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ABSTRACT

In this paper, we propose a Collaboration of Experts (CoE) framework to assemble
the expertise of multiple networks towards a common goal. Each expert is an
individual network with expertise on a unique portion of the dataset, contributing
to the collective capacity. Given a sample, delegator selects an expert and simul-
taneously outputs a rough prediction to trigger potential early termination. For
each model in CoE, we propose a novel training algorithm with three components:
weight generation module (WGM), label generation module (LGM) and selection
reweighting module (SRM). WGM adapts the losses of experts, enabling them to
focus on different portions of the dataset. LGM generates the label to constitute
the loss of delegator for expert selection. SRM aims to promote delegator to select
experts better. CoE achieves the state-of-the-art performance on ImageNet, 80.7%
top-1 accuracy with 194M FLOPs. Combined with PWLU activation function and
CondConv, CoE further boosts the accuracy to 80.0% with only 100M FLOPs
for the first time. Furthermore, experimental results on the translation task also
demonstrate the strong generalizability of CoE. CoE is hardware-friendly, yielding
a 3∼6x acceleration compared with existing conditional computation approaches.

1 INTRODUCTION

There are many approaches for model collaboration, among which ensemble learning (Hansen &
Salamon, 1990; Wen et al., 2020; Wenzel et al., 2020) is a popular one. Ensemble learning uses
a consensus scheme to decide the collective result by vote. However, it requires multiple forward
passes, leading to a significant runtime cost. MIMO (Havasi et al., 2021) draws inspiration from
model sparsity (Frankle & Carbin, 2019) and tries to ensemble several subnetworks within one
regular network. It only needs one single forward pass of the regular network but is incompatible with
compact models. Conditional computation methods (Cheng et al., 2020; Yan et al., 2015; Shazeer
et al., 2017) alleviates this issue via delegation scheme, i.e. assigning one or several, rather than
all models, conditionally to make the prediction. Some recently proposed conditional computation
methods (Zhang et al., 2020b; Yang et al., 2019; Zhang et al., 2021) have achieved remarkable
performance based on dynamic convolution. Nonetheless, they usually have high memory access
cost (MAC) and a low degree of parallelism, which increases the real latency (Ma et al., 2018).

Motivated by this, we propose the Collaboration of Experts (CoE) framework to both eliminate the
need for multiple forward passes and keep hardware-friendly. CoE consists of one delegator and
multiple experts. Firstly, delegator gives a rough prediction and makes the expert selection. If the
rough prediction is unreliable, the selected expert will make the refined prediction. Otherwise, the
procedure will be early terminated to save FLOPs. Moreover, we only need to load the selected
expert into memory, thus keep the ratio of MAC to FLOPs as a constant. By contrast, dynamic
convolution methods (Zhang et al., 2020b; 2021) need to load a large number of parameters, namely
basis models or experts, to synthesize the input-dependent ones. It enlarges MAC and reduces the
degree of parallelism, resulting in a significant deceleration.

To make each model in CoE play its role, we propose a novel training algorithm (as shown in
Fig.1) which consists of three components: weight generation module (WGM), label generation
module (LGM) and selection reweighting module (SRM). LGM generates the label (selection label)
to constitute loss of delegator for expert selection (selection loss). Selection label is a one-hot
vector, indicating the suitable expert for each given input. Due to the random initialization of
experts, selection labels are irregular in the early training stage. Nonetheless, delegator tends to
learn generalizable patterns first, since networks learn gradually more complex hypotheses during
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Figure 1: Framework of CoE with 3 experts. Delegator outputs the probabilities to select each expert
and a rough prediction to trigger potential early termination. Each input is processed through all
experts during training, but only through at most one expert during inference.

training (Arpit et al., 2017). With delegator as the bridge, WGM can partition the training data
into portions based on generalizable patterns, and reweight expert losses to impel each expert to
focus on one portion. This procedure makes selection labels more regular in return. Thus, delegator
avoids overfitting to the irregular labels. SRM aims to promote delegator to select experts better. It is
achieved by enforcing delegator to focus on samples whose recognition results are sensitive to expert
selection.

Experimental results on ImageNet demonstrate the superiority of CoE. It achieves 78.2/80.7% top-1
accuracy with only 100/194M FLOPs, while the accuracy for ensembled models (Hansen & Salamon,
1990) is 79.6% with 920M FLOPs. Compared with dynamic network approaches, CoE is more
hardware-friendly. It not only outperforms the SOTA dynamic method BasisNet which achieves
80.0% accuracy with 198M FLOPs (Zhang et al., 2021), but also accomplishes a 3.1x speedup
on hardware. Besides, CoE can be equipped with CondConv and further improve the accuracy to
79.2/81.5% with 102/214M FLOPs. More surprisingly, we further boost the accuracy to 80.0%
with only 100M FLOPs for the first time by using PWLU activation function (Zhou et al., 2021).
Experimental results on the translation task also demonstrate the strong generalizability of CoE.

The contributions of this paper can be summarized as follows:

• We propose a collaboration framework named Collaboration of Experts (CoE) and demon-
strate that it can lead to outstanding performance with little computation cost. Moreover, it
is hardware-friendly and able to achieve real speedup.

• We present a novel optimization strategy for CoE. The core insight is to promote diversity
within experts by distributing their expertise over different portions of the dataset.

• We update the state-of-the-art on ImageNet for mobile setting, achieving 80.0% top-1
accuracy with only 100M FLOPs for the first time.

