

000 001 002 003 004 005 006 007 008 009 010 MVP: MULTI-SCALE VISUAL PROMPT FOR VISUAL AUTOREGRESSIVE GENERATION

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Prompt tuning, especially perturbation-based prompt tuning, encounters obstacles
 012 in visual generation. On the one hand, the autoregressive paradigm, which pro-
 013 vides the most ideal environment for prompt tuning, struggles to model planar
 014 concept: traditional autoregressive methods employ raster-scan for image model-
 015 ing, disrupting the spatial structure of images. On the other hand, perturbation-
 016 based prompts work as learnable perturbations in pixel space, and their effective-
 017 ness comes at quite a little computational cost, making it difficult to balance per-
 018 formance and efficiency. To address these challenges, we propose Multi-scale Vi-
 019 sual Prompt (MVP), a perturbation-based prompt tuning method tailored for visual
 020 autoregressive generation with planar concept and efficient information propaga-
 021 tion. MVP builds on Visual AutoRegressive (VAR) models with next-scale predic-
 022 tion for capturing planar concept, and introduces prompt tokens in the outermost
 023 token frame at each scale for efficient signal control and information propaga-
 024 tion. During training, we use increasingly detailed tuning text to facilitate prompt
 025 learning. Moreover, MVP extends VAR’s capability for text-to-image generation.
 026 Extensive experiments validate the effectiveness of MVP. Code is [available](#).

027 1 INTRODUCTION

029 Prompt tuning (Li & Liang, 2021; Liu et al., 2021; Lester et al., 2021) enables models to per-
 030 form specific tasks by introducing the learnable prompt, requiring only minimal fine-tuning without
 031 any access to model parameters. In generation tasks, particularly in textual generation based on
 032 large language models (LLMs), prompt tuning has achieved remarkable success (Hao et al., 2023;
 033 Ajwani et al., 2024; Tang et al., 2022). However, its transfer to visual generation has not reached the
 034 same success. Although some embedding-based (Gal et al., 2022; Ruiz et al., 2023) and adapter-
 035 based (Yeh et al., 2023; Ye et al., 2023) prompt tuning methods show notable results in visual gen-
 036 eration, perturbation-based prompt tuning, which offers stronger controllability and is more suitable
 037 for high-dimensional tasks, remains almost unexplored. We identify the following two reasons:

038 *First, traditional autoregressive methods cannot model planar concept.* The autoregressive
 039 paradigm inherently provide an ideal environment for perturbation-based prompt tuning, as they can
 040 seamlessly incorporate the learnable prompt: prompt and input within autoregressive models share
 041 the same structure, enabling prompt and input tokens to be directly concatenated or added without
 042 requiring architectural adjustments or additional modules. Moreover, the autoregressive paradigm
 043 also ensures full-coverage prompt control: serving as contextual information, prompt participates
 044 in attention computations across all layers and heads, and their influence progressively propagates
 045 through autoregressive modeling. In contrast to the diffusion paradigm (Sohl-Dickstein et al., 2015;
 046 Ho et al., 2020) requiring thousands of conditional inputs, autoregressive minimizes prompt signal
 047 attenuation. Therefore, the autoregressive paradigm serves as the foundation for perturbation-based
 048 prompt tuning. However, traditional autoregressive modeling converts visual content into a sequence
 049 in raster-scan order, limiting the model’s ability to capture original spatial adjacency relationships
 050 and two-dimensional structural correlations, ultimately leading to outputs lacking global consist-
 051 ency and suboptimal performance compared to other visual generation paradigms. The emergence
 052 of Visual AutoRegressive (VAR) (Tian et al., 2024) addresses this deficiency by transforming the
 053 autoregressive modeling pattern from next-token prediction into next-scale prediction. In next-scale
 prediction, each prediction unit contains a scale-specific feature map, which is a set of multiple
 tokens predicted simultaneously rather than sequentially. This modeling pattern preserves the spa-

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 158

utilization tokenizer. Inspired by residual quantization methods (Lee et al., 2022; Huijben et al., 2024), VAR (Tian et al., 2024) reframes next-token prediction as next-scale prediction, further unleashing the potential of the autoregressive paradigm to generate high-quality visual content. The emergence of autoregressive methods based on next-scale prediction (Zhang et al., 2024a; Tang et al., 2024; Han et al., 2025; Qu et al., 2025) reflects increased optimism about the future development of visual autoregressive generation. Therefore, we develop a simple yet efficient perturbation-based prompt tuning on the VAR family with next-scale prediction to enhance task performance.

3 METHODOLOGY

The overall framework of MVP is illustrated in Figure 1. MVP utilize a set of tokens located in the outermost square frame at each scale to introduce the learnable prompt, which is square frame prompt. As the scale increases, the computational cost of square frame prompt grows rapidly. Therefore, we establish a scale threshold beyond which the number of square frame prompt tokens no longer increases with scale increase, presenting as one square frame prompt transforming into four L-shaped prompts at one scale. The prompt tokens are directly added with the input tokens. In training, we adopt a CLIP to encode multiple tuning texts (sentence and caption) and certain feature maps for contrastive learning to enable MVP learning.

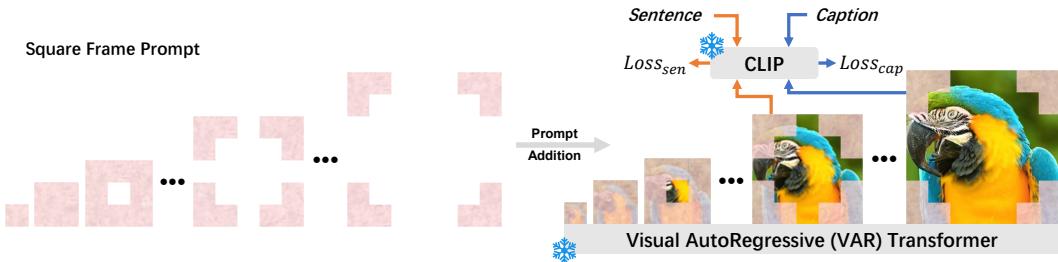


Figure 1: The Overall framework of MVP.

