
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCELERATE VERTICAL FEDERATED ADVERSARIAL
LEARNING WITH DUAL-LEVEL DECOUPLED BACK-
PROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Vertical Federated Learning (VFL) involves multiple participants collaborating to
train models on distinct feature sets from the same data samples. The distributed
deployment of VFL models renders them vulnerable to adversarial perturbations
during inference, motivating the need to visit the VFL robustness problem. Adver-
sarial Training (AT) is the predominant approach for enhancing model robustness.
However, its application in VFL, termed Vertical Federated Adversarial Learning
(VFAL), faces significant computational challenges: Generating adversarial ex-
amples in AT requires iterative full propagations across participants with heavy
computation overload, resulting in VFAL training time far exceeding those of
regular VFLs. To address this challenge, we propose DecVFAL, an accelerated
VFAL framework through a novel Decoupled backpropagation incorporating a
dual-level decoupled mechanism to enable lazy sequential and decoupled parallel
backpropagation. Lazy sequential backpropagation sequentially updates the adver-
sarial example using timely partial derivatives with respect to the bottom module
and delayed partial derivatives for the remaining modules. Decoupled parallel
backpropagation updates these delayed partial derivatives by utilizing module-wise
delayed gradients, enabling asynchronous parallel backpropagation with flexible
partitions that align with VFL’s distributed deployment. Rigorous theoretical anal-
ysis demonstrates that despite introducing multi-source approximate gradients due
to the dual decoupled mechanism and the techniques from the existing VFL meth-
ods, DecVFAL achieves a O(1/

√
K) convergence rate after K iterations, on par

with regular VFL systems. Experimental results show that, compared to existing
methods, DecVFAL ensures competitive robustness while significantly achieving
about 3 ∼ 10 times speed up on various datasets.

1 INTRODUCTION

Federated learning (FL) enables collaborative training of deep learning models among distributed
participants without sharing raw data McMahan et al. (2016). Conventionally, most FL research
considers Horizontal Federated Learning (HFL), which assumes distributed clients possess data
with identical features but varying sample spaces Zhao et al. (2021). In contrast, Vertical Federated
Learning (VFL) assumes distributed clients share the same samples but have different features Liu
et al. (2024); Wei et al. (2022). VFL model comprises a server-maintained top model and client-side
bottom models that map local data features to embeddings. During inference, each client computes
the local embedding of data features and uploads to the server through a communication channel for
prediction Liu et al. (2024). Due to its advantages in facilitating data collaboration across multiple
industries, VFL has gained increasing attention in various domains such as recommendation systems
Cui et al. (2021); Yuan et al. (2022), finance Long et al. (2020); Chen et al. (2021a), healthcare Song
et al. (2021); Cha et al. (2021), and emerging applications Teimoori et al. (2022); Ge et al. (2022).

Machine Learning (ML) models have demonstrated vulnerability to adversarial attacks, carefully
crafted inputs designed to induce misclassification during inference. Recent studies highlight that this
susceptibility becomes even more pronounced in the VFL context due to its decentralized architecture
Huang et al. (2024); Duanyi et al. (2023). Adversarial attacks in VFL can manifest in multiple forms:
through malicious or colluding clients perturbing local features of raw data Pang et al. (2022); Qiu

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al. (2022), or via third-party adversary intercepting and altering embeddings during client-server
communication Duanyi et al. (2023). These diverse attacks underscore the unique security challenges
in VFL systems, motivating the urgent need to address the VFL robustness problem.

Extensive research has been conducted on defenses against adversarial attacks, with Adversarial
Training (AT) emerging as the most empirically robust approach to date Tramèr et al. (2018). AT
is a min-max robust training method that minimizes the worst-case training loss at adversarially
perturbed examples Madry et al. (2017). The deployment of AT in the FL paradigm, termed Federated
Adversarial Learning (FAL), has garnered attention, with a particular focus on HFL scenarios, where
each participant maintains a complete copy of the model Li et al. (2023). These studies incorporate
AT into clients’ local training steps and focus on non-IID settings and secure aggregation solutions
Li et al. (2023); Deng et al. (2020); Bhagoji et al. (2019); Zizzo et al. (2020); Zhang et al. (2022a).
However, in VFL scenarios, a single global model is partitioned and distributed among the server and
clients, resulting in a different architecture for Vertical Federated Adversarial Learning (VFAL). To
the best of our knowledge, VFAL has yet to be thoroughly investigated in the current literature.

Due to layer-wise distributed deployment, VFAL presents unique computational efficiency challenges.
Adversarial sample generation during AT is computationally intensive, requiring sequential forward
and backward propagation to calculate gradients with respect to the input for iterative refinement
Madry et al. (2017). In VFL context, inherent sequential dependencies across layers cause participants’
models to remain idle until receiving necessary information (embeddings or gradients) from adjacent
layers on other participants (Figure 1-left). Consequently, the training time for VFAL significantly
exceeds that of regular VFLs. To illustrate, VFAL using PGD-20 requires about 20 times more
computational cost than regular VFL due to 20 iterations needed to generate each adversarial example.

Several works have focused on accelerating AT-based robust training, but they are designed for
centralized model training without consideration for adaptation to VFAL. Examples include YOPO
estimates the gradient on the input by only propagating the first layer Zhang et al. (2019), FreeAT
reuses gradients for multiple steps to update both adversarial examples and model parameters, Shafahi
et al. (2019), Amata adjusts the number of inner maximization steps with an annealing mechanism
Ye et al. (2021), Bhat & Tsipras (2019) propose asynchronously generating adversarial examples
leveraging data parallelism, and FGSM-PGK assembles the prior-guided initialization and model
weights Jia et al. (2024). Another line of research explores the design of computational efficient
vanilla VFL frameworks, including multiple client updates Zhang et al. (2022b), asynchronous
coordination Li et al. (2020), compression Castiglia et al. (2022); Li et al. (2020), sample and
feature selection Castiglia et al. (2023); Huang et al. (2022) one-shot communication Wu et al.
(2022); Cha et al. (2021). While these studies have made significant strides in improving the
computational efficiency of VFL, they lack a comprehensive investigation into the integration with
VFAL framework. Taking into account these observations and challenges, a natural question arises:

In light of the intensive adversarial sample generation and inherent sequential dependencies,
how can we accelerate VFAL training while maintaining robust performance?

Layer 2

Layer 1

Layer 1

Layer 2

Layer 4

Layer 3

Lazy Sequential BackpropagationDecoupled parallel backpropagation

Layer 2

Layer 1

Layer 4

Layer 3

Layer 6

Layer 5
Backward
propagation

Forward
propagation Sample

Error
Gradient

Layer
Network
layer

Module

Layer 6

Layer 5
Sever

Clients

Sever

Clients

Figure 1: Comparison of one-time full propagation for adversarial example generation: VFL with
PGD (left) versus DecVFAL (right).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

To tackle the computational efficiency challenge in training robust VFL models, we propose DecV-
FAL, an accelerated VFAL framework through a novel Decoupled backpropagation incorporating a
dual-level decoupled mechanism (Figure 1-right). DecVFAL first decouples the bottom module from
the remaining modules and introduces lazy sequential backpropagation, which periodically treats the
partial derivatives of the remaining modules as fixed and utilizes timely partial derivatives for the
bottom module to execute multiple sample updates sequentially, avoiding frequent complete gradient
propagation. Furthermore, while updating the adversarial samples at the bottom module, DecVFAL
updates the partial derivatives of the remaining modules through decoupled parallel backpropagation,
where each module independently updates its partial derivatives with module-wise delayed gradients
on separate processors, achieving asynchronous parallel backpropagation.

Contributions (i) We propose DecVFAL, which incorporates a dual-level decoupled mechanism
to enable lazy sequential and decoupled parallel backpropagation, significantly accelerating VFAL
training while maintaining robust performance. (ii) Our rigorous theoretical analysis reveals that
despite the introduction of multi-source approximate gradients, DecVFAL maintains an O(1/

√
K)

convergence rate after K iterations, matching that of standard VFLs, underscoring the superiority
of DecVFAL. (iii) Comprehensive experimental evaluations demonstrate that DecVFAL not only
achieves competitive robust performance but also delivers a remarkable 3 ∼ 10 fold acceleration
compared to existing adversarial training methods compatible with VFL.

2 RELATED WORKS

Adversarial Attack in VFL. Research highlights the need for robust VFL models Ye et al. (2024),
while introducing novel adversarial attack techniques Duanyi et al. (2023); Chen et al. (2022). In
relaxed VFL protocols, where clients can access the server model and outputs from other clients Luo
et al. (2021); Wang (2019); Lundberg & Lee (2017), a wide range of white-box adversarial attacks
Madry et al. (2017); Carlini & Wagner (2017); Croce & Hein (2020); Kurakin et al. (2016) become
feasible through malicious and colluding clients. Standard VFL protocols, despite restricting critical
information, remain vulnerable to black-box adversarial attacks Chen et al. (2017). Additionally,
Chen et al. (2022) employs a GAN-based method with a surrogate model and semi-supervised
learning to generate performance-impairing perturbations. Further expanding the threat landscape,
Duanyi et al. (2023) explores third-party adversaries through an online optimization method that
disrupts inference, integrating adversarial example generation with corruption pattern selection.

Adversarial Training. AT enhances model robustness by incorporating adversarial examples, with
its effectiveness depending on the strength of those examples Goodfellow et al. (2014). While
non-iterative attacks like FGSM offer some resilience, they remain vulnerable to more advanced
methods Kurakin et al. (2016). Projected Gradient Descent (PGD) Madry et al. (2017) provides
superior robustness against obfuscated gradient defenses Athalye et al. (2018) but is computationally
expensive due to frequent adversarial updates. FreeAT Shafahi et al. (2019) combines the updates of
adversarial examples and model parameters in one backward pass, YOPO Zhang et al. (2019) focuses
on adversarial example updates at first-layer, and FreeLB Zhu et al. (2019) accumulates gradients
and update parameters after completing adversarial iterations. While these methods offer promising
approaches to balance robustness and efficiency in AT, their applicability and effectiveness within the
VFAL framework remain unexplored, highlighting a critical gap in current research.

Decouple Training. The inherently sequential nature of forward and backward propagation in neural
network training has long been a focus of optimization, with researchers proposing various innovative
methods to decouple the process and improve computational efficiency. Notable contributions include
the Alternating Direction Method of Multipliers (ADMM), which decomposes the optimization
problem into smaller, more manageable subproblems, facilitating parallel processing Taylor et al.
(2016). Synthetic Gradients enable asynchronous updates by predicting gradients for each layer,
reducing dependencies between network components Jaderberg et al. (2017). The delayed Gradient
Method allows for parallel processing of different network sections, potentially speeding up training,
by introducing a temporal shift in gradient computation Huo et al. (2018b;a); Zhao et al. (2024). Lifted
Machines involves transforming the network architecture to create opportunities for parallelization,
thereby improving computational efficiency Gu et al. (2020); Li et al. (2019).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PROBLEM DEFINITION

Notations. In the VFL framework consisting of one server andC clients Liu et al. (2024), we consider
a classifier represented by a T -layer deep neural network f(Θ;x), where x denotes the input and Θ
the set of trainable parameters. The training dataset is denoted as {(x0,i, yi)}Si=1, with S representing
the total number of samples. Each sample is composed of features from different clients, specifically
x0,i = [x0,i,(1), . . . , x0,i,(C)]. The classifier comprises client models [f(1), . . . , f(C)] parameterized
by [θ(1), . . . , θ(C)] and a server model fs parameterized by ψ. The classifier function is expressed as
f(Θ, x0,i) = fs{ψ; f(1)[θ(1);x0,i,(1)], . . . , f(C)[θ(C);x0,i,(C)]}, where Θ = [θ(1), . . . , θ(C), ψ]. All
notations used in this paper are summarized in Appendix B.1.

Vertical Federated Adversarial Learning. Building upon the standard VFL models and the minimax
problem in AT, a T -layer neural network f is defined recursively as: xt = ft(xt−1,Θt), t = 1, . . . , T ,
where xt are the output of the t-th layer, Θt are the parameters of layer ft, Θ denotes the concatenation
of (Θt)1≤t≤T . VFAL addresses problems of the following general form:

min
Θ

max
∥ηi∥∞≤ϵ

S∑
i=1

L(xT,i; yi) +
S∑
i=1

T∑
t=1

Rt(Θt;xt−1,i)

subject to xt,i = ft(Θt;xt−1,i), i = 1, . . . ,S, t = 2, . . . , T

x1,i = f1(Θ1;x0,i + ηi), i = 1, . . . ,S

(3.1)

where tc is the number of client model layers, for tc < t ≤ T , Θt = ψt−tc are the server model
parameters; for 0 < t ≤ tc, Θt = [θt,(1), . . . , θt,(C)] are the client model parameters. ηi =
ηi,(1), . . . , ηi,(C) represents adversarial perturbations on sample i, constrained by ∥η∥∞≤ ϵ (a
non-negative scalar ϵ limits the perturbation magnitude). L(·; y) is the loss function, and xT,i =
f(Θ;x0,i + ηi) is the final output: xT,i = f(Θ;x0,i + ηi) = fT (ΘT ; fT−1(ΘT−1; . . . f1(Θ1;x0,i +
ηi) . . .)), Rt is a potential regularization term for layer ft.

4 METHODOLOGY

4.1 REVISIT BACKPROPAGATION FOR VFAL TRAINING

Addressing the problem (3.1), VFAL training involves two types of backpropagation. The primary
computational cost of VFAL arises from the multi-step gradient ascent, therefore, this paper focuses
on the acceleration of the adversarial perturbation backpropagation.

Adversarial Perturbation Backpropagation. For inner maximization, we keep the model parameter
fixed. The adversarial perturbations are updated via multi-step gradient ascent: ηℓ+1 = ηℓ +
αη∇ηL(ηℓ), where L(ηℓ) = L(f(Θk;x0 + ηℓ); y), ℓ is the inner iteration index, k is the outer
iteration index and αη is the step size. In the forward pass, the activations of all layers are calculated
from t = 1 to T . In the backward pass, chain rule is applied to compute these gradients and propagate
the error gradients through the network from t = T to 1: ∂L(ηℓ)

∂xℓt−1

=
∂xℓt
∂xℓt−1

∂L(ηℓ)

∂xℓt
. The computation at

layer t is dependent on the error gradient ∂L(ηℓ)

∂xℓt
from layer t+ 1. The gradient to η is calculated at

first layer: ∇ηL(ηℓ) = ∂L(ηℓ)
∂ηℓ

=
∂xℓ1
∂ηℓ
· ∂L(ηℓ)

∂xℓ1
.

