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Abstract

Learning reward models from pairwise comparisons is crucial
in domains like autonomous control, conversational agents,
and recommendation systems to align automated decisions
with user preferences. However, the anonymity and subjec-
tivity of preferences make them vulnerable to malicious ma-
nipulation. We study attackers flipping a small subset of pref-
erence labels to promote or demote target outcomes. Two
attack approaches are proposed: gradient-based frameworks
and rank-by-distance methods. Evaluations across three do-
mains reveal high success rates, with attacks achieving up to
100% success by poisoning just 0.3% of the data. Finally,
we show that state-of-the-art defenses against other classes
of poisoning attacks exhibit limited efficacy in our setting.

1 Introduction
Advances in AI, such as autonomous systems (Badue et al.
2021) and conversational agents (Wu et al. 2023), have
raised concerns about ensuring AI systems align with hu-
man values. This value alignment problem spans domains
including autonomous control (Christiano et al. 2017), rec-
ommendation systems (Kalloori, Ricci, and Gennari 2018;
Qomariyah 2018), and policymaking (Noothigattu et al.
2018). A common approach involves learning reward mod-
els (RMs) from human preference data, which are then used
in tasks like personalized recommendations or reinforce-
ment learning from human feedback (RLHF) (Ouyang et al.
2022; Sun et al. 2023; Stiennon et al. 2020).

However, preference elicitation in RM learning is vulner-
able to malicious tampering. Attackers can inject poisoned
labels into pairwise comparisons to bias RM outputs, result-
ing in harmful downstream decisions. These vulnerabilities
are particularly concerning in RLHF pipelines, where RMs
guide the alignment of large language models (Ouyang et al.
2022). Addressing these risks requires a systematic investi-
gation of RM vulnerabilities to poisoning attacks.

This paper explores the susceptibility of RM learning to
preference poisoning within the widely-used Bradley-Terry
(BT) framework (Bradley and Terry 1952; Xia 2019), a com-
mon approach in RLHF (Ouyang et al. 2022; Sun et al. 2023;
Stiennon et al. 2020). While poisoning attacks on machine
learning (Biggio, Nelson, and Laskov 2012; Geiping et al.
2021; Jagielski et al. 2018) and label flipping (Jha, Hayase,
and Oh 2023; Paudice, Muñoz-González, and Lupu 2019;

Figure 1: Illustration of Poisoning Attack (Promotion).

Rosenfeld et al. 2020) have been extensively studied, the
preference-based setting introduces unique challenges. Pref-
erence data is discrete, requiring specialized methods be-
yond traditional gradient-based attacks (Carlini and Terzis
2021; Carlini 2021). Furthermore, solving poisoning attacks
involves bi-level optimization, which is computationally in-
tensive, particularly for non-convex neural networks (Mei
and Zhu 2015).

To address these challenges, we propose two attack
methodologies: 1) A projected gradient ascent algorithm
combining iterative relaxation, projection, and implicit gra-
dient computation. To improve scalability, we use dimen-
sionality reduction techniques such as PCA. 2) A rank-by-
distance (RBD) heuristic that poisons data points closest to
the adversary’s target, defined by distance metrics such as
Euclidean norm or reward differences.

We evaluate these methods across four domains: safety
alignment in LLMs (using the LLaMA-7B model (Touvron
et al. 2023)), value alignment in control tasks (MuJoCo and
Atari), and a text-based recommendation system. Our results
show that our attacks achieve near 100% success with min-
imal data poisoning, such as altering only 0.3% of inputs in
LLMs. These attacks also significantly impact downstream
RLHF policies. The best-performing attack varies across do-
mains, highlighting the importance of our multi-method ap-
proach. We also assess state-of-the-art defenses against poi-
soning attacks and demonstrate their limitations. For exam-



ple, in safety alignment, existing defenses fail to mitigate
our attacks, which remain highly effective.

In summary, we make the following contributions: 1) A
novel poisoning attack model targeting RM learning from
pairwise comparisons. 2) A projected gradient ascent algo-
rithm for solving the combinatorial poisoning problem. 3)
A rank-by-distance (RBD) heuristic with strong empirical
performance in high-dimensional settings. 4)Extensive eval-
uation of attack efficacy across diverse applications.

