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Abstract

Persistent homology is a popular computational tool for analyzing the topology of
point clouds, such as the presence of loops or voids. However, many real-world
datasets with low intrinsic dimensionality reside in an ambient space of much
higher dimensionality. We show that in this case traditional persistent homology
becomes very sensitive to noise and fails to detect the correct topology. The same
holds true for existing refinements of persistent homology. As a remedy, we find
that spectral distances on the k-nearest-neighbor graph of the data, such as diffusion
distance and effective resistance, allow to detect the correct topology even in the
presence of high-dimensional noise. Moreover, we derive a novel closed-form
formula for effective resistance, and describe its relation to diffusion distances.
Finally, we apply these methods to high-dimensional single-cell RNA-sequencing
data and show that spectral distances allow robust detection of cell cycle loops.

1 Introduction

Algebraic topology can describe the shape of a continuous manifold. In particular, it can detect if
a manifold has holes, using its so-called homology groups [39]. For example, a cup has a single
one-dimensional hole, or loop (its handle), whereas a football has a single two-dimensional hole, or
void (its hollow interior). These global topological properties are often helpful for understanding an
object’s overall structure. However, real-world datasets are typically given as point clouds, a discrete
set of points sampled from an underlying manifold. In this setting, true homologies are trivial, as there
is one connected component per point and no holes whatsoever; instead, persistent homology can be
used to find holes in point clouds and to assign an importance score called persistence to each [25, 90].
Holes with high persistence are indicative of holes in the underlying manifold. Persistence homology
has been successfully applied in machine learning pipelines, for instance for gait recognition [48],
instance segmentation [44], and protein binding [84], as well as for neural network analysis [67].

Persistent homology works well for low-dimensional data [78] but we find that it has difficulties in
high dimensionality. If data points are sampled from a low-dimensional manifold embedded in a
high-dimensional ambient space (manifold hypothesis), then the measurement noise typically affects
all ambient dimensions. In this setting, traditional persistent homology is not robust against even low
levels of noise. On a dataset as simple as a circle in R50, persistent homology based on the Euclidean
distance between noisy points can fail to identify the correct loop as a clear outlier in the persistence
diagram (Figure 1). The aim of our work is to find alternatives to traditional persistent homology that
can robustly detect the correct topology despite high-dimensional noise.

We were inspired by visualization methods t-SNE [79] and UMAP [53] that are able to depict the loop
in the same noisy dataset (Figure 1d,e). They approximate the data manifold by the k-nearest-neighbor
(kNN) graph [76, 70, 5, 41, 56]. Therefore, we suggest to use persistent homology with spectral
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Figure 1: a. 2D PCA of a noisy circle (σ = 0.25, radius 1) in R50. Overlaid are representative cycles
of the most persistent loops. b. Persistence diagrams using Euclidean distance and the effective
resistance. c. Loop detection scores of persistent homology using effective resistance and Euclidean
distance. d, e. UMAP and t-SNE embeddings of the same data, showing the loop structure in 2D.

distances on this kNN graph, such as the effective resistance [24] and the diffusion distance [20].
Effective resistance successfully identified the correct loop in the above toy example (Figure 1). We
also found spectral distances to outperform other distances in detecting the correct topology of several
synthetic datasets as well as finding the cell cycles in single-cell RNA-sequencing data.

Our contributions are:

1. an analysis of the failure modes of persistent homology for noisy high-dimensional data;
2. a closed-form expression for effective resistance, explaining its relation to diffusion distances;
3. a synthetic benchmark, with spectral distances outperforming state-of-the-art alternatives;
4. an application to a range of single-cell RNA-sequencing datasets with ground-truth cycles.

Our code is available at https://github.com/berenslab/eff-ph/tree/neurips2024.

2 Related work

Persistent homology has long been known to be sensitive to outliers [15] and several extensions have
been proposed to make it more robust. One recurring idea is to replace the Euclidean distance with a
different distance matrix, before running persistent homology. Bendich et al. [6] suggested to use
diffusion distances [20], but their empirical validation was limited to a single dataset in 2D. Anai et al.
[2] suggested to use the distance-to-measure (DTM) [15] and Fernández et al. [26] proposed to use
Fermat distances [34]. Vishwanath et al. [80] introduced persistent homology based on robust kernel
density estimation, an approach that itself becomes challenging in high dimensionality. All of these
works focused on low-dimensional datasets (<10D, mostly 2D or 3D), while our work specifically
addresses the challenges of persistent homology in high dimensionality.

The concurrent work of Hiraoka et al. [42] is the most relevant related work. Their treatment
of the curse of dimensionality of persistent homology is mostly theoretical, while ours has an
empirical focus. The two works are thus complementary to each other. Hiraoka et al.’s theoretical
description of the curse of dimensionality is similar to ours (Appendix B) in that it analyses how
distance concentration with high-dimensional noise impairs persistent homology, but is more general.
Practically, Hiraoka et al. propose normalized PCA to mitigate the curse of dimensionality. However,
this approach assumes the true dimensionality of the data to be known, which is not realistic in
real-world applications, and performs worse than our suggestions (Appendix C).

Below, we recommend using effective resistance and diffusion distances for persistent homology in
high-dimensional spaces. Both of these distances, as well as the shortest path distance, have been
used in combination with persistent homology to analyze the topology of graph data [62, 37, 1, 77,
11, 55, 23]. Shortest paths on the kNN graph were also used by Naitzat et al. [60] and Fernández
et al. [26]. Motivated by the performance of UMAP [53] for dimensionality reduction, Gardner et al.
[31] and Hermansen et al. [40] used UMAP affinities to define distances for persistent homology.
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Effective resistance is a well-established graph distance [24, 29]. A correction, more appropriate for
large graphs, was suggested by von Luxburg et al. [81, 83]. When speaking of effective resistance, we
mean this corrected version, if not otherwise stated. It has not yet been combined with persistent ho-
mology. Conceptually similar diffusion distances [20] have been used in single-cell RNA-sequencing
data analysis, for dimensionality reduction [56], trajectory inference [35], feature extraction [16], and
hierarchical clustering, similar to 0D persistent homology [9, 46].

Persistent homology has been applied to single-cell RNA-sequencing data, but only the concurrent
work of Flores-Bautista and Thomson [27] applies it directly to the high-dimensional data. Wang
et al. [85] used a Witness complex on a PCA of the data. Other works applied persistent homology to
a derived graph, e.g., a gene regulator network [52] or a Mapper graph [73, 68]. In other biological
contexts, persistent homology has also been applied to a low-dimensional representation of the
data: 3D projection of cytometry data [58], 6D PCA of hippocampal spiking data [31], and 3D
PHATE embedding of calcium signaling [57]. Several recent applications of persistent homology
only computed 0D features (i.e. clusters) [37, 45, 61], which amounts to doing single linkage
clustering [33]. Here we only investigate the detection of higher-dimensional (1D and 2D) holes with
persistent homology. The dimensionality of the data itself, however, is typically much higher.

3 Background: persistent homology
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Figure 2: a. Persistent homology applied to a noisy circle
(n = 10) in 2D tracks appearing and disappearing holes
as balls grow around each datapoint. Dotted lines show
the graph edges that lead to the birth / death of two loops
(Section 3). b. The corresponding persistence diagram with
two detected 1D holes (loops). Our hole detection score
measures the gap in persistence between the first and the
second detected holes (Section 7).

Persistent homology computes topo-
logical invariants of a space at dif-
ferent scales. For point clouds, the
different scales are typically given by
growing a ball around each point (Fig-
ure 2a), and letting the radius τ grow
from 0 to infinity. For each value of τ ,
homology groups of the union of all
balls are computed to find the holes,
and holes that persist for longer time
periods are considered more promi-
nent. At τ ≈ 0, there are no holes as
the balls are non-overlapping, while
at τ → ∞ there are no holes as all the
balls merge together.

To keep the computation tractable, in-
stead of the union of growing balls,
persistent homology operates on a so-called filtered simplicial complex (Figure 2a). A simplicial
complex is a hypergraph containing points as nodes, edges between nodes, triangles bounded by
edges, and so forth. These building blocks are called simplices. At each time τ , the complex encodes
all intersections between the balls and suffices to find the holes. The complexes at smaller τ values
are nested within the complexes at larger τ values, and together form a filtered simplicial complex,
with τ being the filtration time. In this work, we only use the Vietoris–Rips complex, which includes
an n-simplex (v0, v1, . . . , vn) at filtration time τ if the distances between all pairs vi, vj are at most
τ . Therefore, to build a Vietoris–Rips complex, it suffices to provide pairwise distances between all
pairs of points. We compute persistent homology via the ripser package [4] to which we pass a
distance matrix.

Persistent homology consists of a set of holes for each dimension. We limit ourselves to loops and
voids. Each hole has associated birth and death times (τb, τd), i.e., the first and last filtration value
τ at which that hole exists. Their difference p = τd − τb is called the persistence of the hole and
quantifies its prominence. The birth and death times can be visualized as a scatter plot (Figure 2b),
known as the persistence diagram. Points far from the diagonal have high persistence. This process
is illustrated in Figure 2 for a noisy sample of n = 10 points from a circle S1 ⊂ R2. At τ1, a small
spurious loop is formed thanks to the inclusion of the dotted edge, but it dies soon afterwards. The
ground-truth loop is formed at τ2 and dies at τ3, once the hole is completely filled in by triangles.
Both loops (one-dimensional holes) found in this dataset are shown in the persistence diagram.
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Figure 3: a – c. Persistence diagrams of a noisy circle in different ambient dimensionality and
with different amount of noise. Ideally, there should be one feature (point) with high persistence,
corresponding to the circle. But for high noise and dimensionality that feature vanishes into the
noise cloud near the diagonal. d – f. Multidimensional scaling of Euclidean, effective resistance, and
diffusion distances for a noisy circle in R50. Color indicates the distance to the highlighted point.

4 The curse of dimensionality for persistent homology

While persistent homology is robust to small changes in point positions [19], the curse of dimen-
sionality can still severely hurt its performance. To illustrate, we consider the same toy setting as
in Figure 1: we sample points from S1 ⊂ Rd, and add Gaussian noise of standard deviation σ to
each ambient coordinate. When d = 2, higher noise does not affect the birth times but leads to lower
death times (Figure 3a), because some points get distorted to the middle of the circle and the hole
fills up at earlier τ . When we increase the ambient dimensionality to d = 20, higher noise leads to
later birth times (Figure 3b) because in higher dimensionality distances get dominated by the noise
dimensions rather than by the circular structure. Indeed, in Corollary B.5 we prove that for any two
points xi, xj ∈ Rd and two isotropic, multivariate normal noise vectors ε1, ε2 ∼ N (0, σ2Id) the ratio
∥ε1 − ε2∥/∥xi + ε1 − (x2 + ε2)∥ → 1 in probability as d → ∞. Finally, for d = 50 both the birth
and the death times increase with σ (Figure 3c, Corollary B.7) and the ground-truth hole disappears
in the cloud of spurious holes. Applying MDS to the Euclidean distances obtained with d = 50 and
σ = 0.25 yields a 2D layout with almost no visible hole, because all distances have become similar
(Figure 3d). See the concurrent work of Hiraoka et al. [42] for a more detailed treatment.

Therefore, the failure modes of persistent homology differ between low- and high-dimensional spaces.
While in low dimensions, persistent homology is susceptible to outlier points in the middle of the
circle, in high dimensions, there are no points in the middle of the circle; instead, all distances become
too similar, hiding the true loops. See Appendix N for more details on the effect of outliers.

5 Spectral distances are more robust

Many modern manifold learning and dimensionality reduction methods rely on the k-nearest-neighbor
(kNN) graph of the data. This works well because, although distances become increasingly similar
in high-dimensional spaces, nearest neighbors still carry information about the data manifold. To
make persistent homology overcome high-dimensional noise, we therefore suggest to rely on the
symmetric kNN graph, which contains edge ij if node i is among the k nearest neighbors of j or
vice versa. A natural choice is to use its geodesics, but, as we show below, this does not work well,
likely because a single graph edge across a circle can destroy the corresponding feature too early.
Instead, we propose to use spectral methods, such as the effective resistance or diffusion distance.
Both methods rely on random walks and thus incorporate information from all edges.

For a connected graph G with n nodes, e.g., the symmetric kNN graph, let A be its symmetric,
n × n adjacency matrix with elements aij = 1 if edge ij exits in G and aij = 0 otherwise. The
degree matrix D is defined by D = diag{di}, where di =

∑n
j=1 aij are the node degrees. We define

vol(G) =
∑n

i=1 di. Let Hij be the hitting time from node i to j, i.e., the average number of edges it
takes a random walker, that starts at node i randomly moving along edges, to reach node j. The naive
effective resistance is defined as d̃eff

ij = (Hij +Hji)/vol(G). This version is known to be unsuitable
for large graphs (Figure S20) because it reduces to d̃eff

ij ≈ 1/di + 1/dj [81]. Therefore, we used von
Luxburg et al. [81]’s corrected version

deff
ij = d̃eff

ij − 1/di − 1/dj + 2aij/(didj)− aii/d
2
i − ajj/d

2
j . (1)

4



0

dmax

a bGeodesic distance Effective resistance

Figure 4: Robustness of effective resistance. We sampled n = 1000 points from a noisy circle in 2D
with Gaussian noise of standard deviation σ = 0.1, constructed the unweighted symmetric 15-NN
graph, and optionally added 10 random edges (thick lines). Node colors indicate the graph distance
from the fat black dot. a. The geodesic distance is severely affected by the random edges. b. The
effective resistance distance is robust to them.

Diffusion distances also rely on random walks. The random walk transition matrix is given by
P = D−1A. Then P t

i,:, the i-th row of P t, holds the probability distribution over nodes after t steps
of a random walker starting at node i. The diffusion distance is then defined as

dij(t) =
√

vol(G)∥(P t
i,: − P t

j,:)D
− 1

2 ∥. (2)

There are many possible random walks between nodes i and j if they both reside in the same densely
connected region of the graph, while it is unlikely for a random walker to cross between sparsely
connected regions. As a result, both effective resistance and diffusion distance are small between
parts of the graph that are densely connected and are robust against single stray edges (Figure 4). This
makes spectral distances on the kNN graph the ideal input to persistent homology for detecting the
topology of data in high-dimensional spaces. Indeed, the MDS embedding of the effective resistance
and of the diffusion distance of the circle in ambient R50 both clearly show the circular structure
(Figure 3e,f).

6 Relation between spectral distances

We show in Section 7 that spectral methods excel as input distances to persistent homology for
high-dimensional data. But first, we explain the relationships between them. Laplacian Eigenmaps
distance and diffusion distance can be written as Euclidean distances in data representations given
by appropriately scaled eigenvectors of the graph Laplacian. In this section, we derive a similar
closed-form formula for effective resistance and show that effective resistance aggregates all but the
most local diffusion distances.

