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Abstract

Recent advances in modeling multiagent trajectories combine graph architectures
such as graph neural networks (GNNs) with conditional variational models (CVMs)
such as variational RNNs (VRNNs). Originally, CVMs have been proposed to
facilitate learning with multi-modal and structured data and thus seem to per-
fectly match the requirements of multi-modal multiagent trajectories with their
structured output spaces. Empirical results of VRNNs on trajectory data support
this assumption. In this paper, we revisit experiments and proposed architectures
with additional rigour, ablation runs and baselines. In contrast to common belief,
we show that prior results with CVMs on trajectory data might be misleading.
Given a neural network with a graph architecture and/or structured output function,
variational autoencoding does not seem to contribute statistically significantly to
empirical performance. Instead, we show that well-known emission functions do
contribute, while coming with less complexity, engineering and computation time.

1 Introduction

Modeling the whereabouts of agents over space and time is an emerging research topic and important
in many areas including the prediction of pedestrian movements (e.g. Alahi et al., 2016; Gupta et al.,
2018), sports analytics (e.g. Le et al., 2017) and autonomous driving (e.g. Casas et al., 2020).

Trajectory data over multiple agents is usually highly multi-modal and comes with a structured output
space: Firstly, assuming stochastic actions of each agent, there are multiple modes with respect to the
density of future trajectories. Intuitively, one can think of different futures being all likely given a
current setting. Secondly, the output space is naturally structured, since multiple trajectories have to
be estimated per time step, while individual trajectories have to account for spatial dimensionality.

Graph architectures such as graph neural networks (GNNs, Scarselli et al., 2008), or graph networks
in general (cf. Battaglia et al., 2018), are providing convincing architectural benefits for learning
tasks on multiagent trajectories which come as unordered sets of individual trajectories. This is of
special importance in learning scenarios where the number of agents are not fixed and/or the order of
the agents is not predetermined, such as predicting the movements of pedestrians or players in team
sports (e.g. Alahi et al., 2016; Gupta et al., 2018; Le et al., 2017; Felsen et al., 2018).

Conditional variational models (CVMs) such as conditional variational autoencoders (CVAEs, Sohn
et al., 2015) and variational recurrent neural networks (VRNNs, Chung et al., 2015) have both
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been proposed to learn representations that help with structured prediction. Being an extension to
variational autoencoders (VAEs, Kingma and Welling, 2014; Rezende et al., 2014), both architectures
involve autoencoding an output variable, while conditioning on some input variable. In the case of
CVAEs, the concept of the input variable is generic. In the case of VRNNs, a specific decomposition
of sequential data and assumed latent variables result in time-step-wise conditioning with respect to
the past. The inherent stochasticity of the models is suggested to help with “modeling variability”
(Sohn et al., 2015) and making “diverse predictions” (Chung et al., 2015).

Recent research towards modeling multiagent trajectories proposes neural network architectures that
combine components operating on graph structured data with conditional variational models. In this
paper, we mainly focus on two examples: Ivanovic and Pavone (2019), who leverage spatiotemporal
graphs with dynamic edges for neighboring agents with per agent CVAE and recurrent decoder
for pedestrian prediction, and Yeh et al. (2019), who model interaction in team sports and propose
to extend the VRNN model with GNNs. Both papers report empirical results which support the
assumption that the employed CVMs are important for the performance of the architectures. By
contrast, in this paper we provide evidence that a statistically significant contribution of the conditional
variational model components to the empirical results for either architecture cannot be established.

Our approach is motivated by the observation that the structure of the output space of an individual
trajectory in two dimensions is not overly complex. Revising an experiment on modeling handwriting
data conducted in Chung et al. (2015), we show that mixture density networks (MDNs, Bishop,
1994), with Gaussian mixture models (GMMs) as output distributions, are indeed sufficient too
capture the multi-modality and structure of two-dimensional trajectories. Lifting these results to
interactions in multiagent trajectories with graph networks shows that the output space decomposes
due to permutation equivariance and thus preserves the low-dimensional structure locally. We provide
experimental evidence, that variational autoencoding does not result in higher likelihoods with respect
to modeling multiagent trajectories when added to neural networks of certain structure.