3.1 PROMPT DESIGN PRINCIPLE

3.1.1 MODEL SELECTION

As discussed in the previous section, it is ideal for MVP to possess planar concept. VAR (Tian et al., 2024) and VAR-like models (Tang et al., 2024; Han et al., 2025) based on next-scale prediction serve as the target models for MVP. By decomposing generation into next-scale residual feature map prediction, VAR naturally introduces two components: an intra-scale residual feature map, representing the spatial plane, and an coarse-to-fine inter-scale sequence, reflecting the temporal progression across scales. The modeling process of VAR involves T multi-scale token feature maps (R_1, R_2, \dots, R_T) defined by a size set $\{S_1 \times S_1, S_2 \times S_2, \dots, S_T \times S_T\}$. At the t -th scale, VAR predicts the residual feature map $R_t \in \mathbb{R}^{S_t \times S_t}$ based on all previous scales. The autoregressive likelihood can be formulated as follows:

$$p(R_1, R_2, \dots, R_T) = \prod_{t=1}^T p(R_t \mid \langle \text{sos} \rangle, R_1, R_2, \dots, R_{t-1}), \quad (1)$$

where $(R_1, R_2, \dots, R_{t-1})$ denotes the "prefix" of R_t , and $\langle \text{sos} \rangle$ is the conditional embedding.

3.1.2 CENTRAL IMPACT ANALYSIS

After determining the target model, we consider the form of prompt introduction. Research (Zhang et al., 2024b) reveals that although prompt tuning can effectively enhance the performance of models, it may also result in limited performance improvement or significant degradation for other tasks. This is attributed to the fact that the learnable prompt leads to notable changes in the model's visual features, consequently invalidating plenty of knowledge acquired from large-scale pre-training during its transfer to other models, thus impacting their performance. This phenomenon, referred to as model feature corruption, critically impairs overall model performance.

In addition, perturbation-based prompt tuning carries higher feature corruption risks, as it directly introduces perturbation within the pixel space. Therefore, it is essential to employ an appropriate form of prompt introduction to resist image corruptions. In some visual tasks, the methods (Bahng et al., 2022; Wu et al., 2022; Xie et al., 2023) introduce control signals in the pixel space around clean images as a frame, ensuring minimal impact on the image center. The image center typically contains critical information and primary objects. Modifying the image center may cause issues such as subject deformation, semantic drift, and expression distortion, thereby affecting subsequent image-text alignment, understanding, and generation.

Taking the feature map $R_t \in \mathbb{R}^{S_t \times S_t}$ at the t -th scale as an example, we divide R_t into $N + 1$ concentric square frames by layers. Specifically, Frame 0 is the outermost frame, containing all tokens on the outermost boundary. Frame 1 is the sub-outermost frame, with its tokens positioned just inside Frame 0, forming a second boundary. Following this pattern, Frame N is the center frame, containing the innermost token(s), where $N = \left\lfloor \frac{\min(S_t)}{2} \right\rfloor$. We denote the set of tokens in Frame n as $\mathcal{S}_{t,n}$, for $n = 0, 1, \dots, N$. Signals (i.e., perturbations) weaken as the propagation distance increases. In maps with hierarchical structure or spatial layout, the impact received by nodes diminishes with increasing distance from the source. Therefore, we define the propagation distance as dis and the signal attenuation factor α related to propagation distance, where the attenuation factor is negatively correlated with propagation distance: $dis \propto -\alpha$. If a perturbation δ is added to a token in frame n , then its impact I_n on the center frame $\mathcal{S}_{t,N}$ is: $\text{Impact}(n \rightarrow N) = \delta \cdot \alpha_{N-n}$. Therefore, the impact of introduction from outermost frame 0 and non-outermost frame c on the center frame can be denoted as $I_0 = \delta \cdot \alpha_{N-0}$ and $I_c = \delta \cdot \alpha_{N-c}$. Since $N - 0 > N - c$, therefore $I_0 < I_c$.

Through both qualitative and quantitative analyses, we demonstrate that introducing prompts in the outermost square frame minimizes impact on the image center, thereby avoiding model feature corruption. Therefore, we propose that MVP incorporates the learnable prompt within the outermost square frame of the feature map at each scale.

3.1.3 OVERALL IMPACT ANALYSIS

Introducing the prompt in the outermost square frame ensures minimal impact on the center of images while resisting image corruptions. Meanwhile, the form of token introduction is supposed to achieve good overall propagation efficiency, meaning that prompt tokens are distributed within a reasonable and appropriate proximity to each input token, thereby facilitating input tokens receiving signal control and information propagation from prompt tokens. Therefore, we analyze the overall impact of the outermost square frame prompt introduction across the entire feature map.

For the feature map $R_t \in \mathbb{R}^{S_t \times S_t}$ at the t -th scale, we define the index set of all tokens at this scale as $\Omega_t = \{(x, y) \mid x, y \in \{1, 2, \dots, S_t\}\}$. Therefore, the token index set of the outermost square frame is $\mathcal{B}_t = \{(x, y) \in \Omega_t : (x \in \{1, S_t\}) \vee (y \in \{1, S_t\})\}$. Thus, the minimum distance from any token to the outermost square frame can be represented as follow:

$$dis_{\min}((x, y), \mathcal{B}_t) = \min_{(u, v) \in \mathcal{B}_t} \|(x, y) - (u, v)\|, \quad (2)$$

where the distance can be measured using Manhattan distance, Euclidean distance, Chebyshev distance, or other suitable metrics.