2 RELATED WORK

2.1 ENSEMBLE LEARNING AND MODEL SELECTION

Ensemble learning (Hansen & Salamon, 1990) aims at combining the predictions from several models
to get a more robust one. Some recently proposed literatures (Wen et al., 2020; Wenzel et al., 2020)
demonstrate that significant gains can be achieved with negligible additional parameters compared to
the original model. However, these methods still require multiple (typically, 4-10) forward passes for
prediction, leading to a significant runtime cost. Differently, CoE utilizes a delegator to select only
one expert for the refined prediction, thus at most two forward passes are needed. MIMO (Havasi
et al., 2021) draws inspiration from model sparsity (Frankle & Carbin, 2019) and holds the view that
multiple independent subnetworks can be concurrently trained within one regular network because
of the heavy parameter redundancy. Therefore, those subnetworks can be ensembled with a single
forward pass of the regular model. However, MIMO cannot be applied to compact models which
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have already been pruned or the ones constructed by AutoML methods (Zhong et al., 2018; Zhang
et al., 2020a; Cai et al., 2020). It is because these models are compact enough and have few redundant
parameters. By contrast, CoE is free from the compactness of experts and compatible with various
models. Recently, some works about model selection are proposed (Li et al., 2021b; You et al.,
2021). These methods are concerned with ranking a number of pre-trained models and finding the
one transfers best to a downstream task of interest. Therefore, they select models task-wisely. By
contrast, CoE aims at improving the task performance via selecting the most suitable expert for each
sample instance-wisely. Moreover, these methods conduct model selection based on a set of samples
(training set) which cannot be adopted in CoE.

2.2 DYNAMIC NETWORKS

Dynamic networks achieve high performance with low computation cost by conditionally varying the
network parameters (Zhang et al., 2020b; Yang et al., 2019) or network architectures (Yuan et al.,
2020). HD-CNN (Yan et al., 2015) and HydraNet (Mullapudi et al., 2018) select branches based on
the category, they cluster all categories into n groups, where n is the number of branches. While CoE
learns the model selection pattern automatically, it can be based on any property, rather than limited to
the category. MoE (Shazeer et al., 2017) and Switch Transformer (Fedus et al., 2021) enable the direct
training of Router by scaling the output feature of experts with the predicted gate-values of Router.
These methods aim at conditionally selecting a specific layer or block. Differently, CoE can take
more advantage of conditional computation as the selection of whole network makes every parameter
input-dependent. The recently proposed Dynamic Convolution methods (Zhang et al., 2020b; Yang
et al., 2019; Chen et al., 2020) share the same idea and achieve remarkable performance with low
FLOPs but high latency. It is because these methods need to load many basis models or experts to
synthesize the dynamic parameters, causing high MAC and low degree of parallelism (Ma et al.,
2018). By contrast, CoE only needs to load the selected expert into memory, avoiding these problems.
Finally yet importantly, batch processing is an important method to enhance the degree of parallelism.
Because of the input-dependent parameters (Zhang et al., 2021) or architectures (Yuan et al., 2020),
these methods cannot process samples in batch. Differently, CoE supports batch processing because
the number of experts is limited and each one of them corresponds to many test samples.

3 METHOD
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Figure 2: Architecture of dele-
gator.

As shown in Fig.1, CoE consists of a delegator and n experts, a total
of n+ 1 individual neural networks. To make the best of limited ca-
pacity, each expert is encouraged to focus on just one unique portion
of the dataset. This is achieved by WGM which reweights train-
ing losses of experts. Given a sample, delegator selects an expert
and simultaneously outputs a rough prediction to trigger potential
early termination. It is trained with cross-entropy loss and labels
generated from LGM that indicate the suitable expert. Moreover,
SRM aims to boost delegator by enforcing it to focus on samples
whose recognition results are sensitive to expert selection. Since
the inference of delegator is conducted all the time, we prefer to
make delegator more lightweight than expert. Delegator consists
of three modules: feature extractor, task predictor and expert selec-
tor as shown in Fig.2. Based on the feature derived from feature
extractor, task predictor and expert selector output the probabilities
for classification and expert selection respectively. We describe the
inference procedure and training strategy of CoE comprehensively
in the following subsections. The number of samples and experts are denoted as m and n respectively.

3.1 INFERENCE PROCEDUREF

CoE firstly uses delegator to obtain the rough prediction and determine the selected expert for each
sample. Afterward, Maximum Class Probability (MCP, Corbière et al. 2019) of rough prediction is
calculated. It is the probability of the predicted class. For samples with MCP larger than a given
threshold τ , the final recognition result is derived from the rough prediction (early termination). Other
samples are partitioned into n groups based on which expert is selected. Then batch processing can
be conducted within each group to obtain the refined prediction. The averaged FLOPs/Instance of
CoE ranges from FD to FD + FE by varying τ , FD and FE are FLOPs of delegator and experts.
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3.2 LABEL GENERATION MODULE (LGM)

LGM generates the label (selection label) to constitute loss of delegator for expert selection (selection
loss). Selection label is a one-hot vector, indicating the suitable expert for a given input. Model
accuracy can be measured by True Class Probability (TCP, Corbière et al. 2019):

TCPj,k = P (Y = yj |xj ,Expertk), (1)

where, xj is the j-th sample, Y and yj are the predicted and true class. But accuracy is not the only
factor for suitability. For example, when models are of different sizes, the larger one usually has a
higher TCP. But it may not be more suitable, due to the large inference cost. Given that our concern
is not the optimization of network architecture, we can suppose no expert is superior to others (No
Superiority Assumption, NSA). Motivated by NSA, we leverage the standardized TCP as the metric
for sutability:

Sj,k =
TCPj,k −Mean(TCP:,k)

Std(TCP:,k)
, (2)

where, Mean(TCP:,k) and Std(TCP:,k) are mean value and standard deviation for TCPs of Expertk.

