Under review as a conference paper at ICLR 2025

ACCELERATE VERTICAL FEDERATED ADVERSARIAL
LEARNING WITH DUAL-LEVEL DECOUPLED BACK-
PROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Vertical Federated Learning (VFL) involves multiple participants collaborating to
train models on distinct feature sets from the same data samples. The distributed
deployment of VFL models renders them vulnerable to adversarial perturbations
during inference, motivating the need to visit the VFL robustness problem. Adver-
sarial Training (AT) is the predominant approach for enhancing model robustness.
However, its application in VFL, termed Vertical Federated Adversarial Learning
(VFAL), faces significant computational challenges: Generating adversarial ex-
amples in AT requires iterative full propagations across participants with heavy
computation overload, resulting in VFAL training time far exceeding those of
regular VFLs. To address this challenge, we propose DecVFAL, an accelerated
VFAL framework through a novel Decoupled backpropagation incorporating a
dual-level decoupled mechanism to enable lazy sequential and decoupled parallel
backpropagation. Lazy sequential backpropagation sequentially updates the adver-
sarial example using timely partial derivatives with respect to the bottom module
and delayed partial derivatives for the remaining modules. Decoupled parallel
backpropagation updates these delayed partial derivatives by utilizing module-wise
delayed gradients, enabling asynchronous parallel backpropagation with flexible
partitions that align with VFL’s distributed deployment. Rigorous theoretical anal-
ysis demonstrates that despite introducing multi-source approximate gradients due
to the dual decoupled mechanism and the techniques from the existing VFL meth-
ods, DecVFAL achieves a O(1/+v/K) convergence rate after K iterations, on par
with regular VFL systems. Experimental results show that, compared to existing
methods, DecVFAL ensures competitive robustness while significantly achieving
about 3 ~ 10 times speed up on various datasets.

1 INTRODUCTION

Federated learning (FL) enables collaborative training of deep learning models among distributed
participants without sharing raw data McMahan et al.| (2016). Conventionally, most FL research
considers Horizontal Federated Learning (HFL), which assumes distributed clients possess data
with identical features but varying sample spaces|Zhao et al.|(2021)). In contrast, Vertical Federated
Learning (VFL) assumes distributed clients share the same samples but have different features [Liu
et al.| (2024); |Wei et al.| (2022). VFL model comprises a server-maintained top model and client-side
bottom models that map local data features to embeddings. During inference, each client computes
the local embedding of data features and uploads to the server through a communication channel for
prediction |Liu et al.| (2024). Due to its advantages in facilitating data collaboration across multiple
industries, VFL has gained increasing attention in various domains such as recommendation systems
Cui et al.|(2021); Yuan et al.[(2022), finance [Long et al.| (2020); (Chen et al.| (2021a), healthcare \Song
et al.|(2021); (Cha et al.| (2021}, and emerging applications [Ieimoori et al. (2022); |Ge et al.[(2022).

Machine Learning (ML) models have demonstrated vulnerability to adversarial attacks, carefully
crafted inputs designed to induce misclassification during inference. Recent studies highlight that this
susceptibility becomes even more pronounced in the VFL context due to its decentralized architecture
Huang et al.| (2024); Duanyi et al.[(2023)). Adversarial attacks in VFL can manifest in multiple forms:
through malicious or colluding clients perturbing local features of raw data|Pang et al.| (2022); [Qiu



Under review as a conference paper at ICLR 2025

et al.[(2022), or via third-party adversary intercepting and altering embeddings during client-server
communication |[Duanyi et al.|(2023). These diverse attacks underscore the unique security challenges
in VFL systems, motivating the urgent need to address the VFL robustness problem.

Extensive research has been conducted on defenses against adversarial attacks, with Adversarial
Training (AT) emerging as the most empirically robust approach to date Tramer et al.| (2018). AT
is a min-max robust training method that minimizes the worst-case training loss at adversarially
perturbed examples Madry et al|(2017)). The deployment of AT in the FL paradigm, termed Federated
Adversarial Learning (FAL), has garnered attention, with a particular focus on HFL scenarios, where
each participant maintains a complete copy of the model|Li et al.|(2023). These studies incorporate
AT into clients’ local training steps and focus on non-IID settings and secure aggregation solutions
L1 et al.|(2023); |Deng et al.|(2020); Bhagoji et al.| (2019); |Zizzo et al.| (2020); |Zhang et al.| (2022al).
However, in VFL scenarios, a single global model is partitioned and distributed among the server and
clients, resulting in a different architecture for Vertical Federated Adversarial Learning (VFAL). To
the best of our knowledge, VFAL has yet to be thoroughly investigated in the current literature.

Due to layer-wise distributed deployment, VFAL presents unique computational efficiency challenges.
Adversarial sample generation during AT is computationally intensive, requiring sequential forward
and backward propagation to calculate gradients with respect to the input for iterative refinement
Madry et al.|(2017)). In VFL context, inherent sequential dependencies across layers cause participants’
models to remain idle until receiving necessary information (embeddings or gradients) from adjacent
layers on other participants (Figure [T}Heft). Consequently, the training time for VFAL significantly
exceeds that of regular VFLs. To illustrate, VFAL using PGD-20 requires about 20 times more
computational cost than regular VFL due to 20 iterations needed to generate each adversarial example.

Several works have focused on accelerating AT-based robust training, but they are designed for
centralized model training without consideration for adaptation to VFAL. Examples include YOPO
estimates the gradient on the input by only propagating the first layer|Zhang et al.| (2019), FreeAT
reuses gradients for multiple steps to update both adversarial examples and model parameters, Shafahi
et al.[(2019), Amata adjusts the number of inner maximization steps with an annealing mechanism
Ye et al.[(2021), Bhat & Tsipras|(2019) propose asynchronously generating adversarial examples
leveraging data parallelism, and FGSM-PGK assembles the prior-guided initialization and model
weights Jia et al.| (2024). Another line of research explores the design of computational efficient
vanilla VFL frameworks, including multiple client updates Zhang et al.| (2022b)), asynchronous
coordination |Li et al.| (2020), compression |Castiglia et al.| (2022); [Li et al.| (2020), sample and
feature selection |Castiglia et al.| (2023); [Huang et al.| (2022) one-shot communication Wu et al.
(2022)); |Cha et al.| (2021). While these studies have made significant strides in improving the
computational efficiency of VFL, they lack a comprehensive investigation into the integration with
VFAL framework. Taking into account these observations and challenges, a natural question arises:
In light of the intensive adversarial sample generation and inherent sequential dependencies,
how can we accelerate VFAL training while maintaining robust performance?

Decoupled parallel backpropagation Lazy Sequential Backpropagation

Figure 1: Comparison of one-time full propagation for adversarial example generation: VFL with
PGD (left) versus DecVFAL (right).



Under review as a conference paper at ICLR 2025

To tackle the computational efficiency challenge in training robust VFL models, we propose DecV-
FAL, an accelerated VFAL framework through a novel Decoupled backpropagation incorporating a
dual-level decoupled mechanism (Figure[I}right). DecVFAL first decouples the bottom module from
the remaining modules and introduces lazy sequential backpropagation, which periodically treats the
partial derivatives of the remaining modules as fixed and utilizes timely partial derivatives for the
bottom module to execute multiple sample updates sequentially, avoiding frequent complete gradient
propagation. Furthermore, while updating the adversarial samples at the bottom module, DecVFAL
updates the partial derivatives of the remaining modules through decoupled parallel backpropagation,
where each module independently updates its partial derivatives with module-wise delayed gradients
on separate processors, achieving asynchronous parallel backpropagation.

Contributions (i) We propose DecVFAL, which incorporates a dual-level decoupled mechanism
to enable lazy sequential and decoupled parallel backpropagation, significantly accelerating VFAL
training while maintaining robust performance. (ii) Our rigorous theoretical analysis reveals that
despite the introduction of multi-source approximate gradients, DecVFAL maintains an O(1/ \/E)
convergence rate after C iterations, matching that of standard VFLs, underscoring the superiority
of DecVFAL. (iii) Comprehensive experimental evaluations demonstrate that DecVFAL not only
achieves competitive robust performance but also delivers a remarkable 3 ~ 10 fold acceleration
compared to existing adversarial training methods compatible with VFL.

2 RELATED WORKS

Adversarial Attack in VFL. Research highlights the need for robust VFL models|Ye et al.| (2024),
while introducing novel adversarial attack techniques |Duanyi et al.| (2023)); (Chen et al|(2022). In
relaxed VFL protocols, where clients can access the server model and outputs from other clients [Luo
et al. (2021); [Wang| (2019); Lundberg & Lee (2017, a wide range of white-box adversarial attacks
Madry et al.|(2017); [Carlini & Wagner|(2017)); Croce & Hein| (2020); |[Kurakin et al.| (2016)) become
feasible through malicious and colluding clients. Standard VFL protocols, despite restricting critical
information, remain vulnerable to black-box adversarial attacks [Chen et al.| (2017). Additionally,
Chen et al.| (2022) employs a GAN-based method with a surrogate model and semi-supervised
learning to generate performance-impairing perturbations. Further expanding the threat landscape,
Duanyi et al.| (2023)) explores third-party adversaries through an online optimization method that
disrupts inference, integrating adversarial example generation with corruption pattern selection.

Adpversarial Training. AT enhances model robustness by incorporating adversarial examples, with
its effectiveness depending on the strength of those examples Goodfellow et al. (2014). While
non-iterative attacks like FGSM offer some resilience, they remain vulnerable to more advanced
methods [Kurakin et al.| (2016). Projected Gradient Descent (PGD) [Madry et al.| (2017) provides
superior robustness against obfuscated gradient defenses |Athalye et al.|(2018) but is computationally
expensive due to frequent adversarial updates. Free AT Shafahi et al.|(2019) combines the updates of
adversarial examples and model parameters in one backward pass, YOPO Zhang et al.|(2019) focuses
on adversarial example updates at first-layer, and FreeL.B [Zhu et al.|(2019) accumulates gradients
and update parameters after completing adversarial iterations. While these methods offer promising
approaches to balance robustness and efficiency in AT, their applicability and effectiveness within the
VFAL framework remain unexplored, highlighting a critical gap in current research.

Decouple Training. The inherently sequential nature of forward and backward propagation in neural
network training has long been a focus of optimization, with researchers proposing various innovative
methods to decouple the process and improve computational efficiency. Notable contributions include
the Alternating Direction Method of Multipliers (ADMM), which decomposes the optimization
problem into smaller, more manageable subproblems, facilitating parallel processing Taylor et al.
(2016). Synthetic Gradients enable asynchronous updates by predicting gradients for each layer,
reducing dependencies between network components |Jaderberg et al.|(2017). The delayed Gradient
Method allows for parallel processing of different network sections, potentially speeding up training,
by introducing a temporal shift in gradient computation Huo et al.|(2018bza);/Zhao et al.|(2024). Lifted
Machines involves transforming the network architecture to create opportunities for parallelization,
thereby improving computational efficiency |Gu et al.| (2020); L1 et al.|(2019).



Under review as a conference paper at ICLR 2025

3  PROBLEM DEFINITION

Notations. In the VFL framework consisting of one server and C' clients|Liu et al.|(2024), we consider
a classifier represented by a T-layer deep neural network f(O; z), where x denotes the input and ©
the set of trainable parameters. The training dataset is denoted as {(x¢ 4, y,)}l 1> with S representing
the total number of samples. Each sample is composed of features from different clients, specifically
Toi = [T0,,(1),- - - Z0,i,()]. The classifier comprises client models [f(1), ..., f(c)] parameterized
by [0(1), . .,0(c)] and a server model f, parameterized by 1. The classifier function is expressed as

[(©,20,) = fod; fyl0ays Zo,i, 1)) - - -5 froy [9(0);$o,i}, where © = [0y, ..., 0y, ¥]. All

notations used in this paper are summarized in Appendix

Vertical Federated Adversarial Learning. Building upon the standard VFL models and the minimax
problem in AT, a T-layer neural network f is defined recursively as: x; = fi(2:-1,0¢),t =1,...,T,
where x; are the output of the ¢-th layer, ©, are the parameters of layer f;, © denotes the concatenation
of (©¢)1<t<7. VFAL addresses problems of the following general form:

S S T
Hgn max ;E(zT,i;yi)‘i’ZZRf O xi—1,)
1=

il oo <€ :
Inilloe< Lt et B
subjectto  xy; = fi(Onxi-14), i=1,...,§, t=2,...,T
r1i = f1(O1; 20, + 7:), 1—1»'-~,5

where t. is the number of client model layers, for t. < t < T, ©; = ,_,, are the server model
parameters; for 0 < t < t,, ©; = [Gt,(l),...,ﬂt’(c)} are the client model parameters. 7; =
7i,(1)s - - - » Mi,(c) Tepresents adversarial perturbations on sample i, constrained by [[7]|c< € (a
non-negative scalar ¢ limits the perturbation magnitude). £(-;y) is the loss function, and z¢; =
f(©;z0,; + n;) is the final output: z7; = f(©;20,; + 1) = fr(Or; fr—1(Or_1;... f1(O1;20, +
7:)...)), R is a potential regularization term for layer f;.

