letting S be all Θ(log n)-sized subsets
of [n]. Note that if subsets are size Θ(log n), the hidden width of the network is polynomial and
furthermore, if m ≤ log2 n then the width is O(n).

Remark 34. Note that the definition of frame always allows one to choose a singleton frame F(X)
for any X whose stabilizer is trivial under the action of G on Rn×d. For any other X with nontrivial
stabilizer, since G is a subgroup of the permutation group, X must have at least 2 equal entries and
thus lies in a manifold of dimensions strictly smaller than n × d. Density of N thus ensures that
PrX∼N [|F(X)| = 1] = 1 as long as we choose the singleton frame at every X without self-
symmetry. A practical choice of frame in this case, which is also sign-invariant, is the frame F(X)
which is the set of all permutations that lexicographically sort X by absolute value. It is not hard to
see that with probability 1 under N , there is only 1 permutation that sorts X .

Remark 35. The case of sign-invariant frames includes F(X) = G, the Reynolds operator.

Corollary 36. Let F be a sign-invariant frame. For any c > 0, any CSQ algorithm that queries
from an oracle of concept f ∈ HS,F and outputs a hypothesis h with ∥f − h∥N ≤ Θ(1) needs at
least Ω(nΩ(logn))/M(n)) queries or at least one query with precision o(n−c/2).

Corollary 37. Let F be a sign-invariant singleton frame. For any c > 0, any CSQ algorithm that
queries from an oracle of concept f ∈ HS,F and outputs a hypothesis h with ∥f − h∥N ≤ Θ(1)

needs at least Ω(nΩ(logn)) queries or at least one query with precision o(n−c/2).

Proof. These corollaries are immediate applications of Theorem 4.1 and Lemma 2.6 from Goel et al.
(2020) to Lemma 33.

It remains to show that the norms of the hard functions in HS,F do not vanish. We show this below
for sign-invariance, almost surely polynomial frames.

Lemma 38. Let HS,F be the hard functions derived in Lemma 33 from the class of hard func-
tions HS in Eq. (145) (which comes from Goel et al. (2020), but with an extra input dimension).
Let
〈
E[f2

S ]
〉
Unif(HS)

denote the average squared norm of functions uniformly drawn from HS and

let MHS,F = maxf̃S∈HS,F
E[f̃S(X)2] denote the maximum squared norm of the hard functions

in HS,F . If MHS,F /
〈
E[f2

S ]
〉
Unif(HS)

= O(poly(n)), then there exists a constant c > 0 and
subset C ⊂ HS,F of size |C| = Ω(|HS,F |/ poly(n)) many functions whose norms are at least
c
〈
E[f2

S ]
〉
Unif(HS)

.

Proof. We use a second moment method argument to prove the above statement. Let the ran-
dom variable Z denote the squared norm E[(f̃S(X))2] of a function drawn from the distribution
Unif(HS,F ) which is uniform over all functions in HS,F . The Paley-Zygmund inequality states
that for any given θ ∈ [0, 1]

P(Z > θE[Z]) ≥ (1− θ)2
E[Z]2

E[Z2]
. (165)

The probability above calculates the portion of functions in Unif(HS,F ) which have non-vanishing
norm.

Now, we calculate the first two moments of Z over the |HS,F | =
(
n
k

)
functions in the class where

k = Θ(log n) as in the construction in Goel et al. (2020). For the first moment,
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EX∼N [Z] =
1

|HS,F |
∑

f̃S∈HS,F

EX∼N [f̃S(X)2] (166)

=

(
n

k

)−1

EX∼N

 ∑
S⊆k[n]

1

|F(X)|
∑

g,g′∈F(X)

fS(g ·X)fS(g
′ ·X)

 (167)

=

(
n

k

)−1

EX∼N

 1

|F(X)|
∑

S⊆k[n]

 ∑
g∈F(X)

fS(X)2 +
∑

g ̸=g′∈F(X)

fS(g ·X)fS(g
′ ·X)


(168)

≥
(
n

k

)−1

EX∼N

 1

|F(X)|
∑

g∈F(X)

∑
S⊆k[n]

fS(g ·X)2



−
(
n

k

)−1

∣∣∣∣∣∣∣∣∣
∑

S⊆k[n]

EX∼N

 1

|F(X)|
∑

g,g′∈F(X)

g−1S ̸=(g′)−1S

fg−1S(X)f(g′)−1S(X)


∣∣∣∣∣∣∣∣∣

(169)

=

(
n

k

)−1

EX∼N

 1

|F(X)|
∑

g∈F(X)

∑
S⊆k[n]

fS(g ·X)2



−
(
n

k

)−1

∣∣∣∣∣∣∣∣∣
∑

S⊆k[n]

∑
g,g′∈G

g−1S ̸=(g′)−1S

EX∼N

[
δg,g′∈F(X)

|F(X)|
fg−1S(X)f(g′)−1S(X)

]∣∣∣∣∣∣∣∣∣ ,
(170)

where in the third line, we had the inequality ≥ since we ignore g ̸= g′ such that g−1S = (g′)−1S
(the summands in this case is fg−1S(X)2 ≥ 0 so ignoring them gives a lower bound) and then use
reverse triangle inequality |a+ b| ≥ |a| − |b|.
The first term is

(
n

k

)−1

EX∼N

 1

|F(X)|
∑

g∈F(X)

∑
S⊆k[n]

fS(g ·X)2

 =

(
n

k

)−1

EX∼N

 ∑
S⊆k[n]

fS(X)2

 =
〈
E[f2

S ]
〉
Unif(HS)

.