Given m samples and n experts, selection labels can be denoted by a binary matrix Lm×n, thus each
row of which is a selection label. According to NSA, the sum of each colum vector of Lm×n should
be same, namely

∑
j Lj,k = m

n for k = 1, ..., n. Therefore, Lm×n can be obtatined by maximizing
the sum of standardized TCP (i.e. Sj,k in Eq.2):

min
∑
j,k

−Sj,k ∗ Lj,k

s.t. Lj,k ∈ {0, 1},
∑
k

Lj,k = 1,
∑
j

Lj,k = m
n

(3)

This problem can be modeled as the balanced transportation problem (BTP, Shore 1970), where
each sample is a supply source with a supply of one, each expert is a demand source with a demand
of m/n. −Sj,k is the per-unit transportation cost from the j-th supply source to the k-th demand
source. We solve this problem via Vogel approximation method (VAM, Shore 1970) as introduced in
Appendix A.1, which is a short-cut approach to invariably obtain a good solution.

3.3 WEIGHT GENERATION MODULE (WGM)

To maximize the collective capacity of CoE, the dataset needs to be partitioned into portions then
WGM encourages each expert to focus on one portion by reweighting losses of experts. The partition
can be indicated by an assignment matrix Am×n, with one-hot row vectors. Aj,k = 1 means the
j-th sample xj is assigned to the k-th expert, thus the loss weight for Expertk gets larger than other
experts on xj .

A naive partition can be based on expert suitability, namely, partitioning the dataset with selection
labels Lm×n generated from LGM. However, it results in a poor generalization to delegator. As-
suming Expertk is suitable on a sample xj , thus Aj,k = Lj,k = 1. Due to Aj,k = 1, the loss weight
for Expertk gets larger than other experts on xj , making Expertk more suitable in return. Therefore
selection labels cannot be updated. Moreover, selection labels are irregular in the early training stage
because of the random initialization, thus selection labels will remain irregular consistently. With
the training going on, delegator will overfit to those irregular labels, yielding poor generalization as
shown in Fig.3a. As a result, CoE performs poorly because delegator can hardly select a suitable
expert during validation. This is also verified in Appendix B.4.3.

Since networks learn gradually more complex hypotheses during training (Arpit et al., 2017), delegator
tends to learn generalizable patterns first. Therefore, the partition can be based on generalizable
patterns with delegator as the bridge. In this way, selection labels get more regular in return thanks to
the reweighting of expert losses in WGM. As shown in Fig.3b, delegator avoids overfitting to the
irregular labels, hence generalizing well to the validation set.

Given m samples and n experts, delegator outputs a probability matrix Pm×n ∈ Rm×n, whose
element Pj,k ∈ [0, 1] represents the probability of assigning the j-th sample to the k-th expert. As
analyzed above, it is better to partition the training data based on Pm×n, thus Am×n can be obtained
by maximizing

∑
j,k Pj,k ∗Aj,k. Moreover, according to NSA, the number of samples assigned to

each expert should be same, i.e. Am×n needs to satisfy
∑
j Aj,k = m/n. Thus, Am×n is optimized

by:
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Figure 3: A demo to illustrate the training procedure of CoE. The training samples are denoted
as green triangles or pink circles based on which expert is suitable. They are partitioned into two
portions based on expert suitability or hypothesis learned by delegator, then WGM enables each
expert to focus on one portion. Delegator is trained with selection labels that indicate the suitable
expert, thus delegator learns hypothesis to select the suitable expert for each sample.

min
∑
j,k

−Pj,k ∗Aj,k

s.t. Aj,k ∈ {0, 1},
∑
k

Aj,k = 1,
∑
j

Aj,k = m
n

(4)

This problem can also be modeled as BTP, and solved via VAM as described in section 3.2. In the
early training stage, experts are underfitted. Thus we cannot trust Am×n and need to make the gap
between loss weights for experts smaller. We achieve this by smoothing Am×n to Am×n with Eq.5,
where α grows linearly from 0.2 to 0.8 with the training going on,

Aj,k =

{
α+ 1−α

n , if Aj,k = 1
1−α
n , if Aj,k = 0

. (5)

Finally, the output of WGM (i.e. Wm×n) is obtained by normalizing Am×n with the coefficient
Z =

∑
j

Aj,k = m
n :

Wj,k =
Aj,k
Z

. (6)

3.4 SELECTION REWEIGHTING MODULE (SRM)

Expert suitability can be measured with standardized TCP (Eq.2). If experts have similar suitabilities
for a given sample, the expert selection will have little influence on the final performance of CoE. As
the capacity of delegator is limited, it should pay less attention to those samples. This is achieved by
SRM, which reweights losses of delegator based on a statistic that reflects suitability similarity.

The output of SRM is denoted as {vj |j = 1, ...,m}, which are weights for selection losses over m
samples. The suitabilities for experts over the j-th sample, i.e. {Sj,k|k = 1, ..., n} are denoted as Sj,:.
A small value of the standard deviation Std(Sj,:) indicates experts have similar suitabilities on the
j-th sample, thus vj gets smaller. Therefore SRM determines the value of vj by:

vj =
Std(Sj,:)∑
i

Std(Si,:)
. (7)

3.5 TRAINING METHOD

The training framework of CoE is shown in Fig 1, which consists of two stages. During the first stage,
only feature extractor and task predictor of delegator are trained to minimize LP , cross-entropy loss
for the rough prediction of delegator. During the second stage, we fix these two modules, jointly
optimize the expert selector and experts with LTotal:

LTotal = η ∗ LS + LT , (8)
here, the hyperparameter η is set as 0.8.

LS is used to optimize the expert selector. Based on the selection label Lj,:, we can get the cross-
entropy loss LjCE for the j-th sample. Then LS is determined by the weighted sum of {LjCE |j =
1, . . . ,m} with weights {vj |j = 1, . . . ,m} output by SRM:
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LS =
∑
j

vj ∗ LjCE . (9)

LT is used to optimize the experts. Based on the class labels of m samples, we can get m × n
cross-entropy losses {Lj,kT |j = 1, . . . ,m; k = 1, . . . , n}, where Lj,kT is the cross-entropy loss for the
k-th expert on the j-th sample. Then LT is obtained by the weighted sum of Lj,kT with weights Wj,k

output by WGM:
LT =

∑
j,k

Wj,k ∗ Lj,kT . (10)

Each of our experiments includes either four or sixteen experts in this paper. When using four experts,
the training method is same as described. However, we will meet slow-convergence problem if the
number of experts is sixteen. To alleviate this problem, we propose a strategy which is described in
Appendix A.2.

