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ABSTRACT

Artificial neural networks are considered to simulate the human neural network-
s, and achieves great progress on object detection, natural language processing
(NLP), image generation, etc. Hermann Ebbinghaus proposed the law of human
memory and how to improve human learning in 1885. Inspiring from Ebbing-
haus’ work, we propose a stepped sampler based on the “repeated input”, which is
Ebbinghaus’ contribution that how to strengthen the learning. We repeatedly in-
putted data to the LSTM model stepwise in a batch. The stepped sampler is used to
strengthen the ability of fusing the temporal information in LSTM. We tested the
stepped sampler on the LSTM offered by PyTorch. Compared with the traditional
sampler of PyTorch, such as sequential sampler, batch sampler, the training loss
of the proposed stepped sampler converges faster in the model training, and the
training loss after convergence is more stable, which means that there is no large
jitter after the convergence. Meanwhile, it can maintain a higher test accuracy,
compared with the traditional sampler. We quantified the algorithm of the stepped
sampler. We assume that, the artificial neural networks may have human-like char-
acteristics, and human learning method could be used for machine learning. Our
code will be available online soon.

1 INTRODUCTION

The emergence of convolutional neural networks (CNN) (LeCun et al., 1989) has improved the self-
learning ability of artificial neural networks. Recurrent Neural Network (RNN) (Mikolov et al.,
2010) is used to process the temporal information data. RNN takes the output of the previous time
period as the input of the next time period, effectively using the temporal information of the input
sequence.

RNN sometimes may have the problem of gradient disappearance or gradient explosion. Hochre-
iter et al. (Hochreiter & Schmidhuber, 1997) proposed LSTM. LSTM adds gates to RNN, thus it
can effectively avoid the problem of gradient disappearance or explosion. These gates include the
forgetting gates, the input gates, and the output gates. The forgetting gate seems to be the most
important among them. LSTM may simulate the memory process of human brain. Human brain
selectively forgets some information for learning better.

Consider that one of the principles of neural networks may be learned from biological neural net-
works, for those artificial neural networks with the memory effects, such as LSTM, learning from
the memory method of human, which is the repeated input and timely review, we study the effect
of this method with repeated input on LSTM detection results, without considering changing the
LSTM network structure.

In this study, we learn the effect of the proposed input method on neural networks with memory
characteristics, such as LSTM. Specifically, it is to repeatedly input training data by simulating
the “repeated input and timely review” method of the human memory, and the “repeated input and
timely review” method is proposed by Hermann Ebbinghaus (Ebbinghaus, 1913) in 1885, which is
the “Increasing Memory Strength and Rate of Learning” in his literature.
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1.1 OUR CONTRIBUTION

Our views in this paper mainly include the following 3 aspects:

a) A novel sampler is proposed, which implements sampling in a circular and stepwise manner.
Compared with the traditional sampler, the loss curve of the LSTM model using this stepped sampler
converges faster in training, and is more stable after the convergence, namely there is no large jitter
after the convergence. Moreover, its test accuracy curve is more stable either, which has no jitter.
When the batch size is 15, the test accuracy of the stepped sampler LSTM is much higher than that
of the traditional sampler with the same parameters.

b) The idea of this sampler comes from the laws of human memory, which was proposed by Ebbing-
haus (Ebbinghaus, 1913). We courageously assume that, other human learning methods can also be
applied to machine learning. One example is the proposal of the attention mechanism (Vaswani
et al., 2017). Moreover, we believe that artificial neural networks have human-like characteristics
from the experimental performance.

c) We try to use mathematical language to describe the temporal information of the video frames. We
try to apply the mathematical equations to our experimental results, and analyze that the test accuracy
in the experiment is the temporal information between video frames. The derivation process is shown
in Appendix A and Appendix B.