We thus argue, that conditional variational autoencoding (as considered in this paper) is not the
right choice for modeling multiagent trajectories. By contrast, structured emission functions such
as MDNs, perform on par or even better and seem to render variational autoencoding unnecessary.
Additionally, MDNs come with less complexity, engineering and compute.

Specifically, our contributions are: (i) We revise an experiment from Chung et al. (2015) (Section 5.2)
and thus show, that MDN emission functions render the VRNN architecture unnecessary for modeling
single two-dimensional trajectories. (ii) We provide a new ablation study with respect to the trajectron
model (Ivanovic and Pavone, 2019) (Section 5.3) and new baseline experiments with graph VRNNs
(Yeh et al., 2019) (Section 5.4). We thus also show, that MDN emission functions are more significant
than variational autoencoding for modeling multiagent trajectories with graph architectures.

With this paper we hope to correct expectations towards CVMs for modeling trajectories to an
appropriate level and mark the proper inclusion of CVM components for such problems as open
research. Our results are intended to encourage practitioners (interested in fast returns) to focus
on well understood and possibly simpler results, before incorporating components with increasing
complexity, when modeling multiagent trajectories.

2 Related work

Mixture density networks (MDNs) have been introduced in Bishop (1994) and are by now well
established. This holds especially for Gaussian component densities and thus GMM output distri-
butions (cf. Bishop, 2006, for a textbook introduction). Combining RNNs with GMM emission
for spatiotemporal tasks specifically, has been popularized by Graves (2013), who employed this
architecture to model handwriting data from the IAM-OnDB dataset (cf. Marti and Bunke, 2002).
The IAM-OnDB dataset was subsequently used in Chung et al. (2015) and is thus also used in our
experiment in Section 5.2. Ha and Eck (2018) model structurally similar data (i.e. vector images)
with an (unconditional) VAE paired with a mixture density RNN decoder and GMM emission.

Regarding multiagent trajectories, especially prior work on modeling team sports usually involves
heuristics to account for player ordering (Le et al., 2017; Zhan et al., 2019). While there are arguments
supporting this approach (Hobbs et al., 2019), the use of graph networks (Battaglia et al., 2018) or
related attention mechanisms (Xu et al., 2015; Bahdanau et al., 2015) to model agent interaction is
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widespread. Notable early work includes Sukhbaatar et al. (2016) in general and Hoshen (2017) as
well as Kipf et al. (2018) for multiagent trajectories in sports. Variational autoencoding approaches
towards sports trajectories include Felsen et al. (2018) and Zhan et al. (2019). We consider Sanchez-
Gonzalez et al. (2018) one of the earliest works on explict graph RNNs (GRNNs).

With respect to Ivanovic and Pavone (2019), follow-up work (Salzmann et al., 2020) uses the same
overall design, but proposes to improve the latent variable component via the InfoVAE objective
(Zhao et al., 2019). Preliminary ablation studies regarding the combination of CVAE and GMM
emission in the architecture have been conducted in Schmerling et al. (2018) and Ivanovic et al.
(2018). While they suggest the CVAE to provide a small benefit, the significance of the results is
not clear. Casas et al. (2020) is another recent example for the combination of CVAEs and graph
networks. Different from the architectures discussed in this paper however, a non-recurrent and
non-probabilistic decoder is employed.

3 Conditional variational models

3.1 Conditional variational autoencoders

Variational autoencoders (VAEs, Kingma and Welling, 2014; Rezende et al., 2014) assume a genera-
tive model p(x, z) = p(x|z)p(z), where a latent variable z is introduced to better model a data point
x. Specifically, VAEs come with a stochastic optimization method for a lower bound (the evidence
lower bound, or ELBO) of the marginal log-likelihood log p(x). Distributions pθ and qφ involved in
the ELBO formulation are modeled with neural networks. Parameters θ and φ can be learned via
stochastic gradient ascent. In this framework, qφ is considered a variational approximation to the true
but unknown posterior of the latent variable.

Transferring variational autoencoding to conditional density estimation of some target variable y,
Sohn et al. (2015) proposes to optimize the ELBO of log p(y|x) instead:

log pθ(y|x) ≥ Eqφ(z|x,y) [log pθ(y|x, z)]−DKL(qφ(z|x,y)||pθ(z|x)).