(171)

Now we show that the second term is 0. For a fix S ⊂k [n], g, g′ ∈ G such that g−1S ̸= (g′)−1S,
we have:

EX∼N

[
δg,g′∈F(X)

|F(X)|
fg−1S(X)f(g′)−1S(X)

]
=Ez∼Unif({−1,1}n)

[
EX∼N

[
δg,g′∈F(X◦z)

|F(X ◦ z)|
fg−1S(X ◦ z)f(g′)−1S(X ◦ z)

]]
=EX∼N

[
δg,g′∈F(X)

|F(X)|
fg−1S(X)f(g′)−1S(X)Ez

[
χg−1S(z)χ(g′)−1S(z)

]]
=0,

where we have used the fact that the frame F is sign-invariant and the decomposition result from
Equation (1) of (Goel et al., 2020). Thus the second term is 0.
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For the second moment, we have

E[Z2] =
1

|HS,F |
∑

f̃S∈HS,F

E[f̃S(X)2]2

≤ 1

|HS,F |
∑

f̃S∈HS,F

max
f̃S∈HS,F

E[f̃S(X)2]2

= M2
HS,F

.

(172)

Thus, applying Paley-Zygmund, we have

P
(
Z > θ

〈
E[f2

S ]
〉
Unif(HS)

)
≥ (1− θ)2

E[Z]2

E[Z2]
≥ (1− θ)2

〈
E[f2

S ]
〉2
Unif(HS)

M−2
HS,F

. (173)

Setting c = (1− θ)2 completes the proof.

Corollary 39. Assuming that the activation is ReLU or sigmoid, the subset of non-vanishing func-
tions in HS,F is superpolynomial in n.

Proof. It suffices to show that MHS,F /
〈
E[f2

S ]
〉
Unif(HS)

is O(poly(n)).

Theorem 3.8 of Goel et al. (2020) guarantees that
〈
E[f2

S ]
〉
Unif(HS)

≥ Ω
(
e−Θ(k)

)
= Ω

(
poly(n)−1

)
(since k = Θ(log n)).

To upper bound MHS,F , we uniformly bound, for each f̃S ∈ HS,F ,

EX∼N [f̃S(X)2] = EX∼N


 1√

|F(X)|

∑
g∈F(x)

d∑
j=1

∑
w∈{−1,1}k

χ(w)σ

(
⟨w, (g ·X:,j)S⟩√

k

)2


(174)

≤ EX∼N

√|F(X)|2k
∑

g∈F(X)

d∑
j=1

∑
w∈{−1,1}k

(
χ(w)σ

(
⟨w, (g ·X:,j)S⟩√

k

))2


(175)

≤ EX∼N

√|F(X)|2k
∑

g∈F(X)

d∑
j=1

∑
w∈{−1,1}k

(⟨w, (g ·X:,j)S⟩)2

k

 (176)

≤ EX∼N

√|F(X)|2k
∑

g∈F(X)

d∑
j=1

∑
w∈{−1,1}k

∑
s∈S

(g ·X:,j)
2
s

 (177)

≤ EX∼N

[
|F(X)|3/222kdkx2

[1]

]
≤ poly(n)EX [x2

[1]] (178)

where x[1] is the largest entry in absolute value of X . In the above, we use Cauchy-Schwarz in-
equality for the second and fourth line, while the third line uses the fact that ReLU(x)2 ≤ x2 for all
x ∈ R. Since with probability 1, |F(X)| is at most polynomial in n by our assumption, it suffices
to show that the order (either largest or smallest) statistic x[1] has small moment when X is a iid
Gaussian random vector of length n× d.

Bounding this moment is a classical study in concentration inequalities. By an inequality of Ta-
lagrand (Chatterjee, 2014; Talagrand, 1994), we know that Ex[x

2
[1]] − (Ex[x[1]])

2 ≤ C/ log(nd)

for some constant C. The first moment is also bounded by O(
√
log(nd)) and thus Ex[x

2
[1]] ≤

O(log(nd)).