Let Asym = D− 1
2AD− 1

2 and Lsym = I − Asym be the symmetrically normalized adjacency and
Laplacian matrix. We denote the eigenvectors of Lsym by u1, . . . , un and their eigenvalues by
µ1, . . . , µn in increasing order. For a connected graph, µ1 = 0 and u1 = D

1
2 (1, . . . , 1)⊤/

√
vol(G).

The d̃-dimensional Laplacian Eigenmaps embedding is given by the first d̃ nontrivial eigenvectors:

dLE
ij (d̃) = ∥eLE

i (d̃)− eLE
j (d̃)∥, where eLE

i (d̃) = (u2,i, . . . , u(d̃+1),i). (3)

The diffusion distance after t diffusion steps is given by [20]

ddiff
ij (t) =

√
vol(G)∥ediff

i (t)− ediff
j (t)∥, where ediff

i (t) =

(
(1− µ2)

tu2,i, . . . , (1− µn)
tun,i

)
√
di

. (4)

The original uncorrected version of effective resistance is given by [51]

d̃eff
ij = ∥ẽeff

i − ẽeff
j ∥2, where ẽeff

i =
(
u2,i/

√
µ2, . . . , un,i/

√
µn

)
/
√

di. (5)

In Appendix F we prove that the corrected effective resistance [81] can also be written in this form:
Proposition 6.1. The corrected effective resistance distance can be computed by

deff
ij = ∥eeff

i − eeff
j ∥2, where eeff

i =

(
1− µ2√

µ2
u2,i, . . . ,

1− µn√
µn

un,i

)/√
di. (6)
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Figure 5: a. Eigenvalue spectra of the kNN graph Laplacian for the noisy circle in ambient R50 for
noise levels σ = {0.0, 0.1, 0.25}. b. Decay of eigenvector contribution based on the eigenvalue for
effective resistance, diffusion distances and DPT. c – e. Relative contribution of each eigenvector for
eff. resistance, diffusion distance, Laplacian Eigenmaps, and DPT for various noise levels (Section 6).

It has been known [54] that the uncorrected effective resistance can be written in terms of diffusion
distances as d̃eff

ij =
∑∞

t=0 d
diff
ij (t/2)2/vol(G), see Proposition G.1. Here, based on Proposition 6.1,

we derive a similar result for the corrected effective resistance (proof in Appendix G):
Corollary 6.2. If G is connected and not bipartite, we have

deff
ij =

∞∑
t=2

ddiff
ij (t/2)2/vol(G) and hence d̃eff

ij − deff
ij =

(
ddiff
ij (0)2 + ddiff

ij (1/2)2
)
/vol(G). (7)

In words, the corrected effective resistance combines all diffusion distances, save for those with
the shortest diffusion time. These most local diffusion distances form exactly the correction from
naive to corrected effective resistance. While the effective resistance is a squared Euclidean distance,
omitting the square amounts to taking the square root of all birth and death times, maintaining the loop
detection performance of effective resistance (Figure S20). Therefore, the main difference between
the spectral methods is in to how they decay eigenvectors based on the corresponding eigenvalues.

The naive effective resistance decays the eigenvectors with 1/
√
µi, which is much slower than

diffusion distances’ (1 − µi)
t for t ∈ [8, 64]. Corrected effective resistance shows intermediate

behavior (Figure 5b). When represented as a sum over diffusion distances, it contains all diffusion
distances with t ≥ 1, making it decay slower than diffusion distances with t = 8 or 64, but does not
contain the non-decaying t = 0 term, so it decays faster than its naive version. The correction matters
little for S1 ⊂ R50 in the absence of noise, when the first eigenvalues are much smaller than the rest
and dominate the embedding (Figure 5a,c) but becomes important as the noise and consequently the
low eigenvalues increase (Figure 5a,d,e). As the noise increases, the decay for diffusion distances
gets closer to a step function preserving only the first two non-constant eigenvectors, sufficient for
the circular structure. In contrast, Laplacian Eigenmaps needs the number of components as input
(Figure 5c – e).1

7 Spectral distances find holes in high-dimensional spaces

High-dimensional data is ubiquitous, but traditional persistent homology can fail to detect its topology.
Here, we benchmark the performance of various distances as input to persistent homology.

Distance measures We examined twelve distances as input to persistent homology, beyond the
Euclidean distance. Full definitions are given in Appendix I. First, there are some state-of-the-art
approaches for persistent homology in the presence of noise and outliers. Fermat distances [26] aim
to exaggerate large over small distances to incorporate the density of the data. Distance-to-measure
(DTM) [2] aims for outlier robustness by combining the Euclidean distance with the distances from
each point to its k nearest neighbors, which are high for outliers. Similarly, the core distance used in
the HDBSCAN algorithm [10, 21] raises each Euclidean distance at least to the distance between

1Diffusion pseudotime (DPT) [36] has a very similar expression as corrected effective resistance, using the
scaling (1 − µi)/µi, see Appendix H. This means that DPT decays eigenvalues faster than both versions of
effective resistance (Figure 5). We prove an analogous statement to Corollary 6.2 for DPT in Proposition H.1.
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Figure 6: Loop detection score for persistent homology with various distances on a noisy circle
in R50. The best hyperparameter setting for each distance is shown. Methods are grouped into panels
for visual clarity. Recommended methods in bold.

incident points and their k-th nearest neighbors. We evaluate these methods here with respect to
Gaussian noise in high-dimensional ambient space, a different noise model than the one for which
these methods were designed. Second, we consider some non-spectral graph distances. The geodesic
distance on the kNN graph was popularized by Isomap [76] and used for persistent homology
by Naitzat et al. [60]. Following Gardner et al. [31] we used distances based on UMAP affinities,
and also experimented with t-SNE affinities. Third, we computed t-SNE and UMAP embeddings
and used distances in the 2D embedding space. Finally, we explored methods using the spectral
decomposition of the kNN graph Laplacian, see Section 6: effective resistance, diffusion distance,
and the distance in Laplacian Eigenmaps’ embedding space.

All methods come with hyperparameters. We report the results for the best hyperparameter setting on
each dataset (Appendix K) but found spectral methods to be robust to these choices (Appendix L).

Performance score The output of persistent homology is a persistence diagram showing birth
and death times for all detected holes. It may be difficult to decide whether this procedure has
actually detected a hole in the data, or not. Ideally, for a dataset with m ground-truth holes, the
persistence diagram should have m points with high persistence while all other points should have
low persistence and lie close to the diagonal. Therefore, for m ground-truth features, our hole
detection score sm ∈ [0, 1] is the relative gap between the persistences pm and pm+1 of the m-th and
(m + 1)-th most persistent features: sm = (pm − pm+1)/pm. This corresponds to the visual gap
between them in the persistence diagram (Figure 2b). Rieck and Leitte [66] as well as Smith and
Kurlin [74] used similar quantities to find important features. We prove a continuity property of sm
in Appendix D and consider alternative scores in Appendix E.

In addition, we set sm = 0 if all features in the persistence diagram have very low death-to-birth
ratios τd/τb < 1.25. This handles situations with very few detected holes that die very quickly after
being born, which otherwise can have spuriously high sm values. This was done everywhere apart
from the qualitative Figures 1, 9 and in Figure S25. We call this heuristic thresholding.

Note that the number of ground-truth topological features was used only for evaluation. We report
the mean over three random seeds; shading and error bars indicate the standard deviation.

7.1 Synthetic benchmark

Benchmark setup In our synthetic benchmark, we evaluated the performance of various distance
measures in conjunction with persistent homology on five manifolds: a circle, a pair of linked circles,
the eyeglasses dataset (a circle squeezed nearly to a figure eight) [26], the sphere, and the torus. The
radii of the circles, the sphere, and the torus’ tube were set to 1, the bottleneck of the eyeglasses was
0.7, and the torus’ tube followed a circle of radius 2. In each case, we uniformly sampled n = 1000
points from the manifold, mapped them isometrically to Rd for d ∈ [2, 50], and then added isotropic
Gaussian noise sampled from N (0, σ2Id) for σ ∈ [0, 0.35]. More details can be found in Appendix J.
For each resulting dataset, we computed persistent homology for loops and, for the sphere and the
torus, also for voids. We never computed holes of dimension 3 or higher.
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Figure 7: Loop detection score for selected methods on synthetic datasets in ambient R50. More
experimental results can be found in Figures S23 – S33. Recommended methods in bold.

Results on synthetic data On the circle dataset in R50, persistent homology with all distance
metrics found the correct hole when the noise level σ was very low (Figure 6). However, as the
amount of noise increased, the performance of Euclidean distance quickly deteriorated, reaching
zero score at σ ≈ 0.2. Most other distances outperformed the Euclidean distance, at least in the
low noise regime. Fermat distance did not have any effect, and neither did DTM distance, which
collapsed at σ ≈ 0.15 due to our thresholding (Figure 6a). Geodesics, UMAP/t-SNE graph, and
core distance offered only a modest improvement over Euclidean (Figure 6b) highlighting that many
kNN-graph-based distances cannot handle high-dimensional noise. In contrast, embedding-based
distances performed very well on the circle (Figure 6c), but have obvious limitations: for example, a
2D embedding cannot possibly have a void. UMAP with higher embedding dimension struggled with
loop detection on surfaces and the torus’ void (Appendix O). Finally, all spectral methods (effective
resistance, diffusion, and Laplacian Eigenmaps) showed similarly excellent performance (Figure 6d).

In line with these results, spectral methods outperformed other methods across most synthetic datasets
in R50 (Figure 7). DTM collapsed earlier than Euclidean but detected loops on the torus for low noise
levels best by a small margin. Fermat distance typically had little effect and provided a benefit over
Euclidean only on the eyeglasses and the sphere. Spectral distances outperformed all other methods
on all datasets apart from the torus, where effective resistance was on par with Euclidean but diffusion
performed poorly. On a more densely sampled torus, all methods performed better and the spectral
methods again outperformed the others (Figure S31). On all other datasets diffusion distance slightly
outperformed effective resistance for large σ. Reassuringly, all methods passed the negative control
and did not find any persistent loops on the sphere (Figure 7c).

As discussed in Section 4, persistent homology with Euclidean distances deteriorates with increasing
ambient dimensionality. Using the circle data in Rd, we found that if the noise level was fixed at
σ = 0.25, no persistent loop was found using Euclidean distances for d ≳ 30 (Figure 8). In the
same setting, DTM deteriorated even more quickly than Euclidean distances. In contrast, effective
resistance and diffusion distance were robust against both the high noise level and the large ambient
dimension (Figure 8a,c – e). See Figure S1 for an extended analysis.
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7.2 Detecting cycles in single-cell data

We applied our methods to six single-cell RNA-sequencing datasets: Malaria [43], Neurosphere
and Hippocampus from [89], HeLa2 [72], Neural IPCs [8], and Pancreas [3]. Single-cell RNA-
sequencing data consists of expression levels for thousands of genes in individual cells, so the data
is high-dimensional and notoriously noisy. Importantly, all selected datasets are known to contain
circular structures, usually corresponding to the cell division cycle during which gene expression
levels cyclically change. As a result, we know how many loops to expect in each dataset and can
therefore use them as a real-world benchmark of various distances for persistent homology. In
each case, we followed preprocessing pipelines from prior publications leading to representations
with 10 to 5 156 dimensions. We downsampled datasets with more than 4 000 cells to n = 1000
(Appendix J).
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Figure 9: Malaria dataset. a – d. Representatives of the
two most persistent loops overlaid on UMAP embedding
(top) and persistence diagrams (bottom) using four methods.
Biology dictates that there should be two loops (in warm
colors and in cold colors) connected as in a figure eight.

The Malaria dataset is expected to con-
tain two cycles: the parasite replica-
tion cycle in red blood cells, and the
parasite transmission cycle between
human and mosquito hosts. Follow-
ing Howick et al. [43], we based all
computations for this dataset (and all
derived distances) on the correlation
distance instead of the Euclidean dis-
tance. Persistent homology based on
the correlation distance itself failed
to correctly identify the two ground-
truth cycles and DTM produced repre-
sentatives that only roughly approxi-
mate the two ground truth cycles (Fig-
ure 9a,b). Both effective resistance
and diffusion distance successfully un-
covered both cycles with s2 > 0.9
(Figure 9c,d).

Across all six datasets, the detection scores were higher for spectral methods than for their competitors
(Figure 10). Furthermore, we manually investigated representative loops for all considered methods
on all datasets and found several cases where the most persistent loop(s) was/were likely not correct
(hatched bars in Figure 10). Overall, we found that the spectral methods, and in particular effective
resistance, could reliably find the correct loops with high detection score. Persistent homology based
on the t-SNE and UMAP embeddings worked on average better than traditional persistent homology,
Fermat distances, and DTM, but worse than the spectral methods.

8 Limitations and future work

In the real-world applications, it was important to look at representatives of detected holes as some
holes were persistent, but arguably incorrect. That said, each homology class has many different
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Figure 10: Loop detection scores on six high-dimensional scRNA-seq datasets. Hatched bars indicate
implausible representatives. See Figure S34 for detection scores for different hyperparameter values.
Recommended methods in bold.
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representative cycles, making interpretation difficult. Given ground-truth cycles, an automatic
procedure for evaluating cycle correctness remains an interesting research question.

Persistent homology can only detect topology, which is often a useful global level of abstraction.
However, it may therefore fail to distinguish some non-isomorphic point clouds [75]. There exist
dedicated measures for detecting isometry [7, 87, 47].

Dimensionality reduction methods are designed to handle high-dimensional data. t-SNE and UMAP
indeed performed well on many datasets, but on average worse than spectral distances on the real
data. Moreover, UMAP struggled with the surface of the 3D toy datasets and the torus’ void
(Appendix O). Finally, they require the choice of an embedding dimension and are known to produce
artifacts [49, 12, 85], e.g., leading to poor scores in the noiseless setting in Figures S17, S22. In
contrast, spectral distances on the symmetric kNN graph worked well without a low-dimensional
embedding (Section 7).

Using effective resistance or diffusion distances is easy in practice as their computation time O(n3) is
dwarfed by that of the persistent homology (Table S5), which scales as O(n3(δ+1)) for n points and
topological holes of dimension δ [59]. This high complexity of persistent homology aggravates other
problems of high-dimensional datasets as dense sampling in high-dimensional space would require
a prohibitively large sample size (recall that spectral methods needed a high sampling density for
good performance on some of our datasets such as the torus). Combining persistent homology with
non-Euclidean distance measures could mitigate this problem via the approach of Bendich et al. [6],
who performed subsampling after computation of the distance matrix. This is a particularly attractive
avenue for future research.

Both effective resistance and diffusion distances require the choice of hyperparameters. However,
effective resistance only needs a single hyperparameter: the number of kNN neighbors. For this
reason and due to its greater outlier resistance (Appendix N), we tend to recommend effective
resistance over diffusion distances, but a principled criterion when to use which of the two is still
missing.

