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ABSTRACT

Prompt tuning, especially perturbation-based prompt tuning, encounters obstacles
in visual generation. On the one hand, the autoregressive paradigm, which pro-
vides the most ideal environment for prompt tuning, struggles to model planar
concept: traditional autoregressive methods employ raster-scan for image model-
ing, disrupting the spatial structure of images. On the other hand, perturbation-
based prompts work as learnable perturbations in pixel space, and their effective-
ness comes at quite a little computational cost, making it difficult to balance per-
formance and efficiency. To address these challenges, we propose Multi-scale Vi-
sual Prompt (MVP), a perturbation-based prompt tuning method tailored for visual
autoregressive generation with planar concept and efficient information propaga-
tion. MVP builds on Visual AutoRegressive (VAR) models with next-scale predic-
tion for capturing planar concept, and introduces prompt tokens in the outermost
token frame at each scale for efficient signal control and information propaga-
tion. During training, we use increasingly detailed tuning text to facilitate prompt
learning. Moreover, MVP extends VAR’s capability for text-to-image generation.
Extensive experiments validate the effectiveness of MVP. Code is availablel

1 INTRODUCTION

Prompt tuning (Li & Liang| 2021} [Liu et al.| 2021} [Lester et al.l [2021]) enables models to per-
form specific tasks by introducing the learnable prompt, requiring only minimal fine-tuning without
any access to model parameters. In generation tasks, particularly in textual generation based on
large language models (LLMs), prompt tuning has achieved remarkable success (Hao et al., 2023
Ajwani et al.|[2024; |Tang et al.|[2022). However, its transfer to visual generation has not reached the
same success. Although some embedding-based (Gal et al., [2022} Ruiz et al., 2023) and adapter-
based (Yeh et al., [2023; |Ye et al., [2023) prompt tuning methods show notable results in visual gen-
eration, perturbation-based prompt tuning, which offers stronger controllability and is more suitable
for high-dimensional tasks, remains almost unexplored. We identify the following two reasons:

First, traditional autoregressive methods cannot model planar concept. The autoregressive
paradigm inherently provide an ideal environment for perturbation-based prompt tuning, as they can
seamlessly incorporate the learnable prompt: prompt and input within autoregressive models share
the same structure, enabling prompt and input tokens to be directly concatenated or added without
requiring architectural adjustments or additional modules. Moreover, the autoregressive paradigm
also ensures full-coverage prompt control: serving as contextual information, prompt participates
in attention computations across all layers and heads, and their influence progressively propagates
through autoregressive modeling. In contrast to the diffusion paradigm (Sohl-Dickstein et al., 2015}
Ho et al., |2020) requiring thousands of conditional inputs, autoregressive minimizes prompt signal
attenuation. Therefore, the autoregressive paradigm serves as the foundation for perturbation-based
prompt tuning. However, traditional autoregressive modeling converts visual content into a sequence
in raster-scan order, limiting the model’s ability to capture original spatial adjacency relationships
and two-dimensional structural correlations, ultimately leading to outputs lacking global consis-
tency and suboptimal performance compared to other visual generation paradigms. The emergence
of Visual AutoRegressive (VAR) (Tian et al., [2024)) addresses this deficiency by transforming the
autoregressive modeling pattern from next-token prediction into next-scale prediction. In next-scale
prediction, each prediction unit contains a scale-specific feature map, which is a set of multiple
tokens predicted simultaneously rather than sequentially. This modeling pattern preserves the spa-
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tial structural information of visual content and improves semantic continuity across scales, which
allows the autoregressive paradigm to possess planar concept. Consequently, perturbation-based
prompt tuning should be implemented in the autoregressive paradigm of next-scale prediction.

Second, perturbation-based prompt tuning for visual tasks requires substantial computational costs.
Semantic information in natural language is relatively concentrated, while it tends to be more sparse
and discrete in the image. For the same semantic content, the image token sequence is typically
longer than the text token sequence. Excessive tokens rapidly increase computational burden, against
the original intention of prompt tuning. Conversely, insufficient prompt tokens result in inadequate
full-coverage control for the modeling process, i.e., some non-prompt tokens are unable to obtain
effective signal control and sufficient information propagation from the prompt tokens, hindering
long-range dependency modeling. This requires an ingenious prompt design that balances efficiency
and performance. A feasible solution is to select a subset of tokens at each scale to incorporate the
prompt while ensuring that at least three tokens come from different rows or columns. Since three
non-collinear points uniquely define a plane, perturbation-based prompt tuning is allowed to possess
and model planar concept. Our derivation and calculation reveal that incorporating the prompt into
the tokens located in the outermost frame of the feature map enables a more efficient information
propagation to other tokens. Therefore, we suppose that the subset of selected tokens lies in the
outermost frame at each scale.