Here,DKL(q||p) denotes the Kullback-Leibler (KL) divergence of two distributions q and p. When the
prior pθ(z|x) and the variational posterior qφ(z|x,y) are modeled as Gaussians, the KL divergence
can be calculated in closed form. Optimization of the expected log-likelihood of the target variable
y with respect to the variational parameters φ is done via reparameterization (cf. Mohamed et al.,
2019). Latent variable instances z are thus reparameterized as z = g(x,y, ε), with g being a
deterministic function with respect to x and y, while ε is an auxiliary noise variable, usually taken to
be componentwise standard normal, i.e. εi ∼ N (0, 1).

Besides CVAEs, Sohn et al. (2015) proposes Gaussian stochastic neural networks (GSNNs) as a
simpler alternative, where sampling stays consistent between learning and test time: GSNNs are
obtained from CVAEs by setting the variational posterior equal to the prior, thereby reducing the
model to straightforward density estimation with (learnable) noise injected during training.

As such, GSNNs make it natural to discuss two properties of CVAEs from an architectural perspective:
Firstly, the target variable y is fed into lower parts of the model. Secondly, learnable noise is injected,
enabling the network to bridge the gap between the approximate posterior (having access to the target)
and the prior. We conjecture, that autoencoding the target variable via CVMs is not necessary for
some tasks, on which the noise nevertheless helps with convergence. In a first hypothesis, which we
will address in the experiments in Section 5, we state this even stronger:
Hypothesis 1: Conditional autoencoding does not contribute towards density estimation for low-
dimensional trajectories, at least if we account for its regularization properties via noise injection.

3.2 Variational recurrent neural networks

The variational RNN (Chung et al., 2015) is a conditional variational model for sequential data, which
assumes a specific decomposition of a latent variable z and a data sequence x = (x1,x2, . . . ,xT ) of
length T . This decomposition leads to the following (empirical) lower bound on a sequence:

log pθ(x≤T ) ≥
T∑
t=1

[log pθ(xt|x<t, z≤t)−DKL(qφ(zt|x≤t, z<x)||pθ(zt|x<t, z<t))] ,
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where z≤t ∼ qφ(z≤t|x≤t) is sampled via ancestral sampling. Modeling the joined distribu-
tion pθ(x<t, z<t) with a recurrent neural network f , such that hidden representations are ht =
f(xt, zt, ht−1), makes the ELBO eligible to optimization even for sequences with variable length.
From an architectural standpoint, the VRNN features time-step-wise CVAEs, with xt as output, and
conditioning with respect to the past (of trajectory data as well as of latent variables).

Inter alia, Chung et al. (2015) experimented on density estimation for two-dimensional handwriting.
Notably, the paper compared RNN and VRNN models with single Gaussian and GMM emission
functions. Their results suggest that the VRNN-GMM model is best for the task. However, the
experiment featured one run with train and validation splits only. In Section 5.2, we revisit this
experiment with additional rigour, questioning the assumption that variational autoencoding and
structured emission functions are indeed orthogonal. Specifically, we test our own conjecture, which
we phrase as a second hypothesis:

Hypothesis 2: Given an MDN with GMM emission function, conditional variational models are not
significant components anymore regarding the task of modeling single two-dimensional trajectories.

4 Modeling multiagent trajectories with graph architectures

4.1 Permutation equivariance via graph networks

Graph architectures such as graph networks (Battaglia et al., 2018) allow neural networks to process
a set of inputs and aligned outputs independently of their permutation. Also, the input set does not
have to be of fixed size. Specifically, graph networks assume a graph over the data, representing
inputs, outputs and hidden states as nodes or agents and (directed) edges or relations.

Disregarding global attributes, each graph network layer consists of update and aggregation functions
with respect to node and edge representations. Edge representations are updated with respect to their
affiliated nodes. Node attributes are updated via aggregation functions which operate on incoming set
of edges. When the aggregation functions are permutation invariant with respect to their input, the
resulting node representations are permutation equivariant. Elementwise operations, such as sum
or mean, are permutation invariant. Considering graph networks operating on a set of K partial
trajectories x1:K

<t = {x1
<t,x

2
<t, . . . ,x

K
<t}, e.g. to learn parameter estimates for densities of individual

trajectories, thus leads to a third hypothesis, which we test experimentally in Section 5.4:

Hypothesis 3: Results with respect to conditional variational models for density estimation over sin-
gle trajectories do translate to multiagent trajectories, if computations are permutation equivariant.

