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Figure 1. 3D material selection on three different representations using our SAMa method. Our approach enables several applications;
from left to right: color editing on NeRFs, decomposition and editing on Gaussians, automatic material-ID-map creation on meshes.

Abstract

Decomposing 3D assets into material parts is a common
task for artists, yet remains a highly manual process. In this
work, we introduce Select Any Material (SAMa), a mate-
rial selection approach for in-the-wild objects in arbitrary
3D representations. Building on SAM2’s video prior, we
construct a material-centric video dataset that extends it to
the material domain. We propose an efficient way to lift
the model’s 2D predictions to 3D by projecting each view
into an intermediary 3D point cloud using depth. Nearest-
neighbor lookups between any 3D representation and this
similarity point cloud allow us to efficiently reconstruct ac-
curate selection masks over objects’ surfaces that can be in-
spected from any view. Our method is multiview-consistent
by design, alleviating the need for costly per-asset optimiza-
tion, and performs optimization-free selection in seconds.
SAMa outperforms several strong baselines in selection ac-
curacy and multiview consistency and enables various com-
pelling applications, such as replacing the diffuse-textured
materials on a text-to-3D output with PBR materials or se-
lecting and editing materials on NeRFs and 3DGS captures.
Project page: https://mfischer—ucl.github.io/sama/.

*Corresponding author. Work done during an internship at Adobe Re-
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1. Introduction

Understanding the materials around us is an extremely com-
mon task for humans, but remains challenging for ma-
chines. In this paper we focus on material selection in 3D.

Existing work on material understanding has mostly fo-
cused on the 2D image domain, addressing tasks like seg-
mentation [4, 48, 65, 67], reconstruction [15, 16, 30, 64],
generation [60, 69, 70] or, more recently, material selection
[63]. Semantic segmentation and classification aim to sep-
arate areas into different predetermined classes, e.g., wood
or plastic. This neither accounts for unforeseen materials
nor the separation of two materials with different texture
properties (e.g., two types of wood). This work, in contrast,
targets selection, which aims at finding materials with the
same appearance, and thus is more flexible as it can han-
dle any material, regardless of class, and make intra-class
distinctions such as two plastics with different appearance.

We follow the material definition of established works
[14, 26, 63] and consider two materials similar only if they
share the same texture and reflectance properties.

Material selection becomes especially relevant in the
light of recent generative 3D asset creation and image/text-
to-3D workflows. Current methods either provide non-
parametric implicit representations (e.g., Neural Radiance
Fields (NeRFs)) or unstructured output (as in triangle soups
and baked textures produced by image/text-to-mesh meth-
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ods [23, 29, 45, 52]), both of which are challenging to use
for artists and downstream tasks. Material selection, in this
context, has a wide range of downstream applications, e.g.,
enhancing the X-to-3D workflow with material masks, im-
proving the editability of 3D reconstructions (e.g., through
material replacement [10, 75]), or extracting areas of simi-
lar materials as a prior for inverse rendering [39].

However, most models targeting material-related tasks,
including selection, do not trivially extend to the 3D do-
main, as they are trained on 2D images and therefore
have no incentive for producing multiview-consistent pre-
dictions [18]. Moreover, the 3D domain contains inher-
ent challenges and ambiguities like self- or dis-occlusions
and view-dependent effects, and requires accurate propa-
gation of the model predictions into novel, unseen views.
Recent research has therefore developed algorithms to ad-
dress the problems from multiview-inconsistent predictions
that arise when lifting 2D (object) selection to 3D, predom-
inantly via pre-processing noise-consolidation steps such
as feature-field distillation [36] or contrastive (similarity)
learning [34], both of which are time-consuming (the for-
mer reports a 200k-step, the latter a 20-minute optimiza-
tion) and must be repeated per asset.

In this work, we close this gap between material se-
lection in 2D and 3D by introducing Select Any Material
(SAMa), an efficient and accurate material selection and
segmentation method for 3D assets (see Fig. 1). Our first
core insight is that we can draw parallels between video-
and 3D-selection, since in both video and 3D, the se-
lected elements have to be consistent across frames (or
views), regardless of object and camera movement or dif-
ferences in shading and occlusions. We thus propose
to re-purpose SAM?2’s recent progress in object selection
across video [56] for materials. We achieve this by fine-
tuning parts of the model for (video) material selection on a
custom-made video dataset with dense per-pixel, per-frame
annotations and show that using videos for fine-tuning is
key to achieving high quality in 3D.