4 METHODOLOGY

4.1 REVISIT BACKPROPAGATION FOR VFAL TRAINING

Addressing the problem (3.1I)), VFAL training involves two types of backpropagation. The primary
computational cost of VFAL arises from the multi-step gradient ascent, therefore, this paper focuses
on the acceleration of the adversarial perturbation backpropagation.

Adversarial Perturbation Backpropagation. For inner maximization, we keep the model parameter
fixed. The adversarial perturbations are updated via multi-step gradient ascent: n‘t' = 5® +
an Vi L(1] ‘), where L(n Y = L(f(©%;z9 +n');y), £ is the inner iteration index, k is the outer
iteration index and av, is the step size. In the forward pass, the activations of all layers are calculated
from ¢t = 1 to T'. In the backward pass, chain rule is applied to compute these gradients and propagate
L) _ oz 9L(n)

the error gradients through the network from ¢ = 7' to 1: 92l = Bal . oal

The computation at

layer ¢ is dependent on the error gradient oL (" ) from layer ¢t 4+ 1. The gradient to 7 is calculated at

first layer: V,,L(n%) = ‘925777 ) % i ngzi ).

Model Parameter Backpropagation. After obtaining the perturbation 7 through inner maximization,
dzk ac(eF)
90F " 9aF

we update O via gradient descent using Vg, £(OF) = computed during backpropagation

w.r.t. the parameters O.

Backward Locking. Consistent with VFAL's distributed deployment, we can partition a 7-layer
neural network into M g < T modules. The above formulation reveals that the partial derivatives
computation in module fa4, remains dependent on the error gradient from module fu4, +1. This
creates a "lock" that prevents layers/modules from partial derivative updating until they receive
backward results from their dependent counterparts. As shown in Figure [T}Heft, each adversarial
example update of PGD in VFL context requires sequential propagating error gradients from the
output layer back to the input layer.



13

Under review as a conference paper at ICLR 2025

4.2 DUAL-LEVEL DECOUPLED MECHANISM

To address the training efficiency bottleneck, DecVFAL introduces a dual-level decoupled mechanism
that utilizes module-wise staleness to untether the dependencies across layers inherent in VFAL.
As shown in Figure [T}right, DecVFAL utilizes delayed gradients to eliminate backward locking,
enabling module-wise asynchronous backpropagation. It restricts perturbation update propagations
to the bottom model to reduce full propagations and utilizes gradients from disparate iterations to
achieve parallel backward computation. We summarize the proposed algorithm in Algorithm [T]and
present the details of DecVFAL in the following sections.

Algorithm 1: DecVFAL

Input: Learning rates o, vy, ovp; Train set {X,Y'}.
Output: Model parameters © = {01), 02y, ..., 0y, ¥}

1 Initialization: Clients and Server initialize model parameters 61,6 2), - . -, 0(c), ¥;
2 while not convergent do

3 Randomly select a sample x;

4 for m =11t M do

5 Lm o f(xo _|_,r]7n,n);

6 for k = 1 to M in parallel do

7 if K = 7 then

8 for n = 0 to N-1 do

) 2 g, (20 + 1)

10 Updates adversarial perturbation:

1 nm,n-i-l — nm,n + aan1v77fM1;

12 Backward computation with delayed gradient 5§;_Tk :

My
5?@71’“ — E;SZle 6£§zt - te (th—Uth};

14 for each client c do

15 t Update client model parameters 9?:;1 00y — agVoL(f(xo+n™"));

16 | Update server model parameters ¢! < % — oy Vi L( f (wo + n™™)).

Lazy Sequential Backpropagation. A key observation in VFAL is that the adversarial perturbation is
directly coupled with the bottom module of the network. This insight allows us to decouple the bottom
module f, and the remaining modules f 3 (© 5, 5T, ), Where foy = far, © faag © oo fres
and z o, is the output of bottom module. The VFAL classifier can be rewritten as: f(©;xq +n) =
Iat, (O a1, My (O amy, o +1). PGD-based AT (PGD-r) involves r sweeps of forward and backward
propagation to generate an adversarial example, resulting in extensive computational cost. To mitigate
this, we introduce a "lazy" backpropagation mechanism by freezing a slack variable p 4, .

DM, = VfMl (E(fMl(fMl((—)Ml;‘rO + 77))’ y)) : VfMl (féM1 (fMl(GMl;mo T 77))) @D

DM, 1s obtained after each full backpropagation. The adversarial perturbation 7 is updated using pa,
and NN-step gradient ascent, while keeping the network parameters O fixed (lines 7-11 in Algorithm
[I). As shown in Figure[2] DecVFAL accesses the data M x N times for each adversarial example
generation while only requiring M full forward and backward propagation, where M < r.

This frozen slack variable introduces an oracle error in adversary updating, resulting in a delayed
gradient. Inspired by the optimal control theory [Li et al.| (2018)); |[Li & Haol (2018)); |[Seidman et al.
(2020) and under Assumptions in (B.2), we bound costate difference at bottom module in Lemma I}

Lemma 1. Bound the costate difference at the bottom module. There exists a constant G' dependent
on T and K such that for alln € {0,...,N}, m € {0,..., M}, andi € {1,...,S}:

m—r1,0

m,N
Pmyi —Pmyi

< Ga, ( MgN —1). 4.2)



Under review as a conference paper at ICLR 2025

Where G' = TKTHY KT + T(T — 1)K*T=2 + TK?T), m is the iteration index of full propagation,
Ty is the delay of module M raised from parallel backpropagation.

Decoupled Parallel Backpropagation. We 3 T T~
decouple backpropagation across the entire net- 2 | I\I/Il/l | }\
work using delayed gradients, enabling paral- ! 0 1 2
lel updates of the partial derivatives in the re- 0 0 0
maining modules for lazy sequential backprop- 3
agation. The forward pass is performed from 2
module 1 to module M. In backward pass, 00 A \llgl\ - \J){l\‘ - \SI’{'\‘ - \‘4 3
all modules except the last one store delayed “0 ‘0 ‘0 “0 ‘0
error gradients, allowing to perform the back- Time. >
ward computation without locking. The mod- . . —

SL™ Tk Propagation Propagation Propagation dle

ule fa, keeps the stale error gradient ST
k

7 = Mg — Mj. Therefore, aside from the
bottom module performing lazy backpropaga-
tion, the backward computation in the remain-
ing modules fa4, is as follows:

Figure 2: Comparison of computation time: VFL
with PGD (up) versus DecVFAL (down). DecV-
FAL updates adversarial examples 4 x 3 times in
approximately the same time as performing 2 PGD

dates.
5£m—‘l’k 6£t 6[:7"_77@ up ates

01 01

te (th—l ’ th]
4.3)

Meanwhile, each module also receives a gradient from the dependent module for further computation.
The delayed gradients in all modules are of different time delays. From module 1 to module M g,
their corresponding time delays 7, are from M g — 1 to 0. Delay 0 indicates that the gradients are up-
to-date. In this way, we break the backward locking and achieve decoupled parallel backpropagation.

5$t

To showcase the flexibility of DecVFAL’s module partitioning, we implement the proposed framework
within a hybrid cascaded VFL architecture Wang et al.| (2024). We analyze the errors caused by
multi-source approximate gradients due to existing VFL and DecVFAL in Lemma 2]

Lemma 2. Bound the gradient to 7). Under hybrid cascaded VFL architecture, the gradient V , A
respect to 1 involves estimation gradient V , A from Zeroth Order Optimization (Appendix and

compression gradient @,,A (Appendix . Under the Assumption lz] and Lemma EJ E at the
i-th sample and k-th iteration, the pseudo-partial derivative for n satisfies the following inequality

M = argmin H@,,/ll (" 1, 0;)||, we define G = KG', ay, < % then:
m=1,....M m

* < [D(X)Lfm <1 - ;)MNH + QL—GQ (MgN —1)° (2 - >]

nn nn z 2Ly,
L2p2d?

E

Vi (1, ¥, 0;)

“4.4)

x 3 (chg’f + - K2)

4.3 ACCELERATION OF DECVFAL

DecVFAL uses the dual-level decoupled mechanism to accelerate the VFAL training process. Specif-
ically, lazy sequential backpropagation allows us to update M * [N times to generate adversarial
samples with only M full propagations. Empirically, DecVFAL achieves comparable results only
requiring setting M + N a litter larger than r of PGD-r. Furthermore, assuming that the time for full
propagation is 7, decoupled parallel backpropagation reduces this approach to MLK It is worth noting
that prior research employs parallelism for model training using delayed gradients, where updates
occur after each propagation. This approach precludes parallelization of forward and backward
propagation, limiting acceleration to Tz, + %ﬁ(k Huo et al. (2018bga). In contrast, our method

achieves acceleration to MLK, since adversarial sample generation maintains constant parameters,
enabling concurrent forward and backward propagation. overall, the computation time for DecVFAL

to complete an adversarial example generation is %{*KT, much smaller than r x T of PGD-r.




Under review as a conference paper at ICLR 2025

5 CONVERGENCE ANALYSIS

Assumptions: The formal definition and detailed discussion of the assumptions are in Appendix

We make several crucial assumptions: the functions f;, f., £, and R; are K-Lipschitz continuous

in z, uniformly with respect to 6 and 1), the gradient of the adversarial loss function, V.A;(n, v, 0),

satisfies Lipschitz conditions (Assumption ; the adversarial loss function 4;(n, 1, §) possesses

an unbiased gradient (Assumption @) and is characterized by bounded Hessian matrices H, and

Hg (Assumption [3), as well as bounded block-coordinate gradients @, and Qg (Assumption [);
A;(n,1,0) exhibits z-strong concav1ty with respect to n (Assumptlon'

Theorem 1. Under Assumptions (1] p if the step sizes satisfy o,y < 1/L,,, o, =
and =M

min {owy, ap}, ay = max{ay, ag L < oo. Also, 5 = argmax, A;(n,v,0) and
A =R (n*°¢° 6% —inf, (R (n* wk, 6%)). Then the following inequality holds:
=
T E[|[VR (n** ", 0*)|?] <Ty + T, + E, + E. + E. (5.1)
k=0
where Ty = 2, 7, = 2Lechivh | 2Leclod pp  SamICn(MN) (9¢ 72 4 3¢,12),

_gaM (2€ H2C+3€9Q9H20+ BHQC‘N(MN) (25 L2+3€9L2))

o Bané&gL2d® | 3w(M,N)L2d%an &y 9 (M,N)L?d?an € _
EZ - 'u 4o + 20/777,;2 + 40/7n;2 ’ 9 - {1 + LQaM},

&y = {14 Lyan}, and L, = max{L, Ly, Lg, Ly, Lgy, }, K is the total number of iterations.

Term Z; is typical for convergence of first-order optimization algorithms on smooth non-convex
functions; Term Zs is typical for stochastic gradient descent; Term FE. is the errors during forward
communication due to compression; Term E, is the errors due to zeroth-order optimization; Term
E, is errors due to dual-level decoupled backpropagation for adversarial sample generation.

Corollary 1. If we choose oy and oy, as \F w= 1 , €= (9( ) = O( ) we can derive

the sublinear convergence rate:
K-1
1

,CkZOE [IVR (0", 6", 6% I <O(\/;€

By constraining multi-source approximate gradients, we demonstrate the sublinear conver-
gence rate C’)(ﬁ) The term O(%) refers to a similar result in [Seidman et al.| (2020), re-

)+ oY

M) (5.2)

vealing the dependence on M and N. We have the partial derivative of w to N:
MN+1 )
D)z, (1- ) In (1= 72 ) M+ 4G Me (24 1) (McN = 1), 7(M, N) de-

nn nn
creases concerning M, implying that M should be set large as tolerated according to the communi-

cation budget. (M, N) is convex in N, the second-order derivative of (M, N) concerning N is
greater than 0, therefore, the value of N should increase before the partial derivative with respect
to N becomes positive. After that, we need to control the value of /N not to be too large, otherwise
the model obtains a lower robust accuracy. We conducted ablation experiments and verified this
dependence of M and N on the MNIST dataset (Section [6.4).

Proof Sketch. We begin by transforming the original min-max optimization problem into a Hamil-
tonian system (Appendix [A.4). The convergence analysis leverages three types of approximate
gradients: delayed gradient (Lemma[I]and Lemma 2, compression gradient (Lemma 3], and esti-
mated gradient (Lemma 3)). We establish the global convergence of the framework by proving that
the loss function £(, v, #) is L-smooth (Assumptlon' By combining the results from the M loop,
N loop, and outer loop analyses, we demonstrate that the model parameters converge asymptotically
(Theorem[T)). In Appendix [B] we provided detailed proof of the convergence analysis of DecVFAL.

6 EXPERIMENTS

We conducted a comprehensive series of experiments to evaluate the effectiveness of our proposed
DecVFAL framework. As baselines, we implemented several established AT methods applied to the



Under review as a conference paper at ICLR 2025

standard VFL framework, as well as the well-known VFL acceleration mechanisms. Our results show
that DecVFAL achieves the optimal balance between computational efficiency and model robustness.
Additionally, we performed a set of ablation studies to assess the individual contributions of each
component. Due to space constraints, detailed experimental procedures are provided in Appendix [C|
The source code for this project, aimed at fostering transparency and reproducibility, is available at
the following URL: https://anonymous.4open.science/r/DecVFAL-0F5C/.