Thus MHS,F = O(poly(n)) and our conclusions follow.
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F.3 PROOF OF EXTRA TOOLS

Lemma 40 (Sub-Gaussian concentration for inner-product with permuted vector). Let G ≤ Sn with
at least 2 elements and fix arbitrary g ̸= g′ ∈ G. Then for any c ∈ (0, 1/2):

Pr
x

[∣∣∣∣ ⟨gx, g′x⟩∥x∥
− µg,g′

∣∣∣∣ ≥ Ω(nc)

]
≤ exp(−Ω(n2c)), (179)

for some µg,g′ ∈
[

Fg,g′√
n+1

,
Fg,g′√

n

]
, i.e. µg,g′ = Θ(Fg,g′n−1/2), and where Fg,g′ is the number of fixed

points in g−1g′ (i.e. the number of cycles of length 1 in its cycle representation).

Proof. Let

f(x) =
⟨gx, g′x⟩

∥x∥
, (180)

where x ∼ N (0, In).

Note that

∇f(x) =
1

∥x∥
(xh + xh−1)− 1

∥x∥
⟨gx, g′x⟩
⟨x,x⟩

x, (181)

where xh consists of x with entries reordered by h = g−1g′, i.e. [xh]i = [x]h−1(i). Via triangle
inequality,

∥∇f(x)∥ ≤ 3

∥x∥
∥x∥ ≤ 3. (182)

Thus, by Gaussian Lipschitz concentration (Lemma 2.2 of (Pisier, 1986)), we have that:

Pr
x

[∣∣∣∣ ⟨gx, g′x⟩∥x∥
− Ef(x)

∣∣∣∣ ≥ Ω(nc)

]
≤ exp(−Ω(n2c)). (183)

Finally, we compute µ := Exf(x). To do this, note that for every i ̸= j ∈ [n],

Ex
xixj

∥x∥2
= Ex

(−xi)xj

∥x∥2
= 0, (184)

by a change of variable formula x 7→ (x1, . . . ,xi−1,−xi,xi+1, . . . ,xn).

At the same time, for every i ̸= j ∈ [n],

Ex
x2
i

∥x∥2
= Ex

x2
j

∥x∥2
=

1

n

n∑
k=1

Ex
x2
k

∥x∥2
=

1

n
Ex∥x∥2, (185)

by a change of variable that swaps xi and xj using a permutation Jacobian matrix with determinant
±1.

Thus µ =
Fg,g′

n Ex∥x∥2, where Fg,g′ is the number of fixed points of g−1g′. We appeal to elemen-
tary analysis of Gaussian vectors (for instance, Chandrasekaran et al. (2012)) to obtain:

Ex∥x∥2 =
√
2
Γ((n+ 1)/2)

Γ(n/2)
∈ [n/

√
n+ 1,

√
n], (186)

where Γ is Euler’s Gamma function. Thus, we have

µ ∈
[

Fg,g′
√
n+ 1

,
Fg,g′
√
n

]
(187)

Lemma 41. Let x ∈ Rn be a unit vector iid uniformly distributed over the n-dimensional unit
sphere. Let G ≤ Sn and g ̸= g′ ∈ G. Let Fg,g be the number of fixed points of h := g−1g′’s action
on [n]. Then for all c ∈ (0, 1/2) and small ϵ ∈ (0, 1):

Pr
x

[
⟨gx, g′x⟩ − Fg,g′

n
√
1− ϵ

≥ Ω(nc−1/2)

]
≤ exp(−Ω(n2c)), (188)

Pr
x

[
⟨gx, g′x⟩ −

√
1− ϵ

Fg,g′

n
≤ −Ω(nc−1/2)

]
≤ exp(−Ω(n2c)). (189)
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Proof. Recall that an alternative way to sample unit vectors i.i.d. uniformly from the hypersphere is
to first sample z ∼ N (0, In) and then set x := z

∥z∥2
. Thus, we study ⟨gz,g′z⟩

∥z∥2
2

.

To do this, note that concentration of ∥z∥2 is well studied (Proposition 2.2 and Corollary 2.3 of
Barvinok (2005)), for any 0 < ϵ < 1:

max

(
Pr
z

(
∥z∥2 ≥

√
n

1− ϵ

)
,Pr

z

(
∥z∥2 ≤

√
(1− ϵ)n

))
≤ exp(−ϵ2n/4). (190)

Concentration of the random variable ⟨gz, g′z⟩/∥z∥2 was studied in Lemma 40 as:

Pr
z∼Nn

[
|⟨gz, g′z⟩/∥z∥2 − µg,g′ | ≥ Ω(nc+1/2)

]
≤ exp(−Ω(n2c)), (191)

for some µg,g′ ∈ [Fg,g′/
√
n+ 1, Fg,g′/

√
n]. Since 1√

n
− 1√

n+1
∈ O(n−3/2) and Fg,g′ ≤ n, we

can also write:

Pr
x

[
⟨gx, g′x⟩

∥x∥
− Fg,g′

√
n

≥ Ω(nc)

]
≤ exp(−Ω(n2c)), (192)

and

Pr
x

[
⟨gx, g′x⟩

∥x∥
− Fg,g′

√
n

≤ −Ω(nc)