Our approach is inherently multiview-consistent thanks
to its video training, which lets us avoid costly per-asset op-
timizations that lift the 2D signal to 3D and allows us resort
to a simpler and more efficient strategy instead: for each
pixel of each view, we project the 2D similarity information
to 3D using the depth and simple inverse camera projec-
tions, thus constructing a 3D point cloud aligned with the
3D representation by construction. We achieve interactive
visualization of our selection results by querying the near-
est neighbor between the 3D representation and this similar-
ity point cloud during rendering. As a result, our approach
supports selection on any 3D representation that can be ren-
dered to an image and queried for depth, such as meshes,
Gaussian Splats and NeRFs. Additionally, it is fast: the
similarly cloud reconstruction can be performed on-the-fly,

while the selection visualization from novels views takes

less than 10 milliseconds.

In summary, once our model is trained, it enables selec-
tion via multi-view renderings of an arbitrary 3D object in
less than two seconds from the initial click.

We evaluate our method on meshes, radiance fields and
3D Gaussians, in terms of selection quality and 3D consis-
tency, and show that it improves significantly over existing
work and several strong baselines. Finally, we demonstrate
multiple applications such as object segmentation into ma-
terial IDs and NeRF/Gaussian editing.

In summary, we make the following contributions:

* Adaptation of a video-object-selection model to material
selection on 3D shapes, by training on a novel rendered
video dataset which will be released upon acceptance.

* Fast and efficient 3D projections and queries, enabled by
cross-frame consistent model predictions.

* Multi-modality support, segmentation and editing.

Throughout this paper, we will show the user-provided
input clicks with respect to which we select materials as
black-rimmed circles, and the material similarity to these
clicks in false colors, with blue and red indicating low and
high, respectively.

2. Related work

Most related to our work are approaches for material selec-
tion on images and approaches that lift a 2D signal defined
on renderings into a 3D representation.

Material segmentation datasets. Several semantic ma-
terial datasets with material segmentation annotations exist.
The Multi-Illumination dataset [50], the Light-Field Mate-
rial [71] and Flickr Material [62] datasets respectively con-
tain 1k, 1.2k, and 1k images, segmented with 35, 12 and
10 materials respectively. Of greater size, the OpenSur-
face [3], Material in Context [4], Dense Material Segmen-
tation [67] datasets respectively contain 19k, 437k and 45k
images annotated with respectively 37, 23 and 52 types of
materials. The Local Material Database [61] further anno-
tates 16 kinds of materials on images sources for the pre-
viously mentioned datasets. These datasets only contain
coarse material categories, e.g., two types of metal would
have the same “metal” label, creating false positives where
pixels are marked as sharing the same superclass material
but do not share the same appearance.

Materialistic [63] provides a synthetic dataset of 50k
HDR images, path-traced from 100 indoor scenes from the
Archinteriors collection [1] and 3k materials. Complement-
ing this data, Eppel et al. [ 19] extract textures from the Open
Images v7 dataset [37] and apply them to random parts of
3D objects from the ShapeNet repository [11]. The result-
ing dataset has the advantage of having fine-grained anno-
tations for each material, such as dirt and paint splashes.



Importantly, these datasets [19, 63] contain only static
renderings, making it challenging to learn multiview consis-
tency. In contrast, our video dataset has dense, fine-grained
per-pixel material annotations, enabling the fine-tuning of
video selection models.

Material selection. Most prior works in material segmen-
tation rely on hand-crafted features [5, 28, 47, 55, 58] or fo-
cus on images of flat surfaces [12, 30, 38, 40, 51]. Recently,
Sharma et al. [63] proposed Materialistic, a model based on
DINO-VIT [7] features, trained to predict the material simi-
larity between a query pixel and all other pixels in a natural
image. We find that Materialistic struggles with accurate
material selection on 3D objects for two reasons: (1) it is
trained for full-scene photographs, leading to limited selec-
tion precision on objects, and (2) its selections are not suf-
ficiently consistent to be lifted to varying 3D views. For 3D
segmentation, MatSeg3D [42] focuses on per-pixel material
classification into a coarse set of predetermined categories
(wood, metal, ...), which prevents it from distinguishing be-
tween materials within the same category but different ap-
pearance (e.g. two different plastics).