2 RELATED WORK

Gibbs sampling is one of the earlier data sampling algorithms, which is proposed by Geman et al.
(Geman & Geman, 1984) in 1984. Gibbs sampling is to make the probability of the data sample
approximately equal to the required probability distribution via iterations. Gibbs sampling random-
ly selects data from an initial input sequence, and iterates according to the specified conditional
probabilities, which are related to the required probability distribution of the final sampling data.
After iterations, Gibbs sampling generates data which is consistent with the required probability
distribution. Hu et al. (Hu et al., 2018) used neural networks to generate a sampler, which transfer
the initial data distribution to the target distribution. The method can generate the sampling data
at the same time of training. This method works with the un-normalized probability density func-
tion. Wang et al. (Wang et al., 2018) used Generative Adversarial Nets (GAN) (Goodfellow et al.,
2014) to generate the negative samples. The approach is the first to combine GAN with the negative
sampling method, which improves the training effect of the streaming recommend system. Chu et
al. (Chu et al., 2019) proposed a novel sampler that can sample both the positive and the negative
data from the input data sequences, so as to let the classifier utilize the Regions of Interests and the
background of the data. The sampler is used in the few-shot image classifier, which uses the rein-
forcement learning method. The reinforcement learning algorithm (Kaelbling et al., 1996) needs to
continuously select the regions of interests from the images, subsequently to recognize the content of
the Regions of Interests. Sampling these Regions of Interests can improve the efficiency of reinforce-
ment learning, for the reason of the reduction of the input samples. Muhammad et al. (Muhammad
et al., 2021) proposed a bi-directional long short-term memory (BiLSTM) with attention mechanism
and a dilated convolutional neural network (DCNN) to perform action recognition, which outper-
formed the state-of-the-art methods. Kwon et al. (Kwon et al., 2021) proposed a spatio-temporal
neighbourhood learning method on action recognition, which performed the state-of-the-art.

3 MATERIALS AND METHODS

This paper is from the perspective of data input, rather than the neural network structure, and study
the impact of the memory effect on the temporal sequence neural networks (such as LSTM). The
process simulates the method of enhancing the memory process of human brain, repeats the input
data in a stepped way. The method is proposed by Hermann Ebbinghaus (Ebbinghaus, 1913) called
“Increasing rate of learning” in his book. The specific mode we used was the wheel tactic (Smith,
1994) when we recited words, by establishing a novel data sampler in the LSTM model training.
The dataset in the experiment is UCF101 (Soomro et al., 2012), which is a human action recognition
video dataset. The name of each folder indicates the annotation of the video.
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3.1 EBBINGHAUS FORGETTING CURVE

Ebbinghaus forgetting curve (Ebbinghaus, 1913) describes the memory effect of human brain over
time, which was proposed by Hermann Ebbinghaus in 1885. This theory reveals the human mem-
ory law. It is also the law of human learning. That is, the loss of human memory when learning
new knowledge is drop fast first and slow later. Ebbinghaus also pointed out that, timely review
and repeated input are the key point to prevent forgetting, consolidate knowledge, and learn better.
Figure 1 illustrates Ebbinghaus forgetting curve, and timely review can reduce the knowledge for-
getting, which makes the learning better. Based on Ebbinghaus forgetting curve on the human brain,
we simulated Ebbinghaus’ method on machine learning. We believe that the experimental results in
Section 4 could prove that there is a certain correlation between human learning and machine learn-
ing, since the machine learning method with timely review and spaced repeat has a faster learning
effect, compared with the machine learning without the human-like method.

Ebbinghaus also found that, making good use of the correlations between knowledge is another key
point for enhancing learning. We definite these correlations are temporal information in Appendix A.
Thereby enhancing the use of temporal information is the key to video detection, natural language
processing (NLP), etc. We believe that, the partly repeated input of the stepped sampler enhances
the correlation and the temporal information.

3.2 LSTM
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Figure 1: The illustration of Ebbinghaus forgetting curve.
The red curve is without timely review (repeated input),
the blue curve is with 1 day, 2 days and 3 days spaced
repetition. It can be seen that, with the spaced repetition,
the learning effect is better.

The LSTM architecture we used in this
paper is to start with a CNN backbone.
The CNN backbone has four convolu-
tional layers. The dimension of convo-
lution kernels of each convolutional lay-
er is 32, 64, 128, 256. The size of each
convolution kernel is 5 × 5, 3 × 3, 3 ×
3, 3×3, the stride of the convolution ker-
nel is 2, and the padding is 0. Each con-
volutional layer is followed by a batch
normalization (BN) (Ioffe & Szegedy,
2015) layer and a ReLU layer. The last
part of the CNN model is 3 fully con-
nected (FC) layers, which use dropout
function. The dimensions of the 3 FC
layers are 1024, 768 and 512 respective-
ly. The LSTM used in the paper is the model existed in PyTorch. The input dimension of LSTM is
512, the hidden layer dimension is 512, and the number of hidden layers is 3. The next is two fully
connected (FC) layers followed by dropout function. The dimension of the FC layers is 256. The
dropout rate of the CNN backbone and LSTM are both 0.3.