Model Parameter Backpropagation. After obtaining the perturbation η through inner maximization,
we update Θ via gradient descent using∇ΘtL(Θk) =

∂xkt
∂Θkt

∂L(Θk)

∂xkt
computed during backpropagation

w.r.t. the parameters Θ.

Backward Locking. Consistent with VFAL’s distributed deployment, we can partition a T -layer
neural network intoMK ≪ T modules. The above formulation reveals that the partial derivatives
computation in module fMk

remains dependent on the error gradient from module fMk+1. This
creates a "lock" that prevents layers/modules from partial derivative updating until they receive
backward results from their dependent counterparts. As shown in Figure 1-left, each adversarial
example update of PGD in VFL context requires sequential propagating error gradients from the
output layer back to the input layer.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 DUAL-LEVEL DECOUPLED MECHANISM

To address the training efficiency bottleneck, DecVFAL introduces a dual-level decoupled mechanism
that utilizes module-wise staleness to untether the dependencies across layers inherent in VFAL.
As shown in Figure 1-right, DecVFAL utilizes delayed gradients to eliminate backward locking,
enabling module-wise asynchronous backpropagation. It restricts perturbation update propagations
to the bottom model to reduce full propagations and utilizes gradients from disparate iterations to
achieve parallel backward computation. We summarize the proposed algorithm in Algorithm 1 and
present the details of DecVFAL in the following sections.

Algorithm 1: DecVFAL
Input: Learning rates αη , αψ , αθ; Train set {X,Y }.
Output: Model parameters Θ = {θ(1), θ(2), . . . , θ(C), ψ}.

1 Initialization: Clients and Server initialize model parameters θ(1), θ(2), . . . , θ(C), ψ;
2 while not convergent do
3 Randomly select a sample x;
4 for m = 1 to M do
5 Lm ← f(x0 + ηm,n);
6 for k = 1 toMK in parallel do
7 if k = 1 then
8 for n = 0 to N-1 do
9 xm,nM1

← fM1
(x0 + ηm,n);

10 Updates adversarial perturbation:
11 ηm,n+1 ← ηm,n + αηpM1

∇ηfM1
;

12 Backward computation with delayed gradient δL
m−τk

δxMk
:

13
δLm−τk

δxt−1
← δxt

δxt−1

δLm−τk

δxt
, t ∈ (tMk−1

, tMk
];

14 for each client c do
15 Update client model parameters θk+1

(c) ← θk(c) − αθ∇θL(f(x0 + ηm,n)) ;

16 Update server model parameters ψk+1 ← ψk − αψ∇ψL(f(x0 + ηm,n)).

Lazy Sequential Backpropagation. A key observation in VFAL is that the adversarial perturbation is
directly coupled with the bottom module of the network. This insight allows us to decouple the bottom
module fM1 and the remaining modules fM̃1

(ΘM̃1
;xM1), where fM̃1

= fM2 ◦ fM3 ◦ . . . fMK
,

and xM1
is the output of bottom module. The VFAL classifier can be rewritten as: f(Θ;x0 + η) =

fM̃1
(ΘM̃1

; fM1
(ΘM1

, x0+η). PGD-based AT (PGD-r) involves r sweeps of forward and backward
propagation to generate an adversarial example, resulting in extensive computational cost. To mitigate
this, we introduce a "lazy" backpropagation mechanism by freezing a slack variable pM1

.

pM1
= ∇fM̃1

(
L(fM̃1

(fM1
(ΘM1

;x0 + η)), y)
)
· ∇fM1

(
fΘ̃M1

(fM1
(ΘM1

;x0 + η))
)

(4.1)

pM1
is obtained after each full backpropagation. The adversarial perturbation η is updated using pM1

and N -step gradient ascent, while keeping the network parameters Θ fixed (lines 7-11 in Algorithm
1). As shown in Figure 2, DecVFAL accesses the data M ×N times for each adversarial example
generation while only requiring M full forward and backward propagation, where M ≪ r.

This frozen slack variable introduces an oracle error in adversary updating, resulting in a delayed
gradient. Inspired by the optimal control theory Li et al. (2018); Li & Hao (2018); Seidman et al.
(2020) and under Assumptions in (B.2), we bound costate difference at bottom module in Lemma 1.

Lemma 1. Bound the costate difference at the bottom module. There exists a constantG′ dependent
on T and K such that for all n ∈ {0, . . . , N}, m ∈ {0, . . . ,M}, and i ∈ {1, . . . , S}:∥∥∥pm−τ1,0

M1,i
− pm,NM1,i

∥∥∥ ≤ G′αη (MKN − 1) . (4.2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Where G′ = TKT+1(KT + T (T − 1)K2T−2 + TK2T), m is the iteration index of full propagation,
τ1 is the delay of moduleM1 raised from parallel backpropagation.

Decoupled Parallel Backpropagation. We
decouple backpropagation across the entire net-
work using delayed gradients, enabling paral-
lel updates of the partial derivatives in the re-
maining modules for lazy sequential backprop-
agation. The forward pass is performed from
module 1 to moduleMK . In backward pass,
all modules except the last one store delayed
error gradients, allowing to perform the back-
ward computation without locking. The mod-
ule fMk

keeps the stale error gradient δL
m−τk

δxMk
,

τk =MK −Mk. Therefore, aside from the
bottom module performing lazy backpropaga-
tion, the backward computation in the remain-
ing modules fMk

is as follows:

δLm−τk

δxt−1
=

δxt
δxt−1

δLm−τk

δxt
, t ∈ (tMk−1

, tMk
]

(4.3)

Figure 2: Comparison of computation time: VFL
with PGD (up) versus DecVFAL (down). DecV-
FAL updates adversarial examples 4 × 3 times in
approximately the same time as performing 2 PGD
updates.

Meanwhile, each module also receives a gradient from the dependent module for further computation.
The delayed gradients in all modules are of different time delays. From module 1 to moduleMK ,
their corresponding time delays τk are fromMK − 1 to 0. Delay 0 indicates that the gradients are up-
to-date. In this way, we break the backward locking and achieve decoupled parallel backpropagation.

To showcase the flexibility of DecVFAL’s module partitioning, we implement the proposed framework
within a hybrid cascaded VFL architecture Wang et al. (2024). We analyze the errors caused by
multi-source approximate gradients due to existing VFL and DecVFAL in Lemma 2.
Lemma 2. Bound the gradient to η. Under hybrid cascaded VFL architecture, the gradient ∇ηA
respect to η involves estimation gradient∇ηÂ from Zeroth Order Optimization (Appendix A.5) and
compression gradient ∇̂ηA (Appendix A.6). Under the Assumption 1, and Lemma 3, 5, at the
i-th sample and k-th iteration, the pseudo-partial derivative for η satisfies the following inequality
η̂i = argmin

m=1,...,M
n=1,...,N

∥∥∥∇̂ηÂi (ηm,ni , ψi, θi)
∥∥∥, we define G = KG′, αx < 1

Lηη
then:

E
∥∥∥∇̂ηÂi(η̂i, ψi, θi)∥∥∥2 ≤ [D(X)L2

ηη

(
1− z

Lηη

)MN+1

+
2G2

Lηη
(MKN − 1)

2

(
2

z
+

1

2Lηη

)]

× 3

(
H2
θCEk +

L2µ2d2

4
+K2

)
(4.4)

4.3 ACCELERATION OF DECVFAL

DecVFAL uses the dual-level decoupled mechanism to accelerate the VFAL training process. Specif-
ically, lazy sequential backpropagation allows us to update M ∗ N times to generate adversarial
samples with only M full propagations. Empirically, DecVFAL achieves comparable results only
requiring setting M ∗N a litter larger than r of PGD-r. Furthermore, assuming that the time for full
propagation is T , decoupled parallel backpropagation reduces this approach to T

MK
. It is worth noting

that prior research employs parallelism for model training using delayed gradients, where updates
occur after each propagation. This approach precludes parallelization of forward and backward
propagation, limiting acceleration to Tfor + Tback

MK
Huo et al. (2018b;a). In contrast, our method

achieves acceleration to T
MK

, since adversarial sample generation maintains constant parameters,
enabling concurrent forward and backward propagation. overall, the computation time for DecVFAL
to complete an adversarial example generation is M∗T

MK
, much smaller than r ∗ T of PGD-r.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 CONVERGENCE ANALYSIS

Assumptions: The formal definition and detailed discussion of the assumptions are in Appendix B.2.
We make several crucial assumptions: the functions ft, fc, L, and Rt are K-Lipschitz continuous
in x, uniformly with respect to θ and ψ, the gradient of the adversarial loss function, ∇Ai(η, ψ, θ),
satisfies Lipschitz conditions (Assumption 1); the adversarial loss function Ai(η, ψ, θ) possesses
an unbiased gradient (Assumption 2) and is characterized by bounded Hessian matrices Hψ and
Hθ (Assumption 3), as well as bounded block-coordinate gradients Qψ and Qθ (Assumption 4);
Ai(η, ψ, θ) exhibits z-strong concavity with respect to η (Assumption 5).

Theorem 1. Under Assumptions (1, 2, 3, 4), if the step sizes satisfy αη < 1/Lηη, αm =
min {αψ, αθ}, αM = max {αψ, αθ}, and αM

αm
< ∞. Also, η∗i = argmaxη Ai(η, ψ, θ) and

Λ = R
(
η∗,0, ψ0, θ0

)
− infk(R

(
η∗,k, ψk, θk

)
). Then the following inequality holds:

1

K

K−1∑
k=0

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]
≤ I1 + I2 + Ep + Ec + Ez (5.1)

where I1 = 2Λ
αmK , I2 =

2L⋆α
2
Mσ

2
ψ

αm
+

2L⋆α
2
Mσ

2
θ

αm
, Ep =

3αMK
2π(M,N)

αmz2

(
2ξψL

2
⋆ + 3ξθL

2
⋆

)
,

Ec = E αMαm
(
2ξψH

2
ψC + 3ξθQ

2
θH

2
θC +

3H2
θCπ(M,N)
z2 (2ξψL

2
⋆ + 3ξθL

2
⋆)
)

,

Ez = µ2
(

3αMξθL
2
⋆d

2

4αm
+

3π(M,N)L2
⋆d

2aMξψ
2amz2

+
9π(M,N)L2

⋆d
2aMξθ

4amz2

)
, ξθ = {1 + LθαM},

ξψ = {1 + LψαM}, and L⋆ = max{L,Lψ, Lθ, Lψη, Lθη}, K is the total number of iterations.

Term I1 is typical for convergence of first-order optimization algorithms on smooth non-convex
functions; Term I2 is typical for stochastic gradient descent; Term Ec is the errors during forward
communication due to compression; Term Ez is the errors due to zeroth-order optimization; Term
Ep is errors due to dual-level decoupled backpropagation for adversarial sample generation.
Corollary 1. If we choose αθ and αψ as 1√

K , µ = 1

K
1
4

, E = O(1√
K), Γ = O(1√

K), we can derive
the sublinear convergence rate:

1

K

K−1∑
k=0

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]
≤ O(1√

K
) +O(N

M
) (5.2)

By constraining multi-source approximate gradients, we demonstrate the sublinear conver-
gence rate O(1√

K). The term O(NM) refers to a similar result in Seidman et al. (2020), re-

vealing the dependence on M and N . We have the partial derivative of ∂π(M,N)
∂N to N :

D(X)L2
ηη

(
1− z

Lηη

)MN+1

ln
(
1− z

Lηη

)
M + 4G2MK

Lηη

(
2
z +

1
2Lηη

)
(MKN − 1). π(M,N) de-

creases concerning M , implying that M should be set large as tolerated according to the communi-
cation budget. π(M,N) is convex in N , the second-order derivative of π(M,N) concerning N is
greater than 0, therefore, the value of N should increase before the partial derivative with respect
to N becomes positive. After that, we need to control the value of N not to be too large, otherwise
the model obtains a lower robust accuracy. We conducted ablation experiments and verified this
dependence of M and N on the MNIST dataset (Section 6.4).

Proof Sketch. We begin by transforming the original min-max optimization problem into a Hamil-
tonian system (Appendix A.4). The convergence analysis leverages three types of approximate
gradients: delayed gradient (Lemma 1 and Lemma 2), compression gradient (Lemma 5), and esti-
mated gradient (Lemma 3). We establish the global convergence of the framework by proving that
the loss function L(η, ψ, θ) is L-smooth (Assumption 1). By combining the results from the M loop,
N loop, and outer loop analyses, we demonstrate that the model parameters converge asymptotically
(Theorem 1). In Appendix B, we provided detailed proof of the convergence analysis of DecVFAL.

6 EXPERIMENTS

We conducted a comprehensive series of experiments to evaluate the effectiveness of our proposed
DecVFAL framework. As baselines, we implemented several established AT methods applied to the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

standard VFL framework, as well as the well-known VFL acceleration mechanisms. Our results show
that DecVFAL achieves the optimal balance between computational efficiency and model robustness.
Additionally, we performed a set of ablation studies to assess the individual contributions of each
component. Due to space constraints, detailed experimental procedures are provided in Appendix C.
The source code for this project, aimed at fostering transparency and reproducibility, is available at
the following URL: https://anonymous.4open.science/r/DecVFAL-0F5C/.

6.1 EXPERIMENT SETUPS

Datasets. Real-world VFL datasets are proprietary and not publicly accessible. Therefore, we utilized
two public datasets instead for our main experiments: MNIST LeCun et al. (1998) and CIFAR-10
Krizhevsky (2009). These datasets were vertically partitioned among all participants, with each client
retaining a portion of features for each sample, while the server exclusively held the labels. Detailed
information about the dataset partitioning can be found in Section C.1.