Closely related, the Segment Anything Model (SAM)
[35] uses a ViT trained to predict similarity between pix-
els. As its training data is object-selection specific and
not material-aware, SAM requires many separate clicks to
perform even moderately well on materials. The more re-
cent SAM?2 [56] also targets object selection, but introduces
support for temporally coherent predictions across video
frames. We find that neither SAM, SemanticSAM [21, 41],
nor SAM?2 perform well on material selection, except in the
special case of an object made of a single material. How-
ever, once fine-tuned for materials, SAM2’s cross-frame se-
lection consistency enables our fast selection lifting to 3D.

Lifting 2D features to 3D. Due to the scarcity of anno-
tated 3D data and the increased computational complexity
compared to 2D, many approaches attempt to lift 2D pre-
dictions from multiple views to a shared 3D representation.

The core issue is that the underlying 2D vision models
like SAM or DINO are not multiview-consistent. That is,
they provide differing predictions for the same 3D point
viewed from different positions, making aggregation in 3D
challenging. Neural Feature Fusion Fields [66] and Fea-
ture Field Distillation [36] propose to equip NeRFs with an
auxiliary feature space, rendered volumetrically to match
DINO [7] or CLIP [54] features. Even though the 2D fea-
ture maps are not multiview consistent, the shared 3D rep-
resentation acts as a regularizer and consolidates the quality
of the features in rendered novel views [22]. This approach
has been extended to 3D Gaussian splatting [32] and other
image models such as SAM [24, 33, 44, 46, 53, 76].

Other approaches use contrastive learning to lift segmen-
tation to 3D by pushing closer rendered features of pix-
els belonging to the same segment, and vice versa [6, 8,
9, 13, 20, 25, 34, 43, 57, 73]. Our approach differs from
this line of work in several ways. First, we lift 2D ma-
terial similarity (rather than object similarity) to 3D. Sec-
ond, as opposed to previous work, our similarity maps are
already multiview consistent thanks to our fine-tuning of a
video selection model [56]. Using this property, we propose
a 3D representation-agnostic, lightweight 2D-to-3D lifting
approach that does not require any pre-processing. Contrary
to prior work, this allows us to process arbitrary 3D rep-
resentations (e.g., NeRFs, Gaussians, meshes) and reduces
the initial click-to-selection time from 2 hours [66] or 20
minutes [34] for existing methods to around two seconds.

3. Method

Our approach targets material selection on 3D representa-
tions. Given a 3D asset and a user click, we select all re-
gions of the 3D asset sharing the material appearance of the
clicked region. Existing methods focus mostly on selection
in 2D images [63], and their extension to 3D is not trivial
due to a lack of selection consistency across views.

Instead of enforcing 3D consistency through per-asset
optimization and feature consolidation [25, 34, 36, 73], we
note that recent video models [56, 68] show good cross-
frame consistency. Since renders of a 3D object from a
smooth camera trajectory are not markedly different from a
video, we propose to adapt SAM2 [56] to material selection
by fine-tuning it, including its memory bank components,
on our material-specific video dataset. Once fine-tuned, the
model consumes an image or video and outputs a per-frame
floating-point map that encodes the similarity between the
clicked pixel’s material and all other pixels.

However, fine-tuning is not sufficient for interactive se-
lection in 3D. While it enables material selection from novel
views with good consistency, each camera movement would
require querying the model anew, with no guarantee of con-
sistency in challenging cases on long frame sequences. To
lift our selection to 3D, we consolidate the 2D similarity
maps of a sparse set of key-frames into a 3D similarity point
cloud. Combined with nearest-neighbor queries, we can re-
cover (and display) selections from any viewpoint on the
3D shape in a few milliseconds. We show an overview of
our method in Figure 2.

3.1. Fine-tuning for 2D material selection

We re-purpose the SAM2 model [56] to material selection
in the video domain. SAM?2 uses an efficient Vision Trans-
former (ViT) image encoder [59] to produce a per-frame
image embedding, and infers a per-pixel object similarity
value for each frame. The key novel component in SAM?2
is the memory attention module, which conditions the cur-
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Figure 2. Overview over our method. Starting from a 3D asset and a user click, we sample cameras and create a set of renderings covering
the object, which we subsequently process with our similarity network SAMa to compute dense per-pixel similarity values. We then back-
project these values to 3D and store them in a point cloud than can be efficiently queried and interpolated for novel views.

rent frame embedding on the embeddings of past and future
frames in the sequence, allowing the model to reason both
spatially and temporally. These embeddings are then com-
bined with the encoded conditioning query (e.g., a click on
a pixel) in the mask decoder, producing per-frame similarity
masks. As we will show in our experiments, correctly fine-
tuning this memory module is key to achieving multiview-
consistent selection results.