3.3 THE STEPPED SAMPLER

Our experiment is compared with the common sampler. Common sampler in PyTorch (Paszke et al.,
2019) include random sampler, weighted random sampler, batch sampler, etc. Batch sampling is
nearly the most commonly used. The previous research is to add memory units to deep learning
networks, such as RNN, LSTM, etc. Analogous to human learning, an important point is repetition.
And the sampler should be an appropriate way to simulate the “repetition”, since the data in each
batch can be designed to be input repeatedly. We suppose that, “repetition” is important, not only for
human beings, but also for computers. To make computers better use the “repetition”, analogizing
the way how we recite words, we propose a “stepped” repetition input method, which is the stepped
sampler.

The structure of the proposed stepped sampler is illustrated in Figure 2. It is established on the
batch sampler. The stepped sampler divides a batch into some sub-batches. Like human memory,
this sampler adopts the principle of adjacent repetition (Crowder, 1968), namely, the back of the
previous sub-batch is the same with the front of the next sub-batch.
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The structure of the stepped sampler shows that, the input data of different batches is partly dupli-
cated. The repeated input seems to increase the redundancy, but the experimental results show that,
with our experimental environment, this method can accelerate the convergence of LSTM model.
There is a stride between the previous sub-batch and the next sub-batch. The stride size n can be set
manually. We believe that this part repetition enhances the correlation of the input frames, thereby
enhancing the temporal information of the input frames, according to our definition of the temporal
information in Appendix A. Section 4 describes the comparative experiments on the sampler with
different stride size.

3.4 THE ALGORITHM OF THE STEPPED SAMPLER

The stepped sampler is designed on the basis of batch sampler. The algorithm is designed to imple-
ment stepped sampling within each batch via the batch sampler. The workflow of the algorithm is
as follows: the data first goes through the sequential sampler of PyTorch, then, they are processed to
batches by the batch sampler. Finally, the data in each batch are divided into sub-batches with the
same strides by the stepped sampler.

As shown in Figure 2, assuming that the iteration number of the stepped sampler in a batch is d, it
can be concluded from the figure:

L = m+ n× d (1)
It can be deduced that, the stepped sampler iteration number per batch, d is:

d =
L−m

n
(2)

Equation 2 is used as the iteration number within a batch in Algorithm 1. d is computed by the
algorithm when L, m, n is determined. If d is not an integer, PyTorch will round down to ensure
that d is an integer. The number of batches is calculated by the framework, and the number of
epochs is set manually. The algorithm of the proposed sampler is shown in Algorithm 1. The idea
is to implement the stepped sampler in each batch after the sequential sampler and batch sampler of
PyTorch. Line 12 of Algorithm 1 is that, after each previous stepped sub-batchs output, the starting
coordinate is moved by n (step stride) data from the starting position of the previous sub-batch.

4 RESULTS

4.1 EXPERIMENT SETUP

The system used in the experiment was a workstation with 32 GB CPU RAM and a NVIDIA
GeForce 1080ti GPU. The processor was Intel i7 8700, the operating system was Ubuntu 16.04
64 bits. PyTorch version used in the experiment was 1.0.1, Python version was 3.6, Numpy ver-
sion was 1.20.4, Sklearn version was 0.20.4, and Matplotlib, Pandas, tqdm were implemented as the
software environment. The reason why we chose old version PyTorch is, the performance of the old
version may not be so powelful, however, the experimental effect may be better, since the contrast
of the results may be larger. And since the old version may not have too many functions, it can focus
on the factor of “repeat input”, without the interferences from other irrelevant factors.

We searched the relevant literature, and found that there may be no LSTM literature that applies
human learning methods to machine learning for now. Therefore, the experiment we designed is
a comparison experiment, which is an ordinary CNN-LSTM, with or without the stepped sampler,
and the other parameters are all the same. One of the advantages of this is that, it can reduce the
influence of other irrelevant factors, and can specifically concentrate on the machine learning results
of human learning methods. And the human learning methods is the timely review proposed by
Ebbinghaus.

4.2 TRAINING

The detection accuracy evaluation and cross-entropy loss were used for the training of the models.
The accuracy evaluation in the experiment used the accuracy score tool in the Sklearn package of
Python. The cross-entropy loss used the function of PyTorch. The accuracy and loss were graphical-
ly depicted in Figure 4, 5 and 6. The accuracy and loss were computed every epoch. The dataset of
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UCF101 was split into training set and test set by a ratio of 3:1. After training, an overall accuracy
and loss were computed by the test set, to evaluate the performance of the models. The epoch was
set to 150. We used Adam as the optimization algorithm. We experimented different batch sizes and
step sizes, which was changing the size of L, m and the step stride n shown in Figure 2.