4 EXPERIMENTS

We conduct the main experiments on ImageNet classification task. After comparing with some
popular methods in terms of computation and memory cost, we verify the superiority of CoE over
some other existing model collaboration methods. Moreover, we try to generalize CoE to the
translation task and re-evaluate CoE using Reassessed Labels (ReaL) (Beyer et al., 2020). Finally,
we try to analyze the reasonability of learned expert selection patterns. Elaborated ablation studies
are illustrated in Appendix B.4. Statistics on referenced baselines in section 4.2.1&4.2.2 are directly
cited from original papers, others are implemented with the following setting unless otherwise stated.

4.1 IMPLEMENTATION DETAILS

We conduct experiments with two settings: CoE-Small and CoE-Large. For CoE-Small, we take
TinyNet-E (Han et al., 2020b) with 24M FLOPs as the feature extractor of delegator by removing
the last fully connected layer. We use OFA-110 (Cai et al., 2020) with 110M FLOPs as the expert.
For the CoE-Large, MobileNetV3-Small (Howard et al., 2019) with 56M FLOPs is adopted to
construct the delegator by analogy. We use OFA-230 as the experts. We have also tried to introduce
CondConv (Zhang et al., 2020b) and PWLU activation fuction (Zhou et al., 2021) to achieve the
extreme performance. To combine with CondConv, we replace the convolutions within each inverted
residual block of the experts with CondConv (expert_num = 4). To take advantage of PWLU, we
replace all activation layers except those that have tiny input feature maps as illustrated in Zhou et al.
(2021). Models are trained using SGD optimizer with 0.9 momentum. We use a mini-batch size
of 4096, and a weight decay of 0.00002. Cosine learning rate decay is adopted and the number of
training iterations is 313000. We use fixed auto-augment (Cubuk et al., 2019) as well. Inspired by
BasisNet, we use knowledge distillation with EfficientNet-B2 (Tan & Le, 2019; Xie et al., 2020) as
the teacher. The learning rate is 0.8/1.6 for CoE-Small/Large and dropout rate is 0.2. The stochastic
depth (Huang et al., 2016) is used except for TinyNet-E with a survival probability of 0.8.

4.2 RESULTS AND ANALYSIS

4.2.1 ACCURACY AND COMPUTATION COST

Accuracy curves for CoE in Fig.4a are drawn by varying the threshold of early termination (sec-
tion 3.1). We pick out a point from each curve to compare with some efficient networks in Table 1.
Our method achieves 78.2% and 80.7% top-1 accuracy with 16 experts and averaged FLOPs/Instance
as 100M and 194M respectively. Compared with OFA, CoE reduces the FLOPs from 230M to 100M
and from 595M to 194M, with better top-1 accuracy. Compared with EfficientNet-B1 with noisy
student training, CoE also reduces the FLOPs by 3.6x while improving the accuracy by 0.5%. Though
dynamic networks like GFNet, CondConv and BasisNet are more efficient than traditional networks,
CoE still has significantly higher accuracy with smaller FLOPs. Compared with these approaches,
CoE improves the accuracy by 2.2/2.4/0.7% respectively. When combined with CondConv, we can
achieve 79.2% and 81.5% top-1 accuracy with only 102M and 214M FLOPs respectively, which
indicates CoE is complementary to dynamic networks like CondConv. On the contrary, as CondConv
and BasisNet share similar essence, namely using a group of basis to dynamically synthesize the
input-dependent convolution kernel, the combination of them only arouses little collaborative benefit
with the top-1 accuracy of only 80.5%. More surprisingly, we achieve the accuracy of 80.0% with
only 100M FLOPs for the first time by further making use of PWLU.
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Table 1: CoE performance on ImageNet. “CC” and “KD” indicates conditional computation approach
and knowledge distillation strategy.

Method CC KD FLOPs TOP-1 Acc

WeightNet (Ma et al., 2020)
√

141M 72.4%
DS-MBNet-M†‡(Li et al., 2021a)

√ √
319M 72.8%

GhostNet 1.0x (Han et al., 2020a) 141M 73.9%
MobileNetV3-Large (Howard et al., 2019) 219M 75.2%
OFA-230 (Howard et al., 2019)

√
230M 76.9%

TinyNet-A (Han et al., 2020b) 339M 77.7%
CondConv-EfficientNet-B0 (Yang et al., 2019)

√
413M 78.3%

GFNet (Wang et al., 2020)
√

400M 78.5%

CoE-Small
√ √

100M 78.2%
CoE-Small + CondConv

√ √
102M 79.2%

CoE-Small + CondConv + PWLU
√ √

100M 80.0%

BasisNet (Zhang et al., 2021)
√ √

198M 80.0%
OFA-595 (Howard et al., 2019)

√
595M 80.0%

EfficientNet-B2 (Tan & Le, 2019) 1.0B 80.1%
EfficientNet-B1(Noisy Student) (Xie et al., 2020)

√
700M 80.2%

BasisNet (Zhang et al., 2021)
√ √

290M 80.3%
FBNetV3-C (Dai et al., 2020)