Baselines. We deploy the baseline algorithms and DecVFAL in a hybrid cascaded VFL framework,
synchronous VFL-CZOFO Wang et al. (2024). The implemented AT algorithms include PGD-r
Madry et al. (2017), FreeAT-r Shafahi et al. (2019), FreeLB-r Zhu et al. (2019), and YOPO-m-n
Zhang et al. (2019). Additionally, we integrated data parallelism, model parallelism, and asynchronous
mechanisms with PGD, resulting in DP-PGD, MP-PGD, and Asy-PGD, respectively.

Adversarial attack. Following the threat model of adversarial attack in VFL (Appendix A.3), we
employ various adversarial attack methods including FGSM Kurakin et al. (2016), PGD-r Madry et al.
(2017), and CW Carlini & Wagner (2017). We also simulate scenarios where malicious clients cannot
directly obtain gradients and implement CERTIFY (CER) Cohen et al. (2019), zero-order-based
FGSM (ZO-FGSM) and PGD (ZO-PGD) Chen et al. (2017). Additionally, Considering the case
of the third-party adversary, we employ adversarial attacks that corrupt embeddings using different
corrupted client selection methods: Thompson Sampling with Empirical Maximum Reward (E-TS)
Duanyi et al. (2023) and All Corruption Pattern (ALL).

Training procedures. For the experiment applying the split MLP model on MNIST, a batch size of
32 was utilized. For the experiment applying the ResNet-18 on CIFAR-10, a batch size of 80 was
used. The models were trained to converge. To ensure a fair comparison, we employed the Adam
optimizer with a fixed learning rate across all VFL frameworks. Detailed parameter settings and
hardware specifications for the training procedures are summarized in Appendix C.3 and Table 10.

6.2 EVALUATION ON ROBUSTNESS

MNIST: We maintain the VFL setup with one server and two clients. The server model is a single-
layer perceptron, while each client employs a two-layer perceptron. The entire model is partitioned
into three modules, each containing one layer. DecVFAL stands out by demonstrating the most
optimal trade-off between computational efficiency and model robustness. As shown in Table 1,
DecVFAL achieves the best robust performance while requiring only 1/10 of the training time per
epoch for PGD adversarial training.

Table 1: Results of MNIST Robust Training

Training Clean White-Box Adv. Atk Black-Box Adv. Atk Third Adv. Train Time
Methods Accuracy FGSM PGD CW CER ZO-FGSM ZO-PGD ALL E-TS (s/epoch)

None 96.46 47.75 8.58 56.75 56.37 55.97 60.44 36.01 40.27 106.86
PGD 92.31 74.90 57.85 90.09 88.92 87.30 83.37 36.71 41.23 3484.57

FreeAT 92.68 67.29 41.33 85.11 84.13 83.51 80.18 19.01 20.82 853.64
FreeLB 93.77 57.18 18.76 85.30 82.47 82.30 79.73 65.33 71.11 3459.81
YOPO 96.13 86.36 73.52 92.49 91.63 91.17 88.06 79.81 84.84 629.43

DP-PGD 93.28 78.64 60.97 88.40 86.60 86.49 82.84 51.72 56.68 3451.44
MP-PGD 93.11 75.23 48.98 78.82 76.65 76.28 76.19 48.11 54.67 3423.91
Asy-PGD 91.25 72.40 50.41 84.53 82.55 82.10 79.50 38.42 42.99 3724.47
DecVFAL 98.26 91.62 77.68 92.84 91.91 92.13 89.21 92.20 94.53 355.16

8

https://anonymous.4open.science/r/DecVFAL-0F5C/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

CIFAR-10: For CIFAR10 dataset, the server model is a single-layer perceptron, whereas each client
utilizes ResNet-18. For each client, the ResNet-18 model is divided into two modules: the first layer
and the remaining layers. Consequently, the entire model is partitioned into three modules: the first
layers of the client models, the remaining layers of the client models, and the server’s single-layer
perceptron. As shown in Table 2, DecVFAL achieves comparable robust performance under most of
adversarial attacks while requiring only 1/3 of the training time per epoch for PGD.

Table 2: Results of CIFAR-10 Robust Training

Training Clean White-Box Adv. Atk Black-Box Adv. Atk Third Adv. Train Time
Methods Accuracy FGSM PGD CW CER ZO-FGSM ZO-PGD ALL E-TS (s/epoch)

None 83.93 53.32 55.42 62.59 50.39 52.38 55.58 76.06 78.93 70.03
PGD 78.00 59.08 68.47 76.73 70.00 70.32 70.56 69.54 72.67 296.35

FreeAT 80.09 63.63 61.93 77.01 68.99 70.99 71.85 71.44 74.86 252.11
FreeLB 81.58 52.09 54.91 63.70 53.91 56.92 59.17 76.30 78.70 301.43
YOPO 75.34 58.80 68.11 74.68 70.10 69.97 69.96 64.38 69.05 297.45

DP-PGD 75.47 59.37 68.24 74.56 69.79 69.74 70.04 66.19 69.42 331.93
MP-PGD 74.92 59.38 68.14 74.30 69.92 69.53 69.90 64.70 68.66 334.48
Asy-PGD 73.32 57.00 66.61 72.48 67.56 67.93 67.83 63.36 67.83 331.45
DecVFAL 81.83 63.69 68.59 74.72 71.31 71.05 72.07 74.93 77.75 98.99

6.3 EVALUATION ON COMPUTATIONAL EFFICIENCY

For each dataset, we trained models to converge and plotted training and testing curves in Figures 3
and 4. DecVFAL achieved better test accuracy than other baseline algorithms in significantly less
time on MNIST. Due to setting close parameters to specify the number of full propagations (Table 8)
for CIFAR10, DecVFAL achieved a convergence speed comparable to FreeAT and FreeLB, while
delivering better robustness, as shown in Table 2.

Figure 3: Training-testing curves for MNIST Figure 4: Training-testing curves for CIFAR10

6.4 ABLATION STUDY

Impact of the number of clients. To further demonstrate the scalability of our framework, we
conducted additional experiments on the MNIST dataset by varying the number of clients among 3,
5, and 7. DecVFAL consistently achieved superior robustness and enhanced computational efficiency
across all client configurations compared to baseline methods. Additionally, in the scenario with 7
clients, we evaluated DecVFAL and baseline methods under third-party adversarial attacks involving
corruption pattern selection, as well as attacks where some clients are malicious (as detailed in
Appendix C.6). DecVFAL maintained its superior performance under these adversarial conditions.

Limitation of the setting of M and N . We conducted extensive experiments on the MNIST dataset
to explore the dependence on parameters M and N . Figure 5 and Figure 6 illustrate the change in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Results for different number of clients

No. Training Clean White-Box Adv. Atk Black-Box Adv. Atk Third Adv. Train Time
Clients Methods Accuracy PGD FGSM CW CER ZO-FGSM ZO-PGD ALL (s/epoch)

3 PGD 98.05 64.56 82.83 96.02 96.46 93.98 94.72 89.56 1015.8
5 PGD 96.78 69.50 84.51 93.00 95.20 92.36 93.08 78.62 1145.63
7 PGD 96.18 63.86 79.96 90.96 93.30 90.37 94.12 69.36 1158.11

3 DecVFAL 98.67 80.82 89.50 97.28 97.90 96.03 96.97 93.83 88.29
5 DecVFAL 98.3 76.52 87.39 97.34 97.54 93.85 95.73 91.87 92.93
7 DecVFAL 96.84 76.57 87.17 83.90 96.21 93.23 90.80 81.21 94.83

accuracy with a fixed M = 5 and M = 10, respectively, while varying N . It is evident that the
performance rapidly degrades with increasing N beyond a certain threshold, as analyzed by Corollary
1. This observation underscores the sensitivity of the model’s performance to N , highlighting the
necessity of optimizing N to maintain high accuracy.

Impact of the number of modules. We conducted additional experiments on the MNIST dataset
to evaluate how the number of partitioned modules affects the algorithm’s performance. The server
model was kept as a single-layer perceptron. Each client employed a ResNet-18 model, which was
partitioned into varying numbers of modules: 2, 3, 4, 5, and 6. As indicated by Lemma 1, increasing
the number of modules leads to larger errors in the gradient of η, which in turn negatively impacts the
algorithm’s accuracy. This effect is demonstrated by the results shown in Table 4.

Table 4: Results of diverse number
of modules

Robust Accuracy (%)

Split Positions for Modules Clean FGSM PGD

[: 1 : 18 : 19] 98.90 48.79 57.49

[: 1 : 9 : 18 : 19] 98.71 45.88 55.55

[: 1 : 9 : 13 : 18 : 19] 98.58 44.32 53.42

[: 1 : 5 : 9 : 13 : 18 : 19] 98.69 47.09 45.49

[: 1 : 5 : 9 : 13 : 17 : 18 : 19] 98.22 38.44 40.63

Figure 5: M = 5, varying N Figure 6: M = 10, varying
N

Impact of split position. We conducted additional ex-
periments on the MNIST dataset to evaluate the effect
of different split positions. The server model was kept
as a single-layer perceptron, while each client utilized
a ResNet-18 model that was split at various positions.
The results in Table 5 demonstrate that DecVFAL per-
forms well across various split positions compared to
PGD. However, as more layers are included in the bot-
tom module during lazy sequential backpropagation,
the computational load increases, leading to longer
training time.

Table 5: Results of different split positions

Split Positions Robust Accuracy (%) Train Time
[: M1 : M2 : M3] Clean FGSM PGD (s/epoch)

[: 1 : 18 : 19] 98.90 48.79 57.49 107.545
[: 5 : 18 : 19] 98.77 43.03 42.98 226.765
[: 9 : 18 : 19] 98.75 41.33 49.77 318.122
[: 13 : 18 : 19] 98.83 39.73 43.46 431.149
[: 17 : 18 : 19] 98.43 36.36 45.88 538.652

PGD 98.48 32.53 41.93 575.458

7 CONCLUSIONS

This paper presented DecVFAL, a framework that significantly accelerates VFAL while maintaining
robustness. DecVFAL incorporates a dual-level decoupled mechanism to enable lazy sequential
and decoupled parallel backpropagation for adversarial example generation. This approach achieves
3-10 fold speedup on MNIST and CIFAR-10 datasets, with theoretical guarantees of O(1/

√
K)

convergence rate. Comprehensive experiments demonstrate DecVFAL’s effectiveness across various
neural architectures and VFL configurations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274–283. PMLR, 2018.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Analyzing federated
learning through an adversarial lens. In International conference on machine learning, pp. 634–643.
PMLR, 2019.

S Bhat and D Tsipras. Towards efficient methods for training robust deep neural networks. URL
https://math. mit. edu/research/highschool/primes/materials/2018/Bhat. pdf.[Online], 2019.

Dongqi Cai, Tao Fan, Yan Kang, Lixin Fan, Mengwei Xu, Shangguang Wang, and Qiang Yang.
Accelerating vertical federated learning. IEEE Transactions on Big Data, pp. 1–10, 2024. ISSN
2372-2096. doi: 10.1109/tbdata.2022.3192898. URL http://dx.doi.org/10.1109/
TBDATA.2022.3192898.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Timothy Castiglia, Yi Zhou, Shiqiang Wang, Swanand Kadhe, Nathalie Baracaldo, and Stacy Pat-
terson. Less-vfl: Communication-efficient feature selection for vertical federated learning. In
International Conference on Machine Learning, pp. 3757–3781. PMLR, 2023.

Timothy J Castiglia, Anirban Das, Shiqiang Wang, and Stacy Patterson. Compressed-vfl:
Communication-efficient learning with vertically partitioned data. In International Conference on
Machine Learning, pp. 2738–2766. PMLR, 2022.

Dongchul Cha, MinDong Sung, Yu-Rang Park, et al. Implementing vertical federated learning using
autoencoders: Practical application, generalizability, and utility study. JMIR medical informatics,
9(6):e26598, 2021.

Chaochao Chen, Jun Zhou, Li Wang, Xibin Wu, Wenjing Fang, Jin Tan, Lei Wang, Alex X Liu,
Hao Wang, and Cheng Hong. When homomorphic encryption marries secret sharing: Secure
large-scale sparse logistic regression and applications in risk control. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2652–2662, 2021a.

Jinyin Chen, Guohan Huang, Haibin Zheng, Shanqing Yu, Wenrong Jiang, and Chen Cui. Graph-
fraudster: Adversarial attacks on graph neural network-based vertical federated learning. IEEE
Transactions on Computational Social Systems, 10(2):492–506, 2022.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15–26, 2017.

Weijing Chen, Guoqiang Ma, Tao Fan, Yan Kang, Qian Xu, and Qiang Yang. Secureboost+: A high
performance gradient boosting tree framework for large scale vertical federated learning. arXiv
preprint arXiv:2110.10927, 2021b.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 1310–1320. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/cohen19c.html.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–2216.
PMLR, 2020.

Jinming Cui, Chaochao Chen, Lingjuan Lyu, Carl Yang, and Wang Li. Exploiting data sparsity
in secure cross-platform social recommendation. Advances in Neural Information Processing
Systems, 34:10524–10534, 2021.

11

http://dx.doi.org/10.1109/TBDATA.2022.3192898
http://dx.doi.org/10.1109/TBDATA.2022.3192898
https://proceedings.mlr.press/v97/cohen19c.html
https://proceedings.mlr.press/v97/cohen19c.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Distributionally robust federated
averaging. Advances in neural information processing systems, 33:15111–15122, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2019.

YAO Duanyi, Songze Li, XUE Ye, and Jin Liu. Constructing adversarial examples for vertical feder-
ated learning: Optimal client corruption through multi-armed bandit. In The Twelfth International
Conference on Learning Representations, 2023.

Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou, Alex X
Liu, and Ting Wang. Label inference attacks against vertical federated learning. In 31st USENIX
security symposium (USENIX Security 22), pp. 1397–1414, 2022.

Xiang Gao, Bo Jiang, and Shuzhong Zhang. On the information-adaptive variants of the admm: an
iteration complexity perspective. Journal of Scientific Computing, 76:327–363, 2018.