Our experiment is trained from scratch. Training from scratch may decrease the test accuracy, but
it can eliminate interference and focus on the stepped sampler. The learning rate was set to 0.0001.
The momentum was set to 0.01. The operators of batch normalization (BN) and ReLU activation
were used after each convolutional layer in the CNN backbone. The CNN backbone is not shown
in Figure 2. The data transformation was applied to enhance the network. The input frames were
transformed into 256× 342 pixels.

4.3 EXPERIMENT RESULTS

Figure 3 are the visualized results.We tested the sampler of batch size 25. Figure 4 presents the
experimental results. Each subfigure shows the training loss and test accuracy of the models. The
difference of the models is only the sampler, for comparing the results only caused by the sampler.
Figure 4 (a) is the model of traditional sampler, which is the sequential sampler and the batch sampler
in PyTorch, and the other in Figure 4 are the models of the proposed stepped sampler. Figure 4 (b),
(c), (d), (e), (f) are only different from the step stride for comparing. From Figure 4, we consider that
step stride 2 (batch size 25, step size 20, in Figure 4 (c)) is the optimal. The training loss in Figure 4
(a) has many jitters, even when the epoch is more than 110, while the training loss in the other
subfigures are much smoother, and can converge earlier than the traditional batch sampler model
(Figure 4 (a)). Nonetheless, the test accuracy score of the traditional batch sampler model (Figure 4
(a)) is slightly higher. The test accuracy of Figure 4 (a) can be 0.656, while the test accuracy of the
model with stride 2 stepped sampler (Figure 4 (c)) can be 0.603. The test accuracy of the models in
Figure 4 is shown in Table 1.

From Figure 4, the following could be concluded: a) In the model training, LSTM with the stepped
sampler converges faster than LSTM with the traditional sampler, and the convergence effect is
better, i.e., there is no large jitter after the drop. b) When the batch size and the step size are fixed,
the smaller the step stride was, the worse the detection effect became. Similarly, the larger the step
stride was, the worse the detection effect became either. If the batch size and the step size are fixed,
the detection effect seems to be a normal distribution of the step stride. c) However, LSTM with the
traditional sampler whose batch size is 25 has a higher test accuracy on the test set. Although this
value is not much higher than the optimal stepped sampler model (Figure 4 (c)).

From Table 1, it can be concluded that, for the same batch size, the test accuracy of the LSTM with
stepped sampler rises faster than the traditional sampler LSTM. This can also be seen in Figure 4.
Figure 5 and Figure 6 are the illustration of the traditional LSTM and the stepped sampler LSTM,
when the batch sizes are all set to 20,15 respectively. The training loss of Figure 5 (c) and Figure 6
(c) converge faster than Figure 5 (a) and Figure 6 (a) , which denotes that, our method may have a
broad-spectrum effect on machine learning. The test accuracy score of Figure 6 (c) is higher than
Figure 6 (a), which denotes that, the stepped sampler LSTM may have higher test accuracy than the
traditional sampler LSTM, when the batch size is 15, step size is 10, step stride is 5 of the stepped
sampler LSTM, and the traditional sampler LSTM is with batch size 15. It can be seen that, there is
a large jitter when the epoch is about 100 in Figure 6 (a). Figure 6 (b) and Figure 6 (c) have no large
jitter after the epoch is about 60. The training loss of Figure 6 (c) drops faster than Figure 6 (a). The
test accuracy of the three models is shown in Table 2. From Figure 6 we can see that, the training
loss of the stepped sampler model still converges faster than the traditional sampler model.

In our experiments, most LSTM models with the stepped sampler have a more stable convergence of
training loss, compared with the traditional LSTM models with the same batch size. Figure 4 (a) and
Figure 6 (a) are the loss curves of the traditional batch sampler, it can be seen that, the loss curves
have large jitters after the convergence. Other loss curves in Figure 4 and Figure 6 are stabler after
the convergence. The stepped sampler LSTM may have a higher test accuracy than the traditional
sampler LSTM, in the same batch size, which can reach the value of 0.639 (Table 2).