In light of the above discussion, we propose Multi-scale Visual Prompt (MVP), a perturbation-based
visual prompt tuning method with planar concept and efficient information transmission, to improve
the generation quality and expand the task of VAR. We select the tokens located in the outermost
square frame at each scale to introduce the learnable prompt (perturbation), ensuring that the prompt
possesses planar concept while maintaining a balance between performance and efficiency. MVP
introduces the learnable prompt by adding prompt tokens to selected tokens. Regarding the prompt
learning strategy, we design three types of tuning text with incrementally richer semantics: class
labels, sentences, and captions. Subsequently, we implement prompt learning through contrastive
learning between CLIP embeddings of images (obtained through feature inversion from feature maps
at some specific scales) and their corresponding tuning texts. Owing to this design, our method also
extends VAR'’s capability for text-to-image generation through MVP.

To evaluate the effectiveness of MVP, we conduct experiments on the two tasks: improving VAR’s
class-to-image generation quality and expanding VAR’s text-to-image generation capability. With a
d-16 model on ImageNet (Krizhevsky et al., 2017 at 256 x 256 resolution, MVP respectively im-
proves FID and IS scores by 4.1% and 9.7% over VAR. Strikingly, compared to VAR-CLIP (Zhang
et al., 2024a), MVP only needs 0.54% training GPU hours to achieve competitive performance.

2 RELATED WORK

Visual Prompt Tuning Since prompt tuning proposed in NLP (Lester et al.,[2021)), it has rapidly
entered computer vision field. VPT (Jia et al., |2022) adds learnable tokens to Vision Transform-
ers and beats full fine-tuning on 20 recognition benchmarks, while ViPT (Zhu et al., |2023) inserts
prompt tokens layer-wise to boost tracking via richer features. Research (Bahng et al., 2022} |[Khat-
tak et al.|[2023;Wu et al.| |2024) utilize prompt tuning to improve cross-modal alignment, facilitating
various discriminative tasks. Nevertheless, in generative tasks, the adoption of prompt tuning has
been markedly limited. The few existing works (Sohn et al.| 2023} |Kumari et al., [2023; Mao et al.|
2024; Mou et al., 2024} |Guo et al., [2024) are embedding-based and adapter-based prompt tuning,
while perturbation-based prompt tuning remains largely unexplored in visual generation.

Visual Autoregressive Generation Recent progress in LLMs (Touvron et al., 2023} Wan et al.,
2024; [Chung et al) 2024)) has spurred equally rapid advances in visual autoregressive generation.
By treating image synthesis as a token prediction task (Esser et al., |2021bj [Van den Oord et al.,
2016; |Chen et al.l [2020; Esser et al., 2021a), early autoregressive methods relied on vector quanti-
zation (VQ) (Van Den Oord et al., 2017) to discretize continuous feature maps, but suffered from
quantization error and information loss. Subsequent works removed these bottlenecks. For example,
MAR (Li et al., [2024)) questioned the need for VQ and utilized continuous latent for autoregressive
modeling, while Fluid (Fan et al.l [2024) introduced continuous tokens for higher fidelity. Llama-
Gen (Sun et al.| [2024) improved image generation quality by optimizing a high-fidelity and high-
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utilization tokenizer. Inspired by residual quantization methods (Lee et al., |2022; Huijben et al.,
2024)), VAR (Tian et al., 2024) reframes next-token prediction as next-scale prediction, further un-
leashing the potential of the autoregressive paradigm to generate high-quality visual content. The
emergence of autoregressive methods based on next-scale prediction (Zhang et al., 2024a; Tang
et al.,|2024; |Han et al.l 2025; |Qu et al., 2025) reflects increased optimism about the future develop-
ment of visual autoregressive generation. Therefore, we develop a simple yet efficient perturbation-
based prompt tuning on the VAR family with next-scale prediction to enhance task performance.

3 METHODOLOGY

The overall framework of MVP is illustrated in Figure [] MVP utilize a set of tokens located
in the outermost square frame at each scale to introduce the learnable prompt, which is square
frame prompt. As the scale increases, the computational cost of square frame prompt grows rapidly.
Therefore, we establish a scale threshold beyond which the number of square frame prompt tokens
no longer increases with scale increase, presenting as one square frame prompt transforming into
four L-shaped prompts at one scale. The prompt tokens are directly added with the input tokens. In
training, we adopt a CLIP to encode multiple tuning texts (sentence and caption) and certain feature
maps for contrastive learning to enable MVP learning.