Ning Ge, Guanghao Li, Li Zhang, and Yi Liu. Failure prediction in production line based on federated
learning: an empirical study. Journal of Intelligent Manufacturing, 33(8):2277–2294, 2022.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Fangda Gu, Armin Askari, and Laurent El Ghaoui. Fenchel lifted networks: A lagrange relaxation of
neural network training. In International Conference on Artificial Intelligence and Statistics, pp.
3362–3371. PMLR, 2020.

Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in federated
learning. arXiv preprint arXiv:1910.14425, 2019.

Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. Nonconvex zeroth-order stochastic admm
methods with lower function query complexity. arXiv preprint arXiv:1907.13463, 2019.

Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. Accelerated zeroth-order momentum
methods from mini to minimax optimization. arXiv preprint arXiv:2008.08170, 3, 2020.

Lingxiao Huang, Zhize Li, Jialin Sun, and Haoyu Zhao. Coresets for vertical federated learning:
Regularized linear regression and k-means clustering. Advances in Neural Information Processing
Systems, 35:29566–29581, 2022.

Wenke Huang, Mang Ye, Zekun Shi, Guancheng Wan, He Li, Bo Du, and Qiang Yang. Federated
learning for generalization, robustness, fairness: A survey and benchmark. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024.

Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay. Advances
in Neural Information Processing Systems, 31, 2018a.

Zhouyuan Huo, Bin Gu, Heng Huang, et al. Decoupled parallel backpropagation with convergence
guarantee. In International Conference on Machine Learning, pp. 2098–2106. PMLR, 2018b.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In
International conference on machine learning, pp. 1627–1635. PMLR, 2017.

Xiaojun Jia, Yong Zhang, Xingxing Wei, Baoyuan Wu, Ke Ma, Jue Wang, and Xiaochun Cao.
Improving fast adversarial training with prior-guided knowledge. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

Xiao Jin, Pin-Yu Chen, Chia-Yi Hsu, Chia-Mu Yu, and Tianyi Chen. Cafe: Catastrophic data leakage
in vertical federated learning. Advances in Neural Information Processing Systems, 34:994–1006,
2021.

Afsana Khan, Marijn ten Thij, and Anna Wilbik. Communication-efficient vertical federated learning.
Algorithms, 15(8):273, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for back-propagation.
In Proceedings of the 1988 connectionist models summer school, volume 1, pp. 21–28, 1988.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, volume 86, pp. 2278–2324. IEEE, 1998.

Jia Li, Cong Fang, and Zhouchen Lin. Lifted proximal operator machines. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 4181–4188, 2019.

Ming Li, Yiwei Chen, Yiqin Wang, and Yu Pan. Efficient asynchronous vertical federated learning
via gradient prediction and double-end sparse compression. In 2020 16th international conference
on control, automation, robotics and vision (ICARCV), pp. 291–296. IEEE, 2020.

Qianxiao Li and Shuji Hao. An optimal control approach to deep learning and applications to discrete-
weight neural networks. In International Conference on Machine Learning, pp. 2985–2994. PMLR,
2018.

Qianxiao Li, Long Chen, Cheng Tai, and E Weinan. Maximum principle based algorithms for deep
learning. Journal of Machine Learning Research, 18(165):1–29, 2018.

Xiaoxiao Li, Zhao Song, and Jiaming Yang. Federated adversarial learning: A framework with
convergence analysis. In International Conference on Machine Learning, pp. 19932–19959. PMLR,
2023.

Jing Liu, Chulin Xie, Krishnaram Kenthapadi, Sanmi Koyejo, and Bo Li. Rvfr: Robust vertical
federated learning via feature subspace recovery. In NeurIPS Workshop New Frontiers in Federated
Learning: Privacy, Fairness, Robustness, Personalization and Data Ownership, 2021a.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in Neural Information
Processing Systems, 31, 2018.

Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen, and Qiang Yang. A secure federated transfer
learning framework. IEEE Intelligent Systems, 35(4):70–82, 2020.

Yang Liu, Tianyuan Zou, Yan Kang, Wenhan Liu, Yuanqin He, Zhihao Yi, and Qiang Yang. Batch
label inference and replacement attacks in black-boxed vertical federated learning. arXiv preprint
arXiv:2112.05409, 2021b.

Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin
Zhang, and Qiang Yang. Vertical federated learning: Concepts, advances, and challenges. IEEE
Transactions on Knowledge and Data Engineering, 2024.

Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning for open banking. In
Federated learning: privacy and incentive, pp. 240–254. Springer, 2020.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. Feature inference attack on model
predictions in vertical federated learning. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pp. 181–192. IEEE, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning
of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2:2, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Qi Pang, Yuanyuan Yuan, Shuai Wang, and Wenting Zheng. Adi: Adversarial dominating inputs in
vertical federated learning systems. arXiv preprint arXiv:2201.02775, 2022.

Pengyu Qiu, Xuhong Zhang, Shouling Ji, Tianyu Du, Yuwen Pu, Jun Zhou, and Ting Wang. Your
labels are selling you out: Relation leaks in vertical federated learning. IEEE Transactions on
Dependable and Secure Computing, 2022.

Jacob H. Seidman, Mahyar Fazlyab, Victor M. Preciado, and George J. Pappas. Robust deep learning
as optimal control: Insights and convergence guarantees. Proceedings of Machine Learning
Research, 2020.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Advances in neural
information processing systems, 32, 2019.

Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback. Journal of Machine Learning Research, 18(52):1–11, 2017.

Artem Sokolov, Julian Hitschler, Mayumi Ohta, and Stefan Riezler. Sparse stochastic zeroth-order
optimization with an application to bandit structured prediction. arXiv preprint arXiv:1806.04458,
2018.

Yong Song, Yuchen Xie, Hongwei Zhang, Yuxin Liang, Xiaozhou Ye, Aidong Yang, and Ye Ouyang.
Federated learning application on telecommunication-joint healthcare recommendation. In 2021
IEEE 21st International Conference on Communication Technology (ICCT), pp. 1443–1448. IEEE,
2021.

Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein. Training
neural networks without gradients: A scalable admm approach. In International conference on
machine learning, pp. 2722–2731. PMLR, 2016.

Zeinab Teimoori, Abdulsalam Yassine, and M Shamim Hossain. A secure cloudlet-based charging
station recommendation for electric vehicles empowered by federated learning. IEEE Transactions
on Industrial Informatics, 18(9):6464–6473, 2022.

F Tramèr, D Boneh, A Kurakin, I Goodfellow, N Papernot, and P McDaniel. Ensemble adversarial
training: Attacks and defenses. In 6th International Conference on Learning Representations,
ICLR 2018-Conference Track Proceedings, 2018.

Ganyu Wang, Qingsong Zhang, Li Xiang, Boyu Wang, Bin Gu, and Charles Ling. Secure and
fast asynchronous vertical federated learning via cascaded hybrid optimization. arXiv preprint
arXiv:2306.16077, 2023.

Ganyu Wang, Bin Gu, Qingsong Zhang, Xiang Li, Boyu Wang, and Charles X Ling. A unified
solution for privacy and communication efficiency in vertical federated learning. Advances in
Neural Information Processing Systems, 36, 2024.

Guan Wang. Interpret federated learning with shapley values. arXiv preprint arXiv:1905.04519,
2019.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. arXiv preprint arXiv:2112.08304, 2021.

Kang Wei, Jun Li, Chuan Ma, Ming Ding, Sha Wei, Fan Wu, Guihai Chen, and Thilina Ran-
baduge. Vertical federated learning: Challenges, methodologies and experiments. arXiv preprint
arXiv:2202.04309, 2022.

E Weinan, Jiequn Han, and Qianxiao Li. A mean-field optimal control formulation of deep learning.
arXiv preprint arXiv:1807.01083, 2018.

Ee Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 1(5):1–11, 2017.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Haiqin Weng, Juntao Zhang, Feng Xue, Tao Wei, Shouling Ji, and Zhiyuan Zong. Privacy leakage of
real-world vertical federated learning. arXiv preprint arXiv:2011.09290, 2020.

Zhaomin Wu, Qinbin Li, and Bingsheng He. Practical vertical federated learning with unsupervised
representation learning. IEEE Transactions on Big Data, 2022.

Lunchen Xie, Jiaqi Liu, Songtao Lu, Tsung-Hui Chang, and Qingjiang Shi. An efficient learn-
ing framework for federated xgboost using secret sharing and distributed optimization. ACM
Transactions on Intelligent Systems and Technology (TIST), 13(5):1–28, 2022.

Wuxing Xu, Hao Fan, Kaixin Li, and Kai Yang. Efficient batch homomorphic encryption for vertically
federated xgboost. arXiv preprint arXiv:2112.04261, 2021.

Shengwen Yang, Bing Ren, Xuhui Zhou, and Liping Liu. Parallel distributed logistic regression for
vertical federated learning without third-party coordinator. arXiv preprint arXiv:1911.09824, 2019.

Mang Ye, Wei Shen, Eduard Snezhko, Vassili Kovalev, Pong C Yuen, and Bo Du. Vertical federated
learning for effectiveness, security, applicability: A survey. arXiv preprint arXiv:2405.17495,
2024.

Nanyang Ye, Qianxiao Li, Xiao-Yun Zhou, and Zhanxing Zhu. Amata: An annealing mechanism for
adversarial training acceleration. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 10691–10699, 2021.

Haochen Yuan, Chao Ma, Zhenxiang Zhao, Xiaofei Xu, and Zhongjie Wang. A privacy-preserving
oriented service recommendation approach based on personal data cloud and federated learning.
In 2022 IEEE International Conference on Web Services (ICWS), pp. 322–330. IEEE, 2022.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Accelerating adversarial training via maximal principle. Advances in neural information
processing systems, 32, 2019.

Gaoyuan Zhang, Songtao Lu, Yihua Zhang, Xiangyi Chen, Pin-Yu Chen, Quanfu Fan, Lee Martie,
Lior Horesh, Mingyi Hong, and Sijia Liu. Distributed adversarial training to robustify deep neural
networks at scale. In Uncertainty in artificial intelligence, pp. 2353–2363. PMLR, 2022a.

Jie Zhang, Song Guo, Zhihao Qu, Deze Zeng, Haozhao Wang, Qifeng Liu, and Albert Y Zomaya.
Adaptive vertical federated learning on unbalanced features. IEEE Transactions on Parallel and
Distributed Systems, 33(12):4006–4018, 2022b.

Qingsong Zhang, Bin Gu, Zhiyuan Dang, Cheng Deng, and Heng Huang. Desirable companion for
vertical federated learning: New zeroth-order gradient based algorithm. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, pp. 2598–2607, 2021.

Jie Zhao, Xinghua Zhu, Jianzong Wang, and Jing Xiao. Efficient client contribution evaluation for
horizontal federated learning. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3060–3064. IEEE, 2021.

Xiaohan Zhao, Hualin Zhang, Zhouyuan Huo, and Bin Gu. Accelerated on-device forward neural
network training with module-wise descending asynchronism. Advances in Neural Information
Processing Systems, 36, 2024.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb: Enhanced
adversarial training for natural language understanding. arXiv preprint arXiv:1909.11764, 2019.

Giulio Zizzo, Ambrish Rawat, Mathieu Sinn, and Beat Buesser. Fat: Federated adversarial training.
arXiv preprint arXiv:2012.01791, 2020.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A BACKGROUND

A.1 VERTICAL FEDERATED LEARNING

VFL encompasses a range of architectural designs tailored for collaborative machine learning across
multiple parties. These architectures, distinguished by data and parameter distribution, as well as the
trainability of the server model, include Aggregated Vertical Federated Learning (aggV FL) Fu et al.
(2022); Liu et al. (2021b), where client parties contribute intermediate results aggregated through
a non-trainable function in the server party; Aggregated Vertical Federated Learning with Central
Features (aggV FLc), similar to aggVFL but incorporating its own features; Split Vertical Federated
Learning (splitV FL) Fu et al. (2022); Jin et al. (2021); Liu et al. (2021a), featuring a trainable server
model processes intermediate results from passive parties; and Split Vertical Federated Learning
without Local Features (splitV FLc), where the server party doesn’t provide any features to the
model but relies solely on intermediate results from client parties.

Because VFL is a collaboration system that requires parties to exchange gradient or model level
information, it has been of great research interest to study communication efficiency, and data privacy
protection. Various strategies are adopted to heighten communication efficiency, typically involving
reducing the cost of coordination and compressing the data transmitted between parties, such as
multiple client updates Zhang et al. (2022b), asynchronous coordination Li et al. (2020), one-shot
communication Wu et al. (2022), and data compression Castiglia et al. (2022); Li et al. (2020).
In terms of data privacy protection, VFL relies on cutting-edge technologies like Homomorphic
Encryption (HE) Yang et al. (2019), Multi-Party Computation (MPC) Xie et al. (2022); Liu et al.
(2020), and Differential Privacy (DP) Wang et al. (2024) to preserve data privacy.

A.2 VERTICAL FEDERATED ADVERSARIAL LEARNING

Emerging research has investigated the distinct challenges posed by adversarial attacks in the con-
text of VFL Huang et al. (2024). Due to the distributed nature, VFL struggles to ensure client
trustworthiness and thus renders it highly susceptible to adversarial perturbations, underscoring the
pressing need for enhanced VFL model robustnessHuang et al. (2024), this is particularly evident in
neural network models. Prior works have proposed that adversaries (third-party or client party) can
generate adversarial samples by introducing manipulated perturbations to raw data or embeddings
in the corrupted clients, aiming to mislead the inference of VFL models Luo et al. (2021); Weng
et al. (2020); Qiu et al. (2022); Fu et al. (2022). However, existing VFL defense mechanisms based
on cryptographic Liu et al. (2021b) and non-cryptographic Liu et al. (2021a) only concentrate on
mitigating inference attacks and backdoor attacks while neglecting adversarial attacks.

A.3 THREAT MODEL

In the context of VFL, we focus on untargeted adversarial attacks, constructed during the inference
phase. The adversary’s objective is to corrupt samples whose original prediction is yu, causing the
server model to output ŷ ̸= yu. We categorize these adversarial attacks into two primary scenarios:

• Malicious (colluding) clients. In this scenario, we consider the presence of malicious
(colluding) clients acting as adversary. During the attack, all malicious clients (one or more)
collaboratively and simultaneously generate the adversarial feature partition. The attacks
are further classified based on the level of knowledge these clients possess:

– White-box adversarial attack. Under relaxed protocol, clients have access to the server
model fs and the output of all clients xtc . This protocol could occur when the client
needs to make interpretable decisions based on the server model’s parameters Luo et al.
(2021); Wang (2019); Lundberg & Lee (2017). This implies the malicious clients have
the necessary information to calculate the partial gradient to the features.