Our test uses the shuffle operation. ShuffleNet (Zhang et al., 2018) proves that the shuffle opera-
tion can improve the image detection mAP. We analyse that, the reason should be that the shuffle
operation can reduce the correlation. According to our definition in Appendix A, the correlation
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is the temporal information. Therefore, we consider that the shuffle operation can reduce the tem-
poral information. If the shuffle operation is not used during detection, the frames are sequential.
We believe that this continuity will have a certain impact on the model with temporal information.
Since the test data is shuffled, there should be less temporal information among the data, the test
results may reflect the detection effect better. The literature (Zhou et al., 2018) proves that, shuffle
operation makes little impact on UCF101, and we think there would be no disadvantages for us to
use the shuffle operation when testing.
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Figure 2: The illustration of the proposed stepped sampler. The upper half of the figure is the LSTM
network, the lower half describes the workflow of the stepped sampler. The step size m is the size
of the sub-batch, which is set to 3 in the figure, the step stride n is set to 1, the batch size L is set to
5 for the illustration. We operated the stepped sampling of the input data within each batch. The car
images are from Youtube-Objects dataset (Brox & Malik, 2010).

Figure 3: The video detection results of UCF101, which uses the proposed stepped sampler.

4.4 THE TRAINING TIME

A batch is divided into multiple sub-batches might prolong the training time. However, since the
repeated data are the same, the training time of a sub-batch is much shorter than an ordinary batch.
Therefore, for the total training time, the stepped sampler and the traditional sampler are almost the
same. For example, when the batch sizes are all set to 15, the stepped sampler with the step stride
of 5 and the traditional batch sampler both take about 60 hours for training with our experimental
conditions. Moreover, we believe that the training epoch which the stepped sampler needs might be
less than that of the traditional sampler.
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Algorithm 1: The stepped sampler
Input: Dataset, batch size L, step size m, step stride n, and L > m ≥ n
Output: Stepped sub-batch of the dataset
Initialize the dataset by Sequential sampler of PyTorch;
for Batch = 1, 2, · · · , |len(Batchsampler)| do // use batch sampler to traverse
all data

Initialize empty set step batch[];
for idx = 1, 2, · · · , L do // traverse the elements in a batch of the
batch sampler

output the idx-th item batch[idx] into step batch[];
idx+ = 1;
if len(step batch[]) == m then // when the size of step batch reaches m

return step batch[]; // output the sub-batch
Reset step batch[] to empty set;
idx = idx−m+ n; // move the coordinate to the next sub-batch
by stride n

end
end

end

Figure 4: The training loss and test accuracy of the traditional sampler LSTM model and the stepped
sampler LSTM model. The blue curves denote the training loss, and the yellow curves denote the
test accuracy. The above six models are all with batch size 25. Subfigure (a) is a traditional LSTM
model, which uses the batch sampler in PyTorch. Subfigure (b) is with the proposed stepped sampler,
whose batch size is 25, step size is 20, step stride is 1. Subfigure (c), (d), (e), (f) are with the stepped
sampler, whose batch size is 25, step size is 20, step stride is 2, 3, 4, 5, respectively. Our purpose is
to study the better step stride when the batch size and step size are fixed.

Table 1: The test accuracy of the six models in Figure 4. BatchSampler denotes Figure 4(a), stride
1 stepped denotes Figure 4(b), stride 2 stepped denotes Figure 4(c), etc.

model epoch 10 epoch 50 epoch 100 epoch 120 epoch 150

BatchSampler 0.289 0.621 0.650 0.642 0.635
stride 1 stepped 0.117 0.369 0.358 0.360 0.352
stride 2 stepped 0.307 0.566 0.577 0.602 0.587
stride 3 stepped 0.133 0.471 0.506 0.505 0.514
stride 4 stepped 0.170 0.502 0.506 0.546 0.521
stride 5 stepped 0.232 0.553 0.570 0.568 0.593
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(a) (b) (c)

Figure 5: The training loss and the test accuracy of the traditional sampler and the stepped sampler
model. The batch size of the three models are all 20. The blue curve denotes the training loss,
and the yellow curve denotes the test accuracy. (a) is LSTM with the traditional batch sampler of
PyTorch. (b) and (c) are LSTM with the proposed stepped sampler, using the stepped size 10, and
the step stride of (b) is set to 2, and the step stride of (c) is set to 5. The training loss of (c) converges
faster than (a), and the test accuracy of (c) is more stable than (a), when the test accuracy of the both
seems to be equal value.