Our findings expose critical vulnerabilities in RM
pipelines and highlight the need for robust defenses to se-
cure value alignment in AI systems.

Related Work Data poisoning involves modifying train-
ing data to achieve malicious ends (Vorobeychik and Kantar-
cioglu 2018), with most studies focusing on supervised
learning. These efforts primarily address classification and
regression tasks (Biggio, Nelson, and Laskov 2012; Geip-
ing et al. 2021; Jagielski et al. 2018; Mei and Zhu 2015).
In contrast, our threat model involves modifying preference
responses without introducing new data.

The closest related work includes label-flipping attacks,
which focus on manipulating labels to degrade model perfor-
mance (Biggio, Nelson, and Laskov 2011; Paudice, Muñoz-
González, and Lupu 2019; Rosenfeld et al. 2020; Wang, Mi-
anjy, and Arora 2021). Earlier approaches targeted classical
models, such as SVMs (Biggio, Nelson, and Laskov 2011;
Xiao, Xiao, and Eckert 2012), while recent work explores
NNs using problem-specific heuristics (Wang et al. 2023).
These approaches differ from ours in their focus on maxi-
mizing prediction error, whereas we target promotion or de-
motion of specific outcomes in preference learning.

Defenses against label flipping typically address classi-
fication tasks and rely on techniques such as outlier re-
moval (Steinhardt, Koh, and Liang 2017), kNN-based rela-
beling (Paudice, Muñoz-González, and Lupu 2019), or ran-
domized smoothing (Rosenfeld et al. 2020). However, these
methods are insufficient in preference-based learning.

Poisoning attacks on recommendation systems (Fang
et al. 2018; Zhang et al. 2020a) and RLHF (Wang et al.
2023) are also relevant, but differ in focus and structure. No-
tably, (Zhang et al. 2020a) targets product recommendations,
and (Wang et al. 2023) examines RLHF in LLMs.

2 Threat Model
We consider a malicious actor capable of modifying prefer-
ence labels in a dataset of pairwise comparisons. These la-
bels, derived from human feedback, lack objective ground-
ing, making it difficult to verify their validity. Malicious an-
notations may express unusual preferences, making manual
screening ineffective. Furthermore, the anonymity of online
data collection platforms (e.g., Amazon Mechanical Turk,
Prolific, or outsourcing services like Sama (Perrigo 2023))
enables adversaries to infiltrate the annotation process or pay
annotators to inject poisoned labels.
Attacker Capabilities and Constraints. We assume the
attacker can flip a limited number of preference labels oi
for outcome pairs (xi, yi), up to a budget B. However, they

cannot modify the feature vectors associated with these out-
comes, as these are typically fixed during the preference elic-
itation process. For example, attacks may exploit malware
to manipulate user responses, create malicious accounts, or
bribe annotators, but these methods are constrained by cost
and scalability.

Formally, let D̃ = {(xi, yi, õi)} represent the poisoned
dataset, where õi = oi + δi, and δi ∈ {−1, 0,+1}. The
attack satisfies the constraint

∑
i∈D |δi| ≤ B. The attacker

aims to manipulate L(D̃, θ), the loss function of the model
trained on the poisoned dataset D̃(δ).

We consider both white-box and black-box settings. In
the white-box model setting, the attacker knows the model
architecture but not its initialization. In the white-box data
setting, they have access to the full dataset D. In contrast,
under black-box model and black-box data settings, the at-
tacker lacks complete knowledge of the model and dataset,
respectively, and can only access or modify a subset of D.
We systematically evaluate how these constraints affect at-
tack success.
Attacker Goals. The attacker pursues two goals: 1) Promo-
tion, increasing the reward of target outcomes CT relative to
others, and 2) Demotion, lowering the reward of CT relative
to others. For instance, in recommendation systems, promo-
tion might elevate specific products, while in autonomous
systems, it could induce unsafe trajectories. Conversely, de-
motion may suppress competitors’ products or prevent con-
versational agents from providing specific helpful responses.