Given that the linear distances between the given token and the prompt tokens located on the same row or column correspond to the minimum distances to the four outermost boundaries, it follows:

$$dis_{\min}((x, y), \mathcal{B}_t) = \min\{x - 1, S_t - x, y - 1, S_t - y\}. \quad (3)$$

We define the unified maximum distance dis_{\max}^{uni} from any token to the outermost square frame as:

$$dis_{\max}^{\text{uni}} := \max_{(x, y) \in \Omega_t} dis_{\min}((x, y), \mathcal{B}_t). \quad (4)$$

From Equation 3, it can be observed that the token(s) at the geometric center is/are farthest from the outermost square frame, thus $dis_{\max}^{\text{uni}} = \lfloor (S_t - 1)/2 \rfloor$.

Given that dis_{\max}^{uni} is less than half the scale size $\frac{S_t}{2}$, it can be demonstrated that introducing the prompt in the outermost square frame also achieves a good overall propagation efficiency.

3.2 MULTI-SCALE VISUAL PROMPT

Following the prompt design principles described above, MVP introduces learnable prompts in the outermost square frames of feature maps in VAR family models based on next-scale prediction.

3.2.1 PROMPT TOKEN SELECTION

For the feature map $R_t \in \mathbb{R}^{S_t \times S_t}$ at the t -th scale, MVP selects prompt tokens in the outermost square frame of R_t . The number of these prompt tokens at the t -th scale is represented as $N^{\mathcal{B}_t}$ and is given by $N^{\mathcal{B}_t} = \mathcal{I}_{\text{id}}^{\mathcal{B}_t} = 4S_t - 4$, where $\mathcal{I}_{\text{id}}^{\mathcal{B}_t}$ is the index set of prompt token positions in the outermost square frame of the feature map R_t . Therefore, the prompt token set $\mathcal{V}^{\mathcal{B}_t}$ of the square frame prompt with dimension D can be represented as follow:

$$\mathcal{V}^{\mathcal{B}_t} = [\mathbf{v}_t^1, \dots, \mathbf{v}_t^{N^{\mathcal{B}_t}}] \in \mathbb{R}^{N^{\mathcal{B}_t} \times D}. \quad (5)$$

In VAR, the number of tokens grows rapidly from small to large scales, which can rapidly increase computational cost, against the original intention of prompt tuning. Although the square frame prompt design has effectively reduced the prompt computational budget from $\mathcal{O}(S^2)$ to $\mathcal{O}(S)$, the number of square frame prompt tokens still becomes pretty large as the scale increases, requiring more computational cost. Therefore, we set a threshold τ on the number of square frame prompt tokens to preserve efficiency when the scale is large. Specifically, τ is the maximum number of square frame prompt tokens. Once the threshold τ is exceeded, the number of prompt tokens for the scale remains constant. Formally, a square frame prompt is converted into four L-shaped prompts: four corner tokens of the feature map outward along the outermost square frame, incorporating a tokens in every available direction. These combined tokens collectively form the L-shaped prompts. $a = \lfloor (\tau - 4)/8 \rfloor$, thus $N^{\mathcal{B}_t} = 8a + 4$. Update the square frame prompt set $\mathcal{V}^{\mathcal{B}_t} = [\mathbf{v}_t^1, \dots, \mathbf{v}_t^{N^{\mathcal{B}_t}}]$.

3.2.2 PROMPT TOKEN ADDITION

For the t -th scale, we utilize the square frame prompt set $\mathcal{V}^{\mathcal{B}_t}$ to construct the prompt feature map $\mathcal{F}_t \in \mathbb{R}^{S_t \times S_t \times D}$ that matches the shape of the feature map R_t . All non-prompt positions in \mathcal{F}_t are padded with zeros. Then, we add \mathcal{F}_{t+1} to R_{t+1} to obtain the new feature map \hat{R}_t at the $t+1$ -th scale: $\hat{R}_{t+1} = R_t + \mathcal{F}_{t+1} \in \mathbb{R}^{S_t \times S_t \times D}$. And the autoregressive likelihood can be reformulated as:

$$p(R_1, \dots, R_T) = \prod_{t=1}^T p(R_t \mid \langle \text{sos} \rangle, \hat{R}_1, \dots, \hat{R}_{t-1}, \mathcal{F}_t). \quad (6)$$

3.3 PROMPT LEARNING STRATEGY

Although perturbation-based prompt tuning works in pixel space and can effectively control style, texture, spatial layout, and other visual elements to improve visual generation, they have weaker semantic controllability than embedding-based and adapter-based prompt tuning. Taking embedding-based prompt tuning as an example, it incorporates semantically rich embedding vectors into the feature space, thereby establishing connections with semantic representation. In contrast, perturbation-based prompt tuning essentially introduces learnable perturbation, which exhibits poor interpretability and lacks semantics, resulting in suboptimal semantic expression. Moreover, since VAR is a class-to-image generation model, its class-level conditioning inherently lacks rich semantic information, making the training of perturbation-based prompts significantly challenging.

The above analysis indicates that incorporating richer semantic information is the key to training perturbation-based prompts, allowing prompts to acquire more essential knowledge. It is worth noting that the feature map scales predicted by VAR based on next-scale prediction gradually increase, we suppose that different stages of this coarse-to-fine generation process require different tuning texts. Early stages focus on modeling semantic concept, so class-level text (label) works well for prompt learning. Middle stages refine concept and layout, making sentence-level text suitable. Later

270 stages enhance details, so caption-level text with more details helps prompts learn richer semantics.
 271 Therefore, we propose multi-level semantic refinement as a strategy to improve prompt training.
 272