– Black-box adversarial attack. Under basic VFL protocol, all participants keep their
private data (e.g., labels and features), as well as the server model fs and client models
{f(c)}Cc=1 local during inference. Clients can only receive the final prediction results ŷ
and cannot directly obtain the gradient, thus necessitating the use of black-box methods
to approximate it.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• Third party adversary. We also consider an adversary as a third party in VFL inference,
who can access, replay, and manipulate messages on the communication channel between
two endpoints, where embeddings and predictions are exchanged. Third-party adversaries
usually cannot achieve access to top model parameters, thus this scenario generally falls
under the black-box attack category. Due to resource constraints, previous work assumed
that the adversary can corrupt at most Ca ≤ C clients Duanyi et al. (2023).

A.4 ADVERSARIAL TRAINING AS A DYNAMICAL SYSTEM

With the link between optimal control and deep learning Li & Hao (2018), research recast neural
networks as dynamical systems and formulated the robust optimization problem as an optimal control
problem Seidman et al. (2020):

min
Θ1,...,ΘT

max
η1,...,ηS

S∑
i=1

L(xT,i, yi) +
S∑
i=1

T−1∑
t=0

Rt(xt,i,Θt)

subject to xt+1,i = f t(xt,i,Θt), i = 1, . . . ,S, t = 1, . . . , T − 1

x1,i = f0(x0,i + ηi,Θ0), i = 1, . . . ,S

(A.1)

where xt ∈ Rdt represents the states (i.e., the input of the t-th layer), f t : Rdt × Θt → Rdt+1 is
the state transition map, Θt are the trainable control parameters, Θ denotes the concatenation of
(Θt)0≤t≤T−1, and the initial conditions are provided by the inputs to the network, x0,i. According
to the two-player Pontryagin Maximum principle, proved in Zhang et al. (2019), we define the
Hamiltonians: H0(x, p, θ, η) := pT f0(x+η, θ)−R0(x, θ) andHt(x, p, θ) := pT ft(x, θ)−Rt(x, θ),
then there exists an optimal costate trajectory p∗t , satisfied:

x∗t+1 = ∇pHt(x∗t , p∗t+1, θ
∗
t) x∗0 = x0 + η∗ (A.2)

p∗t = ∇xHt(x∗t , p∗t+1, θ
t,∗) p∗T = −∇L(x∗T , y) (A.3)

where Θ∗ := {θ0,∗, . . . θT−1,∗} is the solution of the problem (A.1).

Due to the compositional structure, feed-forward deep neural networks can be viewed as dynamical
systems. This approach has been recently explored in several papers, which leverage this interpretation
to propose new training algorithms (Weinan, 2017; Li et al., 2018; Weinan et al., 2018; Zhang et al.,
2019).

According to equation A.1, the two-player Pontryagin Maximum principle, proved in (Zhang et al.,
2019), gives necessary conditions for an optimal setting of the parameters θ∗, perturbations η∗1 , . . . , η

∗
S ,

and corresponding trajectories {x∗t,i}. Define the Hamiltonians

Ht(x, p, θ) := p⊤ft(x, θ)−Rt(x, θ), t = 1, . . . , T − 1

H0(x, p, θ, η) := p⊤f0(x+ η, θ)−R0(x, θ)
(A.4)

The two-player maximum principle says in this case that if Φ, ft, and Rt are twice continuously
differentiable, with respect to x, uniformly bounded in x and t along with their partial derivatives,
and the image sets {ft(x, θ)|θ ∈ Rmt} and {Rt(x, θ)|θ ∈ Rmt} are convex for all x and t, then
there exists an optimal costate trajectory p∗t such that the following dynamics are satisfied

x∗t+1,i = ∇pHt(x
∗
t,i, p

∗
t+1,i, θ

∗
t), x∗1,i = ∇pH0(x0,i, p

∗
1,i, θ

∗
0 , η

∗
i)

p∗t,i = ∇xHt(x
∗
t,i, p

∗
t+1,i, θ

∗
t), p∗T,i = −∇xΦ(x∗T,i, yi)

(A.5)

and the following Hamiltonian condition for all θt ∈ Rmt and ηi ∈ X

Ht(x
∗
t,i, p

∗
t+1,i, θt) ≤

S∑
i=1

Ht(x
∗
t,i, p

∗
t+1,i, θ

∗
t), t = 1, . . . , T − 1

S∑
i=1

H0(x
∗
t,i, p

∗
t+1,i, θt, η

∗
i) ≤

S∑
i=1

H0(x
∗
t,i, p

∗
t+1,i, θ

∗
t , η

∗
i) ≤

S∑
i=1

H0(x
∗
t,i, p

∗
t+1,i, θ

∗
t , ηi)

(A.6)

These necessary optimality conditions can be used to design an iterative algorithm of the following
form. For each data point i ∈ {1, . . . , S},

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1. Compute the state and costate trajectories {xi,t} and {pi,t} from the dynamics, keeping θt
and ηi fixed:

x
(η)
t+1,i = ∇pHt(x

(η)
t,i , p

(η)
t+1,i, θt)

x
(η)
1,i = ∇pH0(x0,i, p

(η)
1,i , θ0, η)

2. p(η)t,i = ∇xHt(x
(η)
t,i , p

(η)
t+1,i, θt), p

(η)
T,i = −∇xΦ(x

(η)
T,i, yi)

3. Minimize the Hamiltonian H0(xt, i, pt+ 1, i, θt, ηi) with respect to ηi

4. Maximize the sum of Hamiltonians
∑S
i=1Ht(xt, i, pt+ 1, i, θt) with respect to θt for all t

As was noticed as early as (LeCun et al., 1988), it can be seen from the chain rule that the backward
costate dynamics are equivalent to backpropagation through the network. With this interpretation,
the gradient of the total loss for the i-th data point with respect to the adversary ηi can be written
as ∇ηf0(x0,i + ηi, θ0)

⊤p
(η)
1,i . For a fixed value of θ0, performing gradient descent on H0 to find a

worst-case adversarial perturbation can be expressed as the following updates, where α > 0 is a step
size:

η
(ℓ+1)
i = η

(ℓ)
i − α∇ηf0(x0,i + η

(ℓ)
i , θ0)

⊤p
(η)
1,i (A.7)

An important observation made in (Zhang et al., 2019) is that the adversary is only present in the
first layer Hamiltonian condition and this function can be minimized by computing gradients only
with respect to the first layer of the network. More explicitly, instead of using p(η)ℓ,1 , as in the updates

above, we could instead use p(η)0,1 and the updates

η
(ℓ+1)
i = η

(ℓ)
i − α∇ηf0(x0,i + η

(ℓ)
i , θ0)

⊤p
(η)
0,1 (A.8)

This removes the need to do a full backpropagation to recompute the costate p(η)ℓ,1 for every update of

η
(ℓ)
i , at the cost of now being an approximate gradient.

A.5 ZEROTH ORDER OPTIMIZATION

ZOO methods Huang et al. (2020; 2019) have been developed to effectively solve many ML problems
for which obtaining explicit gradient expressions is difficult or infeasible. Such problems include
structure prediction tasks, where explicit gradients are challenging to derive Sokolov et al. (2018), as
well as bandit and black-box learning problems Shamir (2017); Liu et al. (2018), where obtaining
explicit gradients is not feasible. Specifically, ZOO relies solely on function values for optimization,
eschewing the need for explicit gradients.

Formally, given a function f(x) with input x, the gradient ∇f(x) can be estimated using ZOO. One
common approach is to sample random perturbations u within the domain of f and evaluate the
function shifts. The ZO gradient estimator ∇̂f(x) is given by:

∇̂f(x) = 1

q

q∑
j=1

[f(x+ µuj)− f(x)]
uj
µ

(A.9)

where µ serves as a scaling factor for the random perturbation, while uj represents the j-th random
perturbation sampled from a distribution p across the domain of f . The parameter q denotes the
number of random samples employed for estimation. Normalizing the perturbation by uj

µ ensures
the estimator’s unbiasedness. The expectation of the Zeroth Order (ZO) gradient estimator yields an
unbiased estimate of the true gradient, expressed as E[∇̂f(x)] = ∇f(x), provided that the samples
uj are drawn from a distribution with a mean of zero.

The application of ZOO to VFL has been discussed, highlighting its specific properties such as model
applicability Zhang et al. (2021), privacy security concerns Liu et al. (2018), and considerations
regarding communication cost and computational efficiency Wang et al. (2024).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.6 COMMUNICATION COMPRESSION

Compression is a pivotal technique in VFL that aims to mitigate communication overhead by
reducing the volume of data transmitted among participating parties. In the context of neural
network-based VFL algorithms, high-dimensional input vectors are inherently mapped onto lower-
dimensional representations, which serve a natural compression purpose. However, to further enhance
communication efficiency, specialized dimensionality reduction techniques are often integrated.
Several VFL frameworks have been proposed to incorporate compression techniques: AVFL Cai
et al. (2024) leverages PCA to compress the data before transmission, reducing the communication
load. CE-VFL Khan et al. (2022) employs both PCA and autoencoders to learn latent representations
from raw data, which are then used for model training. SecureBoost+ Chen et al. (2021b) and
eHE-SecureBoost Xu et al. (2021) encode encrypted gradients into a compact form, minimizing
the number of cryptographic operations and the data transmission size. C-VFL Castiglia et al.
(2022) introduces an arbitrary compression scheme to VFL, offering a theoretical analysis of how
compression parameters impact the overall system efficiency.

Compression techniques play a critical role in VFL by enabling more efficient data transmission with-
out compromising the integrity of the learning process. The selection of an appropriate compression
method is contingent upon the specific requirements of the VFL scenario, including the sensitivity
of the data, the computational resources available, and the desired balance between communication
efficiency and model performance.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B CONVERGENCE ANALYSIS

B.1 NOTATIONS

Notations Definitions
Neural Network Classifier

S The number of samples
f Neural network model
Θ Model Parameters
xi, yi Input sample and corresponding label
B, B The mini-batch B with size B
E Expectation
k ∈ {1, 2, . . . ,K} Iteration index for parameter updating

Vertical Federated Learning
C The number of clients
f(1), f(2), . . . , f(C) Client models
θ = {θ(1), θ(2), . . . , θ(C)} Client model parameters
fs Server model
ψ Server model parameters
L Loss function
f = {fs, f(1), f(2), . . . , f(C)} The complete federated model
αψ Learning rate for server model parameters
αθ Learning rate for client model parameters

Adversarial Training
A Adversarial Loss Function
GB(η, ψ, θ) 1

B

∑
i∈BAi(ηi, ψi, θi)

R(η, ψ, θ) 1
S
∑
i∈S Ai(ηi, ψi, θi)

η∗i argmaxη Ai(η, ψ, θ)
η Adversarial perturbation
Π Projection operator
αη Learning rate for adversarial sample
ℓ Iteration index for adversarial sample generation
x0,i = {x0,i,(1), x0,i,(2), . . . , x0,i,(C)} The sample i from all clients
ηi = {ηi,(1), ηi,(2), . . . , ηi,(C)} the adversarial perturbation for sample i

Optimal Control Formulation of Deep Learning
Ht Hamiltonian function for layer t
pt = {pt,(1), pt,(2), . . . , pt,(C)} Costates at layer t
T Number of layers in the neural network
t = 0, 1, . . . , T − 1 Layer indices
f t State transition map for layer t
xt = {xt,(1), xt,(2), . . . , xt,(C)} States at layer t
Θt Trainable parameters for layer t

Table 6: Table of Notations

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Notations Definitions
Decoupled parallel Backpropagation

MK The number of divided modules
ts The number of server model’s layers
tc The number of client model’s layers
f = {f1, f2, . . . , ftc , . . . , fT−1} Classifier from layer-wise view
θ = {Θ1,Θ2, . . . ,Θtc} Client model parameters from layer-wise view
xtc The output of all clients
fθ̃1 Client model network excluding the first layer

Lazy Sequential Backpropagation
M Number of iterations for full propagations
N Number of iterations for propagations in bottom module
Rt Regularizer for layer t
fΘ̃1

Network excluding the first layer
xm,nt,i The state of sample i at layer t in m,n iteration
pm,nt,i The co-state of sample i at layer t in m,n iteration

Zoreth Order Gradient Estimation
µ Smoothing parameter
u Random vector
q Query budget for gradient estimation
{δji }

q
j=1 Loss difference

∇̂A(η, ψ, θ) Estimation Gradient from ZOO
Compressor

C(·)b Compressor compressing information to b bits
∇Â(η, ψ, θ) Compression Gradient

Table 7: Table of Notations (continue)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.2 ASSUMPTIONS

Assumption 1. Lipschitz Gradient: There exists a constant K > 0 such that for all t ∈
1, . . . , tc, . . . , T , the functions ft, fc, L, and Rt are K-Lipschitz in x, uniformly in θ and ψ. For
all each sample i ∈ 1, . . . ,S , the function ∇ηAi(η, ψ, θ), ∇ψAi(η, ψ, θ), ∇θAi(η, ψ, θ) satisfy the
following Lipschitz conditions:

||∇ηAi(η, ψ′, θ)−∇ηAi(η, ψ, θ)||≤ Lηψ||ψ′ − ψ|| (B.1)

||∇ηAi(η, ψ, θ′)−∇ηAi(η, ψ, θ)||≤ Lηθ||θ′ − θ|| (B.2)

||∇ψAi(η′, ψ, θ)−∇ψAi(η, ψ, θ)||≤ Lψη||η′ − η|| (B.3)

||∇ψAi(η, ψ, θ′)−∇ψAi(η, ψ, θ)||≤ Lψθ||θ′ − θ|| (B.4)

||∇θAi(η′, ψ, θ)−∇θAi(η, ψ, θ)||≤ Lθη||η′ − η|| (B.5)

||∇θAi(η, ψ′, θ)−∇θAi(η, ψ, θ)||≤ Lθψ||ψ′ − ψ|| (B.6)
Assumption 2. Unbiased Gradient and Bounded Variance: There exists σψ > 0 and σθ > 0 ,
the stochastic gradients are unbiased, i.e. Ei∇ψGi(η, ψ, θ) = ∇ψR(η, ψ, θ),Ei∇θGi(η, ψ, θ) =
∇θR(η, ψ, θ), i = 1, . . . , B and satisfy:

E||∇ψGB(η, ψ, θ)−∇ψR(η, ψ, θ)||2≤ σ2
ψ (B.7)

E||∇θGB(η, ψ, θ)−∇θR(η, ψ, θ)||2≤ σ2
θ (B.8)

Assumption 1, 2 are the basic assumptions for solving the non-convex optimization problem with
stochastic gradient descentWang et al. (2023)Haddadpour & Mahdavi (2019).
Assumption 3. Bounded Hessian: The Hessian for Ai(η, ψ, θ) is bounded, i.e.there exist positive
constants Hψ and Hθ for Ai(η, ψ, θ), ψ and θ, the following inequalities holds:

||∇2
ψAi(ηi, ψ, θ)||≤ Hψ (B.9)

||∇2
[θ,x0,i]

Ai(ηi, ψ, θ)||≤ Hθ (B.10)

Assumption 4. Bounded Block-coordinate Gradient: The gradient of all the participants’ local
output w.r.t. their local input is bounded, i.e. for, all i ∈ 1, . . . ,S there exist positive constants Qψ
and Qθ satisfies the following inequalities:

||∇[ψ]Ai(ηi, ψ, θ)||≤ Qψ (B.11)

||∇θAi(ηi, ψ, θ)||≤ Qθ (B.12)

Assumption 3, 4 are the fundamental assumptions for bounding the compression loss. Compression
introduces errors into the input of the loss function; therefore, with a bounded Hessian, we can deter-
mine the maximum effect of these errors on the loss. Additionally, bounding the block-coordinated
gradient is a common practice in VFL analysis. This approach helps constrain the entire model’s
gradient when the gradients of other parts have been bounded Wang et al. (2024)Castiglia et al.
(2022).
Assumption 5. z-Strongly Concave: If function Ai(η, ψ, θ) is z-strongly concave for η, then for all
ψ and θ, the following inequalities satisfy:

||η′ − η||≤ (1/z)||∇ηAi(η, ψ, θ)|| (B.13)

Assumption 5 made in previous results on convergence of robust training Wang et al. (2021) and is
justified through the reformulation of robust training as distributionally robust optimization. It helps
us to bound the delayed gradient of η.

B.3 PROPOSITION

Proposition 1. Under Assumption 1 and Assumption 5, the loss functionR(η′, ψ, θ) is Lψ-smooth
for ψ, Lθ-smooth for θ, and the following inequality holds for all ψ, ψ′, θ, and θ′:

R (η′, ψ′, θ′)−R (η, ψ, θ) ≤ ⟨∇θR (η, ψ, θ) , θ′ − θ⟩+ Lθ
2
∥θ′ − θ∥2

+ ⟨∇ψR (η, ψ, θ) , ψ′ − ψ⟩+ Lψ
2
∥ψ′ − ψ∥2 (B.14)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where Lψ = Lψψ+
LψηLηψ

z and Lθ = Lθθ+
LθηLηθ

z . This assumption is consistent with Proposition
1 in Seidman et al. (2020). This can help us to connect the N-loop and M-loop.
Proposition 2. The classical back-propagation-based gradient descent algorithm can be viewed
as an algorithm attempting to solve the PMPZhang et al. (2019). The costate processes p∗t and the
gradient∇xtA(η, ψ, θ) satisfy the following equation:

pt = −∇xtA(η, ψ, θ) (B.15)

B.4 DEFINITION

Definition 1. Compression Error (forward message) Considering sample i, we can define the
compression error of C(·)b: ec,i, c ∈ 1, 2, ..., C, i.e. ec,i = C(xtc,c,i)b − xtc,c,i. We denote
the expected norm of the error from the client c at global iteration k as Ekc,i = E||ekc,i||2, and
Ek = maxc Ekc,i. Since all client operations are synchronized, the error from all clients is eki =

(ek1,i, e
k
2,i, ..., e

k
C,i). Then, the expected norm of the error from all clients:

E||eki ||2 = E||(ek1,i, ek2,i, ..., ekC,i)||2

≤
C∑
c=1

E||ekc,i||2

≤ CEk (B.16)

B.5 LEMMA

Lemma 3. Zeroth-Order Optimization. For arbitrary f in problem (P), the following conditions
hold:
1) fµ(x) is continuously differentiable, its gradient is Lµ-Lipschitz continuous with Lµ ≤ L:

∇fµ(x) = Eu[∇̂f(x)] (B.17)
where u is drawn from the uniform distribution over the unit Euclidean sphere, fµ(x) = E(f(x+µu))
is the smooth approximation of f .
2) For any x ∈ Rd, the following inequalities satisfy:

||∇fµ(x)−∇f(x)||2≤
L2µ2d2

4
(B.18)

Proof of this lemma is provided in Liu et al. (2018); Gao et al. (2018).
Lemma 4. Bound the costate difference at the bottom module. There exists a constantG′ dependent
on T and K such that for all n ∈ {0, . . . , N}, m ∈ {0, . . . ,M}, and i ∈ {1, . . . , S}:∥∥∥pm−τ1,0

M1,i
− pm,NM1,i

∥∥∥ ≤ G′αη (MKN − 1) . (B.19)

Where G′ = TKT+1(KT + T (T − 1)K2T−2 + TK2T), m is the iteration index of full propagation.

Proof: This lemma bounds the difference of the costates of the first module in the adversary’sN -loop.
We fix the data point i, and for ease of notation drop the dependence of state variables on the index
i, while also suppressing the notational dependence on Θ for all functions, as Θ is fixed during the
updates for the adversary η. We define xt and pt as the state and costate trajectories generated from
the initial condition x0 + η. We additionally define δpℓt := p0t − pℓt and δxℓt := x0t − xℓt , ℓ is the
iteration index of example updates. We first prove bounds on ∥pℓt∥ and ∥δxℓt∥.
Applying Assumption (1), we have:

∥pℓT ∥ ≤ ∥−∇Φ(xℓT , y)∥≤ K (B.20)

∥pℓt∥ = ∥∇xHt(xℓt, pℓt+1, θt)∥
≤ ∥pℓt+1∥∥∇xft(xℓt, θt)∥+∥∇xRt(xℓt)∥
≤ K∥pℓt+1∥+K
≤ K +K2 + . . .+KT−t+1

≤ KT−t+1(T − t+ 1) (B.21)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Next, from Assumption (1), we have ∥δxℓ1∥= ∥f1(x0 + η0) − f1(x0 + ηℓ)∥≤ K∥η0 − ηℓ∥. By
induction, we have:

∥δxℓt∥≤ Kt∥η0 − ηℓ∥ (B.22)

To bound ∥p0M1
− pℓM1

∥, we first note that ∥δpℓT ∥= ∥∇Φ(xℓT)−∇Φ(x0T)∥≤ K∥δxℓT ∥. We write:

∥δpℓt∥=∥∇xHt(x
0
t , p

0
t+1)−∇xHt(x

ℓ
t, p

ℓ
t+1)∥

=∥∇xHt(x
0
t , p

0
t+1)−∇xHt(x

ℓ
t, p

0
t+1) +∇xHt(x

ℓ
t, p

0
t+1)−∇xHt(x

ℓ
t, p

ℓ
t+1)∥

=∥⟨p0t+1,∇xft(x0t)−∇xft(xℓt)⟩+ ⟨p0t+1 − pℓt+1,∇xft(xℓt)⟩+∇xRt(xℓt)−∇xRt(x0t)∥

≤KT−1

(
K∥δxℓT ∥+

T−1∑
t=1

(KT−t+1

(T − t) +K)∥δxℓt∥

)
(B.23)

Applying (B.22), we have:

∥δpℓM1
∥≤ (KT + T (T − 1)K2T−2 + TK2T)∥η0 − ηℓ∥ (B.24)

η updates with the form:

ηℓ+1 = ηℓ − αη∇ηfM1
(x0 + ηℓ, θM1

)⊤p0M1
(B.25)

Applying Assumption (1) and (B.21), we have:

∥η0 − ηℓ∥≤ KT+1Tαη(ℓ− 1) (B.26)

Finally, substituting with (B.26) gives us the desired result:

∥p0M1,i − p
ℓ
M1,i∥≤ G

′αη(ℓ− 1) (B.27)

where G′ = TKT+1(KT + T (T − 1)K2T−2 + TK2T).

Then, We are going to bound
∥∥∥pm−τ1,0

M1,i
− pm,NM1,i

∥∥∥:∥∥∥pm−τ1,0
M1,i

− pm,NM1,i

∥∥∥ =
∥∥∥pm−τ1,0

M1,i
− pm,0M1,i

+ pm,0M1,i
− pm,NM1,i

∥∥∥
(a)

≤
∥∥∥pm−τ1,0

M1,i
− pm,0M1,i

∥∥∥+ ∥∥∥pm,0M1,i
− pm,NM1,i

∥∥∥
(b)

≤ G′αη(τ1N) +G′αη(N − 1)

≤ G′αη [(τ1 + 1)N − 1]

≤ G′αη [MKN − 1] (B.28)

Here, (a) is obtained using the triangle inequality, (b) is obtained using (B.27), for each M -loop, the
adversary is updated N times. Proof completes.
Lemma 5. Bound Compression Error. Under Assumption 3, 4, and Definition 1, the norm of the
difference between the loss function value with and without compression error is bounded:

E||∇ψÂi(η, ψ, θ)−∇ψAi(η, ψ, θ)||≤ H2
ψCEk (B.29)

E||∇θÂi(η, ψ, θ)−∇θAi(η, ψ, θ)||≤ Q2
θH

2
θCEk (B.30)

E||∇xtc Âi(η, ψ, θ)−∇xtcAi(η, ψ, θ)||≤ H
2
θCEk (B.31)

The proof of this lemma proceeds same to Lemma D.4 in Wang et al. (2024).
Lemma 6. Bound the gradient for η. Due to the communication between the clients and the server
involved in the update process of adversarial examples, the gradient ∇ηA respect to η involves
estimation gradient ∇ηÂ from ZOO and compression gradient ∇̂ηA. Under the Assumption 1, and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Lemma 3, 5, at the i-th sample and k-th iteration, the pseudo-partial derivative for η satisfies the
following inequality:

η̂i = argmin
m=1,...,M
n=1,...,N

∥∥∥∇̂ηÂi (ηm,ni , ψi, θi)
∥∥∥ ,

E
∥∥∥∇̂ηÂi(η̂i, ψi, θi)∥∥∥2 ≤ [D(X)L2

ηη

(
1− z

Lηη

)MN+1

+
2G2

Lηη
[(MKN − 1]

2

(
2

z
+

1

2Lηη

)]

× 3

(
H2
θCEk +

L2µ2d2

4
+K2

)
(B.32)

where G = KG′, αx < 1
Lηη

, and η ∈ X .

Proof:
According to the chain rule, we note that ∇̂ηÂi(η̂i, ψi, θi) can be split as follows:

E
∥∥∥∇̂ηÂi(η̂i, ψi, θi)∥∥∥2 = E||∇ηxtc,i∇̂xtc Âi(η̂, ψi, θi)||

2

≤ E||∇ηxtc,i||2︸ ︷︷ ︸
a

E||∇̂xtc Âi(η̂, ψi, θi)||
2︸ ︷︷ ︸

b

(B.33)

For (a): we view the clients’ networks as an independent model. From Proposition 2, we can get the
following:

||pm,ntc,i
||= ||−∇xtcAi(η

m,n
i , ψi, θi)||≤ K (B.34)

Where m = 1, 2, ...,M denotes M -loop index, n = 1, 2, ..., N denotes N -loop index.

According to the Lemma 8 in Seidman et al. (2020), we drop the dependence of all functions on Θ
and the data point index i for the proof. The N -loop of the adversary’s updates can be written as
(B.25). Recall that the true gradient of A(ηm,N) is

∇ηA(ηm,N) = ∇ηfM1
(x+ η)⊤pm,NM1

. (B.35)

We will bound the maximum difference of the update vector to the true gradient over the iterations of
the adversary’s updates. In this sense, the adversary’s updates can be viewed as a standard gradient
method with an inexact gradient oracle. We write

∥∇ηfM1(x+ η)⊤pm−τ,0
M1

−∇ηA(ηm,N)∥=∥∇ηfM1
(x+ η)⊤pm−τ,0

M1
−∇ηfM1

(x+ η)⊤pm,NM1
∥

≤∥pm−τ,0
1, − pm,N1 ∥∥∇ηfM1

(x+ η)⊤∥
≤KG′αη [(MKN − 1] (B.36)
=Gαη [MKN − 1] (B.37)

We now appeal to an inexact oracle convergence result in Devlin et al. (2019). Given a concave
function f(x′) and a point x′, we define a (δ, µ, L) oracle as returning a vector g(x′) such that the
following inequality holds:

µ

2
∥x′ − x∥2≤ f(x′)− f(x) + ⟨g(x′), x′ − x⟩ ≤ L

2
∥x′ − x∥2+δ (B.38)

It can be shown that if we have an approximate gradient bound of the form (B.36), and A is
Lηη-smooth (Assumption 1) and z-strongly concave in η (Assumption 5), then the updates for the
adversary are created by a (δ, z/2, 2Lηη)-oracle, where

δ = G2α2
η [MKN − 1]

2

(
2

z
+

1

2Lηη

)
(B.39)

Letting αη < 1/Lηη and applying Theorem 4 in Devlin et al. (2019), along with the inequality
∥∇A(η̂)∥2≤ 2Lηη(maxη A(η)−A(η̂)) from the Lηη smoothness of A in η gives

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

∥∇ηA(η̂, θ)∥2 ≤ L2
ηη∥η0,0 − η∗∥2

(
1− z

Lηη

)MN+1

+
2G2

Lηη
[MKN − 1]

2

(
2

z
+

1

2Lηη

)
≤ D(X)L2

ηη

(
1− z

Lηη

)MN+1

+
2G2

Lηη
[MKN − 1]

2

(
2

z
+

1

2Lηη

)
(B.40)

Where η∗ is the true solution to the inner maximization problem. Since we initialize η0,0 ∈ X , we
have that ∥η0,0 − η∗∥2≤ D(X). We can get:

E||∇ηxtc,i||2≤ D(X)L2
ηη

(
1− z

Lηη

)MN+1

+
2G2

Lηη
[MKN − 1]

2

(
2

z
+

1

2Lηη

)
(B.41)

For (b): we use Lemma 3, and Assumption 1:

E||∇̂xtc Âi(η̂i, ψi, θi)||
2

≤ 3E||∇̂xtc Âi(η̂i, ψi, θi)− ∇̂xtcAi(η̂i, ψi, θi)||
2+3E||∇̂xtcAi(η̂i, ψi, θi)−∇xtcAi(η̂i, ψi, θi)||

2

+ 3E||∇xtcAi(η̂i, ψi, θi)||
2

≤ 3(H2
θCEk +

L2µ2d2

4
+K2) (B.42)

Substituting (a) and (b) completes the proof.

