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Abstract

The term "feature" in mechanistic interpretability is ambiguous —- sometimes1

referring to symbolic properties (e.g., grammatical number), sometimes to neural2

activations (e.g., basis vectors). We clarify this distinction using communication3

theory: symbolic features are the information being transmitted, while neural4

features are the signals carrying that information. Through a toy transformer5

implementing subject-verb agreement, we demonstrate how linguistic properties6

can be encoded as orthogonal basis vectors, transmitted via attention, and decoded7

for grammatical decisions. This educational distillation provides a communication-8

theoretic lens for understanding transformer internals, offering conceptual clarity9

for mechanistic interpretability.10

1 Introduction11

The term "feature" in mechanistic interpretability is ambiguous: does it mean abstract linguistic12

properties (singular/plural) or neural activation patterns? Despite discoveries of circuits [10], super-13

position [6], and induction heads [12], this confusion persists. Communication theory distinguishes14

information (message) from signals (carrier)—we apply this to transformers.15

Transformers’ complex behavior emerges from simple operations, like communication systems that16

transmit digital information through linear filters and routing. The key is layered abstraction [16, 5]:17

separating physical signals from logical information. HPSG [13] similarly factorizes grammar18

through typed feature structures. We build a white-box toy model showing how transformers transmit19

symbolic linguistic features via orthogonal basis vectors and attention-based routing, providing20

ground-truth understanding of symbolic processing through continuous computation.21

2 Related Work22

Mechanistic interpretability reveals structured mechanisms: circuits [10], superposition [6], induction23

heads [12], and the IOI circuit [15]. The Transformer Circuits thread [7] provides mathematical foun-24

dations for understanding attention as information routing, while logit lens [11] reveals progressive25

refinement across layers. Sparse autoencoders [3] recover features from superposition, connecting26

to compressed sensing [4, 2]. Dictionary learning approaches [1] find interpretable directions in27

activation space, analogous to basis recovery in signal processing.28

Tracr [9] compiles programs to weights but uses CFG which loses lexical information; HPSG [13]29

maintains it through typed features. The English Resource Grammar [8] demonstrates HPSG’s30

practical scalability with thousands of lexical types. Information theory applications [14] analyze31

local mechanisms; we apply communication principles globally, treating the entire transformer as a32

coordinated communication network.33
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3 Model Transformer Computation Graph as Physical Layer34

The transformer architecture can be precisely modeled as a communication system’s physical layer.35

Each operation has an exact mathematical equivalence in signal processing, enabling rigorous analysis36

of information flow.37

Signal Modulation. The embedding layer maps discrete tokens to continuous signals. For vocabulary38

V and embedding matrix E ∈ R|V|×d:39

st = ext + pt ∈ Rd (1)

where ext
is the token embedding (codeword) and pt is the position encoding (phase). This is40

identical to digital modulation in communication systems, mapping symbols to signal constellation41

points.42

Attention as Matched Filtering. The QKV mechanism implements signal detection through43

correlation. For head h:44

α
(h)
ij =

⟨W(h)
Q xi,W

(h)
K xj⟩√

dk
(2)

This is mathematically equivalent to matched filtering, where W
(h)
K defines reference patterns and45

the dot product performs correlation detection. The QK circuit [7] computes pattern matching, while46

the OV circuit moves information:47

zi =
∑
j

softmax(αij) ·W(h)
V xj (3)

where W
(h)
V acts as feature extraction filters (demodulation carriers).48

Multi-Head as Frequency Division. The multi-head mechanism divides the d-dimensional signal49

space into H parallel channels, each operating on a dh = d/H dimensional subspace. This is50

analogous to frequency division multiplexing, where different frequency bands carry independent51

information streams.52

Residual Stream as Communication Bus. The residual connections create a communication path53

through layers:54

x(l+1) = x(l) + Attention(l)(x(l)) + MLP(l)(x(l)) (4)
This additive structure ensures information from early layers remains accessible, enabling multi-hop55

communication across the network.56

Feature Encoding. For symbolic features, we can use orthogonal encoding when the feature space is57

small:58

B = [b1, ...,bn] ∈ Rd×n, BTB = In (5)
Each feature fi maps to basis vector bi, guaranteeing perfect recovery via matched filtering. When59

n > d, sparse overcomplete bases enable superposition [6], where k-sparse signals with k ≪ n can60

be recovered despite non-orthogonality, as demonstrated by sparse autoencoders [3].61

4 Design a Toy Communication Protocol for Subject-Verb Agreement62

4.1 Symbolic Linguistic Features for Grammar Analysis63

Consider the minimal pair "cat meows" (grammatical) vs. "cat meow" (ungrammatical). To un-64

derstand how transformers might process this, we need to distinguish between symbolic linguistic65

features (abstract grammatical properties) and their neural representations (directions in activation66

space).67

Context-Free Grammar (CFG): Syntactic Categories Only. CFG uses production rules:68

S → NPsg V Psg | NPpl V Ppl (6)
NPsg → cat V Psg → meows (7)

"Cat meows" parses as S → NPsg V Psg. But CFG only captures syntactic categories—the actual69

word "cat" is lost after parsing, making it impossible to reconstruct the original sentence.70
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Universal Dependencies (UD): Post-hoc Feature Annotation. UD annotates with dependency71

relations:72

cat --nsubj--> meows [NUMBER=sg on both]73

Agreement is checked after parsing through feature annotations. While UD preserves lexical items, it74

doesn’t explain the mechanism of feature checking.75

HPSG: Lexical Features as First-Class Citizens. HPSG represents each word with typed feature76

structures that include both syntactic and semantic information:77

cat :