While our initial experiments confirmed SAM2’s good
cross-view consistency, they also revealed a tendency to se-
lect based on semantic function (i.e. by parts) instead of ma-
terials. We therefore fine-tune the model for the task of ma-
terial selection. Specifically, we freeze the encoder through-
out our fine-tuning to preserve the rich priors learned from
millions of images and tune the remainder of the architec-
ture (see Fig. 4). We find that training solely on image data
for material selection (e.g., the Materialistic dataset [63]),
performs reasonably well on clicked frames, but leads to
a significant drop in cross-frame selection consistency, as
shown in Fig. 3. We attribute this to the fact that on unseen
frames, the model must infer the material selection from
memory, but fine-tuning on images does not adapt the mem-
ory module since it is never queried for a single image.

However, for 3D selection, cross-frame consistency is
particularly important. We therefore design an object-
centric video dataset with material-segmentation annotation
by randomly sampling objects, materials and environment
maps, combining them into simple scenes containing one
to a few objects. We allow the same materials to appear
multiple times and in different locations within a scene, to
clearly disambiguate material and object selection. We ren-
der 30 frames for each video using a random choice of four
possible camera trajectories: zoom-in, zoom-out, spheri-
cal turntable and fly-over. Finally, to reduce the domain
gap between natural and single-object images, we alpha-
composite the environment map into the background (for

additional dataset and training details, see Appendix A.4).
Since we freeze the pre-trained encoder to retrain its learned
priors, we find that 500 videos are sufficient to adapt the
model to the material-selection domain.

Our new video ma-
terial dataset with dense
per-frame material an-
notations lets us jointly
fine-tune SAM2’s mem-
ory attention module
and the mask decoder.
This way, we maintain
multiview  consistency
while significantly
improving  selections
on unclicked frames
(right column in Fig. 3).
Our dataset and trained

model are available Figure 3. Fine-tuning on images
on the project page creates artifacts on unseen frames,
when selections are inferred from
the model’s memory (right column).
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and we show samples
from the dataset in the
supplemental.

3.2. Lifting 2D similarity to 3D

Given a click on one image, our goal is to obtain a se-
lection in 3D of all object parts that share the same ma-
terial. A 3D selection is not only view-consistent by de-
sign, it also enables downstream applications (e.g., editing)
that naturally operate in 3D on the object (surface). An en-
tirely image-based pipeline would require running our 2D
selection model for every new viewpoint, completely rely-
ing on the model’s cross-frame consistency. Such a work-
flow would not be interactive (2-5 sec per frame for simple
selection visualization), would suffer from flickering due to
residual multiview inconsistencies in long frame sequences,
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Figure 4. Schematic overview of our fine-tuned model. The image encoder (in blue) is frozen, all other blocks (in red) are fine-tuned.
Given an input image and a clicked pixel, the model outputs a material similarity map. Figure adapted from Ravi et al. [56].

and would not be compatible with many downstream appli-
cations (e.g., mesh material replacement). We therefore in-
stead consolidate similarity maps from multiple viewpoints
into a lightweight 3D similarity point cloud. From this
cloud we can easily reconstruct (and display) a continuous
3D selection at interactive rates.

Given a click on the object, the initial camera, in which
the click was performed, will serve to condition the memory
module of our SAMa model, as it ensures that the material is
not occluded. We then render RGB and depth images from
multiple viewpoints; for each RGB image we use our model
to estimate the selection, based on the user-provided click,
given the other images as video context through the memory
bank. This process yields a per-viewpoint map represent-
ing the similarity to the user-clicked material. We project
these 2D similarity maps to 3D using the previously ren-
dered depth images, to obtain a 3D similarity point cloud
located near the object surface.

Our approach works on any 3D representation that can
be rendered from a given viewpoint and queried for depth.
For NeRFs and 3D Gaussians we use a subset of the training
views, while for meshes we use spherical Fibonacci sam-
pling of camera positions pointed at the object’s center. To
ensure good performance of our fine-tuned video model, we
arrange those views along a smooth trajectory via greedy it-
erative camera sorting described in Suppl. Algorithm 1.