Moreover, we do not have a theoretical proof that spectral distances mitigate the curse of dimen-
sionality. Such a proof may be achieved in the future taking inspiration from the stability results
in [11, 42, 77] and, more generally, spectral perturbation theory.

Our empirical results focus on benchmarking which distances identify the correct topology in the
presence of high-dimensional noise. Therefore, we only considered datasets with known ground-truth
topology. The next step will be to use spectral distances to detect non-trivial topology in real-world
exploratory contexts.

High-dimensional data and thus application areas for our improved topology detection pipeline are
becoming ubiquitous. Within biology, we see possible applications for our method in other single-cell
omics modalities, population genomics, or neural activity data [31, 40]. Beyond biology, we believe
that our approach can improve the topological analysis of artificial neural network activations [60],
and in general be used to detect topology of any high-dimensional data, e.g. in the climate sciences,
in astronomical measurements, or wearable sensor data.

9 Conclusion

In this work we asked how to use persistent homology on high-dimensional noisy datasets which are
very common in real-world applications even if the intrinsic data dimensionality is low. We found
spectral methods to be the optimal approach. We demonstrated that, as the dimensionality of the
data increases, the main problem for persistent homology shifts from handling outliers to handling
noise dimensions (Section 4). We used a synthetic benchmark to show that traditional persistent
homology and many of its existing extensions struggle to find the correct topology in this setting. Our
main finding is that spectral methods based on the kNN graph, such as the effective resistance and
diffusion distances, still work well (Section 7.1). Furthermore, we view it as an advantage that we
found existing methods that are able to handle the important problem of high-dimensional noise. We
derived an expression for effective resistance based on the eigendecomposition of the graph Laplacian,
and demonstrated that it combines all but the most local diffusion distances (Section 6). Finally, we
showed that spectral distances outperform all competitors on single-cell data (Section 7.2).
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[63] P. G. Poličar, M. Stražar, and B. Zupan. openTSNE: A modular python library for t-sne
dimensionality reduction and embedding. Journal of Statistical Software, 109:1–30, 2024.

[64] Y. Reani and O. Bobrowski. Cycle registration in persistent homology with applications in
topological bootstrap. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):
5579–5593, 2022.

[65] A. J. Reid, A. M. Talman, H. M. Bennett, A. R. Gomes, M. J. Sanders, C. J. Illingworth, O. Bil-
lker, M. Berriman, and M. K. Lawniczak. Single-cell RNA-seq reveals hidden transcriptional
variation in malaria parasites. eLife, 7:e33105, 2018.

[66] B. Rieck and H. Leitte. Agreement analysis of quality measures for dimensionality reduc-
tion. In Topological Methods in Data Analysis and Visualization IV: Theory, Algorithms, and
Applications VI, pages 103–117. Springer, 2017.

[67] B. Rieck, M. Togninalli, C. Bock, M. Moor, M. Horn, T. Gumbsch, and K. Borgwardt. Neural
persistence: A complexity measure for deep neural networks using algebraic topology. In
International Conference on Learning Representations, 2018.

[68] A. H. Rizvi, P. G. Camara, E. K. Kandror, T. J. Roberts, I. Schieren, T. Maniatis, and R. Rabadan.
Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and
development. Nature Biotechnology, 35(6):551–560, 2017.

[69] M. D. Robinson and A. Oshlack. A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology, 11(3):1–9, 2010.

14



[70] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

[71] B. Roycraft, J. Krebs, and W. Polonik. Bootstrapping persistent Betti numbers and other
stabilizing statistics. The Annals of Statistics, 51(4):1484–1509, 2023.

[72] D. Schwabe, S. Formichetti, J. P. Junker, M. Falcke, and N. Rajewsky. The transcriptome
dynamics of single cells during the cell cycle. Molecular Systems Biology, 16(11):e9946, 2020.

[73] G. Singh, F. Mémoli, G. E. Carlsson, et al. Topological methods for the analysis of high
dimensional data sets and 3D object recognition. PBG@ Eurographics, 2:091–100, 2007.

[74] P. Smith and V. Kurlin. Skeletonisation algorithms with theoretical guarantees for unorganised
point clouds with high levels of noise. Pattern Recognition, 115:107902, 2021.

[75] P. Smith and V. Kurlin. Generic families of finite metric spaces with identical or trivial 1-
dimensional persistence. Journal of Applied and Computational Topology, pages 1–17, 2024.

[76] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[77] Q. H. Tran, Y. Hasegawa, et al. Scale-variant topological information for characterizing the
structure of complex networks. Physical Review E, 100(3):032308, 2019.

[78] R. Turkes, G. F. Montufar, and N. Otter. On the effectiveness of persistent homology. Advances
in Neural Information Processing Systems, 35:35432–35448, 2022.

[79] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9(11):2579–2605, 2008.

[80] S. Vishwanath, K. Fukumizu, S. Kuriki, and B. K. Sriperumbudur. Robust persistence diagrams
using reproducing kernels. Advances in Neural Information Processing Systems, 33:21900–
21911, 2020.

[81] U. von Luxburg, A. Radl, and M. Hein. Getting lost in space: Large sample analysis of the
resistance distance. Advances in Neural Information Processing Systems, 23, 2010.

[82] U. von Luxburg, A. Radl, and M. Hein. Hitting and commute times in large graphs are often
misleading. arXiv preprint arXiv:1003.1266, 2010. version 1 from Mar 05 2010.

[83] U. von Luxburg, A. Radl, and M. Hein. Hitting and commute times in large random neighbor-
hood graphs. Journal of Machine Learning Research, 15(1):1751–1798, 2014.

[84] M. Wang, Z. Cang, and G.-W. Wei. A topology-based network tree for the prediction of
protein–protein binding affinity changes following mutation. Nature Machine Intelligence, 2(2):
116–123, 2020.

[85] S. Wang, E. D. Sontag, and D. A. Lauffenburger. What cannot be seen correctly in 2D
visualizations of single-cell ‘omics data? Cell Systems, 14(9):723–731, 2023.

[86] L. Wasserman. All of nonparametric statistics. Springer Science & Business Media, 2006.

[87] D. Widdowson and V. Kurlin. Recognizing rigid patterns of unlabeled point clouds by complete
and continuous isometry invariants with no false negatives and no false positives. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1275–1284,
2023.

[88] F. A. Wolf, F. K. Hamey, M. Plass, J. Solana, J. S. Dahlin, B. Göttgens, N. Rajewsky, L. Simon,
and F. J. Theis. PAGA: graph abstraction reconciles clustering with trajectory inference through
a topology preserving map of single cells. Genome Biology, 20:1–9, 2019.

[89] S. C. Zheng, G. Stein-O’Brien, J. J. Augustin, J. Slosberg, G. A. Carosso, B. Winer, G. Shin,
H. T. Bjornsson, L. A. Goff, and K. D. Hansen. Universal prediction of cell-cycle position using
transfer learning. Genome Biology, 23(1):1–27, 2022.

[90] A. Zomorodian and G. Carlsson. Computing persistent homology. In Proceedings of the
twentieth annual symposium on Computational geometry, pages 347–356, 2004.

15



A Broader impact

The goal of our paper is to advance the field of machine learning. Our comprehensive benchmark
required a lot of compute. However, we expect that the lessons learned will save compute for
researchers applying persistent homology to their high-dimensional data. Beyond this, we do not see
any potential societal consequences of our work that would be worth specifically highlighting here.

B Noise in high-dimensional spaces eventually dominates structure

In this section, we rigorously prove the intuitive result that the Euclidean distances — and thus the
traditional persistence diagrams — eventually get dominated by noise as the number of ambient
dimensions grows (assuming homoscedastic noise). The main results are Corollary B.5 and Corol-
lary B.7. Our analysis is similar to the concurrent work of Hiraoka et al. [42]. Their analysis extends
ours in that they consider an arbitrary noise distribution, the Čech complex, and make more precise
statements on how persistent homology gets impaired by high-dimensional noise.

We begin with some helpful lemmata.
Lemma B.1. Let {ε1,d} and {ε2,d} be two sequences of d-dimensional multivariate normally
distributed random variables εi,d ∼ N (0, σ2Id). For each fixed d, we have E(∥ε1,d−ε2,d∥2) = 2σ2d.
Moreover, the sequence {∥ε1,d − ε2,d∥/

√
d} converges to

√
2σ almost surely.

Proof. All entries of ε1,d − ε2,d are i.i.d. Gaussian random variables with zero mean and variance
2σ2. The squared Euclidean distance is the sum of the squared entries of the vector, which implies
the first statement. By the strong law of large numbers, ∥ε1,d − ε2,d∥2/d converges almost surely to
2σ2. By the continuous mapping theorem, this implies almost sure convergence of ∥ε1,d − ε2,d∥/

√
d

to
√
2σ.

Lemma B.2. Let {Xd} be a sequence of random variables with finite means and variances. If E(Xd)
converges to a constant c and Var(Xd) → 0 as d → ∞, then {Xd} converges to c in squared mean,
i.e., E

(
(Xd − c)2

)
→ 0.

Proof. We have

E
(
(Xd − c)2

)
= E(X2

d)− 2cE(Xd) + c2

= E(X2
d)− E(Xd)

2 + E(Xd)
2 − 2cE(Xd) + c2

= Var(Xd) + E(Xd)
2 − 2cE(Xd) + c2

→ 0 + c2 − 2c2 + c2 = 0. (8)

Lemma B.3. Let {Xd} be a sequence of random variables which converges in squared mean to a
random variable X . Then it also converges to X in probability.

Proof. This is an application of Markov’s inequality. Let ε > 0. Then

P
(
|Xd −X| > ε

)
= P

(
(Xd −X)2 > ε2

)
≤ E

(
(Xd −X)2

)
/ε2 → 0

for d → ∞ by convergence in squared mean.

Now we show that for sufficiently many noise dimensions the distance between any two points gets
dominated by the noise. This follows from the Pythagorean theorem, because most noise dimensions
are orthogonal to the difference of the noise-free points. A similar result can be found in Hall et al.
[38].

Proposition B.4. Let x1 and x2 be two points in Rd′
. Let {ιd} be a sequence of isometries

ιd : Rd′ → Rd for d ≥ d′. Let {ε1,d} and {ε2,d} be two sequences of d-dimensional multivari-
ate normally distributed random variables εi,d ∼ N (0, σ2Id) starting at d = d′. Let {∆d} be the
sequence of Euclidean distances between ιd(x1) + ε1,d and ιd(x2) + ε2,d. Then {∆2

d/d} converges
to 2σ2 in squared mean.
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Proof. Denote the distance of the embedded points by δ = ∥x1 − x2∥ = ∥ιd(x1) − ιd(x2)∥. We
have

∆d = ∥ιd(x1) + ε1,d −
(
ιd(x2) + ε2,d

)
∥ = ∥

(
ιd(x1) + ε1,d − ε2,d

)
− ιd(x2)∥.

So instead of the setting where both points get noised, we can just consider the case where only
the first point gets noised by a d-dimensional multivariate normally distributed variable of double
variance εd ∼ N (0, 2σ2Id). We denote ∥εd∥ by l. We will drop the use of ιd now and just write
x1, x2 ∈ Rd in slight abuse of notation.

Let α be the angle that εd makes with the vector x2 − x1. Then, by the law of cosines,

∆2
d = l2 + δ2 − 2δ cos(α)l. (9)

Since εd is isometrically distributed, we can assume that x2 − x1 is parallel to (1, 0, . . . , 0) without
loss of generality. Then cos(α)l = ε′, where ε′ ∼ N (0, 2σ2) is the first entry of εd. Thus,
E(∆2

d) = 2σ2d+ δ2 by Lemma B.1 and E(∆2
d/d) → 2σ2 for d → ∞.

For the variance, we obtain

Var(∆2
d) = Var(l2 + δ2 − 2δε′) = (d− 1)Var(ε′2) + Var(ε′2 − 2δε′).

The first term contains the variances of all the directions orthogonal to x2 − x1. Since εd is isotropic,
all directions are independent and we can simply add up the individual variances. The second term
contains the variance in direction x2 − x1. We have

Var(ε′2) = 3 · 4σ4 − 4σ4

= 8σ4 (10)

Var(ε′2 − 2δε′) = E(ε′4 − 4δε′3 + 4δ2ε′2)− E(ε′2 − 2δε′)2

= 12σ4 + 0 + 8δ2σ2 − 4σ2 + 0

= 8σ4 + 8δ2σ2. (11)

Together, we have

Var(∆2
d/d) =

(
(d− 1)8σ4 + 8σ4 + 8δ2σ2

)
/d2

= 8σ2(dσ2 + δ2)/d2

→ 0 (12)

as d → ∞. By Lemma B.2, we conclude that {∆2
d/d} converges to 2σ2 in squared mean.

The next corollary generalizes Proposition B.4 to an arbitrary arrangement of n points. Independent
of their structure, noise will dominate all distances for sufficiently high dimensionality.

Corollary B.5. Let x1, . . . , xn be n pairwise distinct points in Rd′
. Let {ιd} be a sequence of

isometries ιd : Rd′ → Rd for d ≥ d′. Let further {ε1,d}, . . . , {εn,d} be n sequences of multivariate
normally distributed random variables εi,d ∼ N (0, σ2Id) in d dimensions. Let ∆i,j,d be the
sequence of random variables of Euclidean distances between ιd(xi) + εi,d and ιd(xj) + εj,d.
Then each sequence {∆i,j,d/

√
d} converges to

√
2σ in probability as p → ∞. The sequence

{∥εi,d−εj,d∥/∆i,j,d} converges to 1 in probability and thus the joint vector (∥εi,d−εj,d∥/∆i,j,d)i,j
with entries for each pair i ̸= j converges to the vector of all ones in probability.

Proof. Proposition B.4, Lemma B.3, and the continuous mapping theorem imply that ∆i,j,d/
√
d

converges to
√
2σ in probability as p → ∞ and that

√
d/∆i,j,d, which is well-defined up to a

set of measure zero, converges to (
√
2σ)−1 in probability. By Lemma B.1 and since almost sure

convergence implies convergence in probability, we have that ∥εi,d − εj,d∥/
√
d converges to

√
2σ in

probability as well. Since convergence in probability is preserved under multiplication, we obtain
that ∥εi,d − εj,d∥/∆i,j,d converges to 1 in probability. Finally, convergence in probability of two
sequences implies joint convergence in probability.
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Corollary B.6. Consider the setting of Corollary B.5 and choose some ε > 0. Then we have that

P(min
i,j

∆i,j,d/
√
d >

√
2σ − ε), (13)

P(min
i,j

∆i,j,d/
√
d <

√
2σ + ε), (14)

P(max
i,j

∆i,j,d/
√
d >

√
2σ − ε), and (15)

P(max
i,j

∆i,j,d/
√
d <

√
2σ + ε) (16)

all go to one as d → ∞.