]
≤ exp(−Ω(n2c)). (193)

We have by union bound:

Pr

[
⟨gz, g′z⟩
∥z∥22

− Fg,g′

n
√
1− ϵ

> Ω(nc−1/2)

]
≤ Pr

[
⟨gz, g′z⟩
∥z∥2

>
Fg,g′
√
n

+Ω(nc)

]
+ Pr[∥z∥2 <

√
(1− ϵ)n]

(194)

≤ exp(−Ω(n2c)) + exp(−ϵ2n/4) (195)

≤ exp(−Ω(n2c)). (196)

On the other side,

Pr

[
⟨gz, g′z⟩
∥z∥22

−
√
1− ϵ

Fg,g′

n
< −Ω(nc−1/2)

]
≤ Pr

[
⟨gz, g′z⟩
∥z∥2

<
Fg,g′
√
n

− Ω(nc)

]
+ Pr

[
∥z∥2 >

√
n

1− ϵ

]
(197)

≤ exp(−Ω(n2c)) + exp(−ϵ2n/4) (198)

≤ exp(−Ω(n2c)). (199)

Lemma 42 (Kronecker product of PSD matrices is PSD). For some m,n ∈ N. Fix A ∈ Rm×m and
B ∈ Rn×n not necessarily symmetric. If for all x ∈ Rm,x⊤Ax ≥ 0 and for all y ∈ Rn,y⊤By ≥
0 then for all z ∈ Rmn, z⊤(A⊗B)z ≥ 0, where ⊗ is the Kronecker product.

Proof. Write z = (z[1], . . . ,z[m]) where z[i] ∈ Rn for each i ∈ [m], then we have:

z⊤(A⊗B)z =

m∑
i,i′=1

n∑
j,j′=1

z
[i]
j (Ai,i′Bj,j′)z

[i′]
j′ (200)

=

m∑
i,i′=1

Ai,i′

n∑
j,j′=1

z
[i]
j Bj,j′z

[i′]
j′ (201)

=

m∑
i,i′=1

Ai,i′Ci,i′ , (202)

where Ci,i′ =
∑n

j,j′=1 z
[i]
j Bj,j′z

[i′]
j′ . Now it is not hard to see that C is symmetric. At the same

time, for any w ∈ Rm,

w⊤Cw =

n∑
i,i′=1

wiwi′

n∑
j,j′=1

z
[i]
j Bj,j′z

[i′]
j′ =

n∑
i,i′=1

n∑
j,j′=1

(wiz
[i]
j )Bj,j′(wi′z

[i′]
j′ ). (203)
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By property of B, the inner sum is nonnegative and thus w⊤Cw is nonnegative. Therefore we
conclude that C is symmetric positive semi-definite and thus admits a spectral decomposition:

C =

r∑
k=1

λkv
[k](v[k])⊤, (204)

for some set of vectors v[k] and nonnegative λk ≥ 0, k ∈ [r] for some r.

Thus,
m∑

i,i′=1

Ai,i′Ci,i′ =

m∑
i,i′=1

Ai,i′

r∑
k=1

λkv
[k]
i v

[k]
i′ =

m∑
i,i′=1

r∑
k=1

λkv
[k]
i Ai,i′v

[k]
i′ . (205)

By property of A and the fact that λk are nonnegative, the inner sum is nonnegative and we get our
conclusion.

Corollary 43 (PSD of tensor power). For any m,n ∈ N, if A ∈ Rm×m is such that x⊤Ax > 0 for
all x ∈ Rm, then A⊗n satisfies: z⊤A⊗nz > 0 for all z ∈ Rmn

Proof. Apply Lemma 42 n− 1 times.

Proof of Lemma 29. We use Corollary D.3 from (Diakonikolas et al., 2017) copied below:

Lemma 44 (Corollary D.3 from (Diakonikolas et al., 2017)). Let x,y ∈ Rn be two unit vectors iid
uniformly distributed over the n-dimensional unit sphere. Then:

Pr
x,y

[|⟨x,y⟩| ≥ Ω(nc−1/2)] ≤ exp(−Ω(n2c)), (206)

for any c ∈ (0, 1/2).

Let g, g′ ∈ F be two arbitrary permutations that act on Rn by permuting the vector. Since the
uniform distribution over the n-dimenional unit sphere is invariant to permutation of the indices, its
pushforward via g and g′ is still uniform. Therefore, we have, for any g, g′ ∈ F :

Pr
x,y

[|⟨gx, g′y⟩| ≥ Ω(nc−1/2)] ≤ exp(−Ω(n2c)). (207)

Draw T = 2Ω(nc)/|F |2 such iid vectors to form a set S ⊂ Rn. We have, by union bound:

Pr
x1,...,xT

[∃i ̸= j ∈ [T ],∃g, g′ ∈ F, |⟨gxi, g
′xj⟩| ≥ Ω(nc−1/2)] (208)