273 Specifically, we introduce two more tuning texts: a sentence-level text \mathcal{T}_{sen} containing relatively
 274 comprehensive concepts (using fixed templates such as “a photo of {}”), and a caption-level text
 275 \mathcal{T}_{cap} containing detailed visual attributes and fine-grained semantic information. These tuning texts
 276 with difference granularity facilitate MVP to fine-tune VAR, thereby enhancing VAR’s semantic
 277 expression and generation quality. K is the total number of VAR scales. We set an inter-anchor
 278 index $\kappa = \lfloor \beta K \rfloor \in \{1, 2, \dots, K-1\}$ with a hyper-parameter $\beta \in (0, 1)$ (e.g. $\beta = 0.6$ found
 279 by grid search). Based on this anchor, we employ the image \mathcal{I}_{sen} at the κ -th scale and the image
 280 \mathcal{I}_{cap} K -th scale to enable the prompt to learn from sentence-level and caption-level tuning text,
 281 respectively. \mathcal{I}_{sen} and \mathcal{I}_{cap} are generated by following processes:

$$\mathcal{I}_{\text{sen}} = \text{Decoder}\left(\sum_{t=1}^{\kappa} \text{Up}(R_t)\right), \quad \mathcal{I}_{\text{cap}} = \text{Decoder}\left(\sum_{t=1}^K \text{Up}(R_t)\right), \quad (7)$$

285 where R_t denotes the residual feature map predicted at the t -th scale, and $\text{Up}(\cdot)$ denotes the up-
 286 sample inversion transform function to unify the spatial shapes.

287 We then apply the CLIP-based loss Radford et al. (2021) to supervise semantic alignment between
 288 the generated inversion images and their corresponding tuning texts in a shared embedding space.
 289 Following the standard contrastive learning, we define an image-to-text contrastive loss $\mathcal{L}_{\mathcal{IT}}$ and a
 290 text-to-image contrastive loss $\mathcal{L}_{\mathcal{T}I}$, and combine them symmetrically as the final CLIP loss $\mathcal{L}_{\text{CLIP}}$.
 291 We apply this loss at both the sentence and caption levels, obtaining the total semantic loss:

$$\mathcal{L}_{\text{semantic}} = \lambda_{\text{sen}} \mathcal{L}_{\text{CLIP}}(\mathcal{I}_{\text{sen}}, \mathcal{T}_{\text{sen}}) + \lambda_{\text{cap}} \mathcal{L}_{\text{CLIP}}(\mathcal{I}_{\text{cap}}, \mathcal{T}_{\text{cap}}), \quad (8)$$

294 where λ_{sen} and λ_{cap} are used to balance losses of two levels. This design encourages the prompt to
 295 incrementally learn richer semantics, enhancing the performance of prompt tuning. The overall loss
 296 \mathcal{L} combines autoregressive cross-entropy loss $\mathcal{L}_{\text{autoregressive}}$ and semantic alignment loss $\mathcal{L}_{\text{semantic}}$:

$$\mathcal{L} = \mathcal{L}_{\text{autoregressive}} + \mathcal{L}_{\text{semantic}}. \quad (9)$$

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

303 **Datasets** Based on ImageNet (Krizhevsky et al., 2017), we construct a multi-level tuning text
 304 dataset to support multi-level semantic refinement. Sentence-level text: a fixed template, “a photo
 305 of {class_name}”, is used to provide relatively comprehensive semantics across the 1000 categories.
 306 Caption-level text: detailed captions generated by BLIP-2 (Li et al., 2023a) provide fine-grained
 307 visual attributes and semantic information. Furthermore, to assess the transferability and generality
 308 of MVP, we conduct additional experiments on Food101 (Bossard et al., 2014), RESISC45 (Cheng
 309 et al., 2017), SUN397 (Sun et al., 2023), and MS-COCO (Lin et al., 2014).

310 **Implementation Details** We implement MVP on VAR with 16, 20, 24, 30, 36 layers and follow
 311 the experimental settings of VAR. For ablation and analysis, we also transfer MVP to other VAR-like
 312 models such as HART (Tang et al., 2024) and Infinity (Han et al., 2025). The AdamW (Loshchilov &
 313 Hutter, 2017) optimizer is employed for training. Notably, for class-to-image generation, we discard
 314 the first-scale prompt to prevent interference with class embeddings. All evaluations are conducted
 315 on a single NVIDIA A100 GPU with 80 GB of memory. Appendix D includes more details.

4.2 MAIN RESULTS

319 **Improve VAR’s Class-to-Image Generation Quality** We evaluate MVP on VAR with depths of
 320 16, 20, 24, and 30 to generate 256×256 images on ImageNet. Table 1 presents a comprehensive
 321 comparison between MVP, VAR, and other types of generation models. As observed, compared
 322 to VAR, MVP introduces only minimal parameters while achieving improvements in FID and IS,
 323 even with some showing marked improvements. For example, MVP reduces FID by 5% compared to
 VAR-d30. In comparison with other types of generation models, MVP also maintains the advantages

of VAR while further extending its lead, achieving notable performance gains while training only less than 1% of the parameters. Moreover, we also employ MVP at the depth of 36 for image generation at a higher resolution of 512×512 on ImageNet. As shown in Table 2, MVP also surpasses VAR as well as other types of generation models.

Table 1: Comparisons on class-to-image generation on ImageNet. Evaluation metrics include Fréchet Inception Distance (FID), Inception Score (IS) and inference time (s). Precision and recall jointly assess the fidelity–diversity trade-off of generated images. The suffix ‘-re’ denotes rejection sampling. ‘ \downarrow ’ and ‘ \uparrow ’ indicate that lower or higher values are preferable.