6.1 EXPERIMENT SETUPS

Datasets. Real-world VFL datasets are proprietary and not publicly accessible. Therefore, we utilized
two public datasets instead for our main experiments: MNIST [LeCun et al.|(1998) and CIFAR-10
Krizhevsky| (2009). These datasets were vertically partitioned among all participants, with each client
retaining a portion of features for each sample, while the server exclusively held the labels. Detailed
information about the dataset partitioning can be found in Section[C.1]

Baselines. We deploy the baseline algorithms and DecVFAL in a hybrid cascaded VFL framework,
synchronous VFL-CZOFO Wang et al.| (2024). The implemented AT algorithms include PGD-r
Madry et al.|(2017), FreeAT-r [Shafahi et al.| (2019), FreeLB-r [Zhu et al.| (2019), and YOPO-m-n
Zhang et al.|(2019). Additionally, we integrated data parallelism, model parallelism, and asynchronous
mechanisms with PGD, resulting in DP-PGD, MP-PGD, and Asy-PGD, respectively.

Adversarial attack. Following the threat model of adversarial attack in VFL (Appendix |A.3)), we
employ various adversarial attack methods including FGSM |Kurakin et al.{(2016), PGD-r|Madry et al.
(2017), and CW |Carlini & Wagner|(2017). We also simulate scenarios where malicious clients cannot
directly obtain gradients and implement CERTIFY (CER) |Cohen et al.| (2019), zero-order-based
FGSM (ZO-FGSM) and PGD (ZO-PGD) (Chen et al.|(2017). Additionally, Considering the case
of the third-party adversary, we employ adversarial attacks that corrupt embeddings using different
corrupted client selection methods: Thompson Sampling with Empirical Maximum Reward (E-TS)
Duanyi et al.|(2023) and All Corruption Pattern (ALL).

Training procedures. For the experiment applying the split MLP model on MNIST, a batch size of
32 was utilized. For the experiment applying the ResNet-18 on CIFAR-10, a batch size of 80 was
used. The models were trained to converge. To ensure a fair comparison, we employed the Adam
optimizer with a fixed learning rate across all VFL frameworks. Detailed parameter settings and
hardware specifications for the training procedures are summarized in Appendix and Table

6.2 EVALUATION ON ROBUSTNESS

MNIST: We maintain the VFL setup with one server and two clients. The server model is a single-
layer perceptron, while each client employs a two-layer perceptron. The entire model is partitioned
into three modules, each containing one layer. DecVFAL stands out by demonstrating the most
optimal trade-off between computational efficiency and model robustness. As shown in Table
DecVFAL achieves the best robust performance while requiring only 1/10 of the training time per
epoch for PGD adversarial training.

Table 1: Results of MNIST Robust Training

Training Clean White-Box Adv. Atk Black-Box Adv. Atk Third Adv. | Train Time
Methods | Accuracy | FGSM PGD CW | CER ZO-FGSM ZO-PGD | ALL E-TS | (s/epoch)

None 96.46 4775 858 56.75|56.37 55.97 60.44 | 36.01 40.27 106.86
PGD 92.31 74.90 57.85 90.09 | 88.92 87.30 83.37 | 36.71 41.23 | 3484.57
Free AT 92.68 67.29 41.33 85.11 | 84.13 83.51 80.18 | 19.01 20.82 853.64
FreeLB 93.77 57.18 18.76 85.30 | 82.47 82.30 79.73 16533 71.11 | 3459.81
YOPO 96.13 86.36 73.52 92.49 | 91.63 91.17 88.06 | 79.81 84.84 | 629.43
DP-PGD 93.28 78.64 60.97 88.40 | 86.60 86.49 82.84 | 51.72 56.68 | 3451.44
MP-PGD 93.11 75.23 48.98 78.82 | 76.65 76.28 76.19 | 48.11 54.67 | 342391
Asy-PGD 91.25 7240 50.41 84.53 | 82.55 82.10 79.50 | 3842 4299 | 3724.47

DecVFAL | 98.26 91.62 77.68 92.84 | 91.91 92.13 89.21 |92.20 94.53 | 355.16



https://anonymous.4open.science/r/DecVFAL-0F5C/

Under review as a conference paper at ICLR 2025

CIFAR-10: For CIFAR10 dataset, the server model is a single-layer perceptron, whereas each client
utilizes ResNet-18. For each client, the ResNet-18 model is divided into two modules: the first layer
and the remaining layers. Consequently, the entire model is partitioned into three modules: the first
layers of the client models, the remaining layers of the client models, and the server’s single-layer
perceptron. As shown in Table 2] DecVFAL achieves comparable robust performance under most of
adversarial attacks while requiring only 1/3 of the training time per epoch for PGD.

Table 2: Results of CIFAR-10 Robust Training

Training Clean White-Box Adv. Atk Black-Box Adv. Atk Third Adv. | Train Time
Methods | Accuracy | FGSM PGD CW | CER ZO-FGSM ZO-PGD | ALL E-TS | (s/epoch)

None 83.93 53.32 5542 62.59|50.39 52.38 55.58 | 76.06 78.93 70.03
PGD 78.00 59.08 68.47 76.73 | 70.00 70.32 70.56 | 69.54 72.67 296.35
FreeAT 80.09 63.63 61.93 77.01 | 68.99 70.99 71.85 | 71.44 74.86 252.11
FreeLB 81.58 52.09 5491 63.70 | 53.91 56.92 59.17 | 76.30 78.70 | 301.43
YOPO 75.34 58.80 68.11 74.68 | 70.10 69.97 69.96 | 64.38 69.05 297.45
DP-PGD 75.47 59.37 68.24 74.56 | 69.79 69.74 70.04 |66.19 6942 | 33193
MP-PGD 74.92 59.38 68.14 74.30 | 69.92 69.53 69.90 | 64.70 68.66 334.48
Asy-PGD 73.32 57.00 66.61 72.48 | 67.56 67.93 67.83 | 6336 67.83 331.45

DecVFAL | 81.83 63.69 68.59 74.72 | 71.31 71.05 72.07 | 7493 77.75 98.99

6.3 EVALUATION ON COMPUTATIONAL EFFICIENCY

For each dataset, we trained models to converge and plotted training and testing curves in Figures
and ] DecVFAL achieved better test accuracy than other baseline algorithms in significantly less
time on MNIST. Due to setting close parameters to specify the number of full propagations (Table[8)
for CIFAR10, DecVFAL achieved a convergence speed comparable to FreeAT and FreeLB, while
delivering better robustness, as shown in Table@

80

95 1
70

90 1
60

85 1
50

80
40

754

30
—— DevVFAL —— DevVFAL

0 5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000

Figure 3: Training-testing curves for MNIST  Figure 4: Training-testing curves for CIFAR10

6.4 ABLATION STUDY

Impact of the number of clients. To further demonstrate the scalability of our framework, we
conducted additional experiments on the MNIST dataset by varying the number of clients among 3,
5, and 7. DecVFAL consistently achieved superior robustness and enhanced computational efficiency
across all client configurations compared to baseline methods. Additionally, in the scenario with 7
clients, we evaluated DecVFAL and baseline methods under third-party adversarial attacks involving
corruption pattern selection, as well as attacks where some clients are malicious (as detailed in
Appendix [C.6). DecVFAL maintained its superior performance under these adversarial conditions.

Limitation of the setting of // and N. We conducted extensive experiments on the MNIST dataset
to explore the dependence on parameters M and N. Figure[5|and Figure[6]illustrate the change in



Under review as a conference paper at ICLR 2025

Table 3: Results for different number of clients

No. | Training | Clean |White-Box Adv. Atk| Black-Box Adv. Atk |Third Adv.|Train Time
Clients| Methods |Accuracy| PGD FGSM CW |CER ZO-FGSM ZO-PGD| ALL (s/epoch)

3 PGD 98.05 |64.56 82.83 96.02 [96.46 93.98 94.72 89.56 1015.8
PGD 96.78 169.50 84.51 93.00 [95.20 92.36 93.08 78.62 1145.63
PGD 96.18 |63.86 79.96 90.96 (93.30 90.37 94.12 69.36 1158.11

DecVFAL| 98.67 |80.82 89.50 97.28 [97.90 96.03 96.97 93.83 88.29
DecVFAL| 983 |76.52 87.39 97.34 |97.54 93.85 95.73 91.87 92.93
DecVFAL| 96.84 (76.57 87.17 83.90 |96.21 93.23 90.80 81.21 94.83

~N N W3 D

accuracy with a fixed M = 5 and M = 10, respectively, while varying NN. It is evident that the
performance rapidly degrades with increasing N beyond a certain threshold, as analyzed by Corollary
[I] This observation underscores the sensitivity of the model’s performance to IV, highlighting the
necessity of optimizing N to maintain high accuracy.

Impact of the number of modules. We conducted additional experiments on the MNIST dataset
to evaluate how the number of partitioned modules affects the algorithm’s performance. The server
model was kept as a single-layer perceptron. Each client employed a ResNet-18 model, which was
partitioned into varying numbers of modules: 2, 3, 4, 5, and 6. As indicated by Lemma[I] increasing
the number of modules leads to larger errors in the gradient of 7, which in turn negatively impacts the
algorithm’s accuracy. This effect is demonstrated by the results shown in Table

Table 4: Results of diverse number

of modules ” - M
90 {

Robust Accuracy (%) K Tosi
Split Positions for Modules  |Clean FGSM PGD 75 ol |

[1:18:19] 98.90 48.79 57.49 " =1
[1:9:18: 19 98.71 4588 5555
[1:9:13:18:19]  [98.58 4432 53.42
[1:5:9:13:18:19] [98.69 47.09 4549 Figure 5: M = 5, varying N Figure 6: M = 10, varying
[1:5:9:13:17:18:19](98.22 3844 40.63

Impact of split position. We conducted additional ex-
periments on the MNIST dataset to evaluate the effect
of different split positions. The server model was kept

Table 5: Results of different split positions

as a single-layer perceptron, while each client utilized Split Positions  |Robust Accuracy (%)| Train Time
a ResNet-18 model that was split at various positions. [ M1 : Mo : Ms]|Clean FGSM PGD | (s/epoch)
The results in Table [5]demonstrate that DecVFAL per- [[1:18:19] [98.90 48.79 57.49 | 107.545
forms well across various split positions compared to [(5:18:19] |98.77 43.03 4298 | 226765
PGD. However, as more layers are included in the bot- [:9:18:19] 198.75 41.33 4977 318.122
. . . [:13:18:19] [98.83 39.73 43.46 | 431.149
tom module during lazy sequential backpropagation, [17:18:19] |98.43 3636 4588 | 538.652
the computational load increases, leading to longer PGD 08.48 32.53 41.93 | 575.458

training time.

7 CONCLUSIONS

This paper presented DecVFAL, a framework that significantly accelerates VFAL while maintaining
robustness. DecVFAL incorporates a dual-level decoupled mechanism to enable lazy sequential
and decoupled parallel backpropagation for adversarial example generation. This approach achieves
3-10 fold speedup on MNIST and CIFAR-10 datasets, with theoretical guarantees of O(1/v/K)
convergence rate. Comprehensive experiments demonstrate DecVFAL'’s effectiveness across various
neural architectures and VFL configurations.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274-283. PMLR, 2018.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Analyzing federated
learning through an adversarial lens. In International conference on machine learning, pp. 634—643.
PMLR, 2019.

S Bhat and D Tsipras. Towards efficient methods for training robust deep neural networks. URL
https://math. mit. edu/research/highschool/primes/materials/2018/Bhat. pdf.[Online], 2019.

Dongqi Cai, Tao Fan, Yan Kang, Lixin Fan, Mengwei Xu, Shangguang Wang, and Qiang Yang.
Accelerating vertical federated learning. IEEE Transactions on Big Data, pp. 1-10, 2024. ISSN
2372-2096. doi: 10.1109/tbdata.2022.3192898. URL http://dx.doi.org/10.1109/
TBDATA.2022.3192898.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39-57. leee, 2017.

Timothy Castiglia, Yi Zhou, Shigiang Wang, Swanand Kadhe, Nathalie Baracaldo, and Stacy Pat-
terson. Less-vfl: Communication-efficient feature selection for vertical federated learning. In
International Conference on Machine Learning, pp. 3757-3781. PMLR, 2023.

Timothy J Castiglia, Anirban Das, Shigiang Wang, and Stacy Patterson. Compressed-vfl:
Communication-efficient learning with vertically partitioned data. In International Conference on
Machine Learning, pp. 2738-2766. PMLR, 2022.

Dongchul Cha, MinDong Sung, Yu-Rang Park, et al. Implementing vertical federated learning using
autoencoders: Practical application, generalizability, and utility study. JMIR medical informatics,
9(6):¢26598, 2021.

Chaochao Chen, Jun Zhou, Li Wang, Xibin Wu, Wenjing Fang, Jin Tan, Lei Wang, Alex X Liu,
Hao Wang, and Cheng Hong. When homomorphic encryption marries secret sharing: Secure
large-scale sparse logistic regression and applications in risk control. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2652-2662, 2021a.

Jinyin Chen, Guohan Huang, Haibin Zheng, Shanqing Yu, Wenrong Jiang, and Chen Cui. Graph-
fraudster: Adversarial attacks on graph neural network-based vertical federated learning. IEEE
Transactions on Computational Social Systems, 10(2):492-506, 2022.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15-26, 2017.