√
557M 80.5%

BasisNet + CondConv (Yang et al., 2019)
√ √

308M 80.5%

CoE-Large
√ √

194M 80.7%
CoE-Large + CondConv

√ √
214M 81.5%

4.2.2 INFERENCE SPEED AND MEMORY COST

Compared with conditional computation methods (Yang et al., 2019; Zhang et al., 2021), CoE is
more hardware friendly. To verify the advantage, we also analyze the inference latency on hardware.
The experiments are conducted on CPU platform (Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz)
with PyTorch version as 1.8.0. We report the averaged latency on the ImageNet validation set in
Table 2. We notice the discrepancy between FLOPs and real speed. For example, OFA-230 has
1.6x FLOPs compared with GhostNet 1.0x, but the speed is 1.2x faster. Moreover, this discrepancy
can be enlarged by CondConv. CondConv-EfficientNet-B0 has similar FLOPs with the original
EfficientNet-B0, but the speed is 1.7x slower. BasisNet synthesizes the dynamic parameters all at
once, rather than the “layer by layer” fashion like CondConv, thus is more efficient. However, it still
needs to load a large number of parameters for this synthesis, which brings a large MAC. This is
why CoE (16 experts) can reduce 14.09% latency than BasisNet when the mini-batch size is one.
Finally yet importantly, BasisNet and CondConv do not support batch processing, while CoE (16
experts) can take advantage of it (seciton 3.1) to further achieve a 3.1/6.1x speedup compared with
them. We analyze the memory cost from two perspectives: the number of parameters and MAC.
As can be seen from Table 2, the accuracy of CoE-Large (4 experts) is no worse than BasisNet and
CondConv-EfficientNet-B0 when using similar parameters. Besides, the averaged MAC/Instance of
CoE is much smaller than theirs. Compared with GhostNet 1.3x, the accuracy for Coe-Large (16
experts) is 5.0% higher with a smaller MAC.

Table 2: CPU latency and memory cost for different methods.

Models CPU Latency/Instance (ms) FLOPs MAC Params AccuracyBatchsize=1 Batchsize=64
MobileNetV3-Small 14.77 4.18 56M 2.5M 2.5M 67.4%
GhostNet 1.0x 39.91 16.50 141M 5.2M 5.2M 73.9%
TinyNet-B 34.58 19.44 202M 3.7M 3.7M 75.0%
MobileNetV3-Large 31.55 18.43 219M 5.4M 5.4M 75.2%
GhostNet 1.3x 43.94 29.70 226M 7.3M 7.3M 75.7%
OFA-230 33.52 15.21 230M 5.8M 5.8M 76.9%
EfficientNet-B0 49.12 35.21 391M 5.3M 5.3M 77.2%
TinyNet-A 45.76 23.71 339M 5.1M 5.1M 77.7%
CondConv-EfficientNet-B0 81.81 - 413M 24.0M 24.0M 78.3%
BasisNet 40.61 - 198M 24.9M 24.9M 80.0%
CoE-Large (4 experts) 38.67 15.02 220M 6.6M 25.7M 79.9%
CoE-Large (16 experts) 34.89 13.30 194M 6.0M 95.3M 80.7%
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Figure 4: Accuracy v.s. FLOPs and training cost on ImageNet.
4.2.3 ANALYSIS OF THE TRAINING COST

To achieve superior performance with less inference FLOPs and latency, CoE may consume more
training time. For example, the applying of CoE (4 experts) on OFA-230 improves the accuracy
from 78.0% to 79.9%, but at the expense of a 2.2x training cost. To verify whether the improvement
still exists with similar training cost, we get a series of accuracies by varying the number of training
epochs as shown in Fig.4b, where “xx ep.” means the number of training epochs is “xx” and 32
Tesla-V100-PCIe-16GB GPUs are used for training. It is seen that CoE can boost the performance
(from 78.3% to 79.9%) even if the training cost is controlled to be similiar (127 vs 141 GPU days).

4.3 COMPARISON WITH OTHER MODEL COLLABORATION APPROACHES

4.3.1 COMPARISON WITH REGULAR MODEL ENSEMBLE

We train four OFA-230 models with different initialization seeds. The results are shown in Table 4.
The random seed only causes minor variety in accuracy. However, an improvement of 1.6% is
still achieved via ensemble. It is because these models fall into different local minima, yielding
the diversity of output. Compared with the ensemble, CoE achieves 0.3/1.3% higher accuracies.
It indicates CoE can realize more potential of each individual model. Besides, CoE keeps the
computation cost constant, while model ensemble increases the computation cost by four times.

4.3.2 COMPARISON WITH MODEL SELECTION METHOD

HD-CNN (Yan et al., 2015) and HydraNets (Mullapudi et al., 2018) select branches based on the
category. MoE (Shazeer et al., 2017) and Switch Transformer (Fedus et al., 2021) enable the direct
training of Router by scaling the output feature of experts with gate-values predicted from Router.
Despite these methods are originally designed to conditionally select a specific layer or block, we
apply them to the expert selection.

To select the expert based on category, the categories should be partitioned into n groups, where n
is the number of experts. We try two schemes: random partition (RP) or clustering-based partition
(CBP). Then, an expert can be selected according to the rough prediction of delegator. During the
training procedure, we also reweight losses of each expert based on the assignment matrix Am×n
with Eq.5 and 6. Am×n is obtained directly based on the rough prediction. We can enable the direct
training of expert selector as well. Directly trained selector (DTS) is obtained by scaling the loss of
each expert, rather than the output feature of each branch as the original paper (Shazeer et al., 2017;
Fedus et al., 2021). While CoE optimizes the expert selector via weighted cross-entropy loss Ls
(Eq.9). The results with 4 experts are shown in Table 3. It can be seen that CoE outperforms the
compared methods, demonstrating a better collaboration pattern is learned.

4.4 ANALYSIS OF THE GENERALIZATION

To verify the generalizability, we conduct two extra experiments: generalizing CoE to translation
task and using Reassessed Labels (ReaL) (Beyer et al., 2020) to re-evaluate CoE. We mainly
introduce the first one here, another one are discussed in Appendix B.1.
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Table 3: Comparison with other model selection
methods. “RP”,“CBP” and “DTS” means “Ran-
dom Partition”,“Clustering-Based Partition” and
“Directly Trained Selector” respectively.

Method FLOPs Top-1 Acc.

