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Abstract

The term "feature" in mechanistic interpretability is ambiguous, sometimes re-
ferring to symbolic properties (e.g., grammatical number), sometimes to neural
activations (e.g., basis vectors). We clarify this distinction using communication
theory: symbolic features are the information being transmitted, while neural
features are the signals carrying that information. Through a toy transformer im-
plementing subject-verb agreement, we demonstrate how linguistic properties can
be encoded as orthogonal basis vectors, transmitted via attention, and decoded for
grammatical decisions. This educational distillation provides a communication-
theoretic lens for understanding transformer internals, offering conceptual clarity
for mechanistic interpretability.

1 Introduction

The term "feature" in mechanistic interpretability is ambiguous: does it mean abstract linguistic
properties (singular/plural) or neural activation patterns? Despite discoveries of circuits Nanda et al.
[2023], superposition Elhage et al. [2022], and induction heads Olsson et al. [2022], this confusion
persists. Communication theory distinguishes information (message) from signals (carrier)—we
apply this to transformers.

Transformers’ complex behavior emerges from simple operations, like communication systems that
transmit digital information through linear filters and routing. The key is layered abstraction Welch
[1974], Eldar and Mishali [2009]: separating physical signals from logical information. HPSG Pollard
and Sag [1994] similarly factorizes grammar through typed feature structures. We build a white-box
toy model showing how transformers transmit symbolic linguistic features via orthogonal basis
vectors and attention-based routing, providing ground-truth understanding of symbolic processing
through continuous computation.

2 Related Work

Mechanistic interpretability reveals structured mechanisms in Transformers: circuits Nanda et al.
[2023], superposition Elhage et al. [2022], induction heads Olsson et al. [2022], and the IOI circuit
Wang et al. [2023]. The Transformer Circuits thread Elhage et al. [2021], Bricken et al. [2023]
has been especially influential in formalizing the QK/OV decomposition and viewing attention as
information routing, while the logit lens nostalgebraist [2020] illustrates progressive refinement
across layers. Sparse autoencoders Cunningham et al. [2023] and dictionary learning approaches
Bricken et al. [2023] recover interpretable directions from superposition, connecting to compressed
sensing Donoho [2006], Candès et al. [2006]. Our use of a feature codebook and matched-filter-style
notation follows this line of work and is intended as a minimal, self-contained formalization of the
standard Transformer computation graph for our setting, rather than a new theoretical framework.
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Tracr Lindner et al. [2023] compiles programs to weights using CFG-style structure, which abstracts
away most lexical features; HPSG Pollard and Sag [1994] maintains rich typed feature structures
at the lexical level. The English Resource Grammar Flickinger [2000] demonstrates the practical
scalability of such grammars. Related neurosymbolic and compositional distributional research
Baroni and Zamparelli [2010], Polajnar and Clark [2014], Fried et al. [2015], Smolensky and
Legendre [2006], Gauthier and Levy [2020] explores how symbolic constraints can be embedded into
continuous representations. Our framing is complementary: we focus on the internal transmission of
such symbolic features through neural computations rather than external supervision or structured
prediction.

Finally, information-theoretic perspectives such as the information bottleneck Tishby et al. [2000]
and classical results on coding and correlation Welch [1974], Eldar and Mishali [2009] provide
global views on representation efficiency. We adopt a communication-theoretic view primarily as an
organizing lens: we stay close to the standard QK/OV and MLP decomposition from prior work, using
consistent notation to support our central conceptual distinction between symbolic “information”
(features) and the continuous “signals” (activations) that carry it.

3 Model Transformer Computation Graph as Physical Layer

The transformer architecture can be precisely modeled as a communication system’s physical layer.
Each operation has an exact mathematical equivalence in signal processing, enabling rigorous analysis
of information flow.

Signal Modulation. The embedding layer maps discrete tokens to continuous signals. For vocabulary
V and embedding matrix E ∈ R|V|×d:

st = ext + pt ∈ Rd (1)

where ext is the token embedding (codeword) and pt is the position encoding (phase). This is
identical to digital modulation in communication systems, mapping symbols to signal constellation
points.

Attention as Matched Filtering. The QKV mechanism implements signal detection through
correlation. For head h:
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This is mathematically equivalent to matched filtering, where W
(h)
K defines reference patterns and

the dot product performs correlation detection. The QK circuit Elhage et al. [2021] computes pattern
matching, while the OV circuit moves information:
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output matrix in block form
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Then the multi-head attention update at position i is
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i.e., each head writes back to the shared residual stream through its standard W
(h)
O W

(h)
V composition,

while the QK part is captured by W
(h)⊤
Q W

(h)
K as in the previous paragraph.