[ PHON ⟨cat⟩
HEAD noun[3sg]

VAL|SUBJ ⟨⟩

]
meows :

[ PHON ⟨meows⟩
HEAD verb[3sg]

VAL|SUBJ ⟨NP [3sg]⟩

]
(8)

The key insight: HPSG treats linguistic features as atomic symbolic information attached to each78

lexical item. Each token carries multiple features (POS, NUM, semantic role) that must be transmitted79

and checked. This naturally maps to a communication protocol where each token broadcasts multiple80

feature "carriers"—one per linguistic property.81

4.2 From Symbolic Features to Neural Transmission82

We now design a transformer that implements HPSG-style feature checking through a communication83

protocol. The key innovation: each token transmits multiple orthogonal signals, one for each linguistic84

feature.85

The Codebook-Basis Connection. In mechanistic interpretability, a "basis" is a set of directions86

in activation space. In communication theory, a "codebook" maps discrete symbols to continuous87

signals. These are the same concept:88

• Basis vectors {b1,b2, ...} define orthogonal directions in Rd89

• Codewords are specific points/vectors assigned to symbols90

• The embedding matrix is literally a codebook: column i is the codeword for token i91

Multi-Carrier Transmission Protocol. Instead of encoding just the token identity (e.g., "cat"), we92

transmit structured information:93

Token Embedding = bPOS ⊗ cnoun︸ ︷︷ ︸
POS carrier

+bNUM ⊗ csg︸ ︷︷ ︸
NUM carrier

+bLEX ⊗ ccat︸ ︷︷ ︸
LEX carrier

(9)

Each token transmits three orthogonal carriers:94

• bPOS: Direction for part-of-speech information95

• bNUM: Direction for number agreement96

• bLEX: Direction for lexical identity97

The codewords cnoun, csg, ccat encode the specific feature values. This is why transformers have98

high-dimensional embeddings—they need space for multiple orthogonal feature directions.99

Concrete Example: "Cat Meows" Processing.100

Stage 1: Modulation (Embedding Layer). Each word is encoded as multiple features:101

ecat = bPOS ⊗ cnoun + bNUM ⊗ csg + bLEX ⊗ ccat (10)
emeows = bPOS ⊗ cverb + bNUM ⊗ csg + bLEX ⊗ cmeows (11)

Message Encoding as Feature Decomposition: Instead of treating "cat" as an atomic token, we102

decompose it into linguistic features. Each feature gets its own basis direction (carrier), enabling103

independent transmission and processing.104

Stage 2: Channel Probing and Routing (Attention). Attention heads act as specialized receivers that105

probe specific feature channels:106
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Head 1 (Syntactic Router): This head probes the POS channel to identify subject-verb pairs:107

W
(1)
Q = [bPOS, ...] (probe POS channel in query) (12)

W
(1)
K = [bPOS, ...] (probe POS channel in key) (13)

When query extracts "verb" and key extracts "noun", high attention score triggers information routing.108

The value matrix then extracts and routes the NUM feature:109

W
(1)
V = [bNUM, ...] (extract NUM channel for routing) (14)

Channel Probing as Feature Extraction: Different attention heads probe different feature channels.110

This is exactly what sparse autoencoders do—they learn basis vectors (matched filters) to extract111

specific features from superposed representations.112

Head 2 (Agreement Checker): This head probes the NUM channel to check compatibility:113

W
(2)
Q = [bNUM, ...] (probe NUM from verb position) (15)

W
(2)
K = [bNUM, ...] (probe NUM from routed subject) (16)

The dot product ⟨csg, csg⟩ = 1 indicates agreement (both singular). For "cat meow", we’d get114

⟨csg, cpl⟩ = 0 (mismatch).115

Routing Protocols for Feature Unification: Attention implements routing based on feature compati-116

bility. When patterns match (e.g., both singular), information flows. When they mismatch, routing is117

blocked. This implements HPSG unification through neural computation.118

Stage 3: Demodulation (MLP + Output). The MLP acts as a matched filter bank, extracting the119

agreement signal:120

WMLP[i, :] = bT
AGREE ⇒ activationi = ⟨bAGREE, residual stream⟩ (17)

High activation indicates agreement detected → output "grammatical". Low activation indicates121

mismatch → output "ungrammatical".122

Superposition and Overcomplete Coding: When we have more features than dimensions (n > d),123

features share directions:124

Signal =
∑

i∈Active

αibi, |Active| ≪ n (18)

This is superposition—multiple features encoded in overlapping directions. Recovery works when125

features are sparse (few active per token), as shown by compressed sensing theory.126

The transformer doesn’t just process tokens—it transmits and processes structured symbolic infor-127

mation through continuous signals. Understanding this distinction between symbolic features (the128

information) and neural features (the signal carriers) is key to mechanistic interpretability.129

5 Limitations130

Our toy model uses designed weights, not learned ones, yielding artificially clean protocols. We131

demonstrate only simple subject-verb agreement, not long-range dependencies or nested structures.132

We assume perfect orthogonality while real transformers exhibit partial superposition with inter-133

ference. The model lacks autoregression and the communication framework may not capture all134

emergent phenomena in large-scale transformers. Despite providing conceptual clarity, empirical135

investigation remains essential.136

6 Conclusion137

This educational distillation clarifies a fundamental ambiguity: symbolic features (linguistic prop-138

erties) are the information, while neural features (basis vectors) are the signals. Through a com-139

munication lens, we show how transformers transmit structured information via orthogonal carriers140

and routing protocols, bridging digital communication and neural computation for mechanistic141

interpretability.142
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