For visualizing the 3D selection from novel views, we
can reconstruct a continuous 3D similarity field via k-
nearest neighbour (kNN) lookups into our previously con-
structed similarity point cloud. We use FAISS [17] for per-
formant large-scale, GPU-accelerated approximate nearest-
neighbor queries [31] at the camera rays’ 3D hitpoints. As
our point cloud contains one point per observed pixel, it is
very dense (see Suppl. Figure 9 for an example).

We cache and reuse the acceleration structure built by the
library; we need to rebuild it only when the selected mate-
rial changes. With this approach, a new user selection from
a novel viewpoint takes around 2 sec (including 0.5 sec for
the structure construction), while querying the point cloud
from a new viewpoint takes 10-20 ms at 512—-1024p image
resolution. Appendix A.2 provides additional details.
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Figure 5. Effects of duplicating the clicked frame in the sequence.
Similarity after frame duplication is significantly cleaner, as the
model is forced to use the memory module.

3.3. Refinement

Frame duplication. We observe that the frame where
the user clicks exhibits significantly higher selection noise.
This is due to the fact that, by default, SAM2 does not
query the memory module for this selection, meaning that
the model does not have access to the information in the
other frames. To improve selection quality on this frame,
we simply duplicate it. The first copy is used for condition-
ing the selection without memory module, and the second
copy is included with the other frames in the sequence, us-
ing the memory module. We show the benefit of click-frame
duplication in Fig. 5 and on the original SAM?2 model in the
supplemental.

kNN-based voting. Thresholding our KNN-reconstructed
3D similarity field yields a binary selection field. To ensure
a clean selection, we use a binary voting scheme: we con-
sider a 3D point as selected if more than half of its nearest
neighbors pass the selection threshold. The threshold can be
set by the user to adjust the selection, as in prior work [63].
We show the effect of this aggregation strategy in Fig. 6.

4. Evaluation
4.1. Datasets

We quantitatively evaluate our method on three datasets:
(1) the eight scenes in the NeRF dataset [49], (2) five real-
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Figure 6. kNN 3D voting significantly reduces noise and improves
selection quality, as seen from the insets.

Figure 7. Conditioned by an initial click on the bass drum, our
selection model achieves remarkable multiview-consistency in the
presence of severe occlusions and perspective changes.

world scenes from MIPNeRF-360 [2], and (3) our object-
centric dataset test split containing 12 objects. For synthetic
assets we render material-ID maps which provide ground-
truth annotations per view. For real-world assets we hand-
annotate five images per scene (see Suppl. Fig. 2).

We show additional qualitative evaluations on real-world
captures and photogrammetry output in the supplemental.

4.2. Baselines

We compare our method against three baselines. The first is
the original Materialistic method [63] for which we query
for different views by re-projecting the initial click into the
new view. In its default version, this can only be done for
views where the original click is not occluded. We can still
query this baseline from new views thanks to our 3D-point-
cloud lookup, but the results will be patchy as it cannot pro-
cess all of the input views. However, Sharma et al. [63]
show that selection can work across two frames by com-
puting the cross-attention between the initial click’s () val-
ues and the KV values of the other views. We extend this
scheme to n frames to process all unseen viewpoints, and
refer to it below as “Materialistic MV” (multi-view).

Additionally, we compare against the multiview-
consistent, but not material-aware, SAM2. Finally, “Ours”
denotes our full method, including our fine-tuned net-
work. For all methods, we lift the results to 3D using our
point-cloud representation. We show additional compar-
isons [9, 27, 34, 42] in Suppl. Figs. 11 — 14.

Dataset NeRF [49] MIPNeRF-360 [2] Our Dataset
mloU 1 F11 mloU 1 F1 1 mloU 1 F1 1
Ours 048+.2 058+.3 060+.3 072+.3 0.69+.2 0.78+.2
SAM2 033+.2 043+.3 051+.3 065+.3 036+.2 047+.2
Mat. 024+.1 036+.2 031+.3 044+.3 047+.2 0.59+.2

Mat. MV 0.27+£.2 032+£.2 032+£.3 047£.3 051£.2 0.62+£.2

Table 1. Selection accuracy across datasets (columns) for several
methods (rows), with 95% confidence intervals. For the per-scene
measurements and precision and recall, we refer to Appendix B.
Mat. is short for Materialistic [63].