4.2 Graph conditional variational models

Specifically, we are looking at two recently proposed graph architectures for trajectory modeling,
which feature either a CVAE with RNN decoder or VRNN components respectively:

Ivanovic and Pavone (2019) propose the trajectron, an architecture for modeling trajectories of
pedestrians, given their past. Inputs to the model are position, velocity and acceleration. Agents
are considered typed nodes, while edges are created heuristically when agents are close in space.
Influences from these dynamic edges are modeled with separate RNNs in the spirit of structural-
RNNs (Jain et al., 2016). Node and edge types are accounted for by parameter sharing over involved
functions. Output of the model is a density estimation over velocities, which equal the differences in
consecutive positions: ∆xt = xt−xt−1. Results can readily be used to calculate a density over future
positions via integration. While the full trajectron architecture features several more components,
notable architectural choices (with respect to our research question) are the use of (structural-)RNN
encoders for past trajectories, trajectory-wise CVAEs with discrete latent variables, a bidirectional
RNN encoder for future trajectories and an RNN decoder with GMM emission functions. We refer to
the original paper for more details.

Yeh et al. (2019) propose the graph VRNN (GVRNN) to model interactions in multiagent trajectories.
Within the VRNN framework, this architecture models the parameterization of Gaussian prior and
variational posterior, as well as the parameterization of a Gaussian decoder with GNNs which operate
over individual trajectories. Featuring recurrence over agents, i.e. hkt = f(xkt , z

k
t , h

k
t−1), the model

thus assumes a factorization of the latent variables over all (K) agents. With µ denoting a mean
vector, σ denoting a vector of standard deviations relating to a diagonal covariance matrix and [·, ·]
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indicating concatenation, the architecture amounts to the following variational autoencoder structure
(abstracting from implementation details):[

µ1:K
pri,t,σ

1:K
pri,t

]
= GNN

pri

(
h1:Kt−1

)
,[

µ1:K
enc,t,σ

1:K
enc,t

]
= GNN

enc

([
x1:K
t , h1:Kt−1

])
,[

µ1:K
dec,t,σ

1:K
dec,t

]
= GNN

dec

([
z1:Kt , h1:Kt−1

])
.

The input to the model is positional data, while output densities are predicted over velocities also.
Skip connections are employed and node and edge types are encoded via embeddings, which are
passed to the GNNs. Notably, GMM emission functions were not experimented with.

Results on density estimation as well as metrics regarding prediction performance reported in the two
papers, suggest that it is beneficial to combine graph architectures with CVMs. We argue however,
that the significance of these results was not established. Thus, we conduct a further ablation study
with respect to the trajectron in Section 5.3 and run experiments regarding GVRNN architectures with
and without GMM emission functions on synthetic data in Section 5.4. We thereby gather evidence
regarding CVMs in specific graph architectures, aiming at a fourth (and last) hypothesis:

Hypothesis 4: Graph architectures modeling multiagent trajectories with CVM components do not
generally result in better log-likelihoods than alike models without the CVM component.

5 Experiments

5.1 About evaluation

We evaluate the modeling capacity of trajectory models via log-likelihood estimation on unseen
test data Dtest. For models with Gaussian or GMM emission not involving stochastic auxiliary
variables, this is done analytically by calculating EDtest

[∑T
t=t0

log p(xt|x<t)
]
. In our experiments

on synthetic data in Section 5.4 we set t0 = 2, while following the evaluation scheme of the reference
experiments in Section 5.2 and 5.3. For variational models, we report the expectation of the sum
over ELBOs per time step instead. For the experiment on modeling handwriting, we further report
an importance sampled log-likelihood estimate, as has been done in the original experiment (and as
originally proposed in Rezende et al., 2014). For the models with prior noise, i.e. GSNNs, we simply
approximate the log-likelihood via heuristically injecting mean noise (alike the usual procedure for
dropout, cf. Srivastava et al., 2014).

5.2 IAM-OnDB: modeling single trajectories with a VRNN model

In this section, we revise the experiment with respect to modeling handwriting from the IAM-OnDB
dataset (cf. Marti and Bunke, 2002), as conducted by Chung et al. (2015). While the data comes with
an additional binary indicator relating to pen lifting (which is modeled alongside), we consider the
IAM-OnDB dataset an example of two-dimensional single trajectory data.