Category-Based RP 220M 78.3%
CBP 220M 77.5%

Selector-Based DTS 220M 78.7%
CoE 220M 79.9%

Table 4: Comparison with model ensembe.

Method FLOPs Acc.

OFA-230

Seed1 230M 78.1%
Seed2 230M 78.0%
Seed3 230M 78.1%
Seed4 230M 78.0%

Ensemble 920M 79.6%

CoE-Large 4 Experts 220M 79.9%
16 Experts 220M 80.9%

To generalize CoE to translation task, we build a CoE-Transformer model based on Transformer (base
model) (Vaswani et al., 2017). Considering the decoding procedure is much more time-consuming
than encoding because target tokens are generated one by one, only the decoder of CoE-Transformer
is conditionally selected. CoE-Transformer has four decoders, given a sentence, one decoder will
be selected to decode the features output by encoder. To select the decoder, an extra constant token
is added at the beginning of each sentence, the feature of this token output by encoder is input to
the Expert Selector (Fig.2) for expert (decoder) selection. During training, the TCP of a sentence is
obtained by averaging the TCPs of each token.

Following (Vaswani et al., 2017; Ott et al., 2019), CoE-Transformer is trained on the standard WMT
2014 English-German dataset. As mentioned, an extra token will be added into this vocabulary.
We adopt the same training and evaluating setting as (Ott et al., 2019), more details are shown
in Appendix B.2. Although CoE-Transformer has a larger number of parameters compared with
Transformer (base model), the MAC is nearly identical. We calculate MAC based on the number
of parameters loaded given a sentence and report it on Table 5 as well. From Table 5 we can see,
CoE-Transformer outperforms the regular Transformer (base model) by a large margin and achieves
similar performance with Transformer (big).

Table 5: The BLEU scores on newstest2014 (English-to-German).

Model MAC Parameters BLEU

Transformer (base model) 62.4M 62.4M 28.1 (Ott et al., 2019)

Transformer (big) 213.0M 213.0M 29.3 (Ott et al., 2019)

CoE-Transformer 62.5M 138.2M 29.4

4.5 ANALYSIS OF THE LEARNED EXPERT SELECTION PATTERNS

We also conduct experiments to analyze the expert selection patterns of CoE and find them quite
reasonable. When experts have different architectures, the delegator learns to assign easy samples to
smaller experts and complex samples to heavier experts. When experts share the same architecture,
delegator learns the expert selection patterns automatically, it can be based on any property (e.g.
whether humans are contained), rather than limited to the category. The details are shown in
Appendix B.3.

5 CONCLUSION

We propose a CoE framework to pool together the expertise of multiple networks towards a common
aim. Experiments in this paper demonstrate the superiority of CoE on both accuracy and real speed.
We also analyze the collaboration patterns and find them has interpretability. In the future, CoE
will be extended to the trillion parameters level. Meanwhile, we will try to implement CoE to more
tasks and verify its compatibility with quantification and other technologies. Besides, CoE can be
conducted to solve the problems of lifelong learning by updating experts.
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A EXTRA DETAILS FOR METHOD

A.1 INTRODUCTION OF VOGEL APPROXIMATION METHOD (VAM)

In weight generation module (WGM) and label generation module (LGM), we need to solve the
balanced transportation problem (BTP, (Shore, 1970)) via Vogel approximation method (VAM, (Shore,
1970)). We will introduce it in this section with the number of samples and experts as m and n
respectively.

The BTP involved in WGM and LGM has m supply sources, each of which is denoted as Siloj with
a supply of one, as well as n demand sources, each of which is denoted as Millk with a demand
of m

n . Cj,k is the per-unit transportation cost from Siloj to Millk. Specifically, Cj,k = −Pj,k in
WGM and Cj,k = −Sj,k in LGM. To make it clear, we illustrate this algorithm with a toy example,
where the problem is simplified as Fig.5 (a) with m = 4, n = 2. In the first step, we calculate the
penalty cost pcrowj

for each row and pccolk for each column of the tableau in Fig.5 (a). Penalty cost
is determined by subtracting the lowest unit cost in the row (column) from the next lowest unit cost.
The penalty costs of the respective rows and columns have been marked in red color for clarity in
Fig.5 (b). Since the third row has the largest penalty cost (pcrow3

=11) and C3,1 is the lowest unit
cost of that row, Silo3 is allocated to Mill1, i.e. A3,: = [1, 0] in WGM or L3,: = [1, 0] in LGM.
Then the corresponding row should be crossed out and the demand of Mill1 should minus one, if
this results in a zero demand, the first column will be crossed out as well. After adjusting penalty
cost for each row and column, the tableau becomes Fig.5 (c), where the changed values are marked
in orange. The described procedure will be looped until no rows remained.

Considering the calculation of pccolk is much more time-consuming compared with pcrowj
be-

cause m � n in WGM and LGM, we modify VAM by only seeking lowest penalty cost among
{pcrow1

, ..., pcrowm
}. We find this modification makes VAM more efficient while keeps the supe-

riority of the solution. It is because the mechanics of VAM makes it meaningful to take pccolk
into account only when the demand of Millk is one, which rarely happens. Thus, we adopt this
modification to promote efficiency in this paper.

C1,1 = 10

C2,1 = 13

C3,1 = 0

C4,1 = 9

C1,2 = 12
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C3,2 = 11

C4,2 = 8
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Figure 5: The Vogel approximation method.

A.2 A STRATEGY TO FACE THE LARGE NUMBER OF EXPERTS

Each of our experiments involves either four or sixteen experts. For the four-experts setting, the
training method is the same as described. However, we will meet the slow-convergence problem
when the number of experts is sixteen. It motivates us to decompose the task into four subtasks,
each of which involves four experts and can be trained with the proposed training method. With
this strategy, the number of samples assigned to each expert increases from m

16 to m
4 . Because these

samples contribute most to the optimization of the expert, the rate of convergence becomes nearly
four times faster.