Sentence 1— Caption
Square Frame Prompt
LosSgen CLIP = Losscqp
| SE—

Prompt
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Figure 1: The Overall framework of MVP.

3.1 PROMPT DESIGN PRINCIPLE
3.1.1 MODEL SELECTION

As discussed in the previous section, it is ideal for MVP to possess planar concept. VAR (Tian et al.,
2024) and VAR-like models (Tang et al. [2024} [Han et al., [2025) based on next-scale prediction
serve as the target models for MVP. By decomposing generation into next-scale residual feature
map prediction, VAR naturally introduces two components: an intra-scale residual feature map,
representing the spatial plane, and an coarse-to-fine inter-scale sequence, reflecting the temporal
progression across scales. The modeling process of VAR involves 7" multi-scale token feature maps
(R1, Ry, -+, Rr) defined by a size set {S7 x S1,S2 x Sa,--+, ST x Sr}. At the ¢t-th scale, VAR
predicts the residual feature map R; € R°:*5 based on all previous scales. The autoregressive
likelihood can be formulated as follows:

T
p(R1, Ry, -+, Rr) = [][p(R: | (s0s), Ry, Ra, -+, Re1), )
=1
where (Ry, Rz, -, Ri—1) denotes the "prefix” of R;, and (sos) is the conditional embedding.

3.1.2 CENTRAL IMPACT ANALYSIS

After determining the target model, we consider the form of prompt introduction. Research (Zhang
et al.| 2024b) reveals that although prompt tuning can effectively enhance the performance of mod-
els, it may also result in limited performance improvement or significant degradation for other tasks.
This is attributed to the fact that the learnable prompt leads to notable changes in the model’s visual
features, consequently invalidating plenty of knowledge acquired from large-scale pre-training dur-
ing its transfer to other models, thus impacting their performance. This phenomenon, referred to as
model feature corruption, critically impairs overall model performance.
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In addition, perturbation-based prompt tuning carries higher feature corruption risks, as it directly
introduces perturbation within the pixel space. Therefore, it is essential to employ an appropriate
form of prompt introduction to resist image corruptions. In some visual tasks, the methods (Bahng
et al., [2022; [Wu et al., 2022} [Xie et al.| [2023) introduce control signals in the pixel space around
clean images as a frame, ensuring minimal impact on the image center. The image center typically
contains critical information and primary objects. Modifying the image center may cause issues
such as subject deformation, semantic drift, and expression distortion, thereby affecting subsequent
image-text alignment, understanding, and generation.

Taking the feature map R, € R%*5t at the t-th scale as an example, we divide R, into N + 1
concentric square frames by layers. Specifically, Frame 0 is the outermost frame, containing all
tokens on the outermost boundary. Frame 1 is the sub-outermost frame, with its tokens positioned
just inside Frame 0, forming a second boundary. Following this pattern, Frame N is the center frame,

min(Sy)
2

containing the innermost token(s), where N = L J . We denote the set of tokens in Frame n as

Stn,forn =0,1,--- , N. Signals (i.e., perturbations) weaken as the propagation distance increases.
In maps with hierarchical structure or spatial layout, the impact received by nodes diminishes with
increasing distance from the source. Therefore, we define the propagation distance as dis and the
signal attenuation factor « related to propagation distance, where the attenuation factor is negatively
correlated with propagation distance: dis < —«. If a perturbation ¢ is added to a token in frame
n, then its impact I,, on the center frame S; y is: Impact(n — N) = § - an_p. Therefore, the
impact of introduction from outermost frame 0 and non-outermost frame c on the center frame can
be denoted as [p = 6 - any_gand Iy = - ay_.. Since N — 0 > N — ¢, therefore Iy < I..

Through both qualitative and quantitative analyses, we demonstrate that introducing prompts in
the outermost square frame minimizes impact on the image center, thereby avoiding model feature
corruption. Therefore, we propose that MVP incorporates the learnable prompt within the outermost
square frame of the feature map at each scale.

3.1.3 OVERALL IMPACT ANALYSIS

Introducing the prompt in the outermost square frame ensures minimal impact on the center of
images while resisting image corruptions. Meanwhile, the form of token introduction is supposed
to achieve good overall propagation efficiency, meaning that prompt tokens are distributed within a
reasonable and appropriate proximity to each input token, thereby facilitating input tokens receiving
signal control and information propagation from prompt tokens. Therefore, we analyze the overall
impact of the outermost square frame prompt introduction across the entire feature map.