≤
∑

i,j∈[T ]

∑
g,g′∈F

Pr
xi,xj

[|⟨gxi, g
′xj⟩| ≥ Ω(nc−1/2)] (209)

≤2Ω(nc) exp(−Ω(n2c)) (210)

≤ exp(−Ω(n2c)). (211)

On the other hand, let Fg,g′ be the number of fixed points of g−1g′ for some g ̸= g′ ∈ F , we also
want to union bound using Lemma 41, for any small constant ϵ ∈ (0, 1):

Pr
x1,...,xT

[
∃i ∈ [T ],∃g ̸= g′ ∈ F, ⟨gxi, g

′xi⟩ −
Fg,g′

n
√
1− ϵ

≥ Ω(nc−1/2)

]
(212)

≤
∑
i∈[T ]

∑
g ̸=g′∈F

Pr
xi

[
⟨gxi, g

′xi⟩ −
Fg,g′

n
√
1− ϵ

≥ Ω(nc−1/2)

]
≥ Ω(nc−1/2)] (213)

≤3 · 2Ω(nc) exp(−Ω(n2c)) (214)

≤ exp(−Ω(n2c)). (215)
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Similarly,

Pr
x1,...,xT

[
∃i ∈ [T ],∃g ̸= g′ ∈ F, ⟨gxi, g

′xi⟩ −
√
1− ϵ

Fg,g′

n
≤ −Ω(nc−1/2)

]
≤ exp(−Ω(n2c))

(216)

Therefore, for every small ϵ ∈ (0, 1), there exists a set S ⊂ Rn of size T = 2Ω(nc)/|F |2 such that
for every x ̸= y ∈ S, for every g ̸= g′ ∈ F , we have:

∥gx∥2 = 1 (217)

max(|⟨gx, gy⟩|, |⟨gx, g′y⟩|) ≤ O(nc−1/2), (218)

⟨gxi, g
′xi⟩ −

Fg,g′

n
√
1− ϵ

≤ O(nc−1/2), (219)

⟨gxi, g
′xi⟩ −

√
1− ϵ

Fg,g′

n
≥ −O(nc−1/2). (220)

Pair elements of S (as column vectors) together arbitrarily to obtain a set B′ of matrices in Rn×2 of
size T/2. Each element of B′ has two columns, each one of these columns is a distinct vector in S.
We have, for any B =: (x1,1,x1,2),B

′ =: (x2,1,x2,2) ∈ B′, and for any g, g′ ∈ F ,

∥(gB)⊤(g′B′)∥2 ≤ ∥(gB)(g′B′)⊤∥F =

√ ∑
i,j∈[2]

(⟨gx1i, g′x2j⟩)2 ≤ O(nc−1/2). (221)

The remaining conditions in Lemma 29 are also straightforward to check.

G LEARNING INVARIANT POLYNOMIALS

Here, we aim to extend the algorithm of Andoni et al. (2014) to the setting of invariant polynomials.
This algorithm is an SQ algorithm, but not a CSQ algorithm.

First, let us review the GROWING-BASIS algorithm. Assume inputs x ∈ Rn are distributed ac-
cording to some product distribution D = µ1 × · · · × µn. The goal of the algorithm is to learn the
coefficients of some polynomial f∗(x) =

∑
S aSHS(x) where S = (S1, S2, . . . , Sn) is a tuple of

positive integers which indicate the degree of the polynomial in the i-th variable. The monomials in
the polynomial take the form

f∗(x) =
∑
S

aSHS(x), where HS(x) =

n∏
i=1

HSi
(xi), (222)

where HSi
is the Si-th degree polynomial in an class of polynomials orthogonal under the distribu-

tion D: ⟨Hi, Hj⟩ =
∫
Hi(x)Hj(x)µi(x)dx = 0 for all i ̸= j. An example of such an orthogonal set

of polynomials are the Legendre polynomials which are orthogonal under the uniform distribution
over [−1, 1].

Next, to rigorously obtain a separation on invariant function classes, we need to define a few objects.
We will often simplify notation or definitions for ease of readability; the presentation of this material
in its full mathematical rigor can be found in various textbooks, e.g. Derksen & Kemper (2015).

Independent generators Let g1, . . . , gr be invariant functions and K a field, either R or C. The
ring of polynomial K[g1, . . . , gr] is the set of all sums

∑
α∈Nr cαg

α where gα =
∏r

i=1 g
αi
i .