Weijing Chen, Guogiang Ma, Tao Fan, Yan Kang, Qian Xu, and Qiang Yang. Secureboost+: A high
performance gradient boosting tree framework for large scale vertical federated learning. arXiv
preprint arXiv:2110.10927, 2021b.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 1310-1320. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.
press/v97/cohenl9c.htmll

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206-2216.
PMLR, 2020.

Jinming Cui, Chaochao Chen, Lingjuan Lyu, Carl Yang, and Wang Li. Exploiting data sparsity
in secure cross-platform social recommendation. Advances in Neural Information Processing
Systems, 34:10524-10534, 2021.

11


http://dx.doi.org/10.1109/TBDATA.2022.3192898
http://dx.doi.org/10.1109/TBDATA.2022.3192898
https://proceedings.mlr.press/v97/cohen19c.html
https://proceedings.mlr.press/v97/cohen19c.html

Under review as a conference paper at ICLR 2025

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Distributionally robust federated
averaging. Advances in neural information processing systems, 33:15111-15122, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2019.

YAO Duanyi, Songze Li, XUE Ye, and Jin Liu. Constructing adversarial examples for vertical feder-
ated learning: Optimal client corruption through multi-armed bandit. In The Twelfth International
Conference on Learning Representations, 2023.

Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou, Alex X
Liu, and Ting Wang. Label inference attacks against vertical federated learning. In 375t USENIX
security symposium (USENIX Security 22), pp. 1397-1414, 2022.

Xiang Gao, Bo Jiang, and Shuzhong Zhang. On the information-adaptive variants of the admm: an
iteration complexity perspective. Journal of Scientific Computing, 76:327-363, 2018.

Ning Ge, Guanghao Li, Li Zhang, and Yi Liu. Failure prediction in production line based on federated
learning: an empirical study. Journal of Intelligent Manufacturing, 33(8):2277-2294, 2022.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Fangda Gu, Armin Askari, and Laurent El Ghaoui. Fenchel lifted networks: A lagrange relaxation of
neural network training. In International Conference on Artificial Intelligence and Statistics, pp.
3362-3371. PMLR, 2020.

Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in federated
learning. arXiv preprint arXiv:1910.14425, 2019.

Feihu Huang, Shangqgian Gao, Jian Pei, and Heng Huang. Nonconvex zeroth-order stochastic admm
methods with lower function query complexity. arXiv preprint arXiv:1907.13463, 2019.

Feihu Huang, Shangqgian Gao, Jian Pei, and Heng Huang. Accelerated zeroth-order momentum
methods from mini to minimax optimization. arXiv preprint arXiv:2008.08170, 3, 2020.

Lingxiao Huang, Zhize Li, Jialin Sun, and Haoyu Zhao. Coresets for vertical federated learning:
Regularized linear regression and k-means clustering. Advances in Neural Information Processing
Systems, 35:29566-29581, 2022.

Wenke Huang, Mang Ye, Zekun Shi, Guancheng Wan, He Li, Bo Du, and Qiang Yang. Federated
learning for generalization, robustness, fairness: A survey and benchmark. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024.

Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay. Advances
in Neural Information Processing Systems, 31, 2018a.

Zhouyuan Huo, Bin Gu, Heng Huang, et al. Decoupled parallel backpropagation with convergence
guarantee. In International Conference on Machine Learning, pp. 2098-2106. PMLR, 2018b.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In
International conference on machine learning, pp. 1627-1635. PMLR, 2017.

Xiaojun Jia, Yong Zhang, Xingxing Wei, Baoyuan Wu, Ke Ma, Jue Wang, and Xiaochun Cao.
Improving fast adversarial training with prior-guided knowledge. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

Xiao Jin, Pin-Yu Chen, Chia-Yi Hsu, Chia-Mu Yu, and Tianyi Chen. Cafe: Catastrophic data leakage
in vertical federated learning. Advances in Neural Information Processing Systems, 34:994—1006,
2021.

Afsana Khan, Marijn ten Thij, and Anna Wilbik. Communication-efficient vertical federated learning.
Algorithms, 15(8):273, 2022.

12



Under review as a conference paper at ICLR 2025

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for back-propagation.
In Proceedings of the 1988 connectionist models summer school, volume 1, pp. 21-28, 1988.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, volume 86, pp. 2278-2324. IEEE, 1998.

Jia Li, Cong Fang, and Zhouchen Lin. Lifted proximal operator machines. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 4181-4188, 2019.

Ming Li, Yiwei Chen, Yigin Wang, and Yu Pan. Efficient asynchronous vertical federated learning
via gradient prediction and double-end sparse compression. In 2020 16th international conference
on control, automation, robotics and vision (ICARCV), pp. 291-296. IEEE, 2020.

Qianxiao Li and Shuji Hao. An optimal control approach to deep learning and applications to discrete-
weight neural networks. In International Conference on Machine Learning, pp. 2985-2994. PMLR,
2018.

Qianxiao Li, Long Chen, Cheng Tai, and E Weinan. Maximum principle based algorithms for deep
learning. Journal of Machine Learning Research, 18(165):1-29, 2018.

Xiaoxiao Li, Zhao Song, and Jiaming Yang. Federated adversarial learning: A framework with
convergence analysis. In International Conference on Machine Learning, pp. 19932-19959. PMLR,
2023.

Jing Liu, Chulin Xie, Krishnaram Kenthapadi, Sanmi Koyejo, and Bo Li. Rvfr: Robust vertical
federated learning via feature subspace recovery. In NeurlPS Workshop New Frontiers in Federated
Learning: Privacy, Fairness, Robustness, Personalization and Data Ownership, 2021a.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in Neural Information
Processing Systems, 31, 2018.

Yang Liu, Yan Kang, Chaoping Xing, Tianjian Chen, and Qiang Yang. A secure federated transfer
learning framework. IEEE Intelligent Systems, 35(4):70-82, 2020.

Yang Liu, Tianyuan Zou, Yan Kang, Wenhan Liu, Yuanqin He, Zhihao Yi, and Qiang Yang. Batch
label inference and replacement attacks in black-boxed vertical federated learning. arXiv preprint
arXiv:2112.05409, 2021b.

Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin
Zhang, and Qiang Yang. Vertical federated learning: Concepts, advances, and challenges. /[EEE
Transactions on Knowledge and Data Engineering, 2024.

Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning for open banking. In
Federated learning: privacy and incentive, pp. 240-254. Springer, 2020.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. Feature inference attack on model
predictions in vertical federated learning. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pp. 181-192. IEEE, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agiiera y Arcas. Federated learning
of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2:2, 2016.

13



Under review as a conference paper at ICLR 2025

Qi Pang, Yuanyuan Yuan, Shuai Wang, and Wenting Zheng. Adi: Adversarial dominating inputs in
vertical federated learning systems. arXiv preprint arXiv:2201.02775, 2022.

Pengyu Qiu, Xuhong Zhang, Shouling Ji, Tianyu Du, Yuwen Pu, Jun Zhou, and Ting Wang. Your
labels are selling you out: Relation leaks in vertical federated learning. IEEE Transactions on
Dependable and Secure Computing, 2022.

Jacob H. Seidman, Mahyar Fazlyab, Victor M. Preciado, and George J. Pappas. Robust deep learning
as optimal control: Insights and convergence guarantees. Proceedings of Machine Learning
Research, 2020.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Advances in neural
information processing systems, 32, 2019.

Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback. Journal of Machine Learning Research, 18(52):1-11, 2017.

Artem Sokolov, Julian Hitschler, Mayumi Ohta, and Stefan Riezler. Sparse stochastic zeroth-order
optimization with an application to bandit structured prediction. arXiv preprint arXiv:1806.04458,
2018.

Yong Song, Yuchen Xie, Hongwei Zhang, Yuxin Liang, Xiaozhou Ye, Aidong Yang, and Ye Ouyang.
Federated learning application on telecommunication-joint healthcare recommendation. In 2027
IEEE 21st International Conference on Communication Technology (ICCT), pp. 1443—-1448. IEEE,
2021.

Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein. Training
neural networks without gradients: A scalable admm approach. In International conference on
machine learning, pp. 2722-2731. PMLR, 2016.

Zeinab Teimoori, Abdulsalam Yassine, and M Shamim Hossain. A secure cloudlet-based charging
station recommendation for electric vehicles empowered by federated learning. IEEE Transactions
on Industrial Informatics, 18(9):6464—6473, 2022.

F Tramer, D Boneh, A Kurakin, I Goodfellow, N Papernot, and P McDaniel. Ensemble adversarial
training: Attacks and defenses. In 6th International Conference on Learning Representations,
ICLR 2018-Conference Track Proceedings, 2018.

Ganyu Wang, Qingsong Zhang, Li Xiang, Boyu Wang, Bin Gu, and Charles Ling. Secure and
fast asynchronous vertical federated learning via cascaded hybrid optimization. arXiv preprint
arXiv:2306.16077, 2023.

Ganyu Wang, Bin Gu, Qingsong Zhang, Xiang Li, Boyu Wang, and Charles X Ling. A unified
solution for privacy and communication efficiency in vertical federated learning. Advances in
Neural Information Processing Systems, 36, 2024.

Guan Wang. Interpret federated learning with shapley values. arXiv preprint arXiv:1905.04519,
2019.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. arXiv preprint arXiv:2112.08304, 2021.

Kang Wei, Jun Li, Chuan Ma, Ming Ding, Sha Wei, Fan Wu, Guihai Chen, and Thilina Ran-
baduge. Vertical federated learning: Challenges, methodologies and experiments. arXiv preprint
arXiv:2202.04309, 2022.

E Weinan, Jiequn Han, and Qianxiao Li. A mean-field optimal control formulation of deep learning.
arXiv preprint arXiv:1807.01083, 2018.

Ee Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 1(5):1-11, 2017.

14



Under review as a conference paper at ICLR 2025

Haiqin Weng, Juntao Zhang, Feng Xue, Tao Wei, Shouling Ji, and Zhiyuan Zong. Privacy leakage of
real-world vertical federated learning. arXiv preprint arXiv:2011.09290, 2020.

Zhaomin Wu, Qinbin Li, and Bingsheng He. Practical vertical federated learning with unsupervised
representation learning. IEEE Transactions on Big Data, 2022.

Lunchen Xie, Jiaqi Liu, Songtao Lu, Tsung-Hui Chang, and Qingjiang Shi. An efficient learn-
ing framework for federated xgboost using secret sharing and distributed optimization. ACM
Transactions on Intelligent Systems and Technology (TIST), 13(5):1-28, 2022.

Wauxing Xu, Hao Fan, Kaixin Li, and Kai Yang. Efficient batch homomorphic encryption for vertically
federated xgboost. arXiv preprint arXiv:2112.04261, 2021.

Shengwen Yang, Bing Ren, Xuhui Zhou, and Liping Liu. Parallel distributed logistic regression for
vertical federated learning without third-party coordinator. arXiv preprint arXiv:1911.09824, 2019.

Mang Ye, Wei Shen, Eduard Snezhko, Vassili Kovalev, Pong C Yuen, and Bo Du. Vertical federated
learning for effectiveness, security, applicability: A survey. arXiv preprint arXiv:2405.17495,
2024.

Nanyang Ye, Qianxiao Li, Xiao-Yun Zhou, and Zhanxing Zhu. Amata: An annealing mechanism for
adversarial training acceleration. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 10691-10699, 2021.

Haochen Yuan, Chao Ma, Zhenxiang Zhao, Xiaofei Xu, and Zhongjie Wang. A privacy-preserving
oriented service recommendation approach based on personal data cloud and federated learning.
In 2022 IEEE International Conference on Web Services (ICWS), pp. 322-330. IEEE, 2022.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Accelerating adversarial training via maximal principle. Advances in neural information
processing systems, 32, 2019.

Gaoyuan Zhang, Songtao Lu, Yihua Zhang, Xiangyi Chen, Pin-Yu Chen, Quanfu Fan, Lee Martie,
Lior Horesh, Mingyi Hong, and Sijia Liu. Distributed adversarial training to robustify deep neural
networks at scale. In Uncertainty in artificial intelligence, pp. 2353-2363. PMLR, 2022a.

Jie Zhang, Song Guo, Zhihao Qu, Deze Zeng, Haozhao Wang, Qifeng Liu, and Albert Y Zomaya.
Adaptive vertical federated learning on unbalanced features. /[EEE Transactions on Parallel and
Distributed Systems, 33(12):4006—4018, 2022b.

Qingsong Zhang, Bin Gu, Zhiyuan Dang, Cheng Deng, and Heng Huang. Desirable companion for
vertical federated learning: New zeroth-order gradient based algorithm. In Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, pp. 2598-2607, 2021.

Jie Zhao, Xinghua Zhu, Jianzong Wang, and Jing Xiao. Efficient client contribution evaluation for
horizontal federated learning. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3060-3064. IEEE, 2021.

Xiaohan Zhao, Hualin Zhang, Zhouyuan Huo, and Bin Gu. Accelerated on-device forward neural
network training with module-wise descending asynchronism. Advances in Neural Information
Processing Systems, 36, 2024.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb: Enhanced
adversarial training for natural language understanding. arXiv preprint arXiv:1909.11764, 2019.