Type	Model	Param	FID \downarrow	IS \uparrow	Precision \uparrow	Recall \uparrow	Time
GAN	BigGAN Brock et al. (2018)	112M	6.95	224.5	0.89	0.38	–
GAN	GigaGAN Kang et al. (2023)	569M	3.45	225.5	0.84	0.61	–
GAN	StyleGAN-XL Sauer et al. (2022)	166M	2.30	265.1	0.78	0.53	0.3
Diffusion	ADM Dhariwal & Nichol (2021)	554M	10.94	101.0	0.69	0.63	168
Diffusion	CDM Ho et al. (2022)	–	4.88	158.7	–	–	–
Diffusion	LDM-4 Rombach et al. (2022)	400M	3.60	247.7	–	–	–
Diffusion	DiT-XL/2 Peebles & Xie (2023)	675M	2.27	278.2	0.83	0.57	31
Masked AR	MaskGIT Chang et al. (2022)	227M	6.18	182.1	0.80	0.51	0.5
Masked AR	MaskGIT-re Li et al. (2023b)	227M	4.02	355.6	–	–	–
Masked AR	MAGE Li et al. (2024)	230M	6.93	195.8	–	–	–
Next-token AR	VQGAN Esser et al. (2021b)	227M	18.65	80.4	0.78	0.26	19
Next-token AR	VQGAN-re Yu et al. (2021)	1.4B	5.20	280.3	–	–	24
Next-token AR	VQGAN (1.4B) Esser et al. (2021b)	1.4B	15.76	74.3	–	–	25
Next-token AR	ViT-VQGAN Yu et al. (2021)	1.7B	4.17	175.1	–	–	> 24
Next-token AR	ViT-VQGAN-re Yu et al. (2021)	1.7B	3.04	227.4	–	–	> 24
Next-token AR	RQTran Lee et al. (2022)	3.8B	7.55	80.4	0.78	0.26	21
Next-token AR	RQTran-re Lee et al. (2022)	3.8B	3.80	323.7	–	–	21
Next-token AR	LlamaGen-B Sun et al. (2024)	111M	5.46	193.6	0.83	0.45	–
Next-token AR	LlamaGen-L Sun et al. (2024)	343M	3.81	248.3	0.83	0.52	–
Next-token AR	LlamaGen-XL Sun et al. (2024)	775M	3.39	227.1	0.81	0.54	–
Next-token AR	LlamaGen-XXL Sun et al. (2024)	1.4B	3.09	253.6	0.83	0.53	–
Next-scale AR	VAR-d16 Tian et al. (2024)	310M	3.61	225.6	0.81	0.52	0.4
Next-scale AR	VAR-d20 Tian et al. (2024)	600M	2.67	254.4	0.81	0.57	0.5
Next-scale AR	VAR-d24 Tian et al. (2024)	1.0B	2.17	271.9	0.81	0.59	0.6
Next-scale AR	VAR-d30 Tian et al. (2024)	2.0B	2.14	275.4	0.80	0.60	1
Next-scale AR	MVP-d16	310.4M	3.46	247.4	0.83	0.52	0.4
Next-scale AR	MVP-d20	601M	2.63	276.5	0.82	0.55	0.6
Next-scale AR	MVP-d24	1.02B	2.13	292.9	0.81	0.58	0.6
Next-scale AR	MVP-d30	2.01B	2.03	289.4	0.81	0.59	1

Table 2: Comparisons on class-to-image generation with 512×512 resolution on ImageNet .

Type	Model	FID \downarrow	IS \uparrow	Time
GAN	BigGAN Brock et al. (2018)	8.43	177.9	–
Diffusion	ADM Dhariwal & Nichol (2021)	23.24	101.0	–
Diffusion	DiT-XL/2 Peebles & Xie (2023)	3.04	240.8	81
Masked autoregressive	MaskGIT Chang et al. (2022)	7.32	156.0	0.5
Next-token autoregressive	VQGAN Esser et al. (2021b)	26.52	66.8	25
Next-scale autoregressive	VAR-d36 Tian et al. (2024)	2.63	303.2	1
Next-scale autoregressive	MVP-d36	2.47	317.4	1

Expand Text-to-Image Generation Capability Since MVP extends the text-to-image generation capability of VAR, we compare MVP with VAR-CLIP (Zhang et al., 2024a), a fully pre-trained method targeting the same extension task. In addition, to explore the superiority of the perturbation-based MVP, we also compare it with LoRA, an adapter-based parameter-efficient fine-tuning method. As shown in Tab. 3, MVP achieves an excellent trade-off between generation quality and training efficiency. Specifically, MVP requires only 0.46% of the training parameters and 0.54% of the training time of VAR-CLIP, while maintaining a competitive FID and surpassing VAR-CLIP

378 in CLIP-Score. Meanwhile, compared with LoRA, MVP also achieves overall superiority in both efficiency and performance. This highlights that MVP is a simple yet efficient prompt tuning method.
 379
 380

381 Table 3: Comparison of different tuning methods. TP is
 382 the number of trainable parameters.

Method	TP	FID \downarrow	CLIP-Score \uparrow	GPU-Hours \downarrow
VAR-CLIP	310M	11.26	28.55	4782
VAR+LoRa	4.6M	14.8	29.23	58
VAR+MVP	1.45M	13.50	30.48	26

383 Table 4: Comparison of multi-scale and pre-filled
 384 prompt. Memory (GB) is peak GPU memory.

Method	FID \downarrow	IS \uparrow	Memory \downarrow
VAR-d16	3.61	225.6	–
+ Prefilled Prompt	3.51	238.4	23.2
+ MVP (Ours)	3.46	247.4	14.5

385 4.3 ANALYSIS & ABLATIONS

386
 387 **Multi-scale Prompt vs. Prefilled Prompt** We evaluate MVP against the traditional pre-filled
 388 prompt on class-to-image generation to compare the advantages between embedding-based and
 389 perturbation-based prompt tuning. All experiments are conducted with the 16-depth VAR back-
 390 bone, with the scale threshold τ fixed at 20 and the same number of visual prompt tokens. As shown
 391 in Table 4, while both methods improve the generation quality, MVP achieves better FID and IS
 392 than the pre-filled prompt. Moreover, our fine-tuning process incurs lower memory overhead, as our
 393 strategy avoids increasing the token sequence length.
 394
 395

396 **Effect of Prompt Position** To validate the
 397 effectiveness of our prompt position design
 398 in MVP, which injects prompts at outermost
 399 square frame of feature maps, we compare it
 400 with four alternative position designs with an
 401 identical prompt token budget: (i) Random:
 402 Prompt tokens are randomly placed across the
 403 feature map; (ii) Innermost: Prompt tokens are
 404 first placed at the center of the feature map (the
 405 innermost square frame) and then expand out-
 406 ward until the prompt token budget is reached;
 407 (iii) Center-to-Outer: Prompt tokens are placed
 408 starting from the innermost frame, then skip-
 409 ping one frame before placing the next frame
 410 of prompt tokens, and so on, forming concen-
 411 tric prompt frames across the feature map. (iv)