As Chung et al. (2015) used the experimental setting of Graves (2013), the data originally was
split into training and validation sets only. Further, the experiment only consisted of one data split.
This introduced the possibility of overfitting on the validation set, especially as early stopping was
employed. For our reimplementation of the experiment, we considered 5 data splits, always training
on 3/5 of the data, validating on 1/5 and testing the models with the best validation results on the last
1/5 of the data. We split the trajectories over writer IDs, as was done in the data splits used by Chung
et al. (2015).

We conducted our experiment faithfully following the model description in the paper, as well as
according to code provided by the authors.1 Specifically, we applied differencing to the time series
and conducted normalization with respect to the training statistics. An LSTM cell (Hochreiter and
Schmidhuber, 1997) with tanh activation functions is used in the RNN. For the variational methods,
no further regularization is conducted with respect to the KL divergence term. Feature extractors (one

1https://github.com/jych/nips2015_vrnn
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layer neural networks) for inputs x and latent variables z are learned, as they have been considered
crucial by Chung et al. (2015).

Our reimplementation was done in PyTorch (Paszke et al., 2019). Different from Chung et al. (2015),
we did not choose to model Gaussians within the emission function with full covariance matrices.
Recent work suggests this to be hindering optimization (cf. Rybkin et al., 2020). We used diagonal
Gaussians instead for both, Gaussian as well as GMM emission. Further, we bounded the variances
from below (e.g. as in Goyal et al., 2017). This allowed us to forgo further weight normalization or
gradient clipping as well as to use a higher learning rate (0.001, using Adam, Kingma and Ba, 2014).
We further used a larger batch size (128 instead of 64), to make use of modern hardware. Next to the
models from the original experiment, we included two GSNN variants (one with Gaussian and one
with GMM emission), as well as a VRNN-I model with GMM emission. The VRNN-I is a model, in
which the VRNN prior is input-independent. It has been proposed by Chung et al. (2015), to test
whether conditional priors are necessary.

Running our models on the original data splits, showed comparable results to the original experiment,
although our implementation results in slightly better log-likelihoods overall. However, we did not
observe the reported performance gap between the VRNN and RNN models with GMM emission
functions. Test results on our data splits can be seen in Figure 1. The results do confirm these
preliminary findings. While a paired t-test shows that differences between VRNN-Gauss and RNN-
GMM are highly significant (p-value < 0.0001) a paired t-test regarding the RNN-GMM and
VRNN-GMM log-likelihoods, indicates that there is no significant difference between models. At
the same time, mean KL divergences of the VRNN models with GMM emissions are considerably
smaller than the KL divergences of the VRNN models with Gaussian emission (see Table 1). Note,
that the effect of importance sampling for the variational GMM models is thus negligible and can only
be seen in the figure at higher zoom factors. The performance of GSNNs on this task is comparable
to that of RNNs. Noise alone does not seem to increase log-likelihoods even for Gaussian emission.

Figure 1: Log-likelihood, respectively ELBO, of compared models on the IAM-OnDB handwriting
dataset (mean results over 5 test splits with standard errors; orange = importance sampling)

Table 1: Mean KL divergences of VRNN models over the IAM-OnDB test splits

Model class Emission function DKL(q||p)
VRNN-I Gauss 51.73
VRNN Gauss 67.44
VRNN-I GMM 0.32
VRNN GMM 0.08

5.3 The trajectron: an ablation study with respect to its CVAE component

In this section, we report an ablation study on the full trajectron model as proposed in Ivanovic and
Pavone (2019). The paper experiments with respect to pedestrian trajectory datasets ETH (Pellegrini
et al., 2009) and UCY (Lerner et al., 2007), which have been preprocessed into coordinates and split
into train, validation and test sets by Gupta et al. (2018). In total, there are splits for 5 different scenes.
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The code of the model, as well as the training and evaluation procedures including all hyperparameters,
has been made available by the authors.2 This made it possibly to readily conduct an ablation study
with respect to the density modeling contribution of the CVAE component in the full model.

Specifically, we disabled the CVAE component of the trajectron to obtain two model variants: For
the first model variant, we interchanged the CVAE with a GSNN component. For the second model
variant, we removed the latent variable component altogether. We did not conduct any additional
hyperparameter tuning, but rather trained our models with the parameters chosen for the trajectron.