Giulio Zizzo, Ambrish Rawat, Mathieu Sinn, and Beat Buesser. Fat: Federated adversarial training.
arXiv preprint arXiv:2012.01791, 2020.

15



Under review as a conference paper at ICLR 2025

A BACKGROUND

A.1 VERTICAL FEDERATED LEARNING

VFL encompasses a range of architectural designs tailored for collaborative machine learning across
multiple parties. These architectures, distinguished by data and parameter distribution, as well as the
trainability of the server model, include Aggregated Vertical Federated Learning (aggV F'L)|Fu et al.
(2022); Liu et al.| (2021b)), where client parties contribute intermediate results aggregated through
a non-trainable function in the server party; Aggregated Vertical Federated Learning with Central
Features (aggV F'L.), similar to aggVFL but incorporating its own features; Split Vertical Federated
Learning (splitV F'L) Fu et al.|(2022); Jin et al.|(2021); Liu et al.| (2021a), featuring a trainable server
model processes intermediate results from passive parties; and Split Vertical Federated Learning
without Local Features (splitV F'L.), where the server party doesn’t provide any features to the
model but relies solely on intermediate results from client parties.

Because VFL is a collaboration system that requires parties to exchange gradient or model level
information, it has been of great research interest to study communication efficiency, and data privacy
protection. Various strategies are adopted to heighten communication efficiency, typically involving
reducing the cost of coordination and compressing the data transmitted between parties, such as
multiple client updates Zhang et al.|(2022b), asynchronous coordination |L1 et al.|(2020), one-shot
communication [Wu et al.| (2022)), and data compression [Castiglia et al.| (2022); |Li et al.| (2020).
In terms of data privacy protection, VFL relies on cutting-edge technologies like Homomorphic
Encryption (HE) |Yang et al.| (2019), Multi-Party Computation (MPC) Xie et al.|(2022); [Liu et al.
(2020), and Differential Privacy (DP) [Wang et al.|(2024) to preserve data privacy.

A.2 VERTICAL FEDERATED ADVERSARIAL LEARNING

Emerging research has investigated the distinct challenges posed by adversarial attacks in the con-
text of VFL [Huang et al| (2024). Due to the distributed nature, VFL struggles to ensure client
trustworthiness and thus renders it highly susceptible to adversarial perturbations, underscoring the
pressing need for enhanced VFL model robustnessHuang et al.| (2024), this is particularly evident in
neural network models. Prior works have proposed that adversaries (third-party or client party) can
generate adversarial samples by introducing manipulated perturbations to raw data or embeddings
in the corrupted clients, aiming to mislead the inference of VFL models [Luo et al.|(2021); Weng
et al.[(2020); Qiu et al.| (2022); [Fu et al|(2022)). However, existing VFL defense mechanisms based
on cryptographic |Liu et al.|(2021b) and non-cryptographic [Liu et al.|(2021a)) only concentrate on
mitigating inference attacks and backdoor attacks while neglecting adversarial attacks.

A.3 THREAT MODEL

In the context of VFL, we focus on untargeted adversarial attacks, constructed during the inference
phase. The adversary’s objective is to corrupt samples whose original prediction is ¥,,, causing the
server model to output § # y,,. We categorize these adversarial attacks into two primary scenarios:

* Malicious (colluding) clients. In this scenario, we consider the presence of malicious
(colluding) clients acting as adversary. During the attack, all malicious clients (one or more)
collaboratively and simultaneously generate the adversarial feature partition. The attacks
are further classified based on the level of knowledge these clients possess:

— White-box adversarial attack. Under relaxed protocol, clients have access to the server
model f and the output of all clients z;, . This protocol could occur when the client
needs to make interpretable decisions based on the server model’s parameters |Luo et al.
(2021); ' Wang| (2019); |Lundberg & Lee|(2017). This implies the malicious clients have
the necessary information to calculate the partial gradient to the features.

— Black-box adversarial attack. Under basic VFL protocol, all participants keep their
private data (e.g., labels and features), as well as the server model f, and client models
{feo 1€, local during inference. Clients can only receive the final prediction results ¢
and cannot directly obtain the gradient, thus necessitating the use of black-box methods
to approximate it.

16



Under review as a conference paper at ICLR 2025

* Third party adversary. We also consider an adversary as a third party in VFL inference,
who can access, replay, and manipulate messages on the communication channel between
two endpoints, where embeddings and predictions are exchanged. Third-party adversaries
usually cannot achieve access to top model parameters, thus this scenario generally falls
under the black-box attack category. Due to resource constraints, previous work assumed
that the adversary can corrupt at most C;, < C clients|Duanyi et al|(2023).

A.4 ADVERSARIAL TRAINING AS A DYNAMICAL SYSTEM

With the link between optimal control and deep learning |L1 & Hao| (2018)), research recast neural
networks as dynamical systems and formulated the robust optimization problem as an optimal control
problem Seidman et al.|(2020):

s T—
O{{}}%Tnlr}lax ZE T, Yi +Z: > Ry(x4,:,0y)
i=1 t=0 (Al)
subject to 441 = fH(244,0y), i=1,...,8, t=1,...,T—1
ml,i:fo(x07i+nia®0)7 Z:1a78

where z; € R% represents the states (i.e., the input of the ¢-th layer), f* : R%* x ©f — R%+1 ig
the state transition map, ©? are the trainable control parameters, © denotes the concatenation of
(©")o<t<7-1, and the initial conditions are provided by the inputs to the network, x¢ ;. According
to the two-player Pontryagin Maximum principle, proved in Zhang et al.| (2019), we define the
Hamiltonians: Hy(z,p,0,n) := p* fo(x+n,0)— Ro(x,0) and Hy(x,p, 0) := p* fi(x,0) — Ry(x,0),
then there exists an optimal costate trajectory p;, satisfied:

Tipy = VpHe(af, piy,07) x5 =20 +n" (A.2)
p: = Vth(xrvp:Jrlv 9t7*) p; = _V‘C(:I’.;Wy) (A3)
where ©* := {#%*,...0T~1*} is the solution of the problem (A.1).

Due to the compositional structure, feed-forward deep neural networks can be viewed as dynamical
systems. This approach has been recently explored in several papers, which leverage this interpretation
to propose new training algorithms (Weinan, 2017 [Li et al., 2018}, [Weinan et al.,[2018};|[Zhang et al.,
2019).

._.

According to equation[A.T] the two-player Pontryagin Maximum principle, proved in (Zhang et al.]
2019), gives necessary conditions for an optimal setting of the parameters 6*, perturbations 17, . . . , 1%,
and corresponding trajectories {x; ; }. Define the Hamiltonians

Hi(z,p,0) :=p" fi(2,0) — Ri(x,0), t=1,...,T—1

(A.4)

HO(xapa 97 77) = prO(ZL' + 7, e) - RO(I‘, 6)
The two-player maximum principle says in this case that if @, f;, and R; are twice continuously
differentiable, with respect to x, uniformly bounded in = and ¢t along with their partial derivatives,
and the image sets {f:(z,0)|0 € R™} and {R;(x,0)|6 € R™t} are convex for all z and ¢, then
there exists an optimal costate trajectory p; such that the following dynamics are satisfied

* _ * * * * i * * *
Tip1,4 = V;DHt(xt,ivpt-i-l,met)v Ty = VpHO(xowpuaeoﬂh)

Pt = vIHt(xt,iapt+1,i70t)a Pri= _vxq)(xT,myi)
and the following Hamiltonian condition for all §; € R™* and n; € X
s
Ht('rr,i7p:+1,i7 et) < Z Ht(‘x;iap:Jrl,i? 0;()7 t=1,....,T-1
=l (A.6)

S
Z Ho(xr,ivpr—i-l,i’ O+, "7:) <

=1 7

* *
Ho(xtzvpt-i-l Iz t7n1 xt,ivpt-i-l,i?et?n’i)

M
HMm

Il
—

These necessary optimality conditions can be used to design an iterative algorithm of the following
form. For each data point i € {1,...,S},

17



Under review as a conference paper at ICLR 2025

1. Compute the state and costate trajectories {x; ;} and {p; ;} from the dynamics, keeping 6;
and n; fixed:

$§1)1 =V Ht(xgz)vpii)l i 975)

l’gnz) \Y HO(:EO 'mplzaHOa )

2. pt1 \Y Ht(xt 1)7]71(5:]_)1 27015) pT’L V CD('IT?Hyl)

3. Minimize the Hamiltonian Hy(z¢, 4, pt + 1,4, 64, n;) with respect to n;

4. Maximize the sum of Hamiltonians Zf:l Hy(xy,i,pt + 1,4,0,) with respect to 6, for all ¢

As was noticed as early as (LeCun et al.,[1988)), it can be seen from the chain rule that the backward
costate dynamics are equivalent to backpropagation through the network. With this interpretation,
the gradient of the total loss for the i-th data point with respect to the adversary 7; can be written

as Vy, fo(zo,i + 1, 90)Tp(1n2 For a fixed value of 6y, performing gradient descent on Hj to find a
worst-case adversarial perturbation can be expressed as the following updates, where o > 0 is a step
size:
¢ ¢
0 =0l — av, folzos + 0" 90)TP;(LZ') (A7)
An important observation made in (Zhang et al., 2019) is that the adversary is only present in the

first layer Hamiltonian condition and this function can be minimized by computing gradients only

with respect to the first layer of the network. More explicitly, instead of using pgnl), as in the updates

above, we could instead use p(()nl) and the updates

T =0 — o, folzos + ', 00) T pl") (A.8)

)

This removes the need to do a full backpropagation to recompute the costate p(") for every update of

nfe), at the cost of now being an approximate gradient.

A.5 ZEROTH ORDER OPTIMIZATION

Z00 methodsHuang et al.| (20205 2019) have been developed to effectively solve many ML problems
for which obtaining explicit gradient expressions is difficult or infeasible. Such problems include
structure prediction tasks, where explicit gradients are challenging to derive Sokolov et al.|(2018)), as
well as bandit and black-box learning problems |Shamir| (2017); [Liu et al.| (2018)), where obtaining
explicit gradients is not feasible. Specifically, ZOO relies solely on function values for optimization,
eschewing the need for explicit gradients.

Formally, given a function f(z) with input z, the gradient V f(x) can be estimated using ZOO. One
common approach is to sample random perturbations « within the domain of f and evaluate the

function shifts. The ZO gradient estimator i (z) is given by:

—_

q .
=3 [fla+ puy) — fla)] 2
—) 12

(A9)

L
<

where p serves as a scaling factor for the random perturbation, while u; represents the j-th random
perturbation sampled from a distribution p across the domain of f. The parameter ¢ denotes the
number of random samples employed for estimation. Normalizing the perturbation by %] ensures
the estimator’s unbiasedness. The expectation of the Zeroth Order (ZO) gradient estimator yields an
unbiased estimate of the true gradient, expressed as E[V f(x)] = V f(z), provided that the samples
u,; are drawn from a distribution with a mean of zero.

The application of ZOO to VFL has been discussed, highlighting its specific properties such as model
applicability |[Zhang et al.| (2021), privacy security concerns |Liu et al.| (2018), and considerations
regarding communication cost and computational efficiency [Wang et al.[(2024).

18



Under review as a conference paper at ICLR 2025

A.6 COMMUNICATION COMPRESSION

Compression is a pivotal technique in VFL that aims to mitigate communication overhead by
reducing the volume of data transmitted among participating parties. In the context of neural
network-based VFL algorithms, high-dimensional input vectors are inherently mapped onto lower-
dimensional representations, which serve a natural compression purpose. However, to further enhance
communication efficiency, specialized dimensionality reduction techniques are often integrated.
Several VFL frameworks have been proposed to incorporate compression techniques: AVFL |Cai
et al.| (2024)) leverages PCA to compress the data before transmission, reducing the communication
load. CE-VFL |Khan et al.| (2022)) employs both PCA and autoencoders to learn latent representations
from raw data, which are then used for model training. SecureBoost+ |Chen et al.| (2021b)) and
eHE-SecureBoost [Xu et al.| (2021) encode encrypted gradients into a compact form, minimizing
the number of cryptographic operations and the data transmission size. C-VFL |Castiglia et al.
(2022)) introduces an arbitrary compression scheme to VFL, offering a theoretical analysis of how
compression parameters impact the overall system efficiency.

Compression techniques play a critical role in VFL by enabling more efficient data transmission with-
out compromising the integrity of the learning process. The selection of an appropriate compression
method is contingent upon the specific requirements of the VFL scenario, including the sensitivity
of the data, the computational resources available, and the desired balance between communication
efficiency and model performance.