For the feature map R; € RS:%5¢ gt the ¢-th scale, we define the index set of all tokens at this scale
as O = {(z,y) | =,y € {1,2,...,5:}}. Therefore, the token index set of the outermost square
frame is B, = {(z,y) € A : (z € {1,5:}) V (y € {1,S:})}. Thus, the minimum distance from
any token to the outermost square frame can be represented as follow:

dislnin(($7 y)a Bt) = (ug)l)lgBt ||($7 y) - (U7 U)||7 (2)

where the distance can be measured using Manhattan distance, Euclidean distance, Chebyshev dis-
tance, or other suitable metrics.

Given that the linear distances between the given token and the prompt tokens located on the same
row or column correspond to the minimum distances to the four outermost boundaries, it follows:

dismin((m,y),Bt) =min{z—-1, S;—z, y—1, St —y }. 3)

uni
max

We define the unified maximum distance dis from any token to the outermost square frame as:

dis™ .= dismin ((2,9), Br). 4
= e, s (22051 @

From Equation 3] it can be observed that the token(s) at the geometric center is/are farthest from the
outermost square frame, thus disira = [ (St — 1)/2].

max
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Given that dis™ is less than half the scale size &, it can be demonstrated that introducing the
max 2 g

prompt in the outermost square frame also achieves a good overall propagation efficiency.

3.2 MULTI-SCALE VISUAL PROMPT

Following the prompt design principles described above, MVP introduces learnable prompts in the
outermost square frames of feature maps in VAR family models based on next-scale prediction.

3.2.1 PROMPT TOKEN SELECTION

For the feature map R; € R®*% at the t-th scale, MVP selects prompt tokens in the outermost
square frame of R;. The number of these prompt tokens at the ¢-th scale is represented as N5t and
is given by NB: = Iﬁt = 45, — 4, where Iﬁf is the index set of prompt token positions in the
outermost square frame of the feature map R;. Therefore, the prompt token set V53¢ of the square
frame prompt with dimension D can be represented as follow:

VB = [yl v e RVNTXD, )

In VAR, the number of tokens grows rapidly from small to large scales, which can rapidly increase
computational cost, against the original intention of prompt tuning. Although the square frame
prompt design has effectively reduced the prompt computational budget from O(S?) to O(S), the
number of square frame prompt tokens still becomes pretty large as the scale increases, requiring
more computational cost. Therefore, we set a threshold 7 on the number of square frame prompt
tokens to perserve efficiency when the scale is large. Specifically, 7 is the maximum number of
square frame prompt tokens. Once the threshold 7 is exceeded, the number of prompt tokens for the
scale remains constant. Formally, a square frame prompt is converted into four L-shaped prompts:
four corner tokens of the feature map outward along the outermost square frame, incorporating a
tokens in every available direction. These combined tokens collectively form the L-shaped prompts.

a = |(r —4)/8], thus NB* = 8a + 4. Update the square frame prompt set V5 = [v} ... vN™].

3.2.2 PROMPT TOKEN ADDITION

For the t-th scale, we utilize the square frame prompt set V53¢ to construct the prompt feature map
Fy € RS*5:xD that matches the shape of the feature map R;. All non-prompt positions in JF; are

padded with zeros. Then, we add F;; to R;1; to obtain the new feature map R, at the ¢t + 1-th
scale: Ry 1 = Ry + Fip1 € R%X5:XD And the autoregressive likelihood can be reformulated as:

T

p(Ry,....Rr) = [[p(R: | (sos),Ri,..., Ri1, Fr). (6)
t=1

3.3 PROMPT LEARNING STRATEGY

Although perturbation-based prompt tuning works in pixel space and can effectively control style,
texture, spatial layout, and other visual elements to improve visual generation, they have weaker se-
mantic controllability than embedding-based and adapter-based prompt tuning. Taking embedding-
based prompt tuning as an example, it incorporates semantically rich embedding vectors into the fea-
ture space, thereby establishing connections with semantic representation. In contrast, perturbation-
based prompt tuning essentially introduces learnable perturbation, which exhibits poor interpretabil-
ity and lacks semantics, resulting in suboptimal semantic expression. Moreover, since VAR is a
class-to-image generation model, its class-level conditioning inherently lacks rich semantic infor-
mation, making the training of perturbation-based prompts significantly challenging.