Proof. Since max and min are continuous maps, the continuous mapping theorem and Corollary B.5
imply convergence of the sequences {maxi,j ∆i,j,d/

√
d} and {mini,j ∆i,j,d/

√
d} to

√
2σ in proba-

bility. The claim follows since the terms (13), (14) and (15), (16) are lower bounded by

P(|min
i,j

∆i,j,d/
√
d−

√
2σ| > ε) and P(|max

i,j
∆i,j,d/

√
d−

√
2σ| > ε), (17)

respectively.

The next corollary shows that for sufficiently high ambient dimension d, increasing the noise level
will increase birth and death times and thus drive persistent homology with high probability.

Corollary B.7. Consider the setting of Corollary B.5 but for different noise levels σ > σ′ > 0. Let
βd,σ and δd,σ be the minimal birth and death times among all at least one-dimensional homological
features at that noise level and ambient dimensionality. Similarly, let Bd,σ and Dd,σ be the maximal
birth and death times among all at least one-dimensional homological features. Then P(βd,σ > Dd,σ′)
and hence also P(βd,σ > Bd,σ′),P(δd,σ > Dd,σ′) converge to one as d → ∞.

Proof. Denote the distance between the noised d-dimensional points i, j with noise level σ by
∆i,j,d,σ. The main idea is that βd,σ ≥ mini,j ∆i,j,d,σ and Dd,σ′ ≤ maxi,j ∆i,j,d,σ. We prove
P(βd,σ > Dd,σ′) → 1. The other statements follow from βd,σ < Bd,σ and δd,σ > βd,σ .

Choose any 0 < ε < (σ − σ′)/
√
2. Then

√
2σ − ε >

√
2σ′ + ε. Furthermore, we have

P(bd,σ > Dd,σ′) ≥ P
(
bd,σ > (

√
2σ − ε)

√
d and (

√
2σ′ + ε)

√
d > Dd,σ′

)
.

By Corollary B.6, we have for d → ∞ that

P
(
bd,σ > (

√
2σ − ε)

√
d
)
≥ P

(
min
i,j

∆i,j,d,σ > (
√
2σ − ε)

√
d
)
→ 1.

Similarly,

P
(
Dd,σ < (

√
2σ′ + ε)

√
d
)
≥ P

(
max
i,j

∆i,j,d,σ < (
√
2σ′ + ε)

√
d
)
→ 1.

As a result,
1 ≥ P

(
bd,σ > (

√
2σ − ε)

√
d and (

√
2σ′ + ε)

√
d > Dd,σ′

)
→ 1,

and hence P(bd,σ > Dd,σ′) → 1 for d → ∞.

These statements show that noise will eventually dominate the Euclidean distances and drive tradi-
tional persistent homology if the ambient dimension is large enough. In Figure 8 we saw empirically
that tens of ambient dimensions already severely impact traditional persistent homology, while spec-
tral distance offer more noise robustness. This also holds true in hundreds to thousands of ambient
dimensions. Compared to the Euclidean distance, spectral distance can detect the correct topology in
more than an order of magnitude higher dimensionality, before they eventually fail too (Figure S1).
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Figure S1: Extension of Figure 8 to higher ambient dimensionalities. a. Loop detection scores
of various methods on a noisy circle depending on the ambient dimensionality. Due to the higher
dimensionalities, we use here the noise with standard deviation σ = 0.125, one half compared to
Figure 8a. b – e. Heat maps for σ ∈ [0, 0.35] and d ∈ [50, 5 000]. Spectral methods are much more
noise robust, but eventually also fail to detect the correct topology.

C Persistent homology with PCA

Hiraoka et al. [42] recommend combating the curse of dimensionality by performing a normalized
PCA before applying persistent homology. We explore this approach here in our setting.

Let X = (x1, . . . , xn)
T ∈ Rn×d be the centered data matrix with each data point as a row. Let X =

USV T be the singular value decomposition of X with U and V orthogonal matrices and S ∈ Rn×d

diagonal with decreasing non-negative values on the diagonal. PCA reduces the dimensionality to
k ≤ d dimensions by considering the first k columns of US, while normalized PCA instead considers
the first k columns of U .

We ran experiments on the 1D datasets for both versions with varying number of principal components
(PCs) (Figure S2). Normalization provided no consistent benefit. The performance was worse for
higher number of PCs as more noise remained after PCA. Using fewer PCs than the dataset’s true
dimensionality (Figure S2f, j) also led to poor performance. Knowing the true dimensionality of
the data is therefore crucial for this approach, but true dimensionality is typically not available in
real-world applications. Effective resistance outperformed PCA preprocessing on the linked circles
and eyeglasses dataset and showed similar performance on the circle.

D Continuity of the hole detection score

In this section we prove that our hole detection score is a continuous map, as long as the persistence
diagrams have sufficiently many points. This means that small changes in the persistence diagram
result in small changes of the hole detection score, a desirable property for a performance measure.
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Figure S2: Loop detection score for effective resistance and PCA on three 1D toy datasets.
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To state our result formally, we recall some definitions from Cohen-Steiner et al. [19]:

Definition D.1 (Multiset). A multiset is a set in which each element has a multiplicity in N>0 ∪∞.

Definition D.2 (Persistence diagram). A persistence diagram is a multiset with elements from
{(b, d) ∈ (R ∪ {−∞,∞})2 | b < d} counted with multiplicities, together with the diagonal
{(b, b) ∈ (R ∪ {−∞,∞})2} counted with infinite multiplicity.

Since we build persistence diagrams only for distances-based Vietoris–Rips complexes and do not
consider 0-dimensional homologies in this paper, no birth times will be −∞. Moreover, since we do
not consider infinite distances (Appendix I), no death times will be infinite either. Therefore, in the
following, we will treat persistence diagrams as multisets with elements in R2.

Definition D.3 (Bottleneck distance). Let D and D′ be persistence diagrams. Then the bottleneck
distance between them is given by

dB(D,D′) = inf
η:D→D′

sup
x∈D

∥x− η(x)∥∞,

where the infimum is over the bijections between the multisets D and D′.

A bijection η realizing the bottleneck distance between persistence diagrams has three types of paired
points: Pairs with both points off the diagonal, pairs with exactly one point off the diagonal, and
pairs with both points equal and on the diagonal. Intuitively, the bottleneck distance matches the
off-diagonal points between each other. However, the second type of pairs is needed in case the
persistence diagrams do not have the same number of points off the diagonal. This is why the full
diagonal with infinite multiplicity is considered to belong to each persistence diagram. The third type
of pairs does not contribute to the bottleneck distance.

We can now proceed with our proofs. Let D be the space of all persistence diagrams with finitely
many points off the diagonal, endowed with the topology induced by the bottleneck distance dB .

Lemma D.4. For any m ∈ N, the map pm : D → R≥0 assigning to a diagram its m-th largest
persistence value is continuous.

Proof. For a persistence diagram D ∈ D and a feature f = (τb, τd) ∈ D we denote by p(f) =
τd − τb the persistence of f . Note that for two features f, f ′ in a persistence diagram, we have
|p(f)− p(f ′)| ≤

√
2∥f − f ′∥∞.

We need to show that for any ε > 0 and any D ∈ D, we can choose some δ > 0 such that
|pm(D′)− pm(D)| < ε for all D′ whose bottleneck distance from D is at most δ, i.e., D′ ∈ Bδ(D).
Recall that in this setting, by definition of the bottleneck distance, there is a bijection (of multisets)
η : D → D′ such that for all f ∈ D we have ∥f − η(f)∥∞ < δ.

Continuity of pm is easier to demonstrate at diagrams D ∈ D for which all off-diagonal points have
different persistences. We discuss this case first. Assume D has l off-diagonal points. Denote by fk
the feature with k-th largest persistence.

Let δ̃ = min{p(fk)− p(fk+1) | k ≤ l} and δ = min
(
δ̃/(2

√
2), ε/(2

√
2)
)
. Consider D′ ∈ Bδ(D).

By the choice of δ, we have that |p(η(fk))−p(fk)| < δ̃/2, so that the values p(η(f1)), . . . , p(η(fl)), 0
are all distinct and strictly decreasing. As a result, for all m ≤ l we have pm(D′) = p(η(fm)) and
thus

|pm(D′)− pm(D)| = |p(η(fm))− p(fm)| <
√
2δ < ε.

For m > l, we have pm(D) = 0 and any f ′ ∈ D′ with pm(D′) = p(f ′) is paired with a point on the
diagonal of D under η. Hence

|pm(D′)− pm(D)| = |p(f ′)− 0| <
√
2δ < ε.

The case where D might contain off-diagonal points with identical persistence follows the same
overall argument, but requires more careful bookkeeping. Assume D has l off-diagonal points. Let
δ̃ = min

(
{pk(D)− pk+1(D) | k ≤ l}\{0}

)
. Let

δ = min
(
δ̃/(2

√
2), ε/(2

√
2)
)
.
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Set
Fk = {f ∈ D | p(f) = pk(D)}

for k ≤ l and Fl+1 equal to the diagonal. These multisets all contain at least one element. We have
pk(D) = pk+1(D) if and only if Fk = Fk+1.

As a result, for all k ≤ l, we have |
⋃k

i=1 Fi| = k if and only if Fk ̸= Fk+1 which in turn holds if
and only if pk(D) ̸= pk+1(D).

For any f, f̃ ∈ D with p(f) > p(f̃) we have

p(η(f))− p(η(f̃)) = p(η(f))− p(f) + p(f)− p(f̃) + p(f̃)− p(η(f̃))

≥ p(f)− p(f̃)− |p(η(f))− p(f)| − |p(f̃)− p(η(f̃))|
> p(f)− p(f̃)− δ̃

≥ 0, (18)

so p(η(f)) > p(η(f̃)). We will now show that if m ≤ l and f ′ ∈ D′ such that pm(D′) = p(f ′),
then η−1(f ′) ∈ Fm.

Let a be the highest number below m such that Fa ̸= Fm. Then∣∣∣∣∣
a⋃

i=1

η(Fi)

∣∣∣∣∣ =
∣∣∣∣∣

a⋃
i=1

Fi

∣∣∣∣∣ = a.

and
⋃a

i=1 η(Fi) contains the a < m features of D′ with smallest persistence. In particular,
η−1(f ′) /∈

⋃a
i=1 Fi.

Let b be the largest number such that Fh = Fm. By a similar argument,
⋃b

i=1 η(Fi) contains the
b ≥ m features in D′ with largest persistence, including f ′. Thus, η−1(f ′) ∈

⋃b
i=a+1 Fi. But by

choice of a and b, we have Fa+1 = · · · = Fm = · · · = Fb, so η−1(f ′) ∈ Fm.

Thus,
|pm(D′)− pm(D)| = |p(f ′)− p(η−1(f ′))| ≤

√
2∥f ′ − η−1(f ′)∥∞ < ε.

For m > l, we have pm(D) = 0 and Fm is the set of points on the diagonal of D. Moreover,∣∣∣∣∣
l⋃

i=1

Fi

∣∣∣∣∣ = l =

∣∣∣∣∣
l⋃

i=1

η(Fi)

∣∣∣∣∣ ,
so that any f ′ ∈ D′ with pm(D′) = p(f ′) must be in the image of the diagonal under η and we can
proceed as in the case of unique positive persistences.

Our hole detection score is a continuous score if there are at least m points in the persistence diagram,
and not continuous otherwise:
Proposition D.5. Let D be the space of all persistence diagrams with finitely many points off the
diagonal, endowed with the topology induced by the bottleneck distance dB . Let m ∈ N and define
D′ as the subset of D with at least m points off the diagonal. Then the map sm : D → R≥0 is
continuous at all diagrams in D′ but is discontinuous at all diagrams in D\D′.

Proof. The discontinuity of sm at diagrams with less than m points happens when adding the m-th
point to a diagram. Let D be a persistence diagram with l < m points off the diagonal. Let ε > 0 and
define D′ as the persistence diagram obtained by adding m− l copies of (0, ε/2). Then sm(D) = 0
and sm(D′) = 1, because D′ has exactly m off-diagonal points, but dB(D,D′) < ε. Thus, sm is
not continuous at D.

For the continuity part, we write sm as the composition of two continuous maps. The map
q : R>0 × R≥0 → R≥0, (x, y) 7→ (x− y)/x is continuous. Furthermore, since each diagram in
D′ has at least m points off the diagonal, pm(D) ∈ R>0 for all D ∈ D′. By lemma D.4 the map
pm × pm+1 : D′ → R≥0 × R≥0 is continuous. Finally, sm : D′ → R≥0 factors as q ◦ (pm × pm+1),
showing its continuity.
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In other words, on persistence diagrams with sufficiently many points our hole detection score is
continuous. This makes our score robust against small perturbations in the persistence diagram, a
property expected for a reliable score.

In the typical case, where the persistence diagram contains a noise cloud of many points close to the
diagonal and, possibly, some outliers far away from the diagonal, the requirement on the number
of points is satisfied. Only in the case where we expect a large gap after the m-th feature, but the
diagram does not even have m features, can there be a sudden jump in our hole detection score.

E Alternative performance scores

While our hole detection score corresponds to an intuitive visual assessment of persistence diagrams
and is continuous (Appendix D), in this section we discuss two alternative performance scores. We
argue that both of them are less suited for our benchmark.

E.1 Widest gap score

A natural way to interpret a persistence diagram is to deem all features above the widest gap in
persistence values as true features and the rest as noise, i.e., infer that a diagram has a true features if
a = argmaxα(pα − pα+1).

We considered the binary score which is equal to 1 if the number of features above the widest gap
equals the number of ground-truth features and 0 otherwise. We call it the widest gap score.

Note that our hole detection score can be lower than 1 even if the persistence diagram clearly shows
the correct number of outlier features (e.g. sm ≈ 0.5 for σ = 0.2 in Figure 3b). In contrast, the
widest gap score is equal to 1 in this case.

On the other hand, the binary nature of the widest gap score leads to instability in case of nearly
equisized gaps. For instance in Figure 9d, a small perturbation could make the gap after the most
persistent feature the widest, dropping the widest gap score from 1 to 0. In contrast, our s2 ≈ 0.9
correctly reflects the two clear outlier features.

We evaluated several distances on the three 1D datasets using the widest gap score in Figure S3.
The binary nature of the widest gap score led to high-variance results even though we increased
the number of random seeds from 3 to 10. Spectral methods still performed better than Euclidean,
Fermat, and DTM distances. However, the widest gap score led to some false positives. For example,
for the Fermat distance and σ = 0.3 for the circle dataset, in 9 of 10 trials the widest gap appeared
after the first feature. However, all 9 persistence diagrams looked like noise clouds and in 8 cases the
most persistent feature’s representative cycle was clearly a noise feature (Figure S3d – e). Conversely,
for the effective resistance there was always a clear outlier in the diagram and the representative did
follow the ground-truth loop (Figure S3f – g). Although the Fermat distance failed in this setting and
the effective resistance performed well, their widest gap scores were both high.

For these reasons, we prefer our hole detection score to the widest gap score.