Lemma 7. Connecting Gradients. Under the Assumption 1, Assumption 5,and Lemma 2, the
following inequality can be obtained:

E||∇ψGB(η̂, ψ, θ)−∇ψGB(η∗, ψ, θ)||2≤
L2
ψη · ζk

z2
(B.43)

E||∇θGB(η̂, ψ, θ)−∇θGB(η∗, ψ, θ)||2≤
L2
θη · ζk

z2
(B.44)

where ζk = 3(H2
θCEk +

L2µ2d2

4 +K2)π(M,N),

π(M,N) =

{
D(X)L2

ηη

(
1− z

Lηη

)MN+1

+ 2G2

Lηη
[MKN − 1]

2
(

2
z +

1
2Lηη

)}
.

Proof:
Under Assumption 1, Assumption 5, and Lemma 2, for server model parameters ψ, we can get:

E||∇ψGB(η̂, ψ, θ)−∇ψGB(η∗, ψ, θ)||2 ≤
1

B

∑
i∈B

E||∇ψAi(η̂i, ψi, θi)−∇ψAi(η∗i , ψi, θi)||2

≤
L2
ψη

B

∑
i∈B

E||η̂i − η∗i ||2

≤
L2
ψη

Bz2

∑
i∈B

E||∇ηAi(η̂i, ψi, θi)||2

≤
L2
ψη · ζk

z2
(B.45)

Similar to the proof for ψ in (B.45), for client model parameters θ, we get:

E||∇θGB(η̂, ψ, θ)−∇θGB(η∗, ψ, θ)||2≤
L2
θη · ζk

z2
(B.46)

Theorem 1. Bound the Global Update Round. When the parameters are updated with the perturba-
tions:

η̂i = argmin
m=1,...,M
n=1,...,N

∥∥∥∇̂ηÂi (ηm,ni , ψi, θi)
∥∥∥ (B.47)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

The gradient of η̂i is bounded:

E||∇̂ηÂi(η̂i, ψi, θi)||2≤ ζk (B.48)

where ζk = 3(H2
θCEk +

L2µ2d2

4 +K2)π(M,N),

π(M,N) =

{
D(X)L2

ηη

(
1− z

Lηη

)MN+1

+ 2G2

Lηη
[MKN − 1]

2
(

2
z +

1
2Lηη

)}
.

The global iterates satisfy:

1

K

K−1∑
k=0

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]

≤ (
2Λ

αmK
) + (

2Lψα
2
Mσ

2
ψ

αm
+

2Lθα
2
Mσ

2
θ

αm
)

+ E αM
αm

[
2(1 + LψαM)H2

ψC + 3(1 + LθαM)Q2
θH

2
θC +

3H2
θCπ(M,N)

z2
(2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη)

]
+ µ2(

3αM (1 + LθαM)L2d2

4αm
+

3π(M,N)L2d2aM (1 + LψαM)L2
ψη

2amz2
+

9π(M,N)L2d2aM (1 + LθαM)L2
θη

4amz2
)

+
3αMK

2π(M,N)

αmz2
[
2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη

]
(B.49)

Proof:

For the gradient respect to ψ, there exists compression error, but no estimation error:
∇ψĜB(η̂k, ψk, θk) := (1/B)

∑
i∈B∇ψÂi(η̂ki , ψki , θki), where η̂ki is the output of the adversary’s

inner problem at iteration k, η̂ki and∇ψĜB(η̂k, ψk, θk) satisfy the following equations:

η̂i = argmin
m=1,...,M
n=1,...,N

∥∥∥∇̂ηÂi (ηm,ni , ψi, θi)
∥∥∥ (B.50)

ψk+1 = ψk − αψ · ∇ψĜB(η̂k, ψk, θk) (B.51)

For the gradient respect to θ, there exist compression error and estimation error: ∇̂θĜB(η̂k, ψk, θk) :=
(1/B)

∑
i∈B ∇̂θÂi(η̂ki , ψki , θki), the ∇̂θĜB(η̂k, ψk, θk) satisfy the following equation:

θk+1 = θk − αθ · ∇̂θĜB(η̂k, ψk, θk) (B.52)

Furthermore, ∇ψGB(η∗,k, ψk, θk) and ∇θGB(η∗,k, ψk, θk) are true stochastic gradients,
∇ψR(η∗,k, ψk, θk) and ∇θR(η∗,k, ψk, θk) are true full gradients.
We begin with the inequality for the L-smoothness of ∇R(η∗,k, ψk, θk), and apply Proposition1,
k ∈ 0, 1, ...,K is the iteration indice, we can get:

R
(
η∗,k+1, ψk+1, θk+1

)
−R

(
η∗,k, ψk, θk

)
≤
〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥ψk+1 − ψk
∥∥2︸ ︷︷ ︸

a

+
〈
∇θR

(
η∗,k, ψk, θk

)
, θk+1 − θk

〉
+
Lθ
2

∥∥θk+1 − θk
∥∥2︸ ︷︷ ︸

b

(B.53)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

For (a):〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥ψk+1 − ψk
∥∥2

=
〈
∇ψR

(
η∗,k, ψk, θk

)
,−αψ · ∇ψĜB(η̂k, ψk, θk)

〉
+
Lψα

2
ψ

2

∥∥∥ ∇ψĜB(η̂k, ψk, θk)∥∥∥2
= −αψ(1−

Lψαψ
2

)||∇ψR
(
η∗,k, ψk, θk

)
||2+

Lψα
2
ψ

2
||∇ψĜB(η̂k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2

+ αψ(1− Lψαψ)
〈
∇ψR

(
η∗,k, ψk, θk

)
,∇ψR

(
η∗,k, ψk, θk

)
−∇ψĜB(η̂k, ψk, θk)

〉
= −αψ(1−

Lψαψ
2

)||∇ψR
(
η∗,k, ψk, θk

)
||2+

Lψα
2
ψ

2
||∇ψĜB(η̂k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2

+ αψ(1− Lψαψ)
〈
∇ψR

(
η∗,k, ψk, θk

)
,∇ψR

(
η∗,k, ψk, θk

)
−∇ψGB(η∗,k, ψk, θk)

〉
+ αψ(1− Lψαψ)

〈
∇ψR

(
η∗,k, ψk, θk

)
,∇ψGB(η∗,k, ψk, θk)−∇ψĜB(η̂k, ψk, θk)

〉
≤ −αψ(1−

Lψαψ
2

)||∇ψR
(
η∗,k, ψk, θk

)
||2+Lψα2

ψ||∇ψĜB(η̂k, ψk, θk)−∇ψGB(η∗,k, ψk, θk)||2

+ Lψα
2
ψ||∇ψGB(η∗,k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2

+ αψ(1− Lψαψ)
〈
∇ψR

(
η∗,k, ψk, θk

)
,∇ψR

(
η∗,k, ψk, θk

)
−∇ψGB(η∗,k, ψk, θk)

〉
+
αψ
2
(1− Lψαψ)||∇ψR

(
η∗,k, ψk, θk

)
||2+αψ

2
(1− Lψαψ)||∇ψGB(η∗,k, ψk, θk)−∇ψĜB(η̂k, ψk, θk)||2

= −αψ
2
||∇ψR

(
η∗,k, ψk, θk

)
||2+αψ

2
(1 + Lψαψ)||∇ψĜB(η̂k, ψk, θk)−∇ψGB(η∗,k, ψk, θk)||2

+ Lψα
2
ψ||∇ψGB(η∗,k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2

+ αψ(1− Lψαψ)
〈
∇ψR

(
η∗,k, ψk, θk

)
,∇ψR

(
η∗,k, ψk, θk

)
−∇ψGB(η∗,k, ψk, θk)

〉
(B.54)

Note that E
[
∇ψGB(η∗,k, ψk, θk)

]
= ∇ψR

(
η∗,k, ψk, θk

)
, where the expectation is taken over the

randomness of the mini-batch sampling. We can get:

E
[
∇ψR

(
η∗,k, ψk, θk

)
,∇ψR

(
η∗,k, ψk, θk

)
−∇ψGB(η∗,k, ψk, θk)

]
= 0 (B.55)

Then, we can get:

E
[〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥ψk+1 − ψk
∥∥2]

≤ −αψ
2
E
[
||∇ψR

(
η∗,k, ψk, θk

)
||2
]
+
αψ
2
(1 + Lψαψ)E

[
||∇ψĜB(η̂k, ψk, θk)−∇ψGB(η∗,k, ψk, θk)||2

]
+ Lψα

2
ψE
[
||∇ψGB(η∗,k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2
]

(B.56)

Under Assumption 2, we can get:

E
[
||∇ψGB(η∗,k, ψk, θk)−∇ψR

(
η∗,k, ψk, θk

)
||2
]
≤ σ2

ψ (B.57)

Furthermore, under Lemma 5 and Lemma 7, we can get:

E
[
||∇ψĜB(η̂k, ψk, θk)−∇ψGB(η∗,k, ψk, θk)||2

]
≤ 2E

[
||∇ψĜB(η̂k, ψk, θk)−∇ψGB(η̂k, ψk, θk)||2

]
+ 2E

[
||∇ψGB(η̂k, ψk, θk)−∇ψGB(η∗,k, ψk, θk)||2

]
≤ 2H2

ψCEk + 2
L2
ψη · ζk

z2
(B.58)

Finally, we can be obtained:

E
[〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥ψk+1 − ψk
∥∥2]

≤ −αψ
2
E
[
||∇ψR

(
η∗,k, ψk, θk

)
||2
]
+
αψ
2
(1 + Lψαψ)(2H

2
ψV Ek + 2

L2
ψη · ζk

z2
) + Lψα

2
ψσ

2
ψ

(B.59)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

For (b), similar to the proof for ψ in B.56), for θ, we can get:

E
[〈
∇θR

(
η∗,k, ψk, θk

)
, θk+1 − θk

〉
+
Lψ
2

∥∥θk+1 − θk
∥∥2]

≤ −αθ
2
E
[
||∇θR

(
η∗,k, ψk, θk

)
||2
]
+
αθ
2
(1 + Lθαθ)E

[
||∇̂θĜB(η̂k, ψk, θk)−∇θGB(η∗,k, ψk, θk)||2

]
+ Lθα

2
θE
[
||∇θGB(η∗,k, ψk, θk)−∇θR

(
η∗,k, ψk, θk

)
||2
]

+ αθ(1− Lθαθ)E
[
∇θR

(
η∗,k, ψk, θk

)
,∇θR

(
η∗,k, ψk, θk

)
−∇θGB(η∗,k, ψk, θk)

]
(B.60)

Under Assumption 2, we can get:

E
[
nablaθR

(
η∗,k, ψk, θk

)
,∇θR

(
η∗,k, ψk, θk

)
−∇θGB(η∗,k, ψk, θk)

]
= 0 (B.61)

E
[
||∇θGB(η∗,k, ψk, θk)−∇θR

(
η∗,k, ψk, θk

)
||2
]
≤ σ2

θ (B.62)

Furthermore, under Lemma 3, Lemma 5 and Lemma 7, we can get:

E
[
||∇̂θĜB(η̂k, ψk, θk)−∇θGB(η∗,k, ψk, θk)||2

]
≤ 3E

[
||∇̂θĜB(η̂k, ψk, θk)−∇θĜB(η̂k, ψk, θk)||2

]
+ 3E

[
||∇θĜB(η̂k, ψk, θk)−∇θGB(η̂k, ψk, θk)||2

]
+ 3E

[
||∇θGB(η̂k, ψk, θk)−∇θGB(η∗,k, ψk, θk)||2

]
≤ 3

L2µ2d2

4
+ 3Q2

θH
2
θCEk + 3

L2
θη · ζk

z2
(B.63)

Finally, we can be obtained:

E
[〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥ψk+1 − ψk
∥∥2]

≤ −αθ
2
E
[
||∇θR

(
η∗,k, ψk, θk

)
||2
]
+
αθ
2
(1 + Lθαθ)(3

L2µ2d2

4
+ 3Q2

θH
2
θCEk + 3

L2
θη · ζk

z2
) + Lθα

2
θσ

2
θ

(B.64)

Substituting a) and b), we can get:

E
[
R
(
η∗,k+1, ψk+1, θk+1

)
−R

(
η∗,k, ψk, θk

)]
≤ E

[〈
∇ψR

(
η∗,k, ψk, θk

)
, ψk+1 − ψk

〉
+
Lψ
2

∥∥ψk+1 − ψk
∥∥2]

+ E
[〈
∇θR

(
η∗,k, ψk, θk

)
, θk+1 − θk

〉
+
Lθ
2

∥∥θk+1 − θk
∥∥2]

≤ −αψ
2
E
[
||∇ψR

(
η∗,k, ψk, θk

)
||2
]
+
αψ
2
(1 + Lψαψ)(2H

2
ψCEk + 2

L2
ψη · ζk

z2
) + Lψα

2
ψσ

2
ψ

− αθ
2
E
[
||∇θR

(
η∗,k, ψk, θk

)
||2
]
+
αθ
2
(1 + Lθαθ)(3

L2µ2d2

4
+ 3Q2

θH
2
θCEk + 3

L2
θη · ζk

z2
) + Lθα

2
θσ

2
θ

(B.65)