Figure 6: The training loss and the test accuracy of the traditional model and our stepped sampler
model. The batch size of the three models are all 15. The blue curve denotes the training loss, and
the yellow curve denotes the test accuracy. (a) is LSTM with the traditional sampler, batch sampler
in PyTorch. (b) and (c) are LSTM with the proposed stepped sampler, with the same stepped size
10, when the step strides of (b) and (c) are set to 3 and 5 respectively. The training loss of (c) still
converges faster than (a).

Table 2: The test accuracy of the three models in Figure 6. BatchSampler represents Figure 6(a),
stride 3 stepped represents Figure 6(b), stride 5 stepped represents Figure 6(c).

model epoch 10 epoch 50 epoch 100 epoch 120 epoch 150

BatchSampler 0.303 0.585 0.607 0.622 0.616
stride 3 stepped 0.178 0.517 0.532 0.544 0.535
stride 5 stepped 0.282 0.593 0.631 0.639 0.637
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5 DISCUSSION

The experiment is to study the detection effect of the proposed sampler, which simulates one of the
human brain memory law, repeating the input, to use the temporal information (we think it is the
correlation in/between frames) of videos.

As the data are partly repeated inputted, it may be equivalent to the timely knowledge review of hu-
man brain, which strengthens the memory of the LSTM network, and reduces the information forget-
ting. The process is very similar with human learning, which was revealed by Hermann Ebbinghaus,
and it is illustrated in Subsection 3.1. LSTM can selectively memorize the temporal information,
which is human-like.

From Figure 4, the repeating times of the stepped sampler is not the more the better, as shown
in Figure 4 (b), the stride is 1, and the convergence speed of the model is not improved much.
In addition, the repeating times of the stepped sampler is not the less the better. As shown in
Figure 4 (f), the convergence speed of the model is even slower. Figure 5 (b) also seems to show
this. The phenomenon is the same with human learning. Too much repetitive input and too little
repetitive input would not improve the learning effect of human. The experiments seem to verify the
similarity between machine learning and human learning. We assume that artificial neural networks
have human-like characteristics. What is the best spaced repetition, is still need to be studied. We
assume that, it should be “one solution to one issue”, just like human.

Temporal information also seems to have human-like characteristics. Temporal information is the
correlation of temporal sequences, analogous to human learning, it is the correlation of knowledge.
In human learning, one of the important learning methods is to use the correlation of knowledge,
and using the temporal information may also be one of the important learning methods of machine
learning.

6 CONCLUSION

We refer to the human memory rules, and propose the stepped sampler, a repeating input method
which uses the timely review approach. The timely review approach was proposed by Ebbinghaus,
and is used to strengthen human memory and learning. In our experiments, this method has a better
promotion on the detection effect of LSTM. The experimental results show that, compared with the
traditional sampler, the training loss of the stepped sampler converges faster, and is more stable after
the convergence, i.e., there is no large jitter after convergence. The test accuracy of the model with
the stepped sampler also reaches a high point faster and is more stable either. When the batch size is
15, the test accuracy of the stepped sampler LSTM is significantly higher than that of the traditional
sampler with the same batch size. We analyzed the algorithm of stepped sampler and got several
equations. Ebbinghaus also pointed out that utilizing the correlations between knowledge is another
key to learn better. We believe that this part repetition of the sampler enhances the correlation of the
input frames, thereby enhancing the temporal information of the input frames, from our definition
of the temporal information in Appendix A.

We try to use the mathematical language to describe the temporal information of video frames, which
is shown in Appendix A. Since these mathematical descriptions do not involve specific artificial
neural networks, the parameters of neural network are not added to the equations.

We try to use some human learning methods to study artificial neural networks. Compared with the
traditional sampler, the stepped sampler LSTM has a faster learning effect, and has a higher test
accuracy under certain parameters. The results show that, there may be a close relationship between
biological neural network and artificial neural network, whatever in structure and even in principle.
How to improve human learning is different for each individual, and the test accuracy of our ex-
periment may illustrate this point, and we believe that is why not all the stepped sampler LSTM’s
test accuracy is higher than the traditional sampler. The attention mechanism (Vaswani et al., 2017)
may be also inspired by human learning methods. Transfer learning (Bozinovski & Fulgosi, 1976)
is using old knowledge to learn new knowledge, which may be inspired by human learning meth-
ods either. We believe that, artificial neural networks seem to have human-like characteristics, and
human learning and machine learning seem to have some similarities.
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A VIDEO TEMPORAL INFORMATION DESCRIBED IN MATHEMATICAL
LANGUAGE

We consider that, video temporal information is the correlations of the objects between frames, or
within a frame. We also consider that, this kind of correlation could be analogized to the correlation
of human knowledge, and machine learning may be similar with human learning. From the point, we
derive the equations of video temporal information from Bayes’ theorem, and mutual information
of information theory.