Multi-Head as Frequency Division. The multi-head mechanism divides the d-dimensional signal
space into H parallel channels, each operating on a dh = d/H dimensional subspace. This is
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analogous to frequency division multiplexing, where different frequency bands carry independent
information streams.

Residual Stream as Communication Bus. The residual connections create a communication path
through layers:

x(l+1) = x(l) + Attention(l)(x(l)) + MLP(l)(x(l)) (5)

This additive structure ensures information from early layers remains accessible, enabling multi-hop
communication across the network.

Feature Encoding. For symbolic features, we can use orthogonal encoding when the feature space is
small:

B = [b1, ...,bn] ∈ Rd×n, BTB = In (6)

Each feature fi maps to basis vector bi, guaranteeing perfect recovery via matched filtering. When
n > d, sparse overcomplete bases enable superposition Elhage et al. [2022], where k-sparse signals
with k ≪ n can be recovered despite non-orthogonality, as demonstrated by sparse autoencoders
Cunningham et al. [2023].

4 Design a Toy Communication Protocol for Subject-Verb Agreement

4.1 Symbolic Linguistic Features for Grammar Analysis

Consider the minimal pair “cat meows” (grammatical) vs. “cat meow” (ungrammatical). To under-
stand how transformers might process this, we distinguish between symbolic linguistic features
(abstract grammatical properties) and their neural representations (directions in activation space).

Context-Free Grammar (CFG): Category-Level Abstraction. A standard CFG captures agreement
at the level of nonterminal categories, e.g.,

S → NPsg V Psg | NPpl V Ppl (7)
NPsg → cat V Psg → meows. (8)

Here “cat meows” is licensed as S ⇒ NPsg V Psg. This illustrates how discrete categories can
encode constraints such as singular vs. plural agreement. However, once we move to the derived tree,
lexical identity is largely abstracted into category labels: the grammar does not treat fine-grained
lexical features as first-class objects in its computational state.

Universal Dependencies (UD): Lexicalized Cross-Lingual Features. Universal Dependencies
Nivre et al. [2016] is a mature, widely-used framework that annotates running text with POS tags,
morphological features, and labeled dependency relations in a consistent, cross-lingual scheme. For
our running example one might obtain:

cat --nsubj--> meows [Number=Sing on both]

UD is explicitly lexicalized: features such as Number, Person, Tense live on the tokens themselves,
and agreement can be checked by comparing these attributes along dependency edges. In this sense
UD gives a clear, operational handle on symbolic features in real corpora. Compared to HPSG,
however, UD is primarily an annotation and representation standard: the constraints and algorithms
that enforce or exploit these features are deliberately left to downstream parsers or models, rather
than being built into a single declarative grammar. The two perspectives are complementary: UD
prioritizes uniform, data-driven annotation, while HPSG makes constraints part of the grammar’s
internal machinery.

HPSG: Lexical Features as First-Class Citizens. Head-driven Phrase Structure Grammar (HPSG)
Pollard and Sag [1994] represents each word with a typed feature structure integrating syntactic and
semantic information. For illustration, we use a simplified HPSG-style notation:

cat :

 PHON ⟨cat⟩
HEAD noun
AGR [PERS 3, NUM sg]

VAL|SUBJ ⟨ ⟩

 meows :

 PHON ⟨meows⟩
HEAD verb
AGR [PERS 3, NUM sg]

VAL|SUBJ ⟨NP[AGR [PERS 3, NUM sg]]⟩


(9)
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Agreement is enforced by unifying the verb’s AGR specification with that of its subject NP inside
the grammar itself. The key observation for our purposes is that such attribute–value pairs (e.g.,
HEAD=verb, NUM=sg) can be treated as atomic symbolic information attached to each lexical
item. Each token carries multiple such features (POS, NUM, selectional constraints, etc.) that must
be transmitted and compared. This naturally maps to a communication picture in which each token
broadcasts multiple feature “carriers”—one per linguistic property.

4.2 From Symbolic Features to Neural Transmission

We now design a transformer that implements HPSG-style feature checking through a communication
protocol. The key idea is that each token transmits multiple (approximately) orthogonal signals, one
for each linguistic feature.

The Codebook–Basis Connection. In mechanistic interpretability, a “basis” is a set of directions
in activation space; in communication theory, a “codebook” maps discrete symbols to continuous
signals. The embedding matrix can be viewed as a codebook: column i is the codeword for token i,
and orthogonal bases are a special case where codewords occupy independent directions.