To fulfill task decomposition, we introduce a new module to delegator, named subtask selector as
shown in Fig.6. The subtask selector is used to allocate the input samples into different subtasks.
The expert selector outputs sixteen probabilities, which are partitioned into four groups as well. For
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each subtask, only one group of probabilities is visible. The experts within each subtask and the
corresponding weights of the expert selector are jointly optimized. As for the feature extractor, task
predictor, and subtask selector, their weights directly derive from the delegator trained with the setting
of four experts and then fixed. During this procedure, the weights of subtask selector derive from the
expert selector.

Rough 
Prediction

Feature
Extractor

Expert
Selector

Expert Selection

Task 
Predictor

Subtask
Selector

Subtask
Selection

Subtask 1 Subtask 2 Subtask 4

…

S

Subtask1Subtask2 Subtask4…
Expert 1−4 Expert5−8 Expert13−16

Figure 6: The modified architecture of delegator.

B EXTRA DETAILS FOR EXPERIMENTS

B.1 RE-EVALUATION WITH REASSESSED LABELS

As described in paper (Beyer et al., 2020), the validation set labels have a set of deficiencies that
makes the recent progress on ImageNet classification benchmark suffer from overfitting to the
artifacts. To verify the generalization, we use the Reassessed Labels (ReaL) (Beyer et al., 2020) to
re-evaluate our method. The results are shown in Table 6. It can be seen that our method still has a
remarkable performance, achieving higher accuracy than the compared methods with significantly
smaller FLOPs.

Table 6: ReaL and original top-1 accuracies. CC means CondConv.

Method FLOPs ReaL Acc. Ori. Acc.

OFA-595 (Cai et al., 2020) 595M 86.0% 80.0%
S4L MOAM (Zhai et al., 2019) 4B 86.6% 80.3%
ResNeXt-101 (Xie et al., 2017) 16B 85.2% 79.2%
ResNet-152 (He et al., 2016) 11B 84.8% 78.2%

CoE-Large 194M 86.5% 80.7%
CoE-Large + CC 214M 86.9% 81.5%
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B.2 EXPERIMENT DETAILS FOR THE TRANSLATION TASK

Following (Vaswani et al., 2017; Ott et al., 2019), CoE-Transformer is trained on the standard WMT
2014 English-German dataset, which has a shared source-target vocabulary of about 37000 tokens. As
mentioned, an extra token will be added into this vocabulary. The default training setting is identical
with the one described in (Vaswani et al., 2017), except for the batch size and learning rate become
larger following (Ott et al., 2019). Moreover, the parameter α in Eq.5 grows linearly from 0.1 to 0.4
with the training going on. We report BLEU on news2014 with a beam width of 4 and length penalty
of 0.6 based on a single model obtained by averaging the last 5 checkpoints following (Vaswani et al.,
2017; Ott et al., 2019).

B.3 ANALYSIS OF THE LEARNED EXPERT SELECTION PATTERNS

B.3.1 EXPERT SELECTION PATTERNS WHEN EXPERTS HAVE VARIOUS ARCHITECTURES

Considering TCP can measure the complexity of a given sample if the inference model is fixed, we
experiment to analyze the relationship between sample complexity and expert selection. If the experts
have different computation cost, it is reasonable to assign easy samples (the ones with large TCP) to
smaller experts and complex samples to heavier experts. To verify this, we take four architectures
searched via OFA (Cai et al., 2020) as the experts, i.e. OFA-110, OFA-163, OFA-230 and OFA-595.
The delegator is also MobileNetV3-small as described in section 4.1. We obtain the TCP value for
each sample based on the delegator. We count the selection probability for each expert at different
TCP values on the validation set. As shown in Fig.7, it meets our expectation that the selection
probability for smaller models increases the input sample getting simpler (with the increase of TCP).
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Figure 7: Selection probabilities for each expert at different TCP values.

B.3.2 EXPERT SELECTION PATTERNS WHEN EXPERTS SHARE THE SAME ARCHITECTURE

We have analyzed the selection patterns when the experts have different architectures, here we focus
on the case that all experts share the same architecture. We adopt the CoE-Large setting with four
experts.

Considering many works (Yan et al., 2015; Mullapudi et al., 2018) select branches based on the
category, we firstly experiment to observe the relationship between selection patterns and rough
prediction of the delegator on ImageNet validation set. Based on the predicted class of rough
prediction, the validation set can be partitioned into 1000 subsets. Then we calculate the probabilities
to select each expert within each subset and get 1000 probability vectors. After clustering, we plot
the probability vectors on Fig.8, each column of which is a probability vector. It can be seen that
samples with the same rough prediction class are assigned to different experts. Therefore, we can
conclude the expert is not always selected based on category.

Besides, we further make qualitative analysis on the ImageNet validation set and find some interesting
patterns. For example, we find that images predicted as “meat market” are most likely to be assigned
to the fourth expert if humans are contained. We show those images in Fig.9. It can be seen, 27
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images are assigned to the fourth expert, among which 22 images contain humans with a ratio of
81.5%. By contrast, among the 32 images that are assigned to the other experts, only 7 images contain
humans with a ratio of 21.9%. This indicates CoE learns the expert selection patterns automatically,
it can be based on properties other than the category.
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Figure 8: Selection probabilities for each expert. The horizontal axis indicates the rough prediction
class. The 1000 probability vectors are clustered for better visualization.

Samples assigned to the first expert:

Samples assigned to the second expert:

Samples assigned to the third expert:

Samples assigned to the fourth expert:

: Humans are contained.

: Humans are not contained.