E.2 Cycle matching

The need to distinguish between true signal and noise features in a persistence diagram motivated Re-
ani and Bobrowski [64] to develop cycle matching, a technique that quantifies the correspondence
of features in two persistence diagrams by a prevalence score in [0, 1]. True signal corresponds to
features that reappear with high prevalence in variations of the data obtained, e.g., via resampling.

This approach to detecting the true topology of high-dimensional data is orthogonal to our exploration
of different input distances. Indeed, cycle matching can be combined with any distance.

An important downside to cycle matching is the need for resampling. In an exploratory context, the
true data distribution is not known. Instead, Reani and Bobrowski [64] suggest to either bootstrap the
existing finite dataset or sample from a kernel density estimate. Unfortunately, for high-dimensional
data both approaches are problematic. Bootstrapping high-dimensional data is error-prone [18] and
persistent homology of bootstraps is biased because repeated points effectively decrease the sample
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effective resistance illustrate that despite the high score for both, Fermat distance actually failed.
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Figure S4: Results for cycle matching with the Euclidean distance on a noisy circle in R50 with noise
level σ. Top row: Prevalences of the 10 most prevalent cycles. Means and standard deviation over
three seeds. Color indicates whether the cycle was matched for all three random seeds or not. Second
row: Persistence diagrams with the most prevalent features highlighted. Third row: Representative of
the most prevalent feature overlaid on a 2D PCA of the data.

size [71]. Kernel density estimation requires a prohibitively large sample size in high dimensions [86,
chapter 6.5].

Nevertheless, as a proof of concept, we explored cycle matching with the relatively fast ripser-based
implementation of García-Redondo et al. [30]. The authors report a runtime of about 90 minutes for
a dataset of sample size n = 1000 (their Table 3) and in our experiments we experienced even longer
run times. As the result, this implementation of cycle matching was about 450 times slower than our
approach (Table S5). For this reason, we only used three resamples.

García-Redondo et al. [30]’s implementation accepts datasets as point clouds and implicitly assumes
the Euclidean distance. Therefore, in this experiment we only used Euclidean distances and diffusion
distances, which can be realized as Euclidean distances (Eq. 4). We computed prevalences of matched
cycles on the noisy circle with n = 1000 points in R50 for Gaussian noise of standard deviations
σ ∈ [0.1, 0.2, 0.25, 0.3, 0.35].
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Figure S5: Results for cycle matching with the diffusion distance (k = 15, t = 8) on a noisy circle in
R50 with noise level σ. Top row: Prevalences of the 10 most prevalent cycles. Means and standard
deviation over three seeds. Color indicates whether the cycle was matched for all three random seeds
or not. Second row: Persistence diagrams with the most prevalent features highlighted. Third row:
Representative of the most prevalent feature overlaid on a 2D PCA of the data.

Cycle matching with the Euclidean distance did not reliably identify the ground-truth feature for
sigma > 0.1 (Figure S4). In all experiments with the Euclidean distance and σ > 0.1, the feature
with the highest prevalence did not correspond to the ground-truth loop.

For σ = 0.2, 0.25, we also checked the prevalences of the ground truth cycle. For σ = 0.2 the ground
truth cycle was not matched for any of the three resamples, leading to a prevalence of 0. For σ = 0.25
the ground-truth cycle had the average prevalence of 0.1± 0.1, much lower than the cycle with the
highest prevalence.

One might hope that the cycles that do get matched for all resamples are true topological features,
even if their prevalence values are low. Indeed, for σ = 0.1 only the correct cycle was matched for
all three resamples. However this heuristic did not work either because for σ ∈ {0.2, 0.25, 0.3} no
cycle was matched for all three resamples, while for σ = 0.35 there was a cycle matched for all three
resamples (not shown in Figure S4 because it was not among the 10 most prevalent ones), but it did
not encode the ground-truth feature (and its prevalence 0.1± 0.1 was very low).

The fact that most cycles were not matched for all resamples led to high standard deviations of the
prevalences. The reason for the high mean prevalences for σ > 0.1 was that some noise cycles got
matched with very high prevalence (sometimes > 0.9) for one or two of the resamples. For the same
reason, the prevalence of the ground truth cycle for σ = 0.1 was not much higher than the second
highest prevalence. Increasing the number of resamples may help, but would make the procedure
even more computationally expensive.

Overall, we conclude that cycle matching is not only very slow, but also does not alleviate the curse
of dimensionality for persistent homology. In contrast, our spectral methods produced a near-perfect
loop detection score until σ = 0.3 (Figure 6).

That said, cycle matching can serve as an alternative performance score. We applied cycle matching
to the diffusion distance (Figure S5) and found that

1. the maximal prevalences were larger than for the Euclidean distance for σ < 0.3,
2. the cycle with maximal prevalence always represented the ground truth loop,
3. the prevalence of the correct cycle was a clear outlier among all prevalences for σ ≤ 0.3,
4. the cycle representing the ground truth feature was always matched for all three resamples and

was the only one matched for all three resamples for σ ≤ 0.3.
This confirms the superior performance of spectral methods for detecting topology in high-
dimensional settings.
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F Effective resistance as a spectral method

In this section, we derive an explicit spectral embedding realizing the square root of von Luxburg
et al. [81]’s corrected effective resistance. We also show that it is not necessarily a proper metric.

Let us recall the notation from Sections 5 and 6, extended to weighted graphs. Let G be a weighted
connected graph with n nodes. We denote by A = (aij)i,j=1,...,n the weighted adjacency matrix
whose entries aij = aji equal the edge weight of edge ij if edge ij is part of the graph and zero
otherwise. We further denote by D = diag(di) the degree matrix, where di =

∑
j aij are the node

degrees. We define vol(G) =
∑

i di. Let further Asym = D− 1
2AD− 1

2 and Lsym = I − Asym be
the symmetrically normalized adjacency matrix and the symmetrically normalized graph Laplacian.
Denote the eigenvectors of Lsym by u1, . . . , un and their eigenvalues by µ1, . . . , µn in increasing
order. The eigenvectors and eigenvalues of Asym are u1, . . . , un and 1− µ1, . . . , 1− µn.

Definition F.1. The naive effective resistance distance between nodes i and j is defined as

d̃eff
ij =

1

vol(G)
(Hij +Hji), (19)

where Hij is the hitting time from i to j, i.e., the expected number of steps that a random walker
starting at node i takes to reach node j for the first time.

The corrected effective resistance distance between nodes i and j is defined as

deff
ij = d̃eff

ij − 1

di
− 1

dj
+ 2

aij
didj

− aii
d2i

− ajj
d2j

. (20)

The following proposition refines Proposition 4 in [81].

Proposition F.2. The corrected effective resistance distance deff
ij between nodes i and j can be

computed by deff
ij = ∥eeff

i − eeff
j ∥2, where

eeff
i =

1√
di

(
1− µ2√

µ2
u2,i, . . . ,

1− µn√
µn

un,i

)
.

Proof. By the fourth step of the large equation in the proof of Proposition 2 in [82], we have

1

vol(G)
Hij =

1

dj
+ ⟨bj , Asym(bj − bi)⟩+

n∑
r=2

1

µr
⟨Asymbj , uru

⊤
r A

sym(bj − bi)⟩, (21)

where bi =
1√
di
êi = D− 1

2 êi with êi being the i-th standard basis vector.

Adding this expression for ij and ji and using the definition of d̃eff
ij , we get

d̃eff
ij − 1

di
− 1

dj
=

1

vol(G)
(Hij +Hji)−

1

di
− 1

dj
(22)

= ⟨bj , Asym(bj − bi)⟩+ ⟨bi, Asym(bi − bj)⟩ (23)

+

n∑
r=2

1

µr
⟨Asymbj , uru

⊤
r A

sym(bj − bi)⟩ (24)

+

n∑
r=2

1

µr
⟨Asymbi, uru

⊤
r A

sym(bi − bj)⟩ (25)

= ⟨bj − bi, A
sym(bj − bi)⟩ (26)

+

n∑
r=2

1

µr
⟨Asym(bj − bi), uru

⊤
r A

sym(bj − bi)⟩ (27)
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For ease of exposition, we treat the two terms separately. By unpacking the definitions and using the
symmetry of D, we get

⟨bj − bi, A
sym(bj − bi)⟩ = ⟨D− 1

2 (êj − êi), A
symD− 1

2 (êj − êi)⟩ (28)

= ⟨(êj − êi), D
−1AD−1(êj − êi)⟩ (29)

=
ajj
d2j

− 2
aij
didj

+
aii
d2i

(30)

Since the ur are eigenvectors of Asym with eigenvalue 1− µr and Asym is symmetric, we also get
n∑

r=2

1

µr
⟨Asym(bj − bi), uru

⊤
r A

sym(bj − bi)⟩ (31)

=

n∑
r=2

1

µr
⟨bj − bi, (A

symur)(A
symur)

⊤(bj − bi))⟩ (32)

=

n∑
r=2

1

µr
⟨bj − bi, (1− µr)ur

(
(1− µr)ur

)⊤
(bj − bi)⟩ (33)

=

n∑
r=2

(
1− µr√

µr
u⊤
r D

− 1
2 (êj − êi)

)2

(34)

=

∥∥∥∥∥ 1√
dj

(
1− µr√

µr
ur,j

)
r=2,...,n

− 1√
di

(
1− µr√

µr
ur,i

)
r=2,...,n

∥∥∥∥∥
2

(35)

=∥ej − ei∥2 (36)

Putting everything together yields the result

deff
ij = d̃eff

ij − 1

di
− 1

dj
+ 2

aij
didj

− aii
d2i

− ajj
d2j

(37)

=
ajj
d2j

− 2
aij
didj

+
aii
d2i

+ ∥ej − ei∥2 + 2
aij
didj

− aii
d2i

− ajj
d2j

(38)

= ∥eeff
j − eeff

i ∥2. (39)

The corrected version of effective resistance and diffusion distances are, in general, not proper metrics,
unlike the naive effective resistance [32, Corollary 2.4.]. We show this by giving concrete examples
of graphs where the metric axioms for these distances do not hold.
Proposition F.3. Neither corrected effective resistance nor diffusion distances between distinct points
are necessarily positive. Moreover, corrected effective resistance does not always satisfy the triangle
inequality.

Proof. Consider the unweighted chain graph with three nodes (Figure S6, left). The uncorrected
effective resistance between the first and the last node is 2. So the corrected effective resistance
between these distinct nodes is 2− 1− 1 = 0. On the same graph, the random walker is necessarily
at node 1 after one step, independent whether it started at node 0 or 2, so the diffusion distance with
t = 1 between these two distinct nodes is zero.

Consider now an unweighted graph with 5 nodes, the first three of which form a triangle and the
other two a chain connected to the triangle (Figure S6, right). Then

d̃eff
04 =

8

3
, d̃eff

02 =
2

3
, d̃eff

24 = 2; deff
04 =

7

6
, deff

02 =
1

6
, deff

24 =
2

3
. (40)

We see that the triangle 0, 2, 4 violates the triangle inequality

deff
04 =

7

6
>

2

3
+

1

6
= deff

02 + deff
24.
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Figure S6: Counterexample graphs for Proposition F.3

The square root of corrected effective resistance does satisfy the triangle inequality and can also be
used as input to persistent homology. This amounts to taking the square root of all birth and death
times found with the corrected effective resistance as computing persistent homology commutes
with strictly monotonic maps, and hence does not strongly affect the loop detection performance
of corrected effective resistance (Figure S20). We therefore believe that it is not a problem for
our persistent homology application that corrected effective resistance fails to satisfy the triangle
inequality.

G Effective resistance integrates diffusion distances

First, we describe the connection between diffusion distances and naive effective resistance commu-
nicated to us by Mémoli [54]. To the best of our abilities, we could not find another reference. We
use the same notation as in Section 6 and Appendix F.

Below, we speak of diffusion distances at half-integer time points, although the random walk analogy
does not extend to half-steps. What we mean is inserting a half-integer value of t in Eq. (4).
Proposition G.1. The sum of the squared diffusion distances over all time points t/2 for
t = 0, 1, 2, . . . equals the naive effective resistance. Formally, if G is a connected and non-bipartite
graph, we have

1

vol(G)

∞∑
t=0

ddiff
ij (t/2)2 = d̃eff

ij . (41)

Proof. This is an application of the geometric series. Since G is not bipartite, the largest eigenvalue
µn of its Laplacian Lsym is smaller than 2 [17, Lemma 1.7]. Recall that by Eq. (4) the diffusion
distance for t diffusion steps is given by

ddiff
ij (t) =

√
vol(G)∥ediff

i (t)− ediff
j (t)∥, where ediff

i (t) =
1√
di

(
(1− µ2)

tu2,i, . . . , (1− µn)
tun,i

)
.

(42)

and that the naive effective resistance is given by

d̃eff
ij = ∥ẽeff

i − ẽeff
j ∥2, where ẽeff

i =
1√
di

(
1

√
µ2

u2,i, . . . ,
1

√
µn

un,i

)
. (43)

We compute

1

vol(G)

∞∑
t=0

ddiff
ij (t/2)2 =

∞∑
t=0

n∑
l=2

(1− µl)
2·t/2

( ul,i√
di

− ul,j√
dj

)2
(44)

=

n∑
l=2

( ul,i√
di

− ul,j√
dj

)2 ∞∑
t=0

(1− µl)
t (45)

=

n∑
l=2

( ul,i√
di

− ul,j√
dj

)2 1

1− (1− µl)
(46)

=

n∑
l=2

1

µl

( ul,i√
di

− ul,j√
dj

)2
(47)

= ∥ẽeff
i − ẽeff

j ∥2 (48)

= d̃eff
ij . (49)
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The application of the geometric series is justified as µl ∈ (0, 2) for l = 2, . . . , n by assumption on
G, so that |1− µl| < 1.

Similarly, we show the corresponding result for the corrected version of effective resistance.
Corollary G.2. The sum of the squared diffusion distances over all time points t/2 for t = 2, 3, . . .
equals the corrected effective resistance. Formally, if G is a connected non-bipartite graph, we have

1

vol(G)

∞∑
t=2

ddiff
ij (t/2)2 = deff

ij (50)

and
ddiff
ij (0)2

vol(G)
=

1

di
+

1

dj
,

ddiff
ij (1/2)2

vol(G)
=

aii
d2i

+
ajj
d2j

− 2
aij
didj

(51)

Proof. For x ∈ (−1, 1), starting a geometric series at the m-th term yields
∑∞

t=m xt = xm

1−x . By
Proposition F.2, we have

deff
ij =

n∑
l=2

(1− µl)
2

µl

(
ul,i√
di

− ul,j√
dj

)2

=

n∑
l=2

(1− µl)
2

1− (1− µl)

(
ul,i√
di

− ul,j√
dj

)2

. (52)

By the same argument as in the proof of Proposition G.1, this shows the first part of the Corollary.