Assume that {gi}ri=1 are independent in the sense that for all i ∈ [r], there is no polynomial
P ∈ K[g1, . . . , gi−1, gi+1, . . . , gr] that agrees with gi as a function Kn → K. It is not hard to
see that if a member of K[g1, . . . , gr] can be evaluated as a function Kn → K then they are also
invariant functions. The converse is not true, in general, as some invariant functions may not be
written as polynomials over certain generators. However, some special groups have nice, finitely
many generators whose polynomial ring spans almost the whole space of invariant functions. De-
note by Fd,r := K[g1, . . . , gr]

≤d the set of all polynomials in gi’s with degree at most d, i.e.,∑
α∈Nr|

∑
i αi≤d cαg

α.
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Vector space of bounded degree polynomials generated by a finite set A different way of
thinking about Fd,r is as a vector space. Let V d(g1, . . . , gr) be the (r + 1)d-dimensional vector
space over the field k, whose canonical basis is the set {eI}I∈({0}∪[r])d . It is not hard to show that
V d(g1, . . . , gr) is isomorphic to K[g1, . . . , gr]

≤d by identifying eI to the monomial
∏d

i=1 gIi where
g0 ≡ 1. This perspective as a vector space allows for a nice calculus tool: let P be a product distribu-
tion over Kr (tuples of length r, with each entry an element in K) and ⟨f, g⟩P :=

∫
fḡdP. Here, we

once again think of gi’s as functions Kn → K and so are elements in Fd,r. Applying Gram-Schmidt
orthogonalization to basis elements of V d(g1, . . . , gr) generates another set of orthogonal (in ⟨·, ·⟩P)
elements H1, . . . H(r+1)d .5 Note that there are still (r + 1)d such orthogonal functions since Gram-
Schmidt preserves dimensionality of the input and ouput vector spaces. This process in analogous
to that constructing the Hermite and Legendre polynomials for Gaussian in uniform distributions
respectively. When P is a product distribution, we can reindex this basis as {Hv}v∈({0}∪[r])d .

Sparse polynomial Before giving any formal results, we must state some technical preliminary
restrictions that must be set for learning to be possible. Our learning setting restricts Fd,r to only
contain polynomials in g1, . . . , gr with at most k terms in the expansion using {Hv}v∈({0}∪[r])d . In
other words, when viewed as vectors in V d(g1, . . . , gr) under the basis {Hv}v∈({0}∪[r])d , only k

elements are non-zero. Call this new set Fd,r,k.

We should also note that for technical reasons, we restrict the outputs of the polynomials to be nor-
malized within some bounded range to properly normalize the function with respect to the error
metric and allow for the SQ query bounds to also properly query such functions. In the GROWING-
BASIS algorithm, one must make queries to estimate ⟨Hv, f

∗⟩ and ⟨Hv, (f
∗)2⟩. Given any sta-

tistical query function has output bounded in the range [−1,+1], to measure the correlations, we
must choose a query function that divides by the maximum value of |Hv(f

∗)2| in some high prob-
ability region D ⊆ Kr with measure P(D) ≥ 1 − o(1) and outputs zero elsewhere. This way,
statistical query functions whose outputs are bounded in the range [−1,+1] can effectively cal-
culate the proper correlations needed in the algorithm.6 Thus, we introduce a normalization term
M̂d,k = maxx∈D,v∈({0}∪[r])d |Hv(f

∗)2| and introduce this quantity into the query tolerance to
allow for proper estimation of relevant variables. This normalization plays a similar role to the
quantity Md,k in Andoni et al. (2014) for their guarantees of sampling complexity. When the target
function f∗ is properly bounded, it is not too hard to see that this quantity is also easily bounded.
For example, when |f∗| = O(1) in the range [−1,+1]n, M̂d,k is at most a constant for inputs drawn
from the uniform distribution over the interval [−1,+1] since the Legendre polynomials are also ap-
propriately bounded. In general, functions can always be normalized by dividing by an appropriate
constant.

Finally, the GROWING-BASIS algorithm depends on a parameter τd that controls how much higher
order terms show up in the square of a polynomial. More formally, let Hi : K → K denote the i-th
orthogonal polynomial for some given distribution on K. For any such orthogonal polynomial, we
have the decomposition (see equation 2.1 of Andoni et al. (2014))

Ht(x) = 1 +

2t∑
j=1

ct,jHj(x). (223)

Let ct = ct,2t, then τd = mint≤d ct. This quantity is generally bounded for common distributions,
e.g., when Ht are the Hermite or Legendre polynomials then τd = Ω(1) (Andoni et al., 2014).

With this set up, we are ready to state and prove our main result for this section:

Theorem 45 (Adapted from theorems 2.1 and 2.2 of Andoni et al. (2014)). Let K be a field,
g1, . . . , gr be independent functions Kn → K that are invariant to a group G acting alge-

5We also note that it is technically more efficient to apply this procedure to each of the generators indi-
vidually. That is, apply Gram-Schmidt to the space [1, gi, . . . , g

d
i ]. Since there is a product distribution, this

procedure constructs orthogonal polynomials in each basis which can then be combined to construct orthogonal
polynomials in K[g1, . . . , gr].