Figure 9: Images that are predicted as ’meat market’ by the delegator. They are partitioned into four
groups based on which expert is selected. The red border indicates humans are contained, green
border indicates humans are not contained.
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B.4 ABLATION STUDIES FOR COE

B.4.1 EFFECT OF EXPERT NUMBER

We analyze the number of experts in this section, including 1, 4, and 16 experts. The results are shown
in Table 7. Using one expert brings little improvement compared with the original model. When
increasing the number of experts, the accuracy becomes 1.9% better with four experts and 2.9% better
with sixteen experts. It demonstrates CoE can make full use of multiple experts, leading to a large
collaborative benefit. What‘s more, the accuracy also reaches 79.9% by combining CondConv with
OFA-230. In this manner, CoE can further enhance the accuracy to 80.8/81.5% with 4/16 experts.

Table 7: Comparison among different number of experts. “CC” indicates CondConv.

Method Experts FLOPs Acc.

OFA-230 - 230M 78.0%

CoE-Large
1 220M 78.0%
4 220M 79.9%
16 220M 80.9%

CC-OFA-230 - 242M 79.9%

CoE-Large + CC
1 214M 79.9%
4 214M 80.8%
16 214M 81.5%

B.4.2 EFFECT OF EARLY TERMINATION

The original OFA-230 has 78.0% top-1 accuracy with 230M FLOPs. We can introduce a
MobileNetV3-Small to conduct early termination. By varying the threshold, we get a series of
accuracies and FLOPs as shown in Fig.10. It can seen that the accuracy becomes 78.0% with 220M
FLOPs. This indicates the computation cost brought by MobileNetV3-Small is eliminated via early
termination strategy. Inspired by this, we expect to eliminate the computation cost brought by delega-
tor as well. It does reduce the computation cost by 60/66M FLOPs, demonstrating the effectiveness
of early termination.
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Figure 10: Accuracy v.s. FLOPs. “ET” means Early Termination and “CC” indicates CondConv.
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B.4.3 ABLATION STUDY FOR EACH COMPONENT OF COE

CoE consists of 3 major components: WGM, LGM and SRM. Apart from directly removing each one
component, we also try to alter some elements inside them. We propose several modified versions of
CoE for ablation as below:

• CoEWGM : Remove WGM from CoE. Thus, losses of experts have identical weights for
each sample.

• CoEWGM?

: WGM partitions the training data based on expert suitability, i.e. the assignment
matrix Am×n in WGM equals to the output matrix Lm×n of LGM.

• CoEWGM◦
: Remove the “

∑
j Aj,k = m/n” constraint in Eq.4, so that Am×n neglects the

No Superiority Assumption (NSA). Then, take Am×n as the output of WGM without the
smoothing (Eq.5) and normalizing(Eq.6).

• CoEWGM•
: Remove the progressive sharpening of assignment in WGM. Specifically, using

a constant 0.8 for α in Eq.5, instead of linearly increasing it from 0.2 to 0.8.
• CoELGM : Remove LGM from CoE. Thus, CoE collapse to a single expert with delegator to

trigger the early termination.

• CoELGM
?

: Abandon the refining of suitability criterion (Eq.2) and remove the “
∑
j Lj,k =

m/n”constraint in Eq.3. So that Lm×n neglects the No Superiority Assumption (NSA).
• CoESRM : Remove SRM from CoE.

We conduct experiments for those CoE versions with the CoE-Large setting and 4 experts. Results
are shown in Table 8, and the conclusions are listed below:

1. WGM and LGM are the most important components in CoE. The removal of WGM and
LGM reduce the accuracy from 79.9% to 78.1% and 78.0%, respectively.

2. In WGM, the training data should be partitioned based on delegator. Otherwise, delegator
will overfit to irregular selection labels as illustrated in section 3.3. That is why Coe-
LargeWGM?

only achieves an accuracy of 78.4%.
3. The No Superiority Assumption (NSA) is important for CoE. Without this assumption,

CoE-LargeWGM◦
and CoE-LargeLGM

?

only reach the accuracy of 79.2% and 79.4%.
4. The progressive sharpening of assignment in WGM can also boost the performance, thus

the accuracy for CoE-LargeWGM•
is 0.5% lower than CoE-Large.

5. The component SRM is also useful. It promotes delegator to select experts better, yielding a
0.4% improvement for accuracy.

Table 8: Ablations for each component of CoE.

Method Experts FLOPs Acc.

CoE-LargeWGM 4 220M 78.1%
CoE-LargeWGM?

4 220M 78.4%
CoE-LargeWGM◦

4 220M 79.2%
CoE-LargeWGM•

4 220M 79.4%
CoE-LargeLGM 4 220M 78.0%
CoE-LargeLGM?

4 220M 79.4%
CoE-LargeSRM 4 220M 79.5%

CoE-Large 4 220M 79.9%

B.4.4 ABLATION STUDY FOR ELEMENTS OF THE TRAINING STRATEGY

Knowledge distillation (KD), auto-augment (AA) and stochastic depth (SD) are widely-used strategies
to overcome the overfitting problem. We think only when the overfitting problem is solved can task
accuracy reflect model capacity exactly. Because this paper is concerned with improving model
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capacity with limited computation cost, we use these strategies. Nonetheless, we conduct ablations
for them in this section. We adopt the CoE-Large setting and use 4 experts. Results are shown in
Table 9. We find KD extremely important for CoE, it may indicate CoE is easy to be overfitted. In
addition, SD decreases the accuracy of CoE. By removing SD, CoE-Large (4 experts) boosts the
accuracy from 79.9% to 80.2%. Perhaps, it is because SD makes the capacity of delegator and each
expert too tiny (Gontijo-Lopes et al., 2021).

Table 9: Ablation study for each component of training strategy. “KD”, “AA” and “SD” denotes
“knowledge distillation”, “auto-augment” and “stochastic depth” respectively.

KD AA SD Experts FLOPs TOP-1 Acc
√ √ √

4 220M 79.9%
√ √

4 220M 80.2%
√ √

4 220M 79.4%
√ √

4 220M 76.2%
√

4 220M 79.7%
√

4 220M 76.3%
√

4 220M 75.2%

4 220M 75.1%
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