Table 2: Log-likelihood and runtime evaluation over all 5 pedestrian datasets (SE = standard error)

Validation Testing Runtime (%)

Latent variable component Mean SE Mean SE Mean SE

CVAE 38.53 ±0.91 29.34 ±7.26 100.00 0.00
GSNN 39.06 ±0.72 31.51 ±4.89 77.68 ±1.98
None 38.39 ±1.00 31.34 ±5.34 45.13 ±5.33

Test and validation log-likelihood results of the fully trained models are reported in Table 2. Here,
all log-likelihood expectations are exact, due to integration over the low-dimensional categorical
latent variables. We further report the runtime of our model variants compared to the full trajectron
(in percent). A paired t-test shows no significant difference in the model variants with respect to
their mean log-likelihoods over all five datasets. However, the runtimes of the simpler models are
significantly lower when compared to the trajectron. Notably, removing the CVAE altogether reduces
the mean runtime by over 50% without any further optimization.

5.4 GVRNNs: modeling synthetic multiagent trajectories

In this section, we report an experiment regarding the modeling capacity of GVRNNs (Yeh et al.,
2019) with respect to small scale synthetic multiagent trajectories. Specifically, we compare the
density estimation capabilities of simpler GRNN models (cf. Sanchez-Gonzalez et al., 2018) to
GVRNNs, again including a version in which we interchanged the CVM component with a GSNN.
Other than Yeh et al. (2019), we experiment with both, Gaussian as well as GMM emission functions.

We sampled the dataset from trajectories of interacting reinforcement learning (RL) agents, trained
within a confined two-dimensional space. Specifically, we chose a continuous hunter–prey scenario
(referred to as simple tag) from the multi-agent particle environment (Mordatch and Abbeel, 2018).
Within the scenario, we constrained the entities to two hunters and one prey agent only. We deem this
one of the simplest settings for the agents to show coordinated behaviour. All agents were trained with
the MADDPG (Lowe et al., 2017) RL algorithm. To obtain more sensible trajectories, we introduced
reward shaping via the L2 distance between agents and added a further penalty to soft-force the
agents within a square area. Even though the MADDPG algorithm is in principle deterministic, data
generation was conducted with training noise. The dataset thus contains stochasticity. Training,
validation and test episodes were sampled with 25 time steps each. We constructed 5 data splits, such
that we trained models on 1000 episodes, validated on 2000 episodes and tested on 20000 episodes
each. See Figure 2 for an example of trajectories and interaction.

Like Yeh et al. (2019), we used positional data as input and modeled the density of next step velocities.
We further used feature extractors on inputs and latent variables as in Chung et al. (2015). For graph
networks, we choose to use interaction networks (Battaglia et al., 2016), with learned embeddings for
node and edge types. We however used elementwise differences between nodes for the edge updates,
inspired by the importance of the relative positions of agents. This resulted in better performance
during preliminary experiments. We further use a GRU cell (Cho et al., 2014) for recurrence.

The overall architectures of our models were designed such that all models are comparable in
parameter number to the trajectory models employed by Chung et al. (2015). That is, models have
around 8 million parameters, with variational models granted a bit more each. For optimization we
resorted to Adam and introduced gradient norm clipping (Pascanu et al., 2013). A small learning rate
decay (gamma=0.999) was added for stability and convergence, after an initial parameter sweep. We

2https://github.com/StanfordASL/Trajectron
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Figure 2: Example episode with 25 time steps from the synthetic data trajectories. Dark lines denote
ground truth, while light dotted lines denote roll-outs with mean predictions from a fully trained
GRNN-GMM model. Prey (orange) and hunters (blue) start and end their trajectories at the green
and red dots respectively. Roll-outs start after 10 observations (indicated by black dots). The figure is
supposed to provide an intuition about agent behaviour, stochasticity in the data, as well as predictions
over multi-modal futures.

further conducted a grid search over initial learning rates and weight decay parameters on the first of
our data splits, resulting in higher weight decay parameters for the models with Gaussian emission.