We model the promotion attack as solving the following
optimization problem:

max
δ

F (δ) ≡
∑
c∈CT

Pr
x∼P
{Rθ(c) ≥ Rθ(x)}

s.t. : θ ∈ argmax
θ′
L(D̃(δ), θ′).

(1)

Notably, it is impossible to evaluate Prx∼P{Rθ(c) ≥
Rθ(x)} since P is unknown. Moreover, even if we knew P ,
computing this probability exactly can be computationally
intractable. Practically, therefore, we would instead estimate
it using a collection of sample outcomes {xi}Ni=1, which we
assume are drawn from the unknown distribution P (a con-
ventional assumption in learning theory, for example (An-
thony and Bartlett 1999)). In practice, we would draw them,
for example, from the dataset we aim to poison. This yields
the following finite-sample approximation of Problem (1):

max
δ

F̂ (δ) ≡
∑
c∈CT

∑
i

1Rθ(c)≥Rθ(xi)

s.t. : θ ∈ argmax
θ′
L(D̃(δ), θ′),

(2)

where 1Rθ(c)≥Rθ(xi) is 1 whenever the condition is true, and
0 otherwise. A natural question is whether this approxima-
tion yields a solution that approximates the true optimization
problem that the attacker aims to solve—that is, Problem (1).
Stealth. Stealth is critical to avoiding detection, measured
by the degradation of overall test accuracy. Attacks are con-
sidered stealthy if accuracy degradation remains minimal.
For preference data, which inherently involves subjectivity



and disagreement, modest accuracy variation (e.g., up to
10%) may not undermine credibility, but significant degra-
dation reveals the attack.
Value Alignment and RLHF. An important, but far from
sole, motivation for our consideration of attacks on reward
model learning is RLHF. In this case, the learned (poisoned)
reward models are then used downstream as rewards in a re-
inforcement learning loop (commonly, using PPO) to obtain
policies that make decisions which are aligned with values
represented by the reward model (Ouyang et al. 2022; Sun
et al. 2023; Stiennon et al. 2020).

3 Attack Algorithms
Developing promotion and demotion attacks involves three
key challenges. First, both Problems (1) and (2) are bi-
level optimization problems. Second, unlike traditional data
poisoning, which operates on continuous spaces (Biggio,
Nelson, and Laskov 2012; Geiping et al. 2021; Jagielski
et al. 2018), our setting involves flipping discrete prefer-
ence labels, resulting in a combinatorial optimization prob-
lem. Third, the finite-sample objective in Problem (2) is dis-
continuous and non-differentiable, precluding direct use of
gradient-based methods.

We address these challenges with two approaches: a
projected gradient ascent algorithm and rank-by-distance
(RBD) heuristics. Additionally, we provide a theoretical jus-
tification for using the finite-sample objective as a proxy for
the true adversarial goal.

3.1 Gradient-Based Framework
For promotion attacks, we approximate the non-
differentiable objective F̂ (δ) in Problem (2) with a
differentiable proxy:

U(δ) =
∑
c∈CT

Rθ(c)−
|CT |
N

∑
i

Rθ(xi).

We relax discrete decision variables δ ∈ {−1, 0,+1} to
continuous values in [−1,+1], apply gradient ascent, and
project back to the discrete space. Gradients are computed
using the implicit function theorem (Koh and Liang 2017;
Mei and Zhu 2015), with:

dθ

dδ
= − [HθL]−1

[
d∇θL
dδ

]
,

where HθL is the Hessian of the loss. To handle random
initialization in training, we run multiple instances of the
algorithm with different initializations and aggregate results.
Algorithm 1 provides the details of the proposed gradient-
based algorithm.

High-dimensional settings pose computational challenges
due to the Hessian’s size. We explore three scalability solu-
tions: 1) using conjugate gradient methods to approximate
the inverse Hessian (Koh and Liang 2017); 2) reducing di-
mensionality via embeddings learned on clean data; and 3)
applying PCA to simplify input features. For black-box at-
tacks, we attack a proxy model and evaluate transferabil-
ity (Suciu et al. 2018). These techniques apply similarly to
demotion attacks.