The above analysis indicates that incorporating richer semantic information is the key to training
perturbation-based prompts, allowing prompts to acquire more essential knowledge. It is worth not-
ing that the feature map scales predicted by VAR based on next-scale prediction gradually increase,
we suppose that different stages of this coarse-to-fine generation process require different tuning
texts. Early stages focus on modeling semantic concept, so class-level text (label) works well for
prompt learning. Middle stages refine concept and layout, making sentence-level text suitable. Later
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stages enhance details, so caption-level text with more details helps prompts learn richer semantics.
Therefore, we propose multi-level semantic refinement as a strategy to improve prompt training.

Specifically, we introduce two more tuning texts: a sentence-level text 7gn, containing relatively
comprehensive concepts (using fixed templates such as “a photo of {}”), and a caption-level text
Teap containing detailed visual attributes and fine-grained semantic information. These tuning texts
with difference granularity facilitate MVP to fine-tune VAR, thereby enhancing VAR’s semantic
expression and generation quality. K is the total number of VAR scales. We set an inter-anchor
index k = |BK| € {1,2,..., K — 1} with a hyper-parameter 8 € (0,1) (e.g. 8 = 0.6 found
by grid search). Based on this anchor, we employ the image Zg., at the x-th scale and the image
ZLcap K-th scale to enable the prompt to learn from sentence-level and caption-level tuning text,
respectively. Zge,, and Z.,;, are generated by following processes:

K K
Tson = Decoder(z Up(Ry)); Zeap = Decoder(z Up(R:)), @)

t=1 t=1

where R; denotes the residual feature map predicted at the ¢-th scale, and Up(-) denotes the up-
sample inversion transform function to unify the spatial shapes.

We then apply the CLIP-based loss [Radford et al.| (2021) to supervise semantic alignment between
the generated inversion images and their corresponding tuning texts in a shared embedding space.
Following the standard contrastive learning, we define an image-to-text contrastive loss £z and a
text-to-image contrastive loss L7z, and combine them symmetrically as the final CLIP loss Lcrip-
We apply this loss at both the sentence and caption levels, obtaining the total semantic loss:

Esemantic = Asen‘CCLIP (Isem 7;en) + Acap['CLIP (Icap7 ,Tcap)7 (8)

where Agen and Acap, are used to balance losses of two levels. This design encourages the prompt to
incrementally learn richer semantics, enhancing the performance of prompt tuning. The overall loss
L combines autoregressive cross-entropy 10ss Laytoregressive and semantic alignment 10ss Lsemantic:

L= Eautoregressive + Esemantic- (9)

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Datasets Based on ImageNet (Krizhevsky et al 2017), we construct a multi-level tuning text
dataset to support multi-level semantic refinement. Sentence-level text: a fixed template, “a photo
of {class_name} ”, is used to provide relatively comprehensive semantics across the 1000 categories.
Caption-level text: detailed captions generated by BLIP-2 (Li et al.| [2023a) provide fine-grained
visual attributes and semantic information. Furthermore, to assess the transferability and generality
of MVP, we conduct additional experiments on Food101 (Bossard et al., 2014), RESISC45 (Cheng
et al.,2017), SUN397 (Sun et al.| [2023), and MS-COCO (Lin et al.,[2014).

Implementation Details We implement MVP on VAR with 16, 20, 24, 30, 36 layers and follow
the experimental settings of VAR. For ablation and analysis, we also transfer MVP to other VAR-like
models such as HART (Tang et al.,[2024) and Infinity (Han et al., 2025). The AdamW (Loshchilov &
Hutter,2017)) optimizer is employed for training. Notably, for class-to-image generation, we discard
the first-scale prompt to prevent interference with class embeddings. All evaluations are conducted
on a single NVIDIA A100 GPU with 80 GB of memory. Appendix [D]includes more details.

4.2 MAIN RESULTS

Improve VAR’s Class-to-Image Generation Quality We evaluate MVP on VAR with depths of
16, 20, 24, and 30 to generate 256 x 256 images on ImageNet. Table [I] presents a comprehensive
comparison between MVP, VAR, and other types of generation models. As observed, compared
to VAR, MVP introduces only minimal parameters while achieving improvements in FID and IS,
even with some showing marked improvements. For example, MVP reduces FID by 5% compared to
VAR-d30. In comparison with other types of generation models, MVP also maintains the advantages
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of VAR while further extending its lead, achieving notable performance gains while training only
less than 1% of the parameters. Moreover, we also employ MVP at the depth of 36 for image
generation at a higher resolution of 512 x 512 on ImageNet. As shown in Table 2] MVP also
surpasses VAR as well as other types of generation models.