Since ψ and θ are updated synchronously in the outer loop, we take αm = min {αψ, αθ}, and
combine the gradient:

E
[
R
(
η∗,k+1, ψk+1, θk+1

)
−R

(
η∗,k, ψk, θk

)]
≤ −αm

2
E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]
+
αψ
2
(1 + Lψαψ)(2H

2
ψCEk + 2

L2
ψη · ζk

z2
) + Lψα

2
ψσ

2
ψ

+
αθ
2
(1 + Lθαθ)(3

L2µ2d2

4
+ 3Q2

θH
2
θCEk + 3

L2
θη · ζk

z2
) + Lθα

2
θσ

2
θ (B.66)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Summing these inequalities from k = 0 to K − 1, take E = max
k=0,...,K−1

(Ek), and then ζ =

max
k=0,...,K−1

(ζk):

1

K

K−1∑
k=0

αm
2

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]

≤ 1

K

K−1∑
k=0

E
[
R
(
η∗,k, ψk, θk

)
−R

(
η∗,k+1, ψk+1, θk+1

)]
+
αψ
2
(1 + Lψαψ)(2H

2
ψCE + 2

L2
ψη · ζ
z2

) + Lψα
2
ψσ

2
ψ

+
αθ
2
(1 + Lθαθ)(3

L2µ2d2

4
+ 3Q2

θH
2
θCE + 3

L2
θη · ζ
z2

) + Lθα
2
θσ

2
θ

= E
[
R
(
η∗,0, ψ0, θ0

)
−R

(
η∗,K, ψK, θK

)]
+
αψ
2
(1 + Lψαψ)(2H

2
ψCE + 2

L2
ψη · ζ
z2

) + Lψα
2
ψσ

2
ψ

+
αθ
2
(1 + Lθαθ)(3

L2µ2d2

4
+ 3Q2

θH
2
θCE + 3

L2
θη · ζ
z2

) + Lθα
2
θσ

2
θ (B.67)

Then, we define Λ = R
(
η∗,0, ψ0, θ0

)
− infk(R

(
η∗,k, ψk, θk

)
) and αM = max {αψ, αθ}:

1

K

K−1∑
k=0

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]

≤ 2Λ

αmK
+
αψ(1 + Lψαψ)

αm
(2H2

ψCE + 2
L2
ψη · ζ
z2

) +
2Lψα

2
ψσ

2
ψ

αm

+
αθ(1 + Lθαθ)

αm
(3
L2µ2d2

4
+ 3Q2

θH
2
θCE + 3

L2
θη · ζ
z2

) +
2Lθα

2
θσ

2
θ

αm

≤ 2Λ

αmK
+
αM (1 + LψαM)

αm
(2H2

ψCE + 2
L2
ψη · ζ
z2

) +
2Lψα

2
Mσ

2
ψ

αm

+
αM (1 + LθαM)

αm
(3
L2µ2d2

4
+ 3Q2

θH
2
θCE + 3

L2
θη · ζ
z2

) +
2Lθα

2
Mσ

2
θ

αm

= (
2Λ

αmK
+

2Lψα
2
Mσ

2
ψ

αm
+

2Lθα
2
Mσ

2
θ

αm
) +

αM
αm

[
2(1 + LψαM)H2

ψCE + 3(1 + LθαM)Q2
θH

2
θCE

]
+

3αM (1 + LθαM)L2µ2d2

4αm
+
αMτ

αmz2
[
2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη

]
= (

2Λ

αmK
+

2Lψα
2
Mσ

2
ψ

αm
+

2Lθα
2
Mσ

2
θ

αm
) + E αM

αm

[
2(1 + LψαM)H2

ψC + 3(1 + LθαM)Q2
θH

2
θC
]

+ µ2 3αM (1 + LθαM)L2d2

4αm
+
αMτ

αmz2
[
2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη

]
= (

2Λ

αmK
) + (

2Lψα
2
Mσ

2
ψ

αm
+

2Lθα
2
Mσ

2
θ

αm
)

+ E αM
αm

[
2(1 + LψαM)H2

ψC + 3(1 + LθαM)Q2
θH

2
θC +

3H2
θCπ(M,N)

z2
(2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη)

]
+ µ2(

3αM (1 + LθαM)L2d2

4αm
+

3π(M,N)L2d2aM (1 + LψαM)L2
ψη

2amz2
+

9π(M,N)L2d2aM (1 + LθαM)L2
θη

4amz2
)

+
3αMK

2π(M,N)

αmz2
[
2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη

]
(B.68)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Corollary 1 According to Theorem 1:If we choose αθ and αψ asO(1√
K), µ = O(1

K
1
4
), E = O(1√

K),

Γ = O(1√
K), we can derive the sublinear convergence rate:

1

K

K−1∑
k=0

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]
≤ O(1√

K
) +O(N

M
) (B.69)

Proof:

1

K

K−1∑
k=0

E
[
||∇R

(
η∗,k, ψk, θk

)
||2
]

≤ O(1√
K
)[(2Λ) + (2Lψσ

2
ψ + 2Lθσ

2
θ)

+ 2(1 + LψαM)H2
ψC + 3(1 + LθαM)Q2

θH
2
θC +

3H2
θCπ(M,N)

z2
(2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη)

+ (
3αM (1 + LθαM)L2d2

4αm
+

3π(M,N)L2d2aM (1 + LψαM)L2
ψη

2amz2
+

9π(M,N)L2d2aM (1 + LθαM)L2
θη

4amz2
)]

+
3K2π(M,N)

z2
[
2(1 + LψαM)L2

ψη + 3(1 + LθαM)L2
θη

]
= O(1√

K
) +O(N

M
) (B.70)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

C EXPERIMENT DETAILS

C.1 DATASET DETAILS

Our experiments were constricted on public datasets MNIST and CIFAR10:

• MNIST LeCun et al. (1998): A benchmark dataset for image classification, comprising
60,000 examples for training and 10,000 examples for testing.

• CIFAR10 Krizhevsky (2009): Another public dataset for image classification that consists
of 60,000 images categorized into 10 classes.

To simulate the VFL scenario, we allocated distinct features to each party based on the described
methodology in prior works Luo et al. (2021); Qiu et al. (2022); Fu et al. (2022). We partition the
last dimension of the features according to the feature proportion of each client. We use masking to
ensure that each client receives distinct features.

C.2 ADVERSARIAL ATTACK

To validate robustness, we employed a suite of adversarial attack methods. FGSM is a fast, non-
iterative attack Kurakin et al. (2016); PGD-r iteratively perturbs input data using gradient information
to maximize the model’s loss Madry et al. (2017); and CW uses a custom loss function to ensure
minimal perturbations while achieving misclassification Carlini & Wagner (2017). CERTIFY (CER)
generates adversarial perturbations with Gaussian noise Cohen et al. (2019). For black-box attacks,
we combined adversarial methods with zeroth-order optimization: FGSM (ZO-FGSM) and PGD
(ZO-PGD) Chen et al. (2017). We also considered scenarios involving a third-party adversary,
corrupting embeddings using different client selection strategies, including Thompson Sampling with
Empirical Maximum Reward (E-TS) Duanyi et al. (2023) and All Corruption Patterns (ALL).

C.3 HYPERPARAMETERS

For the parameter updates of both the server and client models, we have adopted the Adam optimizer
with a uniform learning rate of αψ = αθ = 0.0001.

Moreover, We follow the hyperparameters choices of Carlini & Wagner (2017); Croce & Hein (2020);
Kurakin et al. (2016); Shafahi et al. (2019); Zhang et al. (2019); Zhu et al. (2019) for training.

Table 8: Hyperparameters for Adv. Training

Dataset Client batch ZOO Compress Adv. DecVFAL PGD FreeAT FreeLB
Model size q µ type bit ϵ σ m n n n n

MNIST MLP 32 100 0.05 scale 2 0.02 0.002 5 10 40 8 40
CIFAR10 ResNet-18 80 200 0.5 scale 2 8/255 1/255 6 2 10 8 10
MNIST ResNet-18 32 100 0.05 scale 2 0.3 0.35 6 8 40 8 40

Table 9: Hyperparameters for Attack

Dataset Client ZOO FGSM PGD CW CER ZO-FGSM ZO-PGD ALL & E-TS
Model q µ ϵ n ϵ σ n σ c ϵ ϵ n ϵ σ n ϵ σ

MNIST MLP 100 0.05 16/255 40 24/255 4/255 100 0.32 0.5 128/255 64/255 40 96/255 12/255 10 96/255 12/255
CIFAR10 ResNet-18 200 0.05 0.01 10 10/255 1/2550 100 128/255 0.8 64/255 32/255 40 32/255 2/255 1 32/255 64/255
MNIST ResNet-18 100 0.05 96/255 40 64/255 2/255 100 0.8 0.5 204/255 64/255 40 153/255 16/255 40 128/255 16/255

C.4 ENVIRONMENT

In our experiments, we utilized the following software environment: PyTorch version 2.2.1, CUDA
version 12.1, and Python version 3.11. The hardware specifications are detailed in Table 10.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 10: Hardware Specifications

Experiment Description CPU GPU

MNIST Robust Training AMD EPYC 7551P A4000*1
CIFAR-10 Robust Training AMD EPYC 7452 4090*4
Performance across various NN architectures Intel E5-2683 v4 4090*1
Impact of split position AMD EPYC 7J13 4090*4
Impact of the number of modules AMD EPYC 7J13 4090*4
Impact of the number of the clients Intel Platinum 8336C 4090*8
Limitation of the setting of M and N, M = 5 AMD EPYC 7J13 4090*4
Limitation of the setting of M and N, M = 10 Intel Fold 6430 4090*8

C.5 PERFORMANCE ACROSS VARIOUS NN ARCHITECTURES.

We expanded our experiments by incorporating ResNet18 on the MNIST dataset, introducing a
different architectural context for evaluating our framework. Similar as experiments in CIFAR-10,
the entire model is partitioned into three modules: the first layers of the client models, the remaining
layers of the client models, and the server’s single-layer perceptron. As shown in Table 11, DecVFAL
achieves the best robust performance while requiring only one-seventh of the training time per epoch
for PGD adversarial training.

Table 11: Results of MNIST Robust Training with Resnet-18

Training Clean White-Box Adv. Atk Black-Box Adv. Atk Third Adv. Train Time
Methods Accuracy FGSM PGD CW CER ZO-FGSM ZO-PGD ALL E-TS (s/epoch)

None 98.66 56.56 12.26 20.99 68.37 48.67 71.43 47.96 75.71 90.86
PGD 98.23 84.73 74.74 21.16 83.98 38.21 83.69 44.56 72.49 1180.74

FreeAT 98.44 79.47 82.20 52.33 90.82 94.84 89.04 46.52 70.15 332.63
FreeLB 98.82 70.81 40.68 31.53 80.05 36.51 81.27 65.91 87.07 1419.10
YOPO 98.72 83.11 82.13 21.30 87.44 54.13 87.33 71.05 88.98 240.62

DP 98.63 80.20 66.63 29.80 80.63 42.68 81.55 44.77 70.31 1175.02
MP 98.12 81.38 74.47 36.31 86.42 53.64 84.84 50.38 74.10 1181.69

Asy-PGD 98.05 79.42 76.27 27.57 85.93 42.63 84.71 57.95 80.16 1167.09
DecVFAL 98.98 89.00 83.20 50.80 93.91 90.95 91.17 60.22 84.14 167.89

C.6 EVALUATION UNDER ATTACKS INVOLVING CORRUPTION PATTERN SELECTION

To further assess our framework’s resilience in more complex attack scenarios, we conducted
experiments on the MNIST dataset using seven clients. Specifically, we evaluated DecVFAL and
baseline methods against attacks involving corruption pattern selection. In this setup, adversaries
could selectively corrupt client data or communications. The server model remained a single-layer
perception. We implemented various corruption patterns, including E-TS, RC, and FC. As shown in
Table 12, the results demonstrated that even under these challenging conditions, DecVFAL maintained
superior performance compared to baseline methods.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 12: Results of evaluation under attacks with various corruption patterns

Corrupted clients: 1/7
Training White-Box Adv. Atk Black-Box Adv. Atk Third Adversary Atk
Methods PGD FGSM CW CER ZO-FGSM ZO-PGD E-TS FC RC

PGD 92.238 94.01 93.85 94.091 94.03 93.399 88.842 88.922 88.982
DecVFAL 95.613 96.575 96.795 96.605 96.585 96.044 93.048 93.87 93.219

Corrupted clients: 3/7
Training White-Box Adv. Atk Black-Box Adv. Atk Third Adversary Atk
Methods PGD FGSM CW CER ZO-FGSM ZO-PGD E-TS FC RC

PGD 79.888 87.099 93.359 94.101 92.819 92.758 77.364 78.105 77.754
DecVFAL 86.569 92.949 96.044 96.404 95.543 94.922 84.816 85.577 84.685

Corrupted clients: 5/7
Training White-Box Adv. Atk Black-Box Adv. Atk Third Adversary Atk
Methods PGD FGSM CW CER ZO-FGSM ZO-PGD E-TS FC RC

PGD 64.724 80.689 91.526 93.279 90.935 91.587 69.03 68.53 69.111
DecVFAL 78.235 87.31 91.987 96.044 93.049 94.121 75.972 76.062 76.322

34

	Introduction
	Related Works
	Problem Definition
	Methodology
	Revisit Backpropagation for VFAL training
	Dual-Level Decoupled Mechanism
	Acceleration of DecVFAL

	Convergence Analysis
	Experiments
	Experiment Setups
	Evaluation on Robustness
	Evaluation on computational efficiency
	Ablation Study

	Conclusions
	Background
	Vertical Federated Learning
	Vertical Federated Adversarial Learning
	Threat Model
	Adversarial Training as a Dynamical System
	Zeroth Order Optimization
	Communication Compression

	Convergence analysis
	Notations
	Assumptions
	Proposition
	Definition
	Lemma

	Experiment Details
	Dataset details
	Adversarial attack
	Hyperparameters
	Environment
	Performance across various NN architectures.
	Evaluation under attacks involving corruption pattern selection