The statement for diffusion distance after t = 0 steps is an easy computation from the original
definition, Eq. (2):

ddiff
ij (0) =

√
vol(G)∥(P 0

i,: − P 0
j,:)D

−0.5∥

=
√

vol(G)∥(ê⊤i − ê⊤j )D
−0.5∥

=

√
vol(G)

(
1

di
+

1

dj

)
, (53)

where êi is the i-th standard basis vector. The last part follows from the definition of the corrected
effective resistance as

deff
ij = d̃eff

ij − 1/di − 1/dj + 2aij/(didj)− aii/d
2
i − ajj/d

2
j . (54)

and the expression of the naive effective resistance as full geometric series of squared diffusion
distances in Proposition G.1.

H Diffusion pseudotime

Diffusion pseudotime (DPT), ddpt, [36] also considers diffusion processes of arbitrary length. There
are several variants of diffusion pseudotime [36, 88]. They are all computed as ddpt

ij = ∥edpt
i − edpt

j ∥
for

edpt
i =

(
1− µ2

µ2
v2,i, . . . ,

1− µn

µn
vn,i

)
. (55)

The difference is the v1, . . . , vn’s. In the original publication [36], they were the normalized eigenvec-
tors of the random walker graph Laplacian D− 1

2LsymD
1
2 . These are given by vl = D− 1

2ul/∥D− 1
2ul∥.

Wolf et al. [88] introduced a version using the eigenvectors of the symmetric graph Laplacian Lsym,
so that vl = ul. Closest to the corrected resistance distance is the case where vl = D− 1

2ul are
non-normalized. We refer to these three versions as “rw”, “sym” and “symd”.

The only difference between the “symd” version of DPT and corrected effective resistance is that the
former decays eigenvalues with (1− µl)/µl, while the latter decays it with (1− µl)/

√
µl, so that

DPT decays large eigenvalues more strongly than corrected effective resistance (Figure 5).

Similar to effective resistance, one can also write diffusion pseudotime in terms of diffusion distances.
But for diffusion pseudotime the diffusion distances corresponding to higher diffusion times contribute
more.
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Proposition H.1. Let G be a connected, non-bipartite graph. We can write the “symd” version of
DPT as

ddpt
ij =

√√√√ 1

vol(G)

∞∑
t=1

(t− 1)ddiff
ij (t/2)2. (56)

Proof. We will use that for a real number x with |x| < 1 the derivative of the geometric series is

∞∑
t=1

txt−1 =
1

(1− x)2
.

Multiplying with x2, we get

x2

(1− x)2
=

∞∑
t=1

txt+1 =

∞∑
t=2

(t− 1)xt. (57)

By assumption on G, for all eigenvalues µl we have |1− µl| < 1 for l = 2, . . . , n, so that the above
equation holds for all x = 1 − µl with l = 2, . . . , n. Together with the “symd” expression for
diffusion pseudotime, we compute

(
ddpt
ij

)2
=

n∑
l=2

(1− µl)
2

µ2
l

( ul,i√
di

− ul,j√
dj

)2
=

n∑
l=2

∞∑
t=2

(t− 1)(1− µl)
t
( ul,i√

di
− ul,j√

dj

)2
=

∞∑
t=2

(t− 1)

n∑
l=2

(1− µl)
2·(t/2)

( ul,i√
di

− ul,j√
dj

)2
=

∞∑
t=2

(t− 1)ddiff
ij (t/2)2. (58)

H.1 Performance of diffusion pseudotime and potential distance

Here we compare the spectral methods of our main benchmark to the three versions of DPT and
potential distance.

For DPT, we used all three versions defined above and used k ∈ {15, 100} nearest neighbors.

The potential distance underlies the visualization method PHATE [56] and is closely related to the
diffusion distance. It is defined by

dpot
t (i, j) = ∥ log(P t

i,:)− log(P t
j,:)∥,

where the logarithm is applied element-wise. We used k ∈ {15, 100} and t ∈ {8, 64}.

Overall, all spectral methods performed very similarly on the 1D datasets circle, linked circles, and
eyeglasses (Figures S7, S8), as well as on the single-cell datasets (Figure S9).

I Details on the distances used in our benchmark

Let x1, . . . , xn ∈ Rd. We denote pairwise Euclidean distances by dij = ∥xi − xj∥, the k nearest
neighbors of xi in increasing distance by xi1 , . . . , xik , and the set containing them by Ni. Many
distances rely on the symmetric k-nearest-neighbor (skNN) graph. This graph contains edge ij if xi

is among the k nearest neighbors of xj or vice versa.
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Figure S7: Comparison of all spectral methods on the noised versions of the circle, the linked circles,
and the eyeglassed dataset in R50.
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Figure S8: Best hyperparameter choices for the methods in Figure S7. All spectral methods reach
very similar performance.

Fermat distances For p ≥ 1, the Fermat distance is defined as

dFp (ij) = inf
π

( ∑
(uv)∈π

dpuv

)
, (59)

where the infimum is taken over all finite paths from xi to xj in the complete graph with edge weights
dpij . As a speed-up, Fernández et al. [26] suggested to compute the shortest paths only on the kNN
graph, but for our sample sizes we could perform the calculation on the complete graph. For p = 1
this reduces to normal Euclidean distances due to the triangle inequality. We used p ∈ {2, 3, 5, 7}.

DTM distances The DTM distances depend on three hyperparameters: the number of nearest
neighbors k, one hyperparameter controlling the distance to measure p, and finally a hyperparameter
ξ controlling the combination of DTM and Euclidean distance. The DTM value for each point is
given by

dtmi =

{
p
√∑k

κ=1 ∥xi − xiκ∥p/k if p < ∞
∥xi − xik∥ else.

(60)

These values are combined with pairwise Euclidean distances to give pairwise DTM distances:

dDTM
k,p,ξ(ij) =

{
max(dtmi, dtmj) if ∥xi − xj∥ ≤

ξ
√
|dtmξ

i − dtmξ
j |

θ else,
(61)
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Figure S9: Comparison of all spectral methods on the single cell datasets. They all achieve similar
performance.
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where θ is the only positive root of
ξ
√
θξ − dtmξ

i +
ξ
√
θξ − dtmξ

j = dij . We only considered the
values ξ ∈ {1, 2,∞}, for which the there are closed-form solutions:

θ =


(dtmi + dtmj + dij)/2 if ξ = 1√(

(dtmi + dtmj)2 + d2ij
)
·
(
(dtmi − dtmj)2 + d2ij

)/
(2dij) if ξ = 2

max(dtmi, dtmj , dij/2) if ξ = ∞.

(62)

We used k ∈ {4, 15, 100}, p ∈ {2,∞}, and ξ ∈ {1, 2,∞}.

The original exposition of DTM-based filtrations [2] only considered the setting p = 2, while DTM
has been defined for arbitrary p ≥ 1 [14]. We explore an additional value, p = ∞, in order to possibly
strengthen DTM. Indeed, in several experiments it outperformed the p = 2 setting.

Moreover, Anai et al. [2] actually used a small variant of the Vietoris-Rips complex on the above
distance dDTM

ij (k, p, ξ): They only included point xi in the filtered complex once the filtration value
exceeds dtmi. This, however, only affects the 0-th homology, which we do not consider in our
experiments.

Core distance The core distance is similar to the DTM distance with ξ = ∞ and p = ∞ and is
given by

dcore
k (ij) = max(dij , ∥xi − xik∥, ∥xj − xjk∥). (63)

We used k ∈ {15, 100}.

t-SNE graph affinities The t-SNE affinities are given by

pij =
pi|j + pj|i

2n
, pj|i =

νj|i∑
k ̸=i νk|i

, νj|i =

{
exp

(
∥xi − xj∥2/(2σ2

i )
)

if xj ∈ Ni

0 else,
(64)

where σi is selected such that the distribution pj|i has pre-specified perplexity ρ. Standard implemen-
tations of t-SNE use k = 3ρ. We transformed t-SNE affinities into pairwise distances by taking the
negative logarithm. Pairs xi and xj with pij = 0 (i.e. not in the kNN graph) get distance ∞. We
used ρ ∈ {30, 200, 333}.

UMAP graph affinities The UMAP affinities are given by

µij = µi|j + µj|i − µi|jµj|i, µj|i =

{
exp

(
− (dij − µi)/σi

)
for j ∈ {i1, . . . , ik}

0 else,
(65)

where µi = ∥xi − xi1∥ is the distance between xi and its nearest non-identical neighbor. The scale
parameter σi is selected such that

k∑
κ=1

exp
(
−
(
d(xi, xiκ)− µi

)
/σi

)
= log2(k). (66)

As above, to convert these affinities into distances, we take the negative logarithm and handle zero
similarities as for the t-SNE case. We used k ∈ {100, 999}; k = 15 resulted in memory overflow on
one of the void-containing datasets.

Gardner et al. [31] and Hermansen et al. [40] first used these distances, but omitted µi, which we
included to completely reproduce UMAP’s affinities.

Note that distances derived from UMAP and t-SNE affinities are not guaranteed to obey the triangle
inequality.

Geodesic distances We computed the shortest path distances between all pairs of nodes in the
skNN graph with edges weighted by their Euclidean distances. We used the Python function
scipy.sparse.csgraph.shortest_path. We used k = {15, 100}.

UMAP embedding We computed the UMAP embeddings in 2 embedding dimensions using 750
optimization epochs, min_dist of 0.1, exactly computed k nearest neighbors, and PCA initialization.
Then we used Euclidean distances between the embedding points. We used UMAP commit a7606f2.
We used k ∈ {15, 100, 999}.
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t-SNE embedding We computed the t-SNE embeddings in 2 embedding dimensions using
openTSNE [63] with default parameters, but providing manually computed affinities. For that
we used standard Gaussian affinities on the skNN graph with k = 3ρ. Then we used the Euclidean
distances between the embedding points. We used perplexity ρ ∈ {8, 30, 333}.

For UMAP and t-SNE affinities as well as for UMAP and t-SNE embeddings we computed the skNN
graph with PyKeOps [13] instead of using the default approximate methods. The UMAP and t-SNE
affinities (without negative logarithm) were used by the corresponding embedding methods.

Effective resistance We computed the effective resistance on the skNN graph. Following the
analogy with resistances in an electric circuit, if the skNN graph is disconnected, we computed the
effective resistance separately in each connected component and set resistances between components
to ∞. The uncorrected resistances were computed via the pseudoinverse of the unnormalized graph
Laplacian [28]

d̃eff
ij = l†ii − 2l†ij + l†jj , (67)

where l†ij is the ij-th entry of the pseudoinverse L† of the unnormalized skNN graph Laplacian
L = D−A. The pseudoinverse inverts all non-zero eigenvalues. Denote the eigenvalue decomposition
of L by L = V ΛV T , where V = (v1, . . . , vn)

T is the matrix of eigenvectors of L and Λ is the
diagonal matrix of their eigenvalues λ1, . . . , λn. Then L† = V Λ†V T , where Λ† is the diagonal
matrix with entry 1/λi if λi > 0 and 0 otherwise. We can use this to derive a similar coordinate
expression as in Eq. 5, but based on the unnormalized graph Laplacian ([28, 4.B]). Let ei be the i-th
standard basis vector

d̃eff
ij = l†ii − 2l†ij + l†jj

= (ei − ej)
TL†(ei − ej)

= (ei − ej)
TV Λ†V T (ei − ej)

=
(√

Λ†V T ei −
√
Λ†V T ej

)T (√
Λ†V T ei −

√
Λ†V T ej

)
= ∥êeff

i − êeff
j ∥2 where

êeff
i =

(
v2,i√
λi

, . . . ,
vn,i√
λn

)
. (68)

For the corrected version, we used

deff
ij = d̃eff

ij − 1

di
− 1

dj
+ 2

aij
didj

− aii
d2i

− ajj
d2j

. (69)

For the weighted version of effective resistance, each edge in the skNN graph was weighted by the
inverse of the Euclidean distance. We experimented with the weighted and unweighted versions,
but only reported the unweighted version in the paper as the difference was always minor. We also
experimented with the unweighted and uncorrected version and saw that correcting is crucial for high
noise levels (Figure S20). We used k ∈ {15, 100}.

Both forms of the effective resistance can be written as squared distances between certain embedding
points (5), (6). Nevertheless, the uncorrected effective resistance is a proper metric [32, Corollary
2.4.]. The corrected version in general is not a proper metric (Proposition F.3).

Diffusion distance We computed the diffusion distances on the unweighted skNN graph directly
by equation (2), i.e.,

ddiff
t (i, j) =

√
vol(G)∥(P t

i,: − P t
j,:)D

− 1
2 ∥. (70)

Note that our skNN graphs do not contain self-loops. We used k ∈ {15, 100} and t ∈ {8, 64}.

It is clear from the above definition of the diffusion distance that it satisfies the triangle inequality,
but it can fail to be positive on distinct points (Proposition F.3).

Laplacian Eigenmaps For an skNN graph with K connected components, we computed the K+ d̃
eigenvectors u1, . . . , uK+d̃ of the normalized graph Laplacian Lsym of the skNN graph and discarded
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Figure S10: Visualization of all distances on the noisy circle in R50 with σ = 0.25. All scatter plots
are the 2D PCA of the 50D dataset. The colors indicate the distance to the highlighted point.
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Figure S11: Visualization of all distances on the noisy circle in R50 with σ = 0.25. The scatter plots
are 2D multidimensional scaling embeddings using the respective distances. The colors indicate the
distance to the highlighted point. For this random seed the t-SNE embedding tore the circle apart.

the first K eigenvectors u1, . . . , uK , which are coding for the connected components. Then we
computed the Euclidean distances between the embedding vectors eLE

i = (uK+1,i, . . . , u(K+d̃),i).

We used k = 15 and embedding dimensions d̃ ∈ {2, 5, 10}.

Alternatively, one can compute Laplacian Eigenmaps using the un-normalized graph Laplacian L.
We tried this normalization for d̃ = 2 but obtained very similar embeddings.

Diffusion pseudotime Diffusion pseudotime [36] also integrates the different time scales of the
diffusion distance, but on the level of the transition matrices, rather than on the level of the distances
themselves (Proposition G.2). There are multiple variants of diffusion pseudotime. They are all
computed as ddpt

ij = ∥edpt
i − edpt

j ∥ for

edpt
i =

(
1− µ2

µ2
v2,i, . . . ,

1− µn

µn
vn,i

)
. (71)

The difference is the v1, . . . , vn’s. In the original publication [36], they were the normalized eigenvec-
tors of the random walker graph Laplacian D− 1

2LsymD
1
2 . These are given by vi = D− 1

2ui/∥D− 1
2ui∥.

Wolf et al. [88] introduced a version using the eigenvectors of the symmetric graph Laplacian Lsym,
so that vi = ui. Closest to the corrected resistance distance is the case where vi = D− 1

2ui are
non-normalized. We tested all three versions, to which we refer as “rw”, “sym” and “symd” version.
We used k ∈ {15, 100} nearest neighbors.
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Figure S12: Synthetic, noiseless datasets with n = 1000 points each.
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ambient dimension d = 50.