Table 1: Comparisons on class-to-image generation on ImageNet. Evaluation metrics include Fréchet In-
ception Distance (FID), Inception Score (IS) and inference time (s). Precision and recall jointly assess the
fidelity—diversity trade-off of generated images. The suffix ‘-re’ denotes rejection sampling. ‘]’ and ‘1’ indi-

cate that lower or higher values are preferable.

Type Model Param FID| IST  Precision] Recallf Time
GAN BigGAN|Brock et al.|(2018) 112M 6.95 2245 0.89 0.38 -
GAN GigaGAN|Kang et al.|(2023) 569M 345 2255 0.84 0.61 -
GAN StyleGAN-XL|Sauer et al.|(2022) 166M 230  265.1 0.78 0.53 0.3
Diffusion ADM Dhariwal & Nichol|(2021) 554M 1094 101.0 0.69 0.63 168
Diffusion CDM[Ho et al.|(2022) - 488 1587 - - -
Diffusion LDM-4Rombach et al.|(2022) 400M 3.60 2477 - - -
Diffusion DiT-XL/2|Peebles & Xie|(2023) 675M 227 2782 0.83 0.57 31

Masked AR MaskGIT|Chang et al.|(2022) 227M 6.18 182.1 0.80 0.51 0.5

Masked AR MaskGIT-re|Li et al.|(2023b) 227TM 4,02 355.6 - -

Masked AR MAGELLI et al.|(2024) 230M 6.93 195.8 - - -
Next-token AR VQGANEsser et al.|(2021b) 227M 18.65 80.4 0.78 0.26 19
Next-token AR VQGAN-re|Yu et al.|(2021) 1.4B 5.20 280.3 - - 24
Next-token AR~ VQGAN (1.4B)|Esser et al.|(2021b) 1.4B 1576 743 - - 25
Next-token AR ViT-VQGAN|Yu et al.|(2021) 1.7B 4.17 175.1 - - > 24
Next-token AR ViT-VQGAN:-re|Yu et al.|(2021) 1.7B 3.04 2274 - - > 24
Next-token AR RQTran|Lee et al.|(2022) 3.8B 7.55 80.4 0.78 0.26 21
Next-token AR RQTran-re|Lee et al.|(2022) 3.8B 3.80 3237 - - 21
Next-token AR LlamaGen-B|Sun et al.|(2024) 111M 5.46 193.6 0.83 0.45 -
Next-token AR LlamaGen-L|Sun et al.|(2024) 343M 3.81 248.3 0.83 0.52 -
Next-token AR LlamaGen-XL|Sun et al.|(2024) T75M 339 227.1 0.81 0.54 -
Next-token AR LlamaGen-XXL|Sun et al.|(2024) 1.4B 3.09 253.6 0.83 0.53 -
Next-scale AR VAR-d16/Tian et al.|(2024) 310M 3.61 225.6 0.81 0.52 0.4
Next-scale AR VAR-d20(Tian et al.|(2024) 600M 2.67 2544 0.81 0.57 0.5
Next-scale AR VAR-d24(Tian et al.|(2024) 1.0B 217 2719 0.81 0.59 0.6
Next-scale AR VAR-d30(Tian et al.|(2024) 2.0B 2.14 2754 0.80 0.60 1
Next-scale AR MVP-dI6 3104M 346 2474 0.83 0.52 0.4
Next-scale AR MVP-d20 601M 2.63  276.5 0.82 0.55 0.6
Next-scale AR MVP-d24 1.02B 2.13 2929 0.81 0.58 0.6
Next-scale AR MVP-d30 2.01B 2.03 2894 0.81 0.59 1

Table 2: Comparisons on class-to-image generation with 512x512 resolution on ImageNet .

Type \ Model | FID] ISt  Time

GAN BigGAN Brock et al.[(2018) 8.43 1779 -

Diffusion ADM Dhariwal & Nichol[(2021) | 23.24 101.0 —
Diffusion DiT-XL/2 |Peebles & Xie (2023) 3.04 240.8 81
Masked autoregressive MaskGIT |Chang et al.[(2022) 732 156.0 05
Next-token autoregressive VQGAN [Esser et al.[(2021Db)) 26.52  66.8 25