412 Sub-Outermost: Prompt tokens are placed from the second outermost square frame and extend
 413 outward if the prompt budget is not yet filled. All alternative position designs maintain an equal
 414 prompt token budget and are tested on VAR backbones with different depths (d16 and d30) for
 415 class-conditional generation. For fair comparison and to reduce randomness effects, the Random
 416 Placement variant is repeated three times with different random seeds, and the averaged results are
 417 reported. As summarized in Table 5, the outermost square frame strategy consistently outperforms
 418 other strategies, indicating that our prompt position design minimizes distributional distortion of the
 419 pretrained models while providing effective semantic guidance.

420 **Effect of First-scale Prompt** We examine the impact
 421 of introducing the visual prompt at the first scale. As
 422 shown in Table 6, introducing the prompt at the first scale
 423 significantly degrades class-to-image performance, espe-
 424 cially in terms of IS, indicating disruption to the VAR
 425 backbone’s learned class embeddings. In contrast, first-
 426 scale prompting improves text-to-image generation, fa-
 427 cilitating alignment between text and class embeddings.

428 **Effect of Threshold τ** To determine a suitable scale threshold for MVP, we conduct ablation
 429 studies on VAR backbones with depth 16, 20, 24 and 30. As shown in Tab. 7, appropriate thresholds
 430 can achieve a good balance: they provide sufficient prompt capacity to improve FID and IS, while
 431 avoiding the redundancy and instability that occur with too small or overly large thresholds.

397 Table 5: Performance across different prompt position
 398 designs on class-conditional generation. “*” indicates
 399 mean results over 3 runs with different random seeds.

Depth	Prompt Position	FID \downarrow	IS \uparrow
16	Ours	3.46	247.4
16	Random	3.69*	238.2*
16	Innermost	3.68	240.0
16	Center-to-Outer	3.64	237.8
16	Sub-Outermost	3.51	243.1
30	Ours	2.03	289.4
30	Random	2.16*	281.7*
30	Innermost	2.13	283.3
30	Center-to-Outer	2.14	279.6
30	Sub-Outermost	2.08	285.2

740 Table 6: Ablation of prompts at the 1st scale.

Depth	Injection	FID \downarrow	IS \uparrow
16	✓	3.57	221.3
16	✗	3.46	247.4
20	✓	2.66	237.6
20	✗	2.63	276.5
24	✓	2.15	275.4
24	✗	2.13	292.9

Table 7: Ablation study on prompt scale threshold τ across VAR backbones with different depths.

Depth	Threshold τ	FID \downarrow	IS \uparrow	Depth	Threshold τ	FID \downarrow	IS \uparrow
16	4	3.58	231.1	24	4	2.19	275.8
16	12	3.49	238.3	24	12	2.15	281.4
16	20	3.46	247.4	24	20	2.13	292.9
16	28	3.47	248.8	24	28	2.13	291.4
20	4	2.71	262.4	30	12	2.15	284.1
20	12	2.66	271.7	30	20	2.12	281.6
20	20	2.63	276.5	30	28	2.03	292.9
20	28	2.62	271.3	30	36	2.05	297.3

Table 8: Comparison of different PEFT methods for cross-dataset transfer on metrics FID \downarrow .

Method	Trainable Params (%)	Mean	SUN397	Food101	Resisc
VAR (fine-tuning)	100	37.27	23.85	30.07	57.90
VAR (LoRA)	0.26	30.87	22.73	29.65	40.22
VAR (QLoRA)	0.26	30.91	22.67	29.65	40.41
VAR (MVP)	0.17	29.72	22.42	28.76	37.97

Comparison with Other PEFT Methods To evaluate the transferability and generality of MVP across different data distributions, we compare MVP with LoRA and QLoRA on additional datasets: SUN397, RESISC45 and Food101. All experiments are conducted on VAR-d24 with a single epoch of fine-tuning. As shown in Table 8, MVP achieves superior performance to other PEFT methods such as LoRA and QLoRA, while using fewer trainable parameters. Notably, MVP demonstrates a clear advantage under significant domain shifts, such as on the RESISC dataset. These results highlight MVP as an efficient and robust parameter-efficient tuning strategy.

Figure 2: Visualization of class-to-image samples generated use MVP. The first two rows show results at 256 \times 256 resolution, and the third row shows results at 512 \times 512 resolution.

4.4 VISUALIZATION

Class-to-Image Generation In Figure 2, randomly selected samples on ImageNet show that MVP generates images with high visual fidelity and diversity. More visualization is provided in Appendix.

Text-to-Image Generation As shown in Figure 3, visualization of text-to-image generation (24 depths, 26 GPU-Hours, a single 80G A100) demonstrates that MVP effectively enhances text-image alignment, expanding VAR’s text-to-image generation capability. Notably, both MVP and VAR-CLIP are built upon the same VAR backbones: while VAR-CLIP (depth=16) requires full pretraining with 4782 GPU-Hours on 48 A100 80GB GPUs, MVP attains competitive performance with less than 1% of its computational cost. Moreover, this efficiency advantage is consistently preserved even when applied to a deeper backbone, highlighting the practicality of our fine-tuning strategy.