Algorithm 1: Gradient-based algorithm.

Input: Original data D, Attack budget B
Randomly initialize N neural networks.
for j in 1, . . . , N do

Calculate gradk = dU(δ)/dδ, normalize gradient
δk = (gradj)norm× step size
Clip δk so that (oi + δki ) ∈ [0, 1]

end for
δ = (

∑N
k=1 δ

k)/N
Choose top B indices based on the value of |δ|
Flip the preference label of those indices (oi ←− 1− oi)
return δ

3.2 Rank-by-Distance Heuristics
To address scalability issues, we propose RBD heuristics,
which rank datapoints based on their distance to target out-
comes. For a single target cT , we flip B preference labels
closest to cT using distance metrics such as: 1. RBD-Norm:
Euclidean distance ∥x − y∥2. 2. RBD-Reward: Reward dif-
ference |Rθ(x) − Rθ(y)| from a clean dataset. 3. RBD-
Embedding: Distance in an embedding space learned from
the reward model. For multiple targets, we can extend RBD
by defining set distances as d(CT , x) = minc∈CT d(c, x).
Variants for demotion attacks reverse the roles of winning
and losing outcomes.

4 Experiments
We evaluate the vulnerability of reward model learn-
ing within the Bradley-Terry and MLE framework across
four domains: safety alignment of large language models
(LLMs), value alignment for control in MuJoCo and Atari
environments, and a recommendation system based on tex-
tual data. These settings cover a diverse range of applica-
tions to assess the impact of our attacks.

4.1 Experiment Setup
Attack. For safety alignment, we train a reward model us-
ing the PKU-SafeRLHF-30k dataset (Ouyang et al. 2022),
focusing on harmlessness preference labels. The LLaMA-
7B model (Touvron et al. 2023), fine-tuned with instruction-
following data, serves as the foundation for this task.
Defense. We evaluate three classes of defenses against poi-
soning attacks on reward model learning: 1) anomaly de-
tection, 2) iterative high-loss data removal, and 3) data ran-
domization. For anomaly detection, we consider spectral
anomaly detection (Tran, Li, and Madry 2018) and Meta-
Sift (Zeng et al. 2023), which identify and remove out-
liers before training the reward model. In the iterative train-
ing approach, we follow a three-stage algorithm (Du, Jia,
and Song 2019; Liu et al. 2017; Vorobeychik and Kantar-
cioglu 2018): train an initial model, remove α · B data-
points with the highest loss, and retrain on the remaining
data (we use α = 1.5). For data randomization, we employ
ALIBI (Malek Esmaeili et al. 2021), which integrates differ-
ential privacy and Bayesian post-processing for robustness.



4.2 Results (LLM Safety Alignment)
We present the results below in the case of promotion and
demotion attacks for a single target outcome cT , with the re-
sults considering multiple target candidates deferred to the
Appendix. In promotion attacks, we choose the target out-
come as the least preferred outcome in the dataset in terms of
the reward model Rθ learned on clean data. Similarly, when
considering a set CT , we choose the set of smallest-reward
outcomes to promote. Demotion attacks, on the other hand,
aim to demote that best outcomes in terms of Rθ learned
on clean data. Consequently, our attack settings provide the
most challenging attack tasks to accomplish.
Effectiveness of Attack. Our first consideration involves the
safety alignment problem in the context of language mod-
els. Specifically, we consider a dataset of pairwise compar-
isons involving relative harmfulness of prompt responses.
We learn both the clean, and poisoned reward model Rθ by
fine-tuning the LLaMA-7B model using the Stanford Alpaca
Dataset. As gradient-based methods are not scalable in this
setting due to the size of the neural networks, we only con-
sider the RBD-based approaches for attacks.

Figure 2: Efficacy of promotion (left) and demotion (right)
attacks in terms of success rate (top) and stealth, as measured
by test accuracy (bottom).