19



Under review as a conference paper at ICLR 2025

B CONVERGENCE ANALYSIS

B.1 NOTATIONS

Notations Definitions
Neural Network Classifier
S The number of samples
f Neural network model
€] Model Parameters
i, Yi Input sample and corresponding label
B,B The mini-batch B with size B
E Expectation
ke{l,2,...,K} Iteration index for parameter updating
Vertical Federated Learning
C The number of clients

fay fe), - fo

9 == {9(1),6(2), .. 79(6')}

Client models
Client model parameters

fs Server model

P Server model parameters

L Loss function

f=Afs: foy, oy fioy} The complete federated model

Q) Learning rate for server model parameters

Qg Learning rate for client model parameters
Adpversarial Training

A Adversarial Loss Function

Gs(n,,0) £ ien Ai(ni, ¥i, 0;)

,R’(777w79) é ZiES Al(nhwwel)

ny argmax, A;(n,v,0)

n Adversarial perturbation

II Projection operator

oy, Learning rate for adversarial sample

L Iteration index for adversarial sample generation

To,s = {T0,i,(1), T0,i,(2)> - - - » X0,i,(c)} ~ The sample 7 from all clients

N = {Mi,(1), Mi,(2)> - - i (C) } the adversarial perturbation for sample ¢

Optimal Control Formulation of Deep Learning

He Hamiltonian function for layer ¢

Pt = {Pe,(1), P,(2)> - -+ Pe,(C) Costates at layer ¢

T Number of layers in the neural network
t=0,1,...,T—1 Layer indices

ft State transition map for layer ¢

Ty = {21y, Te,(2)5 - - Tey () } States at layer ¢

ot Trainable parameters for layer ¢

Table 6: Table of Notations

20



Under review as a conference paper at ICLR 2025

Notations Definitions

Decoupled parallel Backpropagation
Mg The number of divided modules
ts The number of server model’s layers
tc The number of client model’s layers
f={fi.fos ooy ftos oy fr—1} Classifier from layer-wise view

§=1{01,0,,...,0;}

Tt

Client model parameters from layer-wise view
The output of all clients

/4, Client model network excluding the first layer
Lazy Sequential Backpropagation
M Number of iterations for full propagations
N Number of iterations for propagations in bottom module
R, Regularizer for layer ¢
fo, Network excluding the first layer
" The state of sample 7 at layer ¢ in m, n iteration
pri" The co-state of sample i at layer ¢ in m, n iteration
Zoreth Order Gradient Estimation
W Smoothing parameter
u Random vector
q Query budget for gradient estimation
{A(;g Ho Loss difference
VA(n,,0) Estimation Gradient from ZOO
Compressor
C(-)p Compressor compressing information to b bits
VA(n,,0) Compression Gradient

Table 7: Table of Notations (continue)

21



Under review as a conference paper at ICLR 2025

B.2 ASSUMPTIONS

Assumption 1. Lipschitz Gradient: There exists a constant K > 0 such that for all t €
1,...,tey..., T, the functions f, f., L, and Ry are K-Lipschitz in x, uniformly in 6 and 1. For
all each sample i € 1, ..., S, the function V, A;(n,1,0), VyAi(n,9,0), VoAi(n, ¥, 0) satisfy the
following Lipschitz conditions:

Vo Ai(n, 0", 0) — Vi Ai(n, 0, 0)||< Ly [0 — || (B.1)
Vo Ai(n,0,0") — Vi Ai(n,4,0)||< Lyl 0" — 0| (B.2)
IV Ai(n',,0) = Vi Ai(n,1,0)||< Lyy|ln" — nl| (B.3)
[V Ai(1n,9,0") = Vi Ai(n,9,0)||< Lyl 0" — 0| (B.4)
Vo Ai(n',4,0) — Vo Ai(n, 1, 0)||< Loylln' —nl| (B.5)
(Vo Ai(n, v, 0) — Vo Ai(n,1,0)|< Loy |[¢" — | (B.6)

Assumption 2. Unbiased Gradient and Bounded Variance: There exists oy, > 0 and o9 > 0,
the stochastic gradients are unbiased, i.e. E;V ,G;(n,v,0) = VR0, 1,0),E;VeG;i(n,9,0) =
VoR(n,,0),i=1,..., B and satisfy:
El[VGs(n,¢,0) = VR (n,,0)|*< o3 (B.7)
EHVGQB(?%QZ};H) - VGR(,’Lwae)HQS Ug (BS)
Assumption|[I] 2] are the basic assumptions for solving the non-convex optimization problem with
stochastic gradient descentWang et al.|(2023)Haddadpour & Mahdavil (2019).

Assumption 3. Bounded Hessian: The Hessian for A;(n, v, 0) is bounded, i.e.there exist positive
constants H,, and Hy for A;(n,1,0), 1 and 0, the following inequalities holds:

V3 As (i, 1, 0)||< Hy (B.9)

‘|v[29,10l]~’41(nt7¢59)”§ H@ (BIO)

Assumption 4. Bounded Block-coordinate Gradient: The gradient of all the participants’ local

output w.r.t. their local input is bounded, i.e. for, all i € 1,...,S there exist positive constants (),
and Qg satisfies the following inequalities:

IV 1 Ai (i, ¥, 0)[|< Qy (B.11)

[[VoA;(ni, 9, 0)[|< Qo (B.12)

Assumption are the fundamental assumptions for bounding the compression loss. Compression
introduces errors into the input of the loss function; therefore, with a bounded Hessian, we can deter-
mine the maximum effect of these errors on the loss. Additionally, bounding the block-coordinated
gradient is a common practice in VFL analysis. This approach helps constrain the entire model’s
gradient when the gradients of other parts have been bounded Wang et al.| (2024)/Castiglia et al.
(2022).

Assumption 5. z-Strongly Concave: If function A;(n, v, 0) is z-strongly concave for n, then for all
1 and 0, the following inequalities satisfy:

[l = nll< (1/2)[[ Vo Ai(n, 4, )| (B.13)
Assumption [5|made in previous results on convergence of robust training[Wang et al.| (2021) and is

justified through the reformulation of robust training as distributionally robust optimization. It helps
us to bound the delayed gradient of 7.

B.3 PROPOSITION

Proposition 1. Under Assumption [Z]and Assumption E] the loss function R(n', 1, 0) is Ly,-smooth
for 1, Lg-smooth for 6, and the following inequality holds for all 1, v', 6, and ¢’ :

L
R ', 0) = R (0,4,0) < (VoR (n.4,0),0' = 0) + [0/ 0]

L
(VR (,,0). 0 — ) + - [ —ol” (B.14)

22



Under review as a conference paper at ICLR 2025

where Ly, = Ly + “”’ Lo gnd Lo = Lgg+ M This assumption is consistent with Proposition
1 in|Seidman et al ( 2020) This can help us to connect the N- loop and M-loop.

Proposition 2. The classical back-propagation-based gradient descent algorithm can be viewed
as an algorithm attempting to solve the PMPZhang et al.|(2019). The costate processes p; and the
gradient V ;, A(n, 1, 0) satisfy the following equation:

=V, A(1.9,0) (B.15)

B.4 DEFINITION

Definition 1. Compression Error (forward message) Considering sample i, we can define the
compression error of C(-)p: €ci, ¢ € 1,2,...,C, ie. ec; = C(Ty, ci)b — Tt,,ci- We denote
the expected norm of the error from the client c at global iteration k as 5k = E||ek 2, and

&k = max, S . Since all client operations are synchronized, the error from all clients is ek =

(e’ii, 6571-, . ec l) Then, the expected norm of the error from all clients:

Ellef[|* = El[(e} 1, €54, -y €)1

C
<D E|lel, |
c=1
<cer (B.16)

B.5 LEMMA

Lemma 3. Zeroth-Order Optimization. For arbitrary f in problem (P), the following conditions
hold:
1) fu(x) is continuously differentiable, its gmdient is L,-Lipschitz continuous with L, < L:

V fu(z) = Eu[Vf(2)] (B.17)
where u is drawn from the uniform distribution over the unit Euclidean sphere, f,(x) = E(f(z+pu))

is the smooth approximation of f.
2) For any x € RY, the following inequalities satisfy:
L212d?

V(@) - VH@)IP< =4

Proof of this lemma is provided in|Liu et al.| (2018); |Gao et al.| (2018).

Lemma 4. Bound the costate difference at the bottom module. There exists a constant G' dependent
onT and K such that foralln € {0,..., N}, me€ {0,...,M},andi € {1,...,S}:

<Ga, ( MgN —-1). (B.19)

(B.18)

m—n,O

m,N
Pmyi “Pmyi

Where G' = TKTHY (KT + T(T — 1)K?T=2 4+ TK?T), m is the iteration index of full propagation.

Proof: This lemma bounds the difference of the costates of the first module in the adversary’s N-loop.
We fix the data point ¢, and for ease of notation drop the dependence of state variables on the index
1, while also suppressing the notational dependence on O for all functions, as © is fixed during the
updates for the adversary 7. We define x; and p, as the state and costate trajectories generated from
the initial condition x¢ + 7. We additionally define dp! := p? — p! and dxt := 20 — z¥, £ is the

iteration index of example updates. We first prove bounds on ||p¢|| and ||§2:¢ H

Applying Assumption (I), we have:
Iprll < l-Ve (et y)ll< K (B.20)

Ipell = IVt (g, pi gy, 00)]]
<Pt Ve fe(@f, 00) |+ Ve Re () |

< K||Pf+1”+K
<K+K?>+ .. 4+ KTt
< KTHHT —t41) (B.21)

23



Under review as a conference paper at ICLR 2025

Next, from Assumption , we have ||62f||= | fi(zo + n°) — fi(zo + 7)< K|n° — n*|. By
induction, we have:

62f]|< K*In® — o' (B.22)

To bound [[p%, — Py, Il we first note that [|6p%.||= |V (25) — VO(27)[|< K||6aF||. We write:

18Pt l1=11V o He (22, Y1) — VaHi(ay, pi) |
—||v Ht(zt,pt+1) \Y Ht(xt,pt_H) + vat(xf7P?+1) - vat(vapf-l—l)”
=(pl1s Ve fi(@)) = Vafi(@0) + (01 — Pisr, Vafi(@))) + Vo Ri(ag) — Vo Ry ()|

T—-1
<KT-1 <K||5sz||+ STETT (T -1+ K)|5xf||> (B.23)
t=1

Applying (B:22), we have:
16p5, 1< (KT +T(T = DK% + TK*T) 0" — 1| (B.24)

7 updates with the form:

1 =" — Vi fan, (w0 + 0%, 0a,) TP, (B.25)
Applying Assumption (T)) and (B:2T), we have:
17° = nf||< KT Ta, (¢ — 1) (B.26)

Finally, substituting with (B26) gives us the desired result:
1Py = Pty il < Gl (€ = 1) (B.27)
where G/ = TKTTY (KT + T(T — 1)K?T=2 + TK?T).

m—71,0 m,N

Then, We are going to bound Hle” — Py

m—r71,0 m,N

_Hle,l _lez+lez_lez
(a)

m Tl,

Hle’L _le’L

m,0 m,N
Py, le,

M — 7'17

_,m,0
Dy i Dy

(S G'ay(miN) + G'ay(N — 1)

< G'ayl(r +1)N —1]

< Gay [MgN —1] (B.28)
Here, (a) is obtained using the triangle inequality, (b) is obtained using (B.27)), for each M -loop, the
adversary is updated N times. Proof completes.

Lemma 5. Bound Compression Error. Under Assumption and Definition 1| the norm of the
difference between the loss function value with and without compression error is bounded.:

E||VyAi(n,,0) = Vi As(n,0,0)|| < HECE® (B.29)
E”vevzll(nawa ) VQA 77 1/)7 )||< QOHGCEk (B.30)
]EHvxtCAZ(T]a 17[}’ ) - vl’tCAi(’r]a s )||S Hecgk (B.31)

The proof of this lemma proceeds same to Lemma D.4 in|Wang et al.| (2024).

Lemma 6. Bound the gradient for 1. Due to the communication between the clients and the server
involved in the update process of adversarial examples, the gradlent VA respect to 1 involves

estimation gradient V,, A from ZOO and compression gradient V A. Under the Assumptzon I and

24



Under review as a conference paper at ICLR 2025

Lemma[3} 5] at the i-th sample and k-th iteration, the pseudo-partial derivative for 1) satisfies the
following inequality:

)

ﬁi = aTgmin H?n-/il (/]72”"”71/]’“91)

m=1,...,.M
n=1,....N
o ) L \MNHL g2 . (2 1
EHV (00| < | poyrz, (1- 2= = N-12(2
wAl Vi i) | < [ (%) nn( Lnn) " Ly (M ] (Z - 2Lm7>
L2 2d2

3 (chsk TRl KQ) (B.32)
where G = KG’', o, < ﬁ, andn € X.
Proof: o
According to the chain rule, we note that V,,.A;(7;, 1, ;) can be split as follows:

A A 2 ~ o
E VnAi(f]iﬂ/Ji,ei) :Eanwtc,ivmtcAi(ﬁawiaei)HQ
< E|[Voyzr, il P Bl Va,, Ai (0,1, 0:)| | (B.33)
a b

For (a): we view the clients’ networks as an independent model. From Proposition 2] we can get the
following:

,n
i

pe i 1= 1= Ve, A" i, 05)]|< K (B.34)
Where m = 1,2, ..., M denotes M-loop index, n = 1,2, ..., N denotes N-loop index.