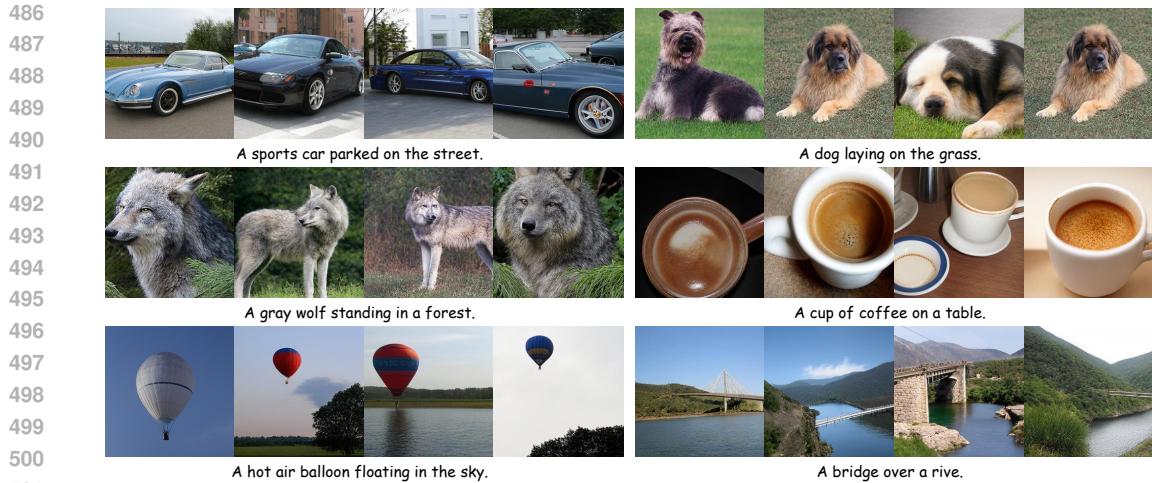


Figure 3: Visualization of text-to-image generation samples at 256×256 resolution using MVP.

5 CONCLUSION

In this paper, we propose MVP, a multi-scale visual prompt method with planar concept and efficient information propagation tailored to VAR. By introducing prompt in the outermost square frame and increasingly detailed tuning text, MVP enables effective prompt learning of rich semantics and task features at a relatively low computational cost. Moreover, MVP not only significantly improves performance on the class-to-image generation, but also extends VAR’s text-to-image generation capability. This offers a novel and promising direction for visual autoregressive generation.

ETHICS STATEMENT

This study is conducted exclusively on publicly available benchmark datasets (ImageNet, Food101, RESISC45, SUN397, and MS-COCO), which are widely adopted in the computer vision research community. These datasets contain no personally identifiable information or sensitive data. The proposed methods focus on achieving class-conditional and text-to-image generation within these benchmarks through perturbation-based prompt design. However, we do not foresee direct negative societal impacts, but acknowledge that generative models may be misused for producing misleading or harmful content. We encourage responsible usage of our models and provide detailed descriptions of implementation and training settings in the appendix to support reproducibility and transparency. This research adheres to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our results. The model architecture and implementation details are provided in Section 4.1 of the main text, while comprehensive training configurations and hyperparameter settings are described in Appendix D. All datasets used in our experiments are publicly available. In addition, we provide an anonymous supplementary link to our source code, which includes the full training and inference scripts, to further facilitate independent verification of our findings.

540 REFERENCES
541

542 Rohan Deepak Ajwani, Zining Zhu, Jonathan Rose, and Frank Rudzicz. Plug and play with prompts:
543 A prompt tuning approach for controlling text generation. *arXiv preprint arXiv:2404.05143*,
544 2024.

545 Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts
546 for adapting large-scale models. *arXiv preprint arXiv:2203.17274*, 2022.

547 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
548 nents with random forests. In *European conference on computer vision*, pp. 446–461. Springer,
549 2014.

550 Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
551 image synthesis. *arXiv preprint arXiv:1809.11096*, 2018.

552 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
553 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
554 *recognition*, pp. 11315–11325, 2022.

555 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
556 Generative pretraining from pixels. In *International conference on machine learning*, pp. 1691–
557 1703. PMLR, 2020.

558 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
559 mark and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, 2017.

560 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
561 Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
562 guage models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.

563 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
564 *in neural information processing systems*, 34:8780–8794, 2021.

565 Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. Imagebart: Bidirectional
566 context with multinomial diffusion for autoregressive image synthesis. *Advances in neural infor-
567 mation processing systems*, 34:3518–3532, 2021a.

568 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
569 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
570 tion*, pp. 12873–12883, 2021b.

571 Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun,
572 Kaiming He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models
573 with continuous tokens. *arXiv preprint arXiv:2410.13863*, 2024.

574 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
575 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
576 inversion. *arXiv preprint arXiv:2208.01618*, 2022.

577 Xun Guo, Mingwu Zheng, Liang Hou, Yuan Gao, Yufan Deng, Pengfei Wan, Di Zhang, Yufan Liu,
578 Weiming Hu, Zhengjun Zha, et al. I2v-adapter: A general image-to-video adapter for diffusion
579 models. In *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–12, 2024.

580 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaob-
581 ing Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis.
582 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15733–15744,
583 2025.

584 Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation.
585 *Advances in Neural Information Processing Systems*, 36:66923–66939, 2023.

586 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
587 *neural information processing systems*, 33:6840–6851, 2020.

594 Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans. Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning*
 595 *Research*, 23(47):1–33, 2022.

596

597 Iris AM Huijben, Matthijs Douze, Matthew Muckley, Ruud JG Van Sloun, and Jakob Verbeek.
 598 Residual quantization with implicit neural codebooks. *arXiv preprint arXiv:2401.14732*, 2024.

599

600 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 601 Ser-Nam Lim. Visual prompt tuning. In *European conference on computer vision*, pp. 709–727.
 602 Springer, 2022.

603

604 Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
 605 Park. Scaling up gans for text-to-image synthesis. In *Proceedings of the IEEE/CVF conference*
 606 *on computer vision and pattern recognition*, pp. 10124–10134, 2023.

607

608 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah-
 609 baz Khan. Maple: Multi-modal prompt learning. In *Proceedings of the IEEE/CVF conference on*
 610 *computer vision and pattern recognition*, pp. 19113–19122, 2023.