Log-likelihood results on test splits are shown in Figure 3a. Again, all models with GMM emission
resulted in much better density estimates than their Gaussian counterparts. Indeed, only the differences
with respect to emission functions are significant according to paired t-tests. Even though a KL
scaling parameter was annealed (cf. Sønderby et al., 2016) from 0 to 1 over the first 200 epochs for the
GVRNN models, the final KL divergence terms remained very small compared to the log-likelihood:
smaller than 10−5 and 10−7 respectively for Gaussian and GMM emission. This led us to forgo
importance sampling for these results as increases in the bound are deemed negligible.

(a) Log-likelihoods, respectively ELBO for GVRNN
(mean results over 5 test splits with standard errors)

(b) Runtimes per epochs in seconds (note that Gaus-
sian models need less epochs to reach their results)

Figure 3: Mean log-likelihood or ELBO as well as runtimes evaluated for synthetic trajectories

Figure 3b shows mean runtimes per epoch for the different models. As in the trajectron ablation study
in Section 5.3, the models without conditional variational components are considerably faster.

GSNN models do not seem to provide any benefit on the synthetic trajectories. However, different
from the reimplementation of the IAM-OnDB experiment in Section 5.2, we do not observe a
performance gain with CVMs for Gaussian emission on this task either. The density estimation
capabilities of our models seem to only depend on the choice of emission function.

6 Discussion

In this section, we summarize our findings and relate the empirical results from Section 5 to the four
hypotheses established in Sections 3 and 4. Connections to further related literature are pointed out.
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Regarding Hypothesis 1, which states that conditional autoencoding does not contribute towards
density estimation for low-dimensional trajectories, we make the following observations: Statistical
evidence gathered with respect to the contribution of the VRNN components for models with Gaussian
emission on single trajectories allows us to reject the hypothesis in its broad scope. With regards
to this, our results support the findings in Chung et al. (2015). Nevertheless, models without a
conditional prior might be considered instead of the full VRNN model, as the performance of the
VRNN-I model suggests. Noise regularization however, does not seem to be crucial for trajectory
data, as GSNN models perform on par with deterministic models over all considered experiments.

With regards to Hypothesis 2, the IAM-OnDB experiment provides further evidence which implies
that MDN emission dominates the contribution of conditional variational models for single trajectories:
Modeling the emission via GMMs seems to render the contribution of CVMs for single trajectory
modeling statistically insignificant. As such, this leads us to reject Hypothesis 1 only in the case of
a weak decoder with single Gaussian emission. These findings are in line with literature on VAEs
having problems with autoregressive or/and powerful decoders (cf. Chen et al., 2017; Zhao et al.,
2019). See Bowman et al. (2015) and Fraccaro et al. (2016) for early results on sequential data.

Evidence with respect to Hypothesis 3 is mixed: The above results on single trajectories seem to
translate only in part to multiagent trajectories. On the one hand, we do not observe any significant
contribution of CVMs in case of our experiments with GVRNNs with Gaussian emission. With
respect to that, the hypothesis seems false. However, as this partial result is only supported on one
dataset, it might not be conclusive. Regarding Gaussian emission, Yeh et al. (2019) reports better
log-likelihood results on one of two datasets for comparable variational models (i.e. typed GVRNNs
modeling interactions). On the other hand, the significant contribution of GMM emission does
translate to graph architectures in our experiments. For model performance, this is the important part.

Lastly, both, the experiments with trajectron variants as well as the experiment with GVRNNs on syn-
thetic data do not allow us to reject Hypothesis 4. It thus stays likely, that graph architectures modeling
multiagent trajectories with CVM components do not generally result in better log-likelihoods than
alike models without a CVM component. Given the empirical evidence, we conjecture this to be
especially true in the case of architectures which make use of MDN emission functions.

Broader Impact

This paper revises possibly misleading results in prior work with respect to conditional variational
models such as CVAEs and VRNNs used for (multiagent) trajectory modeling. Both CVAEs and
VRNNs are highly influential models (measured in citation), while multiagent trajectory data receives
a great deal of attention in current research. At the same time, proposed models are becoming
increasingly complex, which renders attribution of model performance to individual components
more difficult.

This paper corrects expectations towards CVMs for trajectory modeling, identifies the proper inclusion
of CVM components for trajectory modeling as open research question and encourages practitioners
to rather run models without variational components for the time being. We thus believe that, both,
researchers and practitioners may benefit from our contribution.
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