6We note that there are likely more effective means of handling this normalization requirement, by e.g.,
composing multiple queries together to calculate the relevant quantities. However, we do not consider this
strengthening here for sake of simplicity.
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braically on K[g1, . . . , gr] as defined above. Let P be a product distribution and define the in-
ner product ⟨p, q⟩P := Eg:=(g1,...,gr)∼P[p(g)q(g)]. Let {Hv}v∈({0}∪[r])d be the output of Gram-
Schmidt on Fd,r with respect to this inner product. Further assume that the polynomial quotient
H2m,0,...,0/(Hm,0,...,0)

2 (ignoring remainders) is τd for every m ∈ [⌊d/2⌋]. Let Fd,r,k be the
space of polynomials in Fd,r that is k sparse in Hi basis. Then any CSQ algorithm with oracle
access to ⟨·, f∗⟩P for some f∗ ∈ Fd,r,k that outputs a hypothesis h ∈ Fd,r,k while achieving
mean square error ∥h − f∗∥P < O(1) must make either at least (r + 1)d calls to the oracle or
require precision less than O(r−c) for any c > 0. However, GROWING-BASIS can learn h with
error ∥h − f∗∥P < O(1) using only O(krd(1/τd)

d) calls to oracles ⟨·, f∗⟩P and ⟨·, (f∗)2⟩P with
precision Ω(τdd /(krdM̂d,k)).

Proof. The CSQ lower bound can be obtained by invoking standard correlational statistical queries
dimension bound form orthogonal polynomials (Diakonikolas et al., 2020; Goel et al., 2020; Reyzin,
2020; Szörényi, 2009). Specifically, by correctness of Gram-Schmidt orthonormalization, the set of
basis elements {Hv}v∈({0}∪[r])d also form a pairwise orthogonal set, which each themselves have
norm 1 under ⟨p, q⟩P. thus CSQ dimension of f∗ ∈ Fd,r,k is immediately lower bounded by Ω(rd)
and the conclusion for CSQ algorithms follow.

The SQ upper bound via GROWING-BASIS can be obtained by observing that Andoni et al.
(2014)’s proof still works verbatim when the main ingredients are there: a product distribution,
an inner product with an orthornormal basis, and access to oracle ⟨·, (f∗)2⟩P. Note that although
the GROWING-BASIS algorithm is presented error free, we allow small errors, by making a thresh-
olding in Step 2 and 8 of Andoni et al. (2014) equal to the error tolerance ϵ. This way, we are
guaranteed to miss only terms with low correlation and thus bounded effect on the final mean square
error. To be more precise, every time we made an error on the cutoff of step 8, we lose as most a
fraction of the precision that amounts to τdd where as stated before τd is the coefficient of H2n,0,...,0

in (Hn,0,...,0)
2. Intuitively, when losing a monomial in the final product, the norm of the monomial

can multiplicatively compound over each variable. τd is the lowest possible amount each variable
can contribute to this loss (See (Andoni et al., 2014), Lemma 2.3). Finally, we also must divide the
query tolerance by a factor M̂d,k to account for the normalization of the target function as discussed
earlier.

Corollary 46. In the same setting as Theorem 45, if instead, we are interested in polynomials that
are k-sparse in the canonical basis {

∏r
i=1 g

αi
i |
∑

i αi = 1} (recall that Fd,r,k was sparse in the
orthogonal basis {Hv}v∈({0}∪[r])d ). Then the query complexity of GROWING-BASIS becomes at
most O(krd2d) with precision Ω(1/(krd2d)) whenever τd = Ω(1) and targets are normalized so
that M̂d,k = O(1).

Proof. By the same argument as Lemma 2.1 of (Andoni et al., 2014), any change of basis in the
vector space of polynomials of bounded degree incur at worst a multiplicative factor 2d in the spar-
sity parameter. Since the new function class is k-sparse in the canonical basis, it is k2d-sparse in the
orthogonal basis. Apply Theorem 45 to this new sparsity level to get the desired result.

This separation is weaker than when there is sparsity in the orthogonal basis. However, there is still
a polynomial (in r) separation between CSQ and SQ if d and k are set to be constant independent of
r and a superpolynomial separation when d = Θ(log(n)).

Finally, for the above theorem to give a meaningful separation, we list some example groups for
which there is a simple distribution D over inputs such that the push-forward distribution P = ϕ#D
via the map ϕ : x := (x1, . . . , xn) 7→ (g1(x), . . . gr(x)) is a product distribution.

Example 5. Consider inputs X ∈ Rn×3 which correspond to n points in R3. Ordered point clouds
are symmetric under the action X ·U for matrix U ∈ O(3) in the orthogonal group. Let inputs X
have entries drawn i.i.d. Gaussian. Consider generators g1, . . . , gn where gi(x) = ∥Xi,:∥2, which
is the sum of the squares of the i-th row of X and clearly invariant to orthogonal transformations.
The pushforward distribution after the mapping X 7→ [g1(X), . . . , gn(X)] is a product distribution
over Chi-squared random variables χ2(3)n.
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Figure 3: Replication of experiments as in Fig. 1, except here, we consider a minimal architecture
consisting of a single layer of graph or cyclic convolution followed by a single hidden layer MLP.
This is the minimal number of layers needed to learn the desired function classes for the architectures
considered. For the CNN plot, the jumps in the train set MSE are due to perturbations in the loss at
very low values near computer precision.
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Figure 4: Replication of experiments in Fig. 1a with different optimizers show that the performance
of the GNN is virtually the same across the various optimizers. Performance is averaged over 10
runs. For each run, the learning rate is chosen by perturbing the default learning rate by a random
multiplicative factor in the range [0.1, 10].