A.1 THE TEMPORAL INFORMATION BETWEEN THE FRAMES

Bayes’ theorem (Bayes & Hume, 1763), i.e. a conditional probability, can be described as:

P (A|B) =
P (A

⋂
B)

P (B)
(3)

where P (A|B) is the probability of event A occurring, under the condition that event B occurs.
P (A

⋂
B) is the probability of event A and event B occurring at the same time. P (B) is the

probability of event B occurring. P (B) 6= 0.

We consider that, Bayes’ theorem reflects a temporal correlation, that is, event B occurs first, and
then event A occurs. The video frame could be analogized to a kind of Venn diagram, and the
objects in the frame could be analogized to the events in the Venn diagram. Thus, we apply this
event temporal correlation to the temporal information between frames.

We use the area ratio of object A in the video frame R(A) to replace the occurrence probability of
the event. The area ratio is defined as:

R(A) =
area of object A

area of frame
(4)

Refer to Bayes’ theorem, according to the sequential relations of the temporal information between
frames, i.e., the state of the object in the next frame is derived from the state of the object in the
previous frame, the temporal information between the frames of the object A is:

TA(nf |pf) =
R(Apf

⋂
Anf )

R(Apf )
(5)

where “nf” represents the next frame, “pf” represents the previous frame, TA(nf |pf) denotes the
temporal information between the frames of the object A, R(Apf

⋂
Anf ) represents the overlapping

area ratio of the previous frame and the next frame of the object A. R(Apf ) represents the area ratio
of the object A in the previous frame.

Similarly, the temporal information between the frames of the object B is:

TB(nf |pf) =
R(Bpf

⋂
Bnf )

R(Bpf )
(6)

And the temporal information between the frames can be described as:

Tbf = TA(nf |pf) + TB(nf |pf) + · · · =
R(Apf

⋂
Anf )

R(Apf )
+

R(Bpf

⋂
Bnf )

R(Bpf )
+ · · · (7)

where Tbf denotes the temporal information between the frames.

A.2 THE TEMPORAL INFORMATION WITHIN A FRAME

The temporal information within a frame reflects the correlations of objects in the same image
(frame). The correlations within the same image can be represented by mutual information (Shan-
non, 1948) in information theory. The discrete equation of mutual information is

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y)log(
p(x, y)

p(x)p(y)
) (8)

where p(x, y) is the joint probability function of X and Y , and p(x) and p(y) are the marginal
probability functions of X and Y .
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Referring to the discrete equation of mutual information, we propose the temporal information with-
in a frame as: when there is an overlapping area between object A and object B in the frame,

T (A
⋂

B) =
∑
B∈F

∑
A∈F

R(A
⋂

B)log(
R(A

⋂
B)

R(A)R(B)
) (9)

where T (A
⋂
B) represents the intra-frame temporal information when object A and object B have

overlapping areas, F represents all objects in the frame, R(A
⋂
B) represents the overlapping area

ratio of object A and object B in the frame, R(A) and R(B) respectively represent the area ratio of
the object A and the object B in the frame.

Correlated objects in a frame generally have overlapping areas. For example, blue sky and white
clouds, grass and pets, roads and cars, etc. For the correlation of objects in a frame without over-
lapping areas, since most of the correlated objects in a frame may have overlapping areas, the math-
ematical representation of the correlation of objects in a frame without overlapping areas can be
weakened by a certain form.

We realize this form by taking the logarithm. Then, its mathematical expression is

T (A
⋃

B) =
∑
B∈F

∑
A∈F

log

(
R(A

⋃
B)log(

R(A
⋃

B)

R(A)R(B)
)

)
(10)

where T (A
⋃
B) represents the temporal information in a frame with no overlapping area between

object A and object B, F represents the all objects in the frame, and R(A
⋃
B) represents the total

area ratio of object A and object B in a frame. R(A) represents the area ratio of the object A in the
frame, and R(B) represents the area ratio of the object B in the frame.