Next-scale autoregressive VAR-d36|Tian et al.| (2024) 2.63 3032 1

Next-scale autoregressive MVP-d36 247 3174 1

Expand Text-to-Image Generation Capability Since MVP extends the text-to-image genera-
tion capability of VAR, we compare MVP with VAR-CLIP (Zhang et al., 2024a)), a fully pre-
trained method targeting the same extension task. In addition, to explore the superiority of the
perturbation-based MVP, we also compare it with LoRA, an adapter-based parameter-efficient fine-
tuning method. As shown in Tab.[3] MVP achieves an excellent trade-off between generation quality
and training efficiency. Specifically, MVP requires only 0.46% of the training parameters and 0.54%
of the training time of VAR-CLIP, while maintaining a competitive FID and surpassing VAR-CLIP
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in CLIP-Score. Meanwhile, compared with LoRA, MVP also achieves overall superiority in both ef-
ficiency and performance. This highlights that MVP is a simple yet efficient prompt tuning method.

Table 3: Comparison of different tuning methods. TP is  Table 4: Comparison of multi-scale and prefilled

the number of trainable parameters. prompt. Memory (GB) is peak GPU memory.
Method TP  FID| CLIP-Scoret GPU-Hours] Method FID| ISt Memory]
VAR-CLIP  310M 11.26 28.55 4782 VAR-dI6 3.61 225.6 -
VAR+LoRa 4.6M 148 29.23 58 + Prefilled Prompt  3.51 238.4 23.2
VAR+MVP 145M 13.50 30.48 26 + MVP (Ours) 346 2474 14.5

4.3 ANALYSIS & ABLATIONS

Multi-scale Prompt vs. Prefilled Prompt We evaluate MVP against the traditional prefilled
prompt on class-to-image generation to compare the advantages between embedding-based and
perturbation-based prompt tuning. All experiments are conducted with the 16-depth VAR back-
bone, with the scale threshold 7 fixed at 20 and the same number of visual prompt tokens. As shown
in Table [ while both methods improve the generation quality, MVP achieves better FID and IS
than the prefilled prompt. Moreover, our fine-tuning process incurs lower memory overhead, as our
strategy avoids increasing the token sequence length.

Effect of Prompt Position To validate the Table 5: Performance across different prompt position
effectiveness of our prompt position design designs on class-conditional generation. ‘* indicates
in MVP, which injects prompts at outermost mean results over 3 runs with different random seeds.

square frame of feature maps, we compare it Depth Prompt Position FID] ISt
with four alternative position designs with an

identical prompt token budget: (i) Random: 16 Ours 346 2474
Prompt tokens are randomly placed across the 16 Random 3.69%  238.2%
feature map; (if) Innermost: Prompt tokens are 16 Innermost 3.68 2400
first placed at the center of the feature map (the 16 Center-to-Outer ~ 3.64 2378
innermost square frame) and then expand out- 16 Sub-Outermost ~ 3.51  243.1
ward until the prompt token budget is reached; 30 Ours 203 2894
(iii) Center-to-Outer: Prompt tokens are placed 30 Random 2.16% 281.7%*
starting from the innermost frame, then skip- 30 Innermost 213 2833
ping one frame before placing the next frame 30 Center-to-Outer  2.14  279.6
of prompt tokens, and so on, forming concen- 30 Sub-Outermost 208 285.2

tric prompt frames across the feature map. (iv)
Sub-Outermost: Prompt tokens are placed from the second outermost square frame and extend
outward if the prompt budget is not yet filled. All alternative position designs maintain an equal
prompt token budget and are tested on VAR backbones with different depths (d16 and d30) for
class-conditional generation. For fair comparison and to reduce randomness effects, the Random
Placement variant is repeated three times with different random seeds, and the averaged results are
reported. As summarized in Table [5] the outermost square frame strategy consistently outperforms
other strategies, indicating that our prompt position design minimizes distributional distortion of the
pretrained models while providing effective semantic guidance.

Effect of First-scale Prompt We examine the impact Table 6: Ablation of prompts at the 1st scale.

of introducing the visual prompt at the first scale. As Depth  Injection  FID ST
shown in Table[f] introducing the prompt at the first scale 16 357 213
significantly degrades class-to-image performance, espe- 16 X 3.46 2474
cially in terms of IS, indicating disruption to the VAR 20 2.66 2376
backbone’s learned class embeddings. In contrast, first- 20 X 2.63 276.5
scale prompting improves text-to-image generation, fa- 24 2.15 275.4

24 X 2.13 292.9

cilitating alignment between text and class embeddings.