Example 6. Consider inputs x ∈ Cn drawn from U [C ∩ {|z| = 1}]n uniformly from unit norm
complex numbers in each entry. The power sum symmetric polynomials consist of a generating ba-
sis
[∑

i xi, ...,
∑

i x
d
i

]
. Another way to parameterize each xj is as xj = eiθ where θ is distributed

U [0, 2π], for all j ∈ [n]. Thus xt
j can also be parameterized by eiθ with the exact same distribution

of θ ∼ U [0, 2π], for all j ∈ [n], t ∈ [d]. The distribution of
[∑

i xi, ...,
∑

i x
d
i

]
is therefore a product

distribution (Law(
∑n

i=1 Zi))
d where Zi ∼ U [C ∩ {|z| = 1}].These generators and input distribu-

tions come from the classical text of Macdonald (1979). Here, as long as r ≤ n, r only depends on
d and not n. Plugging this r into Theorem 45 gives straightforward bounds that are independent of
n-the original number of variables, but does not give meaningful separation in Corollary 46.

As a reminder, we also have an example in the main text for the sign group (Lim et al., 2022).

H EXPERIMENTAL DETAILS

GNN experiments were performed using the Pytorch Geometric library for implementing geometric
architectures (Fey & Lenssen, 2019). The hard functions were drawn from HER,n (see Eq. (7))
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where subset S ⊆ [n] was drawn uniformly from all the possible subsets of size ⌊n/2⌋ and b
was either 0 or 1 with equal probability. For our experiments, we set n = 15 and trained on
n2 = 225 datapoints. The overparameterized GNN used during training consisted of 3 layers of
graph convolution followed by a node aggregation average pooling layer and a two layer ReLU
MLP with width 64. The graph convolution layers used 32 channels.

For the CNN experiments, we constructed the hard functions in Eq. (17) setting n = 50 and k = 10.
Here, matrices B ∈ B were drawn randomly from all possible n×2 orthogonal matrices by taking a
QR decomposition of a random n×2 matrix with Gaussian i.i.d. elements. For sake of convenience,
we did not divide by the norm of the function. The CNN architecture implemented consisted of three
layers of fully parameterized cyclic convolution each with 100 output channels. This was followed
by a global average pooling layer and and a two layer ReLU MLP of width 100. The network was
given 10n = 500 training samples and was trained with the Adam optimizer with batch size 32.

Experiments in the main text considered architectures which were overparameterized in terms of
the number of layers with respect to the target function. For sake of completeness, we include in
Fig. 3 results for merely sufficiently parameterized networks which consist of a single convolution
layer, pooling and single hidden layer MLP. The results in Fig. 3 are consistent with those observed
in Fig. 1. Additionally, to further confirm that these results are robust to hyperparameter choices
for the optimizer, we repeated the GNN learning experiments with the choice of optimizer varying
between Adam, SGD, and RMSprop (Paszke et al., 2019). Fig. 4 shows the results for these different
optimizers. For each optimizer, 10 simulations were performed where for each simulation, the
learning rate was chosen by multiplying the default learning rate by a random number in the range
[0.1, 10].

All experiments were run using Pytorch on a single GPU (Paszke et al., 2019). Default initialization
schemes were used for the initial network weights. In our experiments, we used the Adam optimizer
and tuned the learning rate in the range [0.0001, 0.003]. For CNN experiments, to increase stability
of training in later stages, we added a scheduler that divided the learning rate by two every 200
epochs. Plots are created by combining and averaging five random realizations of each experiment.

48


	Introduction
	Related work

	Background and Notation
	SQ Learning framework

	Warm up: invariant Boolean functions
	Lower bounds for GNNs
	Hardness in number of nodes
	Hardness in feature dimension
	NP hardness of proper learning of GNNs

	CSQ Lower bound for CNNs and Frame Averaging
	Separation between SQ and CSQ for invariant function classes
	Experiments
	Discussion 
	Extended related works
	Extended background into learning frameworks
	Boolean statistical query setting
	Complexity theoretic hardness extension
	GNN hardness proofs
	Lower bound for Erdős–Rényi distributed graphs
	Invariant Hermite polynomial
	Proof of Theorem 4

	Frame-Averaging hardness proofs
	Exponential lower bound for constant frame and Reynolds operator
	Superpolynomial lower bounds
	Proof of extra tools

	Learning invariant polynomials
	Experimental Details