Since the above equation uses a logarithmic operator, when R(A
⋃

B)log( R(A
⋃

B)
R(A)R(B) ) <

1, log
(
R(A

⋃
B)log( R(A

⋃
B)

R(A)R(B) )
)

< 0; when R(A
⋃

B)log( R(A
⋃

B)
R(A)R(B) ) > 1,

log
(
R(A

⋃
B)log( R(A

⋃
B)

R(A)R(B) )
)

> 0. This kind of positive and negative value realizes the
reduction of the correlation of non-overlapping objects in a frame. Moreover, such negative
values are very small. We consider that, the logarithmic operator is suitable for the correlation of
non-overlapping objects in a frame.

And the temporal information within the frame can be the sum of the overlapping areas and the
non-overlapping areas. It can be expressed in mathematical expression as:

Twf = T (A
⋂

B) + T (A
⋃

B)

=
∑
B∈F

∑
A∈F

R(A
⋂

B)log(
R(A

⋂
B)

R(A)R(B)
) +

∑
B∈F

∑
A∈F

log

(
R(A

⋃
B)log(

R(A
⋃

B)

R(A)R(B)
)

) (11)

where Twf denotes the temporal information within a frame.

A.3 THE EQUATION OF VIDEO TEMPORAL INFORMATION

The video temporal information is the sum of the one between the frames and the one within a frame.
Then, the temporal information of the frame is:

T = Tbf + Twf

=
R(Apf

⋂
Anf )

R(Apf )
+

R(Bpf

⋂
Bnf )

R(Bpf )
+ · · ·

+
∑
B∈F

∑
A∈F

R(A
⋂

B)log(
R(A

⋂
B)

R(A)R(B)
)

∣∣∣∣
A

⋂
B

+
∑
B∈F

∑
A∈F

log

(
R(A

⋃
B)log(

R(A
⋃

B)

R(A)R(B)
)

) ∣∣∣∣
A

⋃
B

(12)

where T denotes the video temporal information. The equations we proposed try to describe the
video temporal information in mathematical language. Since the analysis process is without involv-
ing the specific neural networks, the equations are only from the classic equations, without adding
the parameters of optical flow and Convolutional Neural Network (CNN).
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B THE APPLICATION OF THE EQUATIONS OF THE TEMPORAL
INFORMATION IN THE EXPERIMENT

In this section, we try to apply the equation in Appendix A to analyze the experimental results in
Subsection 4.3.

The test accuracy in the experiment is the detection result, and the result is of different frames sent
into the model. Thus, the test accuracy can be approximately regarded as the temporal information
between frames, i.e., the test accuracy ≈ Tbf .

The analysis is as follows. Since the UCF101 dataset is one object in one video, Equation 7 can
be transformed into Tbf = TA(nf |pf) =

R(Apf

⋂
Anf )

R(Apf )
. The test accuracy in our experiment is

essentially the Intersection over Union (IoU) of the bounding boxes. Therefore,

The test accuracy = IoU =
Area(Apf

⋂
Anf )

Area(Apf

⋃
Anf )

=

Area(Apf
⋂

Anf )

area of frame

Area(Apf
⋃

Anf )

area of frame

=
R(Apf

⋂
Anf )

R(Apf

⋃
Anf )

≈ R(Apf

⋂
Anf )

R(Apf )
= Tbf

(13)

In the above equation, since the position of the objects in the UCF101 dataset does not change much
between the previous and the next frames, for the area occupied by the objects, the union set of the
objects between the previous and the next frames is approximate the same as the previous frame,
which can be approximately regarded as R(Apf

⋃
Anf ) ≈ R(Apf ).
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C THE ROLE OF APPENDIX A IN THE PAPER

In Appendix A, one of our basic view points is that temporal information is a kind of correlation.
In Subsection 3.1, Ebbinghaus proposed that one of the ways to improve human learning is to make
good use of the correlations between knowledge. When this correlation transfers to the machine
learning of video, it should be the video temporal information. Therefore, making good use of video
temporal information is the key point to video detection. The sampler we proposed can enhance the
temporal information.

Moreover, in Subsection 4.3, we analyzed the shuffle operation and also applied this view. Since
shuffle can reduce correlations between the input data, it can also reduce the temporal information.
Therefore, the interference of the temporal information to the test can also be reduced. The temporal
information is undoubtedly helpful for training, since training needs the temporal information to
enhance learning. However, if it is also helpful for testing, it will undoubtedly increase the test
accuracy. Therefore, we added a shuffle operation to the test, for reducing the test accuracy and
make the results more objective.

In Section 5, we applied this view either, and pointed out that the key of knowledge engineering
lies in knowledge correlation, and for video detection and language processing, it lies in the tem-
poral information. The above is the reason why we put forward the appendix of video temporal
information.
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