Potential distance The potential distance underlies the visualization method PHATE [56] and is
closely related to the diffusion distance. It is defined by

dpot
t (i, j) = ∥ log(P t

i,:)− log(P t
j,:)∥,

where the logarithm is applied element-wise. We used k ∈ {15, 100} and t ∈ {8, 64}.

For all methods, we replaced infinite distances with twice the maximal finite distance to be able to
compute our hole detection scores.

We illustrate the distances used in the main benchmark in Figures S10 and S11.

J Datasets

J.1 Synthetic datasets

The synthetic, noiseless datasets with n = 1000 points each are depicted in Figure S12. Noised
versions of the circle for ambient dimensions d = 2, 50 are depicted in Figure S13.

Circle The circle dataset consists of n points equidistantly spaced along a circle of radius r = 1.

Linked circles The linked circles dataset consists of two circle datasets of n/2 points each, arranged
such that each circle perpendicularly intersects the plane spanned by the other and goes through the
other’s center.

Eyeglasses The eyeglasses dataset consists of four parts: Two circle segments of arclength π + 2.4
and radius r = 1, centered 3 units apart with the gaps facing each other. The third and fourth part are
two straight line segments of length 1.06, separated by 0.7 units linking up the two circle segments.
The circle segments consist of 0.425n equidistantly distributed points each and the line segments
consist of 0.075n equispaced points each. As the length scale of this dataset is dominated by the
bottleneck between the two line segments, we only considered noise levels σ ∈ [0, 0.15] for this
dataset, as at this point the bottleneck essentially merges in R2.
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Sphere The sphere dataset consists of n points sampled uniformly from a sphere S2 with radius
r = 1.

Torus The torus dataset consists of n points sampled uniformly from a torus. The radius of the
torus’ tube was r = 1 and the radius of the center of the tube was R = 2. Note that we do not sample
the points to have uniform angle distribution along the tube’s and the tube center’s circle, but uniform
on the surface of the torus.

High-dimensional noise We mapped each dataset to Rd for d ∈ [2, 50] using a random matrix V
of size d× 2 or d× 3 with orthonormal columns, and then added isotropic Gaussian noise sampled
from N (0, σ2Id) for σ ∈ [0, 0.35].

The orthogonal embedding in Rd does not change the shape of the data. The procedure is equivalent
to adding d− 2 or d− 3 zero dimensions and then randomly rotating the resulting dataset in Rd.

J.2 Single-cell datasets

We depict 2D embeddings of all single-cell datasets in Figure S14.

Malaria The Malaria dataset [43] consists of gene expression measurement of 5 156
genes obtained with the modified SmartSeq2 approach of Reid et al. [65] in n = 1787
cells from the entire life cycle of Plasmodium berghei. The resulting transcripts
were pre-processed with the trimmed mean of M-values method [69]. We obtained
the pre-processed data from https://github.com/vhowick/MalariaCellAtlas/raw/v1.0/
Expression_Matrices/Smartseq2/SS2_tmmlogcounts.csv.zip. The data is licensed under
the GNU GPLv3 licence.

The UMAP embedding shown in Figure 9 follows the authors’ setup and uses correlation distance
as input metric, k = 10 nearest neighbors, and a min_dist of 1 and spread of 2. Note that
when computing persistent homology with UMAP-related distances, we used our normal UMAP
hyperparameters and never changed min_dist or spread.

Neural IPCs The Neural IPC dataset [8] consists of gene expressions of n = 26 625 neural IPCs
from the developing human cortex. scVI [50] was used to integrate cells with different ages and
donors based on the 700 most highly variable genes, resulting in a d = 10 dimensional embedding.
Braun et al. [8] shared this representation with us for a superset of 297 927 telencephalic exitatory
cells and allowed us to share it with this paper (MIT License). We limited our analysis to the neural
IPCs because they formed a particularly prominent cell cycle.

Neurosphere The Neurosphere dataset [89] consists of gene expressions for n = 12 805 cells
from the mouse neurosphere. After quality control, the data was library size normalized and log2
transformed. Seurat was used to integrate different samples based on the first 30 PCs of the top 2 000
highly variable genes, resulting in a 12 805× 2 000 matrix of log2 transformed expressions. These
were subsetted to the genes in the gene ontology (GO) term cell cycle (GO:0007049). The 500 most
highly variable genes were selected and a PCA was computed to d = 20. The GO PCA representation
was downloaded from https://zenodo.org/record/5519841/files/neurosphere.qs. It is
licensed under CC BY 4.0.

Hippocampus The Hippocampus dataset [89] consists of gene expressions for n = 9188 mouse
hippocampal NPCs. The pre-processing was the same as for the Neurosphere dataset. The GO PCA
representation was downloaded from https://zenodo.org/record/5519841/files/hipp.qs.
It is licensed under CC BY 4.0.

HeLa2 The HeLa2 dataset [72, 89] consists of gene expressions for 2 463 cells from a human cell
line derived from cervical cancer. After quality control, the data was library size normalized and log2
transformed. From here the GO PCA computation was the same as for the neurosphere dataset. The
GO PCA representation was downloaded from https://zenodo.org/record/5519841/files/
HeLa2.qs. It is licensed under CC BY 4.0.
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Figure S14: 2D embeddings of all six single-cell datasets. a, f. UMAP embeddings of the Malaria [43]
and the Neural IPC datasets [8]. We recomputed the embedding for the Malaria dataset using UMAP
hyperparameters provided in the original publication, and subsetted an author-provided UMAP of
a superset of telencephalic exitatory cells to the Neural IPC. The text legend refers to Malaria cell
types. b – e. 2D linear projection constructed to bring out the cell cycle (‘tricycle embedding’) [89] of
the Neurosphere, Hippocampus, HeLa2, and Pancreas datasets. We used the projection coordinates
provided by Zheng et al. [89].

Pancreas The Pancreas dataset [3, 89] consists of gene expressions for 3 559 cells from the mouse
endocrine pancreas. After quality control, the data was library size normalized and log2 transformed.
From here the GO PCA computation was the same as for the neurosphere dataset. The GO PCA
representation was downloaded from https://zenodo.org/record/5519841/files/endo.qs.
It is licensed under CC BY 4.0.

K Hyperparameter selection

For each of the datasets and hole dimensions, we showed the result with the best hyperparameter
setting. For the synthetic experiments, this meant the highest area under the hole detection score
curve, while for the single-cell datasets it meant the highest loop detection score. Here, we give
details of the selected hyperparamters.

For Figure 1 we used effective resistance with k = 100 as in Figure 6.

For Figure 6 we specified the selected hyperparameters directly in the figure. For the density-based
methods, they were p = 3 for Fermat distances, k = 4, p = 2, ξ = ∞ for DTM, and k = 15 for
the core distance. For the graph-based methods, they were k = 100 for the geodesics, k = 100 for
the UMAP graph affinities, and ρ = 30 for t-SNE graph affinities. The embedding-based methods
used k = 15 for UMAP and ρ = 30 for t-SNE. Finally, as spectral methods, we selected effective
resistance with k = 100, diffusion distance with k = 100, t = 8 and Laplacian Eigenmaps with
k = 15, d = 2.

The hyperparameters for Figure 7 are given in Table S1.

In Figure 8 we specified the hyperparameters used. They were the same as for Figure 6 save for the
diffusion distance, for which we used k = 100, t = 8. This setting had better performance for d = 2
and only marginally lower performance than k = 15, t = 8 in higher dimensionalities.

For Figure 9, we selected DTM with k = 15, p = ∞, ξ = ∞, effective resistance with k = 15 and
diffusion distance with k = 15, t = 64. They are the same for the Malaria dataset in Figure 10.

The selected hyperparameters for Figure 10 can be found in Table S2.

The hyperparameters for Figures S10 and S11 are the same as those used in Figure 6. The hyper-
parameters for Figure S3 are given in Table S3 and those for Figure S16 in Table S4. All other
supplementary figures either do not depend on hyperparameters or detail them directly in the figure
or the caption.
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Table S1: The optimal hyperparameters that were selected in Figure 7. For torus and sphere, we
consider the case of loop detection (H1) and void detection (H2) separately.

Dataset Fermat DTM Eff. res. Diffusion

Circle p = 3 k = 4, p = 2, ξ = 1 k = 100 k = 15, t = 8
Eyeglasses p = 7 k = 100, p = 2, ξ = 1 k = 15 k = 15, t = 64
Linked circles p = 7 k = 15, p = ∞, ξ = 1 k = 15 k = 15, t = 8
Torus H1 p = 2 k = 4, p = 2, ξ = ∞ k = 100 k = 15, t = 8
Sphere H1 p = 2 k = 100, p = 2, ξ = 1 k = 15 k = 100, t = 64
Torus H2 p = 2 k = 4, p = 2, ξ = ∞ k = 100 k = 15, t = 8
Sphere H2 p = 2 k = 4, p = 2, ξ = 1 k = 100 k = 100, t = 8

Table S2: The optimal hyperparameters that were selected in Figure 10. For DTM we report the best
setting without thresholding (because none of the DTM runs passed our birth/death thresholding, so
all sm scores for all parameter combinations are zero).

Dataset Fermat DTM t-SNE UMAP Eff. res. Diffusion Lap. Eig.

Malaria p = 2 k = 15 ρ = 8 k = 15 k = 15 k = 15 d̃ = 5
p = ∞ t = 64
ξ = ∞

Neurosphere p = 2 k = 100 ρ = 30 k = 999 k = 15 k = 15 d̃ = 2
p = 2 t = 8
ξ = 2

Hippocampus p = 7 k = 100 ρ = 8 k = 15 k = 100 k = 15 d̃ = 2
p = 2 t = 8
ξ = 2

Neural IPC p = 2 k = 4 ρ = 30 k = 15 k = 100 k = 15 d̃ = 2
p = ∞ t = 64
ξ = ∞

HeLa2 p = 3 k = 4 ρ = 30 k = 100 k = 100 k = 100 d̃ = 2
p = 2 t = 64
ξ = ∞

Pancreas p = 7 k = 100 ρ = 8 k = 100 k = 4 k = 15 d̃ = 5
p = 2 t = 64
ξ = ∞

L Hyperparameter sensitivity

While all distances other than the Euclidean distance have hyperparameters and we show results for
the best hyperparameter setting in most figures, hyperparameter selection does not pose a serious
problem for diffusion distance and effective resistance. We only tuned hyperparameters very mildly
for these methods (4 settings for diffusion distances, only 2 for effective resistance, as opposed
to 24 for the competing method DTM). Moreover, we conduced a more fine-grained sensitivity
analysis and found the performance of diffusion distances and effective resistances to be robust to the
exact value of their hyperparameters. For this sensitivity analysis we computed the area under the
noise-level / detection score curves for the circle, the interlinked circles and the eyeglasses dataset
in 50 ambient dimensions with k = 4, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150 nearest neighbors
and t = 2, 4, 8, 16, 32, 64, 128, 256 diffusion steps. For all but the most extreme hyperparameter
values both effective resistance and diffusion distances strongly outperformed the Euclidean distance
(Figure S15). We observed a trade-off between the optimal number of neighbors k and diffusion steps
t for the diffusion distance, since both control how fast the diffusion can progress across the dataset.
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Table S3: The optimal hyperparameters that were selected in Figure S3.
Dataset Fermat DTM Eff. res. Diffusion

Circle p = 2 k = 4, p = 2, ξ = 1 k = 100 k = 15, t = 8
Eyeglasses p = 7 k = 4, p = 2, ξ = 1 k = 15 k = 15, t = 8
Linked circles p = 5 k = 4, p = 2, ξ = 1 k = 100 k = 15, t = 8

Table S4: The optimal hyperparameters that were selected in Figure S16.
Ambient Number of Fermat DTM Effective Diffusion
dimension outliers resistance

2 0 p = 2 k = 100, p = ∞, ξ = 2 k = 100 k = 100, t = 64
2 50 p = 7 k = 100, p = ∞, ξ = 2 k = 100 k = 100, t = 64
2 100 p = 7 k = 100, p = ∞, ξ = 2 k = 100 k = 100, t = 64
2 200 p = 7 k = 100, p = ∞, ξ = 2 k = 100 k = 100, t = 64
50 0 p = 3 k = 4, p = 2, ξ = 1 k = 100 k = 100, t = 8
50 50 p = 2 k = 4, p = 2, ξ = 1 k = 100 k = 15, t = 8
50 100 p = 2 k = 4, p = 2, ξ = 1 k = 100 k = 15, t = 8
50 200 p = 2 k = 4, p = 2, ξ = 1 k = 100 k = 15, t = 64

M Implementation details

We computed persistent homology using the ripser [4] project’s representative-cycles branch
at commit 140670f to compute persistent homologies and representative cycles. We used coefficients
in Z/2Z. To compute kNN graphs, we used the PyKeops package [13]. The rest of our implemen-
tation is in Python. Our code is available at https://github.com/berenslab/eff-ph/tree/
neurips2024.

Our experiments were run on a machine with an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
with 64 kernels, 377GB memory, and an NVIDIA RTX A6000 GPU. The persistent homology
computations only ever used a single kernel.

Our benchmark consisted of many individual experiments. We explored 47 hyperparameter settings
across all distances, computed results for 3 random seeds and 29 noise levels σ. In the synthetic
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Figure S15: Diffusion distances and effective resistance are robust to their hyperparameters and
outperform the Euclidean distance for most choices. We depict the area under the noise-level /
detection score curve for the three 1D datasets circle, linked circles and eyeglasses in R50.
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Table S5: Exemplary run times in seconds.
Dataset n σ Distance Feature dim Time distance [s] Time PH [s]

Circle 1 000 0.0 Euclidean 1 0.013± 0.002 12.3± 0.4
Circle 1 000 0.0 Eff. res k = 100 1 0.17± 0.04 12.0± 0.2
Circle 2 000 0.0 Euclidean 1 0.09± 0.04 117± 9
Sphere 1 000 0.0 Euclidean 1 0.012± 0.001 1.31± 0.06
Sphere 1 000 0.0 Euclidean 2 0.017± 0.002 4687± 2501
Circle 1 000 0.35 Euclidean 1 0.016± 0.001 5± 2
Sphere 1 000 0.35 Euclidean 2 0.03± 0.02 258± 18

benchmark, we computed only 1D persistent homology for 3 datasets and both 1D and 2D persistent
homology of 2 more datasets. So the synthetic benchmark with ambient dimension d = 50 alone
consisted of 12 267 computations of 1D persistent homology and 8 178 computations of both 1D and
2D persistent homology.

The run time of persistent homology vastly dominated the time taken by the distance computation.
The persistent homology run time depended most strongly on the sample size n, the dataset, and on
the highest dimensionality of holes. The difference between distances was usually small. However,
we observed that there were some outliers, depending on the noise level and the random seed, that
had much longer run time. Overall, we found that methods that produce many pairwise distances of
the same value (e.g., because of infinite distance in the graph affinities or maximum operations like
for DTM with p = ∞, ξ = ∞) often had a much longer run time than other settings. We presume
this was because equal distances led to many simplices being added to the complex at the same time.
We give exemplary run times in Table S5.