Dataset NeRF [49] MIPNeRF-360 [2] Our Dataset
g Ours 2.24£0.2 14402 1.7£0.1
2 sam2 2.2+0.2 12+01 1.940.2
'Z  Materialistic 5.5%0.3 44£03 5.940.4
S Material. MV 39402 41+£04 49403
% Ours 11+08 12+13 0.3+02
£ SAM2 1.3+0.9 29+38 07406
2 Materialistic 32+£06 7145 18+ 1.0
& Materialistic MV 39+14 35+15 21410

Table 2. Multiview consistency (top) and robustness (bottom) of
our selection across unseen test views. We report Hamming dis-
tance (x 100) with 95% confidence intervals. Lower is better.

4.3. Results

We evaluate each method in 3D (after the point cloud
lookup), along three axes: selection quality, robustness and
multiview consistency. We report metrics on binary selec-
tion masks obtained by thresholding similarities against 0.5.
Metrics are normalized to [0, 1]; see Appendix B for details.

Selection accuracy. We perform a click in one view, then
for each of 50 random novel views we compare the obtained
selection mask against a rendered ground-truth mask. We
compute mean intersection over union (mloU), a classical
selection metric measuring the overlap between the masks.
We also report F1 score which is the harmonic mean of pre-
cision and recall, and is more robust than either alone. We
average each metric over the views and over five random
clicks on each material. We report the averages and 95%
confidence intervals across the datasets in Tab. 1, higher is
better. Appendix B provides a per-scene breakdown.

Multiview consistency. We demonstrate our method’s
multiview consistency in Fig. 7, and measure it numerically
in Tab. 2 top as follows. We perform a click in one view,
then sample 50 novel views for which the clicked 3D point
is unoccluded. For each view, we average the difference
between the binary selection value at the point and the ref-
erence selection value of 1 in the clicked view. Perfect mul-
tiview consistency means zero average difference, i.e. all
values are 1. Note that this metric does not quantify mask
correctness; if a returned mask is wrong, but consistently
so, the reported score will still be high. Both our method
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Figure 8. Selection results on NeRFs, 3D Gaussians and meshes across objects (columns) and methods (rows). The top row shows the
clicked view and the click, while selection results, from a novel view, are overlaid as green masks in the lower rows. We show results on
assets from standard NeRF/3DGS benchmarks as well as a generated [72] mesh (cup) and photogrammetry capture (birdhouse), and more

in supplemental material.

and SAM2 show similar consistency, while both Material-
istic baselines, which do not benefit from the cross-frame
memory mechanism, achieve lower consistency scores.

Robustness to click location. On a random view, we per-
form 5 random clicks within a single material. We then
average the pairwise Hamming distances between the 5 se-
lection masks. We report results in Tab. 2 bottom, lower is
better. Like the multiview metric above, this metric does not
quantify mask correctness. We see that architectures that
benefit from multi-frame context show better robustness.

Qualitative evaluation. We show selection results on all
our evaluated modalities (NeRFs, 3D Gaussians, meshes)
in Fig. 8. We see that Materialistic and Materialistic MV
do not work well on high-frequency boundaries of objects
and that SAM?2 cannot be trivially used for material selec-
tion, with only parts or entire objects selected at once. In
contrast, our method creates sharp boundaries, including
around thin elements, and is robust to lighting variations
(see Fig. 9). For additional results on generated- as well
as real-world meshes and neural assets, please see the sup-
plemental material. We also include comparisons to Mat-

Seg3D [42], which focuses on mesh segmentation into se-
mantic material classes, and methods focusing on object
segmentation and selection in 3DGS [27, 34, 77].

We further evaluate our results in 2D without the point
cloud lookup, which improves average mloU by around 5%.
However, our 3D aggregation in a point cloud lookup pro-
vides a significant advantage in efficiency, reducing per-
frame inference processing times from around 5 sec in 2D
to around 10 ms in 3D (500 faster), making it a more prac-
tical choice overall. This difference in quality is mainly ex-
plained by the depth estimation quality on volumetric rep-
resentations, which is not always perfect.