611

612 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 613 lutional neural networks. *Communications of the ACM*, 60(6):84–90, 2017.

614

615 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
 616 customization of text-to-image diffusion. In *Proceedings of the IEEE/CVF conference on com-
 617 puter vision and pattern recognition*, pp. 1931–1941, 2023.

618

619 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
 620 generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer
 621 Vision and Pattern Recognition*, pp. 11523–11532, 2022.

622

623 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 624 tuning. *arXiv preprint arXiv:2104.08691*, 2021.

625

626 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 627 pre-training with frozen image encoders and large language models. In *International conference*
 628 *on machine learning*, pp. 19730–19742. PMLR, 2023a.

629

630 Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan. Mage:
 631 Masked generative encoder to unify representation learning and image synthesis. In *Proceed-
 632 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2142–2152,
 633 2023b.

634

635 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image gen-
 636 eration without vector quantization, 2024. URL <https://arxiv.org/abs/2406.11838>.

637

638 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. *arXiv*
 639 *preprint arXiv:2101.00190*, 2021.

640

641 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 642 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 643 *conference on computer vision*, pp. 740–755. Springer, 2014.

644

645 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-
 646 tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
 647 *arXiv preprint arXiv:2110.07602*, 2021.

648

649 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 650 *arXiv:1711.05101*, 2017.

651

652 Yuchen Mao, Hongwei Li, Wei Pang, Giorgos Papanastasiou, Guang Yang, and Chengjia Wang.
 653 Selora: Self-expanding low-rank adaptation of latent diffusion model for medical image synthesis.
 654 *arXiv preprint arXiv:2408.07196*, 2024.

648 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
 649 T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
 650 models. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 4296–
 651 4304, 2024.

652 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 653 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

654 Liao Qu, Huichao Zhang, Yiheng Liu, Xu Wang, Yi Jiang, Yiming Gao, Hu Ye, Daniel K. Du,
 655 Zehuan Yuan, and Xinglong Wu. Tokenflow: Unified image tokenizer for multimodal under-
 656 standing and generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 657 *Pattern Recognition (CVPR)*, pp. 2545–2555, June 2025.

658 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 659 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 660 models from natural language supervision. In *International conference on machine learning*, pp.
 661 8748–8763. PMLR, 2021.

662 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 663 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 664 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

665 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 666 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-*
 667 *ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–
 668 22510, 2023.

669 Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
 670 datasets. In *ACM SIGGRAPH 2022 conference proceedings*, pp. 1–10, 2022.

671 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 672 learning using nonequilibrium thermodynamics. In *International conference on machine learn-*
 673 *ing*, pp. 2256–2265. pmlr, 2015.

674 Kihyuk Sohn, Huiwen Chang, José Lezama, Luisa Polania, Han Zhang, Yuan Hao, Irfan Essa, and
 675 Lu Jiang. Visual prompt tuning for generative transfer learning. In *Proceedings of the IEEE/CVF*
 676 *Conference on Computer Vision and Pattern Recognition*, pp. 19840–19851, 2023.

677 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 678 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint*
 679 *arXiv:2406.06525*, 2024.

680 Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao,
 681 Jingjing Liu, Tiejun Huang, and Xinlong Wang. Emu: Generative pretraining in multimodality.
 682 *arXiv preprint arXiv:2307.05222*, 2023.

683 Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
 684 Han Cai, Yao Lu, and Song Han. Hart: Efficient visual generation with hybrid autoregressive
 685 transformer. *arXiv preprint arXiv:2410.10812*, 2024.

686 Tianyi Tang, Junyi Li, Wayne Xin Zhao, and Ji-Rong Wen. Context-tuning: Learning contextualized
 687 prompts for natural language generation. *arXiv preprint arXiv:2201.08670*, 2022.

688 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 689 Scalable image generation via next-scale prediction. *Advances in neural information processing*
 690 *systems*, 37:84839–84865, 2024.

691 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 692 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 693 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

694 Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
 695 ditional image generation with pixelcnn decoders. *Advances in neural information processing*
 696 *systems*, 29, 2016.

702 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 703 *neural information processing systems*, 30, 2017.

704

705 Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
 706 Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and Mi Zhang. Efficient large language models: A
 707 survey, 2024. URL <https://arxiv.org/abs/2312.03863>.

708 Junyang Wu, Xianhang Li, Chen Wei, Huiyu Wang, Alan Yuille, Yuyin Zhou, and Cihang Xie.
 709 Unleashing the power of visual prompting at the pixel level. *arXiv preprint arXiv:2212.10556*,
 710 2022.

711

712 Mingrui Wu, Xinyue Cai, Jiayi Ji, Jiale Li, Oucheng Huang, Gen Luo, Hao Fei, Guannan Jiang, Xi-
 713 aoshuai Sun, and Rongrong Ji. Controlmlm: Training-free visual prompt learning for multimodal
 714 large language models. *Advances in Neural Information Processing Systems*, 37:45206–45234,
 715 2024.

716 Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and
 717 Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained diffusion.
 718 In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7452–7461,
 719 2023.

720

721 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 722 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

723

724 Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard BW Yang, Giyeong Oh, and Yanmin Gong.
 725 Navigating text-to-image customization: From lycoris fine-tuning to model evaluation. In *The*
 726 *Twelfth International Conference on Learning Representations*, 2023.

727

728 Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
 729 Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
 730 *arXiv preprint arXiv:2110.04627*, 2021.

731

732 Qian Zhang, Xiangzi Dai, Ninghua Yang, Xiang An, Ziyong Feng, and Xingyu Ren. Var-clip:
 733 Text-to-image generator with visual auto-regressive modeling. *arXiv preprint arXiv:2408.01181*,
 734 2024a.

735

736 Yichi Zhang, Yinpeng Dong, Siyuan Zhang, Tianzan Min, Hang Su, and Jun Zhu. Exploring the
 737 transferability of visual prompting for multimodal large language models. In *Proceedings of the*
 738 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26562–26572, 2024b.

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755