According to the Lemma 8 in|Seidman et al.| (2020), we drop the dependence of all functions on ©
and the data point index ¢ for the proof. The N-loop of the adversary’s updates can be written as
(B.25). Recall that the true gradient of A(n™ ) is

Vi A™N) =V fan, (2 +m) ToY. (B.35)

We will bound the maximum difference of the update vector to the true gradient over the iterations of
the adversary’s updates. In this sense, the adversary’s updates can be viewed as a standard gradient
method with an inexact gradient oracle. We write

IV, St (@ 4 1) "0, ™ = Vg A ™ M=V s (@ 4 1) 00, = Vo (& 4 m) "ol
m—r, m,N
<llpy " = oIV s (2 ) T
<KGay,[(MgN —1] (B.36)
=Gay, [MgN —1] (B.37)
We now appeal to an inexact oracle convergence result in |[Devlin et al| (2019). Given a concave

function f(z’) and a point «’, we define a (4, i1, L) oracle as returning a vector g(z’) such that the
following inequality holds:

L
Llla’ —2|< f(a) = f(@) + (g(a')a’ = 2) < S’ — 2]+ (B.38)

It can be shown that if we have an approximate gradient bound of the form (B.36), and A is
L,,,,-smooth (Assumption|I]) and z-strongly concave in 1 (Assumption E[), then the updates for the
adversary are created by a (0, z/2, 2L, )-oracle, where

2 1
§ =G*a2 [MgN — 1) (Z + 57 ) (B.39)
nn

Letting o, < 1/L,,, and applying Theorem 4 in Devlin et al.| (2019), along with the inequality
[VA(9)||*< 2Ly, (max, A(n) — A()) from the L,,, smoothness of A in 7 gives

25



Under review as a conference paper at ICLR 2025

MN+1 9
2G 2 1

A, 0|2 < L2, 0™ — |2 (1 - = =MgN -1 (2
VoA, )17 < Ly, lIn™" — 0"l Lo +Lm7 Mk ] Z+2Lm7

MN+1 2
2G 2 1
<D)L2 (1- -2 il N-12%(2 B.40
- ( ) " ( L"7"7) + L77"7 [MK } (Z + 2L"7"7) ( )

Where n* is the true solution to the inner maximization problem. Since we initialize n°° € X, we
have that ||%° — n*||2< D(X). We can get:

) ) 5 MN+1 262 L /2
Bl D0, (1- )+ T e - (2 g
For (b): we use Lemma 3] and Assumption [I}
E||Va,, Ai(ii i, 05)]
< BE||Va,, Ai(flis 3, 00) = Vay, Ai(fls, iy 00)|[P+3El| Vo, Ai (i $i, 0) = Vi As(fsy i, 05)|
+ 3E||Va,, Ai(hi, i, 0)|?

L212d?
4

> (B.41)

< 3(HZCE* + + K?%) (B.42)

Substituting (a) and (b) completes the proof.

Lemma 7. Connecting Gradients. Under the Assumption [I| Assumption 3and Lemma 2] the
following inequality can be obtained:

L2 . Ck

E||V G5, 4,0) = VoGn(n", v, 0)] < —5=— (B43)
Lz, - ¢

E||VoGs (11,1, 60) = VoG (", v, 0)|[*< —15— (B.44)

where (F = 3(H2CE* + L2 1 K2)r (M, N),
L\ MN+1 2 9
m(M,N) = {D(X)Lfm (1 — ) + 3 [MgN —1] (2 + 2L1m]>}'

L7777

Proof:
Under Assumption [} Assumption 5] and Lemma 2] for server model parameters ¢, we can get:

~ * 1 A *
E||VyGs(1,1,0) — VyuGa(n®, ¢,0)[]* < B E E||V A (D3, 01, 0;) — Vi di(nf, 5, 0:)| |
icB

L
e
i€B
L3
=08 O Bl Ai (i, 6,6
i€B
2 k
Ly - ¢
2

IN

IN

< (B.45)

z
Similar to the proof for ¢ in (B.43)), for client model parameters 6, we get:

2 Lg 'gk
E||Vegs(77»¢,9) - VﬁgB(n*vwve)H S 172 (B46)

Theorem 1. Bound the Global Update Round. When the parameters are updated with the perturba-
tions:

f; = argmin H@nfh (™", i, ;)
m=1,....M
n=1,...,

(B.47)

26



Under review as a conference paper at ICLR 2025

The gradient of 1); is bounded:
B[V Ai (1, 3, 0)] < ¢F (B.48)

where (¥ = 3(HZCEx + % + K?)n(M, N),

2 z MN+ 2G 2 (2 1
(M, N) = { D(X)L2, (1 . L) 26 (Mg N 1] (; + 2Lw>
The global iterates satisfy:
=
& SCE[IVR (7,04, 0%) |
k=0
2A QLQ/J&?\/[U?/, 2Lga?,02
< M9
o oL S —
ans 3HZCm(M,N)
e {2(1 + Lyanr) HiC + 3(1+ Loanr) QG H C + ———5———=(2(1 + Lyan) L, + 3(1 + Loanr) Lj,)
5 3QM(1 + LeOéM)L2d2 37T(M, N)L2d2a]w(1 + Lwajw)Lim 977'(]\47 N)L2d2aM(1 + Lga]\/j>L3n
+p7( + + )
4oy, 20,22 4a,, 22
3ay K2m(M,N
+ % [2(1+ Lyanr) Ly, + 3(1 + Loanr) L3, | (B.49)
Proof:

For the gradient respect to 1, there exists compression error, but no estimation error:
Vi Ga(F, ok, 0%) == (1/B) ¥ ,ci5 Ve Ai(AF, ¥, 0F), where 0 is the output of the adversary’s
inner problem at iteration &, /¥ and Vi Q\B(ﬁk, Y*, OF) satisfy the following equations:

i = argmin |V, A; (7", 1,0, (B.50)
m=1,....M
n=1,....N

P = gk — oy - VG (i, o, 0F) (B.51)

For the gradient respect to 6, there exist compression error and estimation error: VoGn (Hk, Yk, 0%) =
(1/B) Y ;c5 Vo Ai(if 4k, 0F), the VoGp(n*, ¢F, %) satisfy the following equation:

OFt1 = 0F — ag - VoG (7*, ¢k, 0%) (B.52)

Furthermore, V,Gg(n**, ¢ 0F) and VeGp(n**,¢*, 6%) are true stochastic gradients,
Ve R(** % 6F) and VR (n**,¢*, 6F) are true full gradients.

We begin with the inequality for the L-smoothness of VR (n**, ", 0*), and apply Propositior(1}
k € 0,1, ..., K is the iteration indice, we can get:

R (n*,k—‘rl, ,L/}k'+17 9k+1) _ R (n*,k‘7 ,(/}k?’ 916)
< <va (n*’k,w’“ﬁk) ﬂ/’]ﬁl _ ¢k> + % ||1/}k+1 _ 1/)k||2
a

(VR (0, 0%) 04— %)+ T g g (B.53)

b

27



Under review as a conference paper at ICLR 2025

For (a):
<V¢'R (77*"“71/)’“,9'“) 71/)1&4-1 _ wk> + %p Hwk-u - wkHz
wk 1k ok 5 sk ok pk Lyaj, 5 ok ok gk
= (VuR (""", 0) . —ay - VoG, v e>>+—ngB<n,¢79>H

Ly, Lya
= —ay (1= TR (7, 0, 0%) |+ ¢||wgg< SR, 08) = VR (7F, 0k, 0%) |2

+ ay (1 — Lyay) <V¢R (** %, 0%) ) VR (n*»’“,w,ek) VG (i, v, (9’€)>

Ly . Lya? ~ .
= —ay (1= ZT)VeR (7%, 08, 0%) [P+—5 IV Gs (0", 0%, 0%) = VuR (7%, 0", 0) |1
+ ay(l = Lyoy) (VR (™5, 0F,0%) Wy R (n*F, 0F,0%) — VyuGa(n™*, %, 6%))
+ay(l = Lyoy) <V¢R (™", F,0%) [V Gk 0, 0F) — V. Gs(7F, ¢", 9k)>

Ly b * I *

< —ayp (L= ZOVR (078, 08, 0%) | P4+ Lyad || VuGs (i, 0F,6F) — Ty G (", 4", 6%

+ Lyl ||V Ga(n™F,¢F,0%) = VR (0™, %, 0%) |2

+ay(1 = Lyay) (VyR (n7F, 9%, 0%) VR (™, 4%, 0%) — VyuGr(n™*, vF, 0%))

+7(1—Lw%)||vw73( n k08 |12+ Iz}(1—L1z10<w)||VwQB( kb OF) — Wy Gr ik, 0%)|2
= —7HV¢R( ok kO [P+ S <1+L¢aw)||wgs<”“ F,0%) — Vo Ge(n™F, ok, 007

+ Lyal ||V Gr(n™F, vk, oF) — WR (k" 0F) |12

+ (1 = Lypay) (V4R (™8, 4%, 0%) [ VR (™%, 4k, 0F) — vy Ga(n™*,¢*, 0F)) (B.54)

Note that E [V, G (™", ", 0%)] = V4R (n**,¢*, 6%), where the expectation is taken over the
randomness of the mini-batch sampling. We can get:

E [VyR (n°F, 0%, 0%) VR (™", 4%, 0%) — VyGu(n™*, ", 65)] =0 (B.55)
Then, we can get:
E <V¢R (n*,kydjk’ak) ,¢k+1 . 1/}1@> + % ||¢k+1 . 1/}1@H2]

— B (IIVR (7F, ", %) I12] + S+ Lyay )E [V 96 (0, 05, 65) = VG, v*, 6%)

+ Lo B [|[VyGr(n™*, 0%, 0%) = VyR (n™F, 0%, 6%) |I?] (B.56)
Under Assumption 2] we can get:
E [|‘V¢g5(n*7k7 wk?ek) - va (U*’k7 wk?ek) ||2] < 0-12[; (B.57)

Furthermore, under Lemma [5|and Lemma(7} we can get:
E (17,850, 4", 0%) = VuGslr . 4", 0%)] 2]
< 2B ||[VyGs (i, 4", 0°) = VyGu(i, ", 0%)|2] + 2B (V4 Gs (0", v, 0%) = VG, ", 0%
Ck
<2H3CER 42— Ly (B.58)
22
Finally, we can be obtained:
* L 2
e[(v.rl *W)Ww>+wuwwkn}
a ¢
—SLE[[VuR (n°F 65, 0°) 2] + T2+ Lyay) RHFVEF + 272 1"" )+ Lyo ol
(B.59)

28



Under review as a conference paper at ICLR 2025

For (b), similar to the proof for ¢ in[B.56), for 6, we can get:
E |(VoR (5°*, 4 0F) 01 — g*) 4 %ﬁ 6"+ — ngﬂ

< —SE[IVoR (4, 0%, 6%) |P] + 50+ Loao B [[[VaGi (i, vF,65) — VaGi(n™*, v*,6°)]?]
+ LoagE [|[VoGr(n™*, v*,0%) — VoR (n*F,wF, 0%) | ]
+ ag(1 — Lyag)E [VeR (n™F, 9%, 0%) ,VeR (n*F, 0%, 0%) — VeGr(n™F,¢*,0%)] (B.60)

Under Assumption 2] we can get:

E [nablagR (™", ¢*,0%) ,VoR (n**, 4%, 0%) = VoGu(n**, 4", %) = 0 (B.61)
E [|IVoGs (0", ", 0%) = V4R (n**, 4%, 0%) ] < o (B.62)

Furthermore, under Lemma 3| Lemma [5|and Lemma (7] we can get:

E[IIVoGs (i, ", 0%) — VoGs(r*,v*, 6%)| ]
< 3 [|I90Gs (i1, 0", 0%) = VoGa (i, 0", 0")|I2] + 3E [[[VoGa (i, v*.6%) — VGa(i", v*,0") ]
+3E [|[VoGs (7", 9", 0%) — vegg( =k gk 0%)[17]

L2,u2d2 977 Ck

<3 +3Q2HZCEr 371 2 (B.63)

Finally, we can be obtained:

L
E <va (n*,k7wk’9k) 7¢k+1 . wk> + 71# H,(/}k-&-l _ wkH2
2,292 k
L u"d 07’ < )+ LoaZos
(B.64)

« «
< = FE[IVoR (""", 0%) ] + 5 (1 + Loag)(3 TIQRHFOE" + 3

Substituting a) and b), we can get:
E [R (77*,1c+17 ¢k+17 9k+1) R (77*”“7 wk’ ek”
S E |:<va (n*,k7¢k,9k) 7wk+1 o wk> + % ||¢k+1 - wk||2:|

Ly

+E {MR ("%, 9", 0%) 08— %) + - |0 — ﬂ’ﬂ

L2 . Ck
« " (7
< —7‘”1[4: [1IV R (™", %, 0%) |1?] + 7”’(1 + Lyoy)(2H,CEF + 2‘”272) + Lyadol,

a . a L?p2d? ¢
= S [IIVaR (™", 0%, 0%) [I2] + S2(1 + Loay) (3= + 3Q3HFCE" +3 9’; )+ Looos
(B.65)

Since ¢ and 6 are updated synchronously in the outer loop, we take o, = min{ay,ag}, and
combine the gradient:

E[R (ot ", 08 ) — R (F, 9", 0%)]

L2 Ck
Qm wk 1k pk\ (|2 b 2 ok b 2 2
<-5E [IVR (n**, v, 6%) || ]+7(1+Lwaw)(2H¢C<€ +2272)+L¢%%
12242 k
W4 L 302208k 43200 > "" ¢

+ %(1 + Loag)(3 ) + Loa2o? (B.66)

29



Under review as a conference paper at ICLR 2025

Summing these inequalities from £ = 0 to K — 1, take £ = max (5’“), and then ¢ =

k=0,...,K —1
kY.
ma%:(il(g ):