5. Applications
5.1. Segmentation

While our method targets selection, we propose an auto-
matic segmentation mode to divide an object into material
subparts inspired by the image-level sampling in SAM [35].

Densely sampling an entire object from multiple views is
impractical (500-click sampling of the Lego asset in Fig. 3
takes ~20 min). Instead, we propose a light-weight, greedy



b

Figure 9. Our method is robust w.r.t. shading variations on the
surface, shown here for reflections, specularity and shadows.

alternative. We first randomly sample a click on the as-
set, for which we compute the material similarity (as out-
lined in Sec. 3) in a fixed set of 15 views (elevation in
[—30°,0°,30°], azimuth in five 72° increments). We bina-
rize these per-view selections and project them to UV space,
assigning a unique ID to the clicked material. We then sam-
ple a new point in an area that has not yet been segmented.

We repeat this process until the entire mesh surface is
segmented, which yields an ID map in UV space in which
each point of the visible mesh surface corresponds to a
unique material ID via its UV coordinate. We can use this
map to edit specific material regions, for PBR replacement,
or to segment the mesh along the material ID regions. With
this approach, the segmentation of a complete mesh takes
under 10 seconds. We show results of our method in Fig. 10.

5.2. Editing

Using our material selection results, we can easily edit the
selected regions. We show various edits and applications
for NeRFs, 3D Gaussians and meshes in Fig. 1.

NeRFs. For NeRFs, we demonstrate color editing. We
ray-march the NeRF as usual, but for each 3D point we
query whether it has been selected. If yes, we adjust the
color returned by the NeRF through a color shift in LAB
space, to preserve relative shading and lighting information.
We show an example in Fig. 1 and in Suppl. Fig. 7.

Material-aware 3D Gaussians. For 3D Gaussians, we
use our material segmentation step (described in Sec. 5.1).
We then render the respective material masks for each train-
ing view and convert them to ID masks, so each pixel in
the training images is associated with a material index. We
then re-train the Gaussians with an extra channel for ma-
terials which is treated like the RGB channels for rasteri-
zation. This creates a clear separation between Gaussians
at material boundaries, simplifying downstream edits, and
provides a per-Gaussian material handle. We can now se-
lect all Gaussians that encode, e.g., material number two,
and edit their properties such as color, position or density.
In Fig. 1 we move the gazebo’s wooden base upwards and
set the white painted regions’ density to zero.

Meshes. For selection on meshes, we exploit their UV

AN\
<

J
B ’>\

Figure 10. Automatic segmentation of synthetic (3"%) and gener-
ated [72] (1%, 24, 4t") meshes into material ID maps.

parametrization by writing the selected material similarities
to a 2D UV map. This enables trivial creation of material-
ID maps, or change of a selected material. Here, because the
similarities are directly projected to pixel values, we find it
beneficial to use the hole-filling and sprinkle-removal tech-
niques described in the original SAM2 paper [56].

We show results on the output of text-to-mesh generated
assets [72]. Using our automatic segmentation we can eas-
ily replace the diffuse textures on a text-to-3D generated
asset with PBR materials (see Suppl. Fig. 10).

Future work

We find our method to significantly improve material se-
lection in 3D. However, some limitations remain to be ad-
dressed; for instance, selecting materials on objects like
glass and mirrors remains challenging as it is unclear if a
user would prefer to select the transparent/mirror material
or what is behind/reflected. Similarly, our method currently
assumes a fixed definition of materials and cannot adapt to
user-defined preferences, such as focusing solely on specific
parameters like roughness.

Further, SAMa depends on precise 3D reconstruction for
accurate material selection. Errors in depth reconstruction
can cause noise in our point clouds and inaccurate lookups
in novel views, an issue which can be mitigated by improv-
ing depth estimation in volumetric reconstruction [74]. Fi-
nally, unseen parts of meshes are selected based on their
nearest visible 3D points, which could be improved with a
UV space propagation of the selection [12].

Conclusion

We present SAMa, a material selection model for 3D, lever-
aging a video model for cross-view consistency and a sim-
ple yet efficient projection to 3D in the form of a similarity
point cloud. Our approach enables interactive material se-
lection, visualization and downstream manipulation of the
3D assets at high quality. As we specialize the SAM2 video
model to a new modality, we find that video-based finetun-
ing is crucial, and that 500 varied videos are sufficient to
change the modality. We believe this opens interesting op-
portunities to explore selection across various modalities.
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