As a rough estimate for the total run time, we extrapolated the run times for the circle to all 1D
persistent homology experiments for ambient dimension d = 50 and the times for the sphere to all
2D experiments. In both cases we took the mean between the noiseless (σ = 0) and highest noise
(σ = 0.35) setting in Table S5. This way, we estimated a total sequential run time of about 60 days,
but we parallelized the runs.

N Effect of outliers

Persistent homology with the Euclidean distance is known to be sensitive to outliers. Methods such
as DTM were introduced to handle this issue. Here we show that spectral methods can also handle
outliers well. Moreover, in high ambient dimensionality outliers are distributed over the large volume
and hence are very sparse, making them less of a problem.

We experimented with the noisy circle with n = 1000 points in ambient Rd for d = 2, 50 and added
50, 100, or 200 outlier points. These were sampled uniformly from axis-aligned cubes around the
data in ambient space. The size of the cube was set just large enough that it contained the data even
with the strongest added Gaussian noise.

In low dimensionality, Euclidean distance suffered in the low Gaussian noise setting already when
only 50 outliers were added. Adding 100 or 200 outliers severely lowered the detection score for
Euclidean distance across the entire range of Gaussian noise strength. Fermat distances suffered from
high random seed variability when adding outliers in low ambient dimension. Diffusion distance
and effective resistance were much more outlier-resistant than the Euclidean distance and were only
affected by 200 outliers. Even then they performed better than the Euclidean distance without any
outliers. DTM excelled in this setting, being completely insensitive to outliers and achieving top
score for all noise levels (Figure S16a – d).

The volume of the bounding box in d = 50 ambient dimensions is much larger and thus the same
number of outlier points are distributed much more sparsely. In particular, it is much less likely
that an outlier happens to fall into the middle of the circle. As a result, even Euclidean and Fermat
distances were very outlier-robust in d = 50 ambient dimensions (Figure S16e – g). Similarly, DTM’s
performance did not change at all in the face of outliers. However, all three methods suffered strongly
from the high-dimensional Gaussian noise.
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Figure S16: Loop detection performance of various methods on the noisy circle in the presence of
outliers in low- and high-dimensional ambient space. Outliers were sampled uniformly from an
axis-aligned cube around the data. a – d. In low ambient dimension (d = 2) adding outliers hurt
the performance of the Euclidean and Fermat distances, but barely affected the performance of the
spectral methods and not at all DTM’s excellent performance. e – g. In high ambient dimensionality
(d = 50) outliers did not further decrease the weak performance of non-spectral methods. Diffusion
distance was somewhat outlier-sensitive, but could still detect the loop structure in the high Gaussian
noise setting. Effective resistance performed best overall and was not very outlier-sensitive.

As diffusion distance and effective resistance in our implementation rely on the unweighted kNN
graph, they were somewhat more susceptible to outliers. Performance of diffusion distance decreased
steadily with the number of outliers in high ambient dimension. When outliers were present, it
performed worse than the Euclidean distance in the low Gaussian noise setting, but much better in
the high Gaussian noise setting, even for 200 outliers. Effective resistance performed best overall,
deteriorating only slightly in the low Gaussian noise setting when outliers were added. Both spectral
methods clearly outperformed other methods in the high-Gaussian noise regime even in the presence
of numerous outliers.

To sum up, effective resistance (and to a lesser extent diffusion distance) can handle both outliers and
high-dimensional Gaussian noise, while other methods can handle at most one type of noise.

O UMAP with higher embedding dimension

Following the original publication [53], UMAP is typically used to embed data into two dimensions.
This is an obvious issue for datasets sampled from manifolds which are not embeddable into two
dimensions, such as the sphere or the torus. Therefore, we also experimented with the less common
approach of higher embedding dimensionality (3, 5, 10) for UMAP. Save for the successful detection
of the sphere’s void with at least three embedding dimensions, we observed few consistent effects
of the embedding dimension either on the toy (Figure S17) or on the real data (Figure S19). Never-
theless, on the linked circles dataset, which is not embeddable into two dimensions, we saw a small
improvement for UMAP when going beyond two embedding dimensions for the low noise setting.

Independent of the embedding dimension, UMAP struggled in the low-noise setting on the eyeglasses
dataset for k = 15. Moreover, we observed very poor performance both for loop and void detection
on the torus. We believe the reasons may be UMAP’s tendency to over-fragment the manifold [22]
and UMAP’s use of a heavy-tailed kernel. We visualized three-dimensional UMAP embeddings
of the noiseless eyeglasses, sphere, and torus for k = 15 in Figure S18. UMAP left a gap in the
embedding of the eyeglasses dataset, so that the true loop only had the second highest persistence.
Short-cutting at the bottleneck yielded the most persistent loop. For the torus, the surface of the
embedding was very fragmented, preventing the detection of any void. While the main loop of the
torus was detected well, the second most persistent detected loop was already in the noise cloud
as the fragmented surface of the embedding allowed for many fairly persistent loops. In a similar
way, the surface of the sphere’s embedding got fragmented, leading to many loops. Our score does
not penalize this, because the detection score for m = 1 loop is low as there is nearly no gap in
persistence between the most and the second-most persistent loop. Higher levels of noise and also
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Figure S17: Hole detection scores in UMAP embeddings of the toy datasets in different embedding
dimensions. Changing the embedding dimension only has a small effect.
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Figure S18: Exemplary UMAP embeddings with k = 15 of the noiseless eyeglasses dataset, the
sphere, and the torus into three dimensions. We show the persistence diagrams for loops and
highlight the two most persistent loops and superimposed them on the embedding. We see strong
over-fragmentation of the surfaces that challenges the loop detection and in the case of the torus the
void detection (persistence diagram for the voids not shown).

higher k could overcome UMAP’s over-fragmentation tendency for the eyeglasses dataset. This may
be due to high-dimensional noise better matching UMAP’s heavy-tailed kernel. However, it did not
resolve the over-fragmentation for the torus.

The runtime of UMAP scales linearly with the embedding dimension, but typical t-SNE implemen-
tations scale exponentially. In fact, the implementation we used here, openTSNE [63], does not
implement embedding dimensions higher than two, which is why we explored higher-dimensional
embeddings only for UMAP.
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Figure S19: Detection scores for UMAP with different embedding dimensions on the single-cell
datasets with some other methods for reference. Changing the embedding dimension did not have
a consistent effect on the detection scores, while higher embedding dimension usually hurt for
Laplacian Eigenmaps.
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Figure S20: Loop detection score on noisy S1 ⊂ R50 for various versions of effective resistance.
There was little difference between using the weighted kNN graph, unweighted kNN graph, and
using the square root of effective resistance based on the unweighted kNN graph. The latter got
filtered out for high noise levels. Using k = 100 instead of k = 15 helped only marginally in this
dataset. The uncorrected (naive) version of effective resistance collapsed already at very small noise
levels.
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Figure S21: Illustration for the random seed variability of effective resistance with k = 15 on the
noisy eyeglasses dataset in R50 with σ = 0.075. This refers to Figure 7b. a. One-dimensional
persistence diagrams for three random seeds. b. Representatives of the most two most persistent
features superimposed on a 2D PCA of the dataset. These always corresponded to the full shape and
one of the two circle segments. For the first two random seeds, some points are distorted in such a
way that they form a bridge in the 2D PCA, while in the third there is not such bridge and the second
most persistent feature is much less persistent. Note that this is just a 2D PCA, in particular, much of
the noise in 50D is not visible. A similar explanation applies for the diffusion distance in Figure 7b.
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Figure S22: t-SNE embeddings with perplexity ρ = 8 and 1D persistence diagrams of the embedding
for a circle in ambient R50 with Gaussian noise of low standard deviation σ. Perplexity ρ = 8 is
rather small, such that each embedding point only feels attraction to very few other points. In the
noiseless setting this very sparse attraction is only among immediate neighbors along the circle.
This makes the embedding to have spurious curves. For higher noise, the sparse attraction pattern
is less regular and less local such that the spurious curves disappear. The more spurious curves the
embedding has, the more high persistent features, given by bottlenecks in the curvy embedding, exist.
This explains the dip for the t-SNE ρ = 8 curve in Figure S23g.
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Figure S23: Loop detection score for persistent homology with various distances on a noisy circle in
ambient R50. Extension of Figure 6. Spectral and embedding methods performed best. The reason
for the dip for the low-perplexity t-SNE embedding is depicted in Figure S22.
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Figure S24: Loop detection score for persistent homology with various distances on a noisy circle in
ambient R2. Our code for finding the geodesics for k = 15 did not terminate. Nearly all methods
performed near perfectly for most noise levels. Note the striking difference to the 50D setting in
Figure S23.
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Figure S25: Loop detection score for persistent homology with various distances on a noisy circle in
ambient R50. No thresholding was used for this figure, in contrast to Figure S23. Without thresholding,
DTM had better performance, but not much beyond the level of Euclidean distance. Several issues
such as high random seed variability for Core k = 100, t-SNE ρ = 333 and artifactually increasing
performance for several methods at very high noise levels can be visible here; this is why we used the
thresholding procedure in the main text.
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Figure S26: Loop detection score for persistent homology with various distances on the noisy
eyeglasses dataset in ambient R50. Only Fermat distance, geodesics, t-SNE and UMAP, and spectral
methods outperformed the Euclidean distance, but UMAP struggled in the low noise setting. The
reason for the high random seed variability for effective resistance with k = 15 is depicted in
Figure S21.
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Figure S27: 2-loop detection score for persistent homology with various distances on two interlinked
circles in ambient R50. Spectral and embedding methods performed best, but the latter sometimes
had issues in the low noise setting.
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Figure S28: Loop detection score for persistent homology with various distances on a noisy sphere in
ambient R50. Most methods passed this negative control.
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Figure S29: Void detection score for persistent homology with various distances on a noisy sphere in
ambient R50. Methods relying on 2D embeddings did not find the loop for any noise level. Spectral
methods performed best.
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Figure S30: 2-loop detection score for persistent homology with various distances on a noisy torus
in ambient R50. All methods struggled here, and only DTM, core, t-SNE graph and UMAP graph
improved noticeably over the Euclidean distance. On a denser sampled torus effective resistance and
diffusion distance outperformed other methods (Figure S31). Using fewer diffusion steps improved
the performance on the torus (Figure S32).
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Figure S31: 2-loop detection score for persistent homology with various distances on a noisy torus
with different sample size n. For more points, all methods performed better as the shape of the torus
gets sampled more densely. The difference in performance is particularly striking for the spectral
methods which outperformed the others for n = 5000 points, but did not for n = 1000.
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suppressed the relevant eigenvectors. a. 2-loop detection score for the torus in d = 50 ambient
dimensions. Diffusion distances with t = 2 diffusion steps were on par with effective resistance
and Euclidean distance. b. Decay of eigenvalues in various spectral distances on the noiseless
torus. Diffusion distances with t = 8, 64 only had contribution below 0.1 for the fifth and sixth
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100-nearest-neighbor graph of the noiseless torus. Coordinates are the angles of each point along (ϕ)
and around (θ) the tube of the torus. The loop along the tube is encoded in the first two eigenvectors,
the loop around the tube in the fifth and sixth eigenvectors.
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Figure S33: Void detection score for persistent homology with various distances on a noisy torus
in ambient R50. Methods relying on 2D embeddings did not find the void for any noise level. Only
t-SNE graph and UMAP graph could reliably improve above the Euclidean distance and only for
low noise levels. However, they had unstable behavior for higher noise levels, resulting in high
uncertainties. We suspect that a higher sampling density would benefit effective resistance and
diffusion distance (as we saw for loop detection in Figure S31), but the computational complexity of
persistent homology makes such experiments difficult.
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Figure S34: Detection scores for all hyperparameter settings for all six single-cell datasets. We
omitted DTM as no setting passed the thresholding on any dataset. The black bar refers to correlation
distance on the Malaria dataset and to Euclidean distance on the others. Extension of Figure 10.
t-SNE graph and UMAP graph could perform very well, but were very hyperparameter-dependent.
Their embedding variants often performed well, but collapsed on some datasets. The spectral methods
behaved similarly, but on average performed better.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We describe our contributions clearly in both the abstract and the introduction
and explicitly list them at the end of the introduction. The failure modes of traditional
persistent homology are described in Section 4 with formal statements and proofs in Ap-
pendix B. We state our novel closed-form expression for effective resistance in Section 6
(proof in Appendix F) and use it to relate effective resistance to other spectral methods.
Finally, Section 7 contains our experimental validation of the quality of spectral methods
over alternative distances as input to persistent homology.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention limitations of our work such as the ambiguity of inspecting repre-
sentative cycles of detected topological features, persistent homology failing to distinguish
non-isometric point clouds, the high computational complexity of any persistent homology
computation, and sampling issues in high-dimensional spaces in the Limitations section 8.
We also clearly state the need for selecting hyperparameters for our recommended meth-
ods in Section 7 and acknowledge that spectral methods need more samples for a good
performance on the torus in Section 7.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We illustrate our claims about the failure of persistent homology with an
example in Section 4 and provide full formal statements and proofs in Appendix B. The
formal claims in Section 6 are rigorously shown in Appendices F and G and appropriately
cross-referenced.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe every aspect of our experiments in detail, ensuring repro-
ducibility. Datasets, distance measures, and the performance score are described in Sec-
tion 7. Additionally, we give more details on the used distances and datasets in Ap-
pendices I and J. Further technical aspects of our experiments are described in the Ap-
pendix “Implementation details” M. Moreover, our code is publicly available at https:
//github.com/berenslab/eff-ph/tree/neurips2024.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We submit our entire codebase with this submission and will make it open
access at the camera ready stage. The codebase contains a README that explains how to
setup the environment and which scripts to run to reproduce our experiments. Moreover, we
detail which notebooks need to be run to reproduce each figure.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe our implementation in Sections 3 and 7. Moreover, we describe
the explored hyperparameters in Appendix I and detail which hyperparameter values were
chosen in Appendix K.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For all experiments, we report the mean performance across three random
seeds and the standard deviation. We specify this just before Section 7.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix M details the processor, memory, and GPU of the machine on which
we ran our experiments. Moreover, we report the run times of individual experiments and an
estimate for the total run time in this appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: We read and conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have a Broader impact section in Appendix A, which also discusses
potential negative societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any generative models or scraped datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The persistent homology computation relies on the ripser package, which
we cite in Section 3 and we give the commit version we used in Appendix M. We cite the
original authors of all the datasets we use both in Section 7.2 and Appendix J, where we
also state the licenses and include the URLs from which we obtained the data.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We obtained the Neural IPC data directly from Braun et al. [8] who allowed us
to share it with this work (MIT license). We documented this asset in Appendix J.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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