Multi-Carrier Transmission Protocol. Instead of encoding only token identity (e.g., “cat”), we
encode structured feature information as a superposition of carriers living in disjoint subspaces of the
model dimension.

Concretely, decompose the embedding space as a direct sum
Rd = RdPOS ⊕ RdNUM ⊕ RdLEX ,

where each block is reserved for one feature type (e.g., POS, number, lexical identity). For each
feature value we choose a basis vector supported only in its block; e.g. bPOS=noun ∈ RdPOS (extended
with zeros outside the POS block), and similarly for bNUM=sg, bLEX=cat, etc.

Stage 1: Modulation (Embedding Layer). Each word is encoded as the sum of its active feature
carriers:

ecat = bPOS=noun + bNUM=sg + bLEX=cat, (10)
emeows = bPOS=verb + bNUM=sg + bLEX=meows. (11)

Because the POS / NUM / LEX blocks are disjoint (and can be chosen orthogonal), the combined
embedding uniquely identifies the bundle of symbolic features: changing any feature corresponds to
moving along a different block direction.

Message Encoding as Feature Decomposition. Under this view, each token transmits multiple
feature channels in parallel: one coordinate in the POS block, one in the NUM block, one in the LEX
block, etc. The rest of the transformer can be interpreted as probing and combining these blocks via
linear maps and dot products, exactly as in a multi-carrier communication system.

Stage 2: Channel Probing and Routing (Attention). Attention heads act as specialized receivers that
probe specific feature channels:

Head 1 (Syntactic Router): This head probes the POS channel to identify subject-verb pairs:

W
(1)
Q = [bPOS, ...] (probe POS channel in query) (12)

W
(1)
K = [bPOS, ...] (probe POS channel in key) (13)

When query extracts "verb" and key extracts "noun", high attention score triggers information routing.
The value matrix then extracts and routes the NUM feature:

W
(1)
V = [bNUM, ...] (extract NUM channel for routing) (14)

Channel Probing as Feature Extraction: Different attention heads probe different feature channels.
This is exactly what sparse autoencoders do—they learn basis vectors (matched filters) to extract
specific features from superposed representations.

Head 2 (Agreement Checker): This head probes the NUM channel to check compatibility:

W
(2)
Q = [bNUM, ...] (probe NUM from verb position) (15)

W
(2)
K = [bNUM, ...] (probe NUM from routed subject) (16)
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The dot product ⟨csg, csg⟩ = 1 indicates agreement (both singular). For "cat meow", we’d get
⟨csg, cpl⟩ = 0 (mismatch).

Routing Protocols for Feature Unification: Attention implements routing based on feature compati-
bility. When patterns match (e.g., both singular), information flows. When they mismatch, routing is
blocked. This implements HPSG unification through neural computation.

Stage 3: Demodulation (MLP + Output). The MLP acts as a matched filter bank, extracting the
agreement signal:

WMLP[i, :] = bT
AGREE ⇒ activationi = ⟨bAGREE, residual stream⟩ (17)

High activation indicates agreement detected → output "grammatical". Low activation indicates
mismatch → output "ungrammatical".

Superposition and Overcomplete Coding: When we have more features than dimensions (n > d),
features share directions:

Signal =
∑

i∈Active

αibi, |Active| ≪ n (18)

This is superposition—multiple features encoded in overlapping directions. Recovery works when
features are sparse (few active per token), as shown by compressed sensing theory.

The transformer doesn’t just process tokens—it transmits and processes structured symbolic infor-
mation through continuous signals. Understanding this distinction between symbolic features (the
information) and neural features (the signal carriers) is key to mechanistic interpretability.

5 Limitations

Our toy model uses designed weights, not learned ones, yielding artificially clean protocols. We
demonstrate only simple subject-verb agreement, not long-range dependencies or nested structures.
We assume perfect orthogonality while real transformers exhibit partial superposition with inter-
ference. The model lacks autoregression and the communication framework may not capture all
emergent phenomena in large-scale transformers. Despite providing conceptual clarity, empirical
investigation remains essential.

6 Conclusion

This educational distillation clarifies a fundamental ambiguity: symbolic features (linguistic prop-
erties) are the information, while neural features (basis vectors) are the signals. Through a com-
munication lens, we show how transformers transmit structured information via orthogonal carriers
and routing protocols, bridging digital communication and neural computation for mechanistic
interpretability.
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