1 a
4 7m]E *k 1k pk 2
= TE[[VR ("R vk, 6%) |12
k=0
1;c 1 o L€
< g S E[R (0 k.09 =R (n" 5 oL 0] 4 Tt Lyay)(RHEOE + 272 + Lyaler,
k=0
12,242 2 C
+ 1+ Loan) (37 +3QRHECE +370 ) ¢ Lyadod

L2 .
=E[R (n*%¢°%0°) — R (n*",¢",0°)] + %"(1 + Lyoy)(2HZCE + 2 ‘”2"2 C) + Lyalol,

2,242 2 .
+3Q2H2CE + 31

+ %(1 + Loag)(3 ) ¥ Loa2o? (B.67)

Then, we define A =R (77*’0, 0, 90) —infx (R (n*’k, PF, 0’“)) and aps = max {ay, ag}:

K—

Z VR (7%, 4%, 0¥ |17]
k:

L2 . 2L 2 2
2A +aw(1+Lwaw)(2HiCE+2 1/,772 C)Jr )

<
oK Qo z Qm
ao(1+ Loag) .. L2p2d? L (. 2Lpa2o2
4 2ol - 0 9)(3 ’i +3Q2H2CE +3 9;’2 )+ Z”
m m
2A ap (1 + Lq/)aA{) 2 lel”’? e 2Lw0[?\403)
= am K * Qm, (2H,CE +2 22 )+ am
m(1+ Loayy L2 p2d? Lg C 2L9a2 o2
( . (3 F— +3Q3H}CE + 302 4 M0
2A 2Ly03,02 2Lpa2,02 o
—( G MY 22000y PM 91 4 Lyan) H2CE + 3(1 + Loan)QRHZCE]
OémIC [6799) Qo Ay
3o (1 + Lgans) L2 2 d? apT
+ w pon) L + M [2(1 + Lya) L2, +3(1 + Loaar) L, ]
4o, QU 22
2A 2Ly0%,02  2Lg02,02 o
= (amIC + - Yo af e)Jrga [2(1 4 Lyan)HC + 3(1 + Loon ) Q3 H C|
3anr (14 Loanr)L2d?*  ayT
+ 2 T + e 5 [2(0 + Lyan) L3, + 3(1 + Loons) L3, |
2A 2Ly0a3,0%  2Lya2,02
= () (o M

3H2CT(M,N
+ €M 192(1 + Lyan) HZC + 3(1 + Loan )Q3HC + %

Om

(2(1+ Lyan)L3, + 3(1 + Loanr)L3,)

5 3QM(1 +L9aM)L2d2 37T<M, N)L2d2a1\4<1 +Lwa]w)[/%bn 97T(M, N)L2d2aM(1 —‘rLga]\/[)Lgn
+ p=( + 5 + 5

4oy, 2072 damz
3aMK2 (M, N)

O 22

)

[2(1 + Lyan)L3, + 3(1+ L) L3, | (B.68)

30



Under review as a conference paper at ICLR 2025

CorollaryAccording to TheoremIfwe choose cvg and vy as O(%), = O(é), £ = O(ﬁ),
I'= O(ﬁ), we can derive the sublinear convergence rate:
L B[R (%, ,04) 1] < o) + oY) (B.69)
K — VK M
Proof:
=
E E U|VR (ﬂ*’k,1/1k»9k) Hz}
k=0
1
< O(ﬁ)[( A) + (2Ly0}, + 2Lgoy)
3H2Cn(M,N
+2(1 + Lyan)HjC + 3(1 + Ly ) Qg HF C + %(2(1 + Lyan) Ly, + 3(1 + Loan)Lj,)
3C¥]y[(1 —|—L0aM)L2d2 37T(M, N)LQdQCLM(l—FLl[,OéM)Lin 97T(M, N)deQCLM(l —I—LgaM)Lgn
+ ( + b) + 2 )]
4oy, 20,2 A2
3K%m(M,N
+ % [2(1 + Lwo‘M)L?M] + 3(1 + Lgon)Lgn}
1 N
=0(—=) +0(— B.70
() o) (B.70)

31



Under review as a conference paper at ICLR 2025

C EXPERIMENT DETAILS

C.1 DATASET DETAILS
Our experiments were constricted on public datasets MNIST and CIFAR10:

e MNIST [LeCun et al.|(1998): A benchmark dataset for image classification, comprising
60,000 examples for training and 10,000 examples for testing.

* CIFAR10 Krizhevsky|(2009): Another public dataset for image classification that consists
of 60,000 images categorized into 10 classes.

To simulate the VFL scenario, we allocated distinct features to each party based on the described
methodology in prior works |Luo et al.[(2021)); Qiu et al.| (2022); [Fu et al.|(2022). We partition the
last dimension of the features according to the feature proportion of each client. We use masking to
ensure that each client receives distinct features.

C.2 ADVERSARIAL ATTACK

To validate robustness, we employed a suite of adversarial attack methods. FGSM is a fast, non-
iterative attack Kurakin et al.{(2016)); PGD-r iteratively perturbs input data using gradient information
to maximize the model’s loss Madry et al.| (2017); and CW uses a custom loss function to ensure
minimal perturbations while achieving misclassification (Carlini & Wagner| (2017). CERTIFY (CER)
generates adversarial perturbations with Gaussian noise |Cohen et al.|(2019)). For black-box attacks,
we combined adversarial methods with zeroth-order optimization: FGSM (ZO-FGSM) and PGD
(ZO-PGD) (Chen et al.|(2017). We also considered scenarios involving a third-party adversary,
corrupting embeddings using different client selection strategies, including Thompson Sampling with
Empirical Maximum Reward (E-TS) Duanyi et al.|(2023)) and All Corruption Patterns (ALL).

C.3 HYPERPARAMETERS

For the parameter updates of both the server and client models, we have adopted the Adam optimizer
with a uniform learning rate of oy, = g = 0.0001.

Moreover, We follow the hyperparameters choices of |Carlini & Wagner|(2017); Croce & Hein| (2020);
Kurakin et al.| (2016); [Shafahi et al.| (2019);|Zhang et al.|(2019); Zhu et al.|(2019)) for training.

Table 8: Hyperparameters for Adv. Training

Dataset Client | batch | 2700 | Compress | Adv. | DecVFAL | PGD | FreeAT | FreeLB
Model size ‘ q ‘ " ‘ type ‘ bit ‘ € ‘ o ‘ m ‘ n ‘ n ‘ n n
MNIST MLP 32 ] 100 | 005 | scale | 2 | 002 | 0002 | 5| 10 | 40 8 40
CIFARIO | ResNet-18 | 80 | 200 | 0.5 | scale | 2 | 8255 | 1255 | 6 | 2 10 8 10
MNIST | ResNet-18 | 32 | 100 | 005 | scale | 2 | 03 | 035 | 6 | 8 | 40 8 40
Table 9: Hyperparameters for Attack
Dataset | Client | Zoo |[FGsm|  PGD | cw | CER |ZO-FGSM| ZOPGD | ALL&ETS
Model‘q‘#‘ € ‘n‘ € ‘ o ‘n‘ o ‘c‘ € ‘ € ‘n‘ € o ‘n‘ € ‘ o
MNIST | MLP  [1000.05|16/255[40|24/255| 4/255 [100| 0.32 [0.5]128/255] 641255 |40 96/255 |12/255(10] 961255 |12/255
CIFAR10|ResNet-18[200(0.05 0.01 [10[10/255]1/2550(100|128/255(0.8| 64/255 | 32/255 [40| 32/255 | 2/255 | 1 | 32/255 |64/255
MNIST |ResNet-18|100(0.05|96/255|40|64/255| 2/255 |100| 0.8 |0.5(204/255| 641255 |40|153/255|16/25540|128/255|16/255

C.4 ENVIRONMENT

In our experiments, we utilized the following software environment: PyTorch version 2.2.1, CUDA
version 12.1, and Python version 3.11. The hardware specifications are detailed in Table[I0]

32



Under review as a conference paper at ICLR 2025

Table 10: Hardware Specifications

Experiment Description CPU GPU
MNIST Robust Training AMD EPYC 7551P | A4000*1
CIFAR-10 Robust Training AMD EPYC 7452 4090*4
Performance across various NN architectures Intel E5-2683 v4 4090*1
Impact of split position AMD EPYC 7J13 4090*4
Impact of the number of modules AMD EPYC 7J13 4090*4
Impact of the number of the clients Intel Platinum 8336C | 4090*8
Limitation of the setting of M and N,M =5 AMD EPYC 7J13 4090*4
Limitation of the setting of M and N, M = 10 Intel Fold 6430 4090*8

C.5 PERFORMANCE ACROSS VARIOUS NN ARCHITECTURES.

We expanded our experiments by incorporating ResNet18 on the MNIST dataset, introducing a
different architectural context for evaluating our framework. Similar as experiments in CIFAR-10,
the entire model is partitioned into three modules: the first layers of the client models, the remaining
layers of the client models, and the server’s single-layer perceptron. As shown in Table[IT] DecVFAL
achieves the best robust performance while requiring only one-seventh of the training time per epoch
for PGD adversarial training.

Table 11: Results of MNIST Robust Training with Resnet-18

Training Clean White-Box Adv. Atk Black-Box Adv. Atk Third Adv. | Train Time
Methods | Accuracy | FGSM PGD CW | CER ZO-FGSM ZO-PGD | ALL E-TS | (s/epoch)
None 98.66 56.56 12.26 20.99 | 68.37 48.67 7143 | 4796 75.71 90.86

PGD 98.23 84.73 74.74 21.16 | 83.98 38.21 83.69 | 44.56 72.49 1180.74
FreeAT 98.44 79.47 82.20 52.33|90.82 94.84 89.04 | 46.52 170.15 332.63
FreeLB 98.82 70.81 40.68 31.53 | 80.05 36.51 81.27 6591 87.07 1419.10
YOPO 98.72 83.11 82.13 21.30| 87.44 54.13 87.33 | 71.05 88.98 240.62

DP 98.63 80.20 66.63 29.80 | 80.63 42.68 81.55 |44.77 70.31 1175.02
MP 98.12 81.38 74.47 3631 | 86.42 53.64 84.84 |50.38 74.10 1181.69
Asy-PGD 98.05 79.42 76.27 27.57 | 85.93 42.63 84.71 |57.95 80.16 1167.09
DecVFAL 98.98 89.00 83.20 50.80 | 93.91 90.95 91.17 | 60.22 84.14 167.89

C.6 EVALUATION UNDER ATTACKS INVOLVING CORRUPTION PATTERN SELECTION

To further assess our framework’s resilience in more complex attack scenarios, we conducted
experiments on the MNIST dataset using seven clients. Specifically, we evaluated DecVFAL and
baseline methods against attacks involving corruption pattern selection. In this setup, adversaries
could selectively corrupt client data or communications. The server model remained a single-layer
perception. We implemented various corruption patterns, including E-TS, RC, and FC. As shown in
Table[I2] the results demonstrated that even under these challenging conditions, DecVFAL maintained
superior performance compared to baseline methods.

33



Under review as a conference paper at ICLR 2025

Table 12: Results of evaluation under attacks with various corruption patterns

Corrupted clients: 1/7

Training White-Box Adv. Atk Black-Box Adv. Atk Third Adversary Atk
Methods PGD FGSM CW CER ZO-FGSM ZO-PGD | E-TS FC RC
PGD 92.238 94.01  93.85 | 94.091 94.03 93.399 | 88.842 88.922 88.982
DecVFAL | 95.613 96.575 96.795 | 96.605 96.585 96.044 | 93.048 93.87 93.219
Corrupted clients: 3/7
Training White-Box Adv. Atk Black-Box Adv. Atk Third Adversary Atk
Methods PGD FGSM CW CER ZO-FGSM ZO-PGD | E-TS FC RC
PGD 79.888 87.099 93.359 | 94.101 92.819 92.758 | 77.364 78.105 77.754
DecVFAL | 86.569 92.949 96.044 | 96.404 95.543 94.922 | 84.816 85.577 84.685
Corrupted clients: 5/7
Training White-Box Adv. Atk Black-Box Adv. Atk Third Adversary Atk
Methods PGD FGSM CW CER ZO-FGSM ZO-PGD | E-TS FC RC
PGD 64.724  80.689 91.526 | 93.279 90.935 91.587 69.03 6853 69.111
DecVFAL | 78.235 87.31  91.987 | 96.044 93.049 94.121 | 75972 76.062 76.322

34



	Introduction
	Related Works
	Problem Definition
	Methodology
	Revisit Backpropagation for VFAL training
	Dual-Level Decoupled Mechanism
	Acceleration of DecVFAL

	Convergence Analysis
	Experiments
	Experiment Setups
	Evaluation on Robustness
	Evaluation on computational efficiency
	Ablation Study

	Conclusions
	Background
	Vertical Federated Learning
	Vertical Federated Adversarial Learning
	Threat Model
	Adversarial Training as a Dynamical System
	Zeroth Order Optimization
	Communication Compression

	Convergence analysis
	Notations
	Assumptions
	Proposition
	Definition
	Lemma

	Experiment Details
	Dataset details
	Adversarial attack
	Hyperparameters
	Environment
	Performance across various NN architectures.
	Evaluation under attacks involving corruption pattern selection