Effect of Threshold = To determine a suitable scale threshold for MVP, we conduct ablation
studies on VAR backbones with depth 16, 20, 24 and 30. As shown in Tab.[7] appropriate thresholds
can achieve a good balance: they provide sufficient prompt capacity to improve FID and IS, while
avoiding the redundancy and instability that occur with too small or overly large thresholds.
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Table 7: Ablation study on prompt scale threshold 7 across VAR backbones with different depths.

Depth | Threshold 7 FID| ISt Depth | Threshold 7 FID| ISt
16 4 3.58  231.1 24 4 2.19 2758
16 12 349 2383 24 12 2.15 281.4
16 20 346 2474 24 20 213 2929
16 28 347 248.8 24 28 2.13 2914
20 4 2.71 262.4 30 12 2.15 284.1
20 12 2.66 271.7 30 20 2.12  281.6
20 20 2.63 276.5 30 28 2.03 2929
20 28 2.62 2713 30 36 2.05 2973

Table 8: Comparison of different PEFT methods for cross-dataset transfer on metrics FIDJ.

Method | Trainable Params (%) | Mean | SUN397 | Food101 | Resisc
VAR (fine-tuning) 100 37.27 23.85 30.07 57.90
VAR (LoRA) 0.26 30.87 22.73 29.65 40.22
VAR (QLoRA) 0.26 30.91 22.67 29.65 40.41
VAR (MVP) 0.17 29.72 22.42 28.76 37.97

Comparison with Other PEFT Methods To evaluate the transferability and generality of MVP
across different data distributions, we compare MVP with LoRA and QLoRA on additional datasets:
SUN397, RESISC45 and Food101. All experiments are conducted on VAR-d24 with a single epoch
of fine-tuning. As shown in Table 8] MVP achieves superior performance to other PEFT methods
such as LoRA and QLoRA, while using fewer trainable parameters. Notably, MVP demonstrates
a clear advantage under significant domain shifts, such as on the RESISC dataset. These results
highlight MVP as an efficient and robust parameter-efficient tuning strategy.

Figure 2: Visualization of class-to-image samples generated use MVP. The first two rows show results at
256 %256 resolution, and the third row shows results at 512 x 512 resolution.

4.4 VISUALIZATION

Class-to-Image Generation In Figure[2] randomly selected samples on ImageNet show that MVP
generates images with high visual fidelity and diversity. More visualization is provided in Appendix.

Text-to-Image Generation As shown in Figure [3] visualization of text-to-image generation (24
depths, 26 GPU-Hours, a single 80G A100) demonstrates that MVP effectively enhances text—image
alignment, expanding VAR’s text-to-image generation capability. Notably, both MVP and VAR-
CLIP are built upon the same VAR backbones: while VAR-CLIP (depth=16) requires full pretraining
with 4782 GPU-Hours on 48 A100 80GB GPUs, MVP attains competitive performance with less
than 1% of its computational cost. Moreover, this efficiency advantage is consistently preserved
even when applied to a deeper backbone, highlighting the practicality of our fine-tuning strategy.



Under review as a conference paper at ICLR 2026

A gray wolf standing in a forest.

4

A hot air balloon floating in the sky. A bridge over a rive.

Figure 3: Visualization of text-to-image generation samples at 256 X256 resolution using MVP.

5 CONCLUSION

In this paper, we propose MVP, a multi-scale visual prompt method with planar concept and efficient
information propagation tailored to VAR. By introducing prompt in the outermost square frame and
increasingly detailed tuning text, MVP enables effective prompt learning of rich semantics and task
features at a relatively low computational cost. Moreover, MVP not only significantly improves
performance on the class-to-image generation, but also extends VAR’s text-to-image generation
capability. This offers a novel and promising direction for visual autoregressive generation.

ETHICS STATEMENT

This study is conducted exclusively on publicly available benchmark datasets (ImageNet, Food101,
RESISC45, SUN397, and MS-COCO), which are widely adopted in the computer vision research
community. These datasets contain no personally identifiable information or sensitive data. The
proposed methods focus on achieving class-conditional and text-to-image generation within these
benchmarks through perturbation-based prompt design. However, we do not foresee direct negative
societal impacts, but acknowledge that generative models may be misused for producing misleading
or harmful content. We encourage responsible usage of our models and provide detailed descriptions
of implementation and training settings in the appendix to support reproducibility and transparency.
This research adheres to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our results. The model architec-
ture and implementation details are provided in Section [f.1] of the main text, while comprehensive
training configurations and hyperparameter settings are described in Appendix [D} All datasets used
in our experiments are publicly available. In addition, we provide an anonymous supplementary
link to our source code, which includes the full training and inference scripts, to further facilitate
independent verification of our findings.
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