Figure 2 presents the results on the efficacy of the poison-
ing attacks (top) and accuracy degradation (bottom). What
we observe is that the LLM setting is extremely vulnerable:
the best attack achieves 100% success rate for both promo-
tion and demotion goals with only 0.3% poisoned instances.
A key reason is the structure of this and similar datasets:
outcome comparisons are made with respect to a relatively
limited set of prompts and responses, which entails many
identical outcomes in pairwise comparisons. Consequently,
it is often the case that there are a large set of outcomes sim-
ilar to the target, and flipping the comparison label for all of
these is highly efficacious. We also observe that in this set-
ting, both RBD-Reward and RBD-Embedding (using Llama
embedding) perform comparably. In addition, we see mini-
mal accuracy degradation as a result of the attack.

Next, we evaluate the downstream impact of reward

model attacks on RLHF in this setting. The success rates
(of the learned policy choosing the target response to a
prompt) are provided in Table 1 for a randomly chosen tar-
get candidate, for whom baseline success rate (with no at-
tack) is < 1%. What we can see is that while the efficacy of

Table 1: Promotion attack efficacy in RLHF.

Poisoning Ratio (%) 1 3 5
Attack Success Rate (%) 93 93.5 99

the attack degrades somewhat compared to targeting reward
model learning directly, it is nevertheless quite successful,
achieving 99% success rate with only 5% of labels flipped.
Effectiveness of Defense. We evaluate the efficacy of de-
fense approaches in the case of safety alignment for LLM.
We exclude Meta-Sift in this setting, which requires iterative
training and evaluation of the model, as it is impractical at
this scale. The results are shown in Figure 3. Here, in con-

Figure 3: Efficacy of defense against promotion (left) and
demotion (right) attacks in the safety alignment (LLM) set-
ting. B = 0.3% of data.

trast with all of the other domains, none of the defensive
approaches have a significant impact on the efficacy of the
best attacks, even though only RBD approaches scale to this
setting. In particular, while ALIBI exhibited some success
in the other settings, it is entirely ineffective even with the
attack budget of only 0.3% of datapoints being poisoned.

4.3 Results (Control and Recommendation)
The experiment details and results for the MuJoCo, Atari,
and recommendation system settings are deferred to the Ap-
pendix due to space limitations.

5 Conclusion
Preference poisoning attacks are structurally distinct from
traditional label-flipping, targeting reward models to pro-
mote or demote specific outcomes. Our analysis highlights
two key insights: First, vulnerability analysis must include
diverse attack techniques, as the most effective approach
varies by dataset and domain. Second, data distribution plays
a crucial role in robustness, aligning with findings in (Suya
et al. 2023). We empirically demonstrate that state-of-the-art
defenses often fail to consistently mitigate preference poi-
soning attacks. This underscores the importance of carefully
controlling data collection processes, as thoughtful dataset
design can significantly reduce vulnerabilities in preference-
based learning systems.
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A Appendix
A.1 Background: Learning a Reward Model

from Pairwise Comparisons
The problem of learning a reward (utility) model from pair-
wise comparisons is commonly formalized as follows. Let
D = {(xi, yi, oi)}ni=1 be a dataset of n datapoints with
xi, yi ∈ Rm feature vectors representing the ith pair of
outcomes and oi ∈ {0, 0.5, 1} a preference between these.
Specifically, oi = 0 if xi is preferred to yi (which we write
as xi ≻ yi), oi = 1 if yi ≻ xi, and oi = 0 if these are
preference-equivalent (with xi ∼ yi representing such in-
difference). Typically, data of this kind of obtained by pre-
senting people with pairs of options (x, y) and asking which
of these they prefer. For example, this is the process used
in improving the helpfulness, and reducing harmfulness, of
LLM-based conversational assistants, as part of an RLHF
framework (Christiano et al. 2017; Ouyang et al. 2022). Fun-
damentally, this is a classic problem in utility function learn-
ing (Xia 2019) within the random utility model (RUM) the-
oretical framework, where one assumed that an agent en-
dowed with a true but unknown utility function R(x) reports
preference comparison results corrupted with noise, and one
aims to approximately recover the underlying utility func-
tion from such data.

The most common approach in applied RUM settings, in-
cluding RLHF, is to leverage the Bradley-Terry (BT) model
of preference data generation, in which the preference label
o is generated stochastically according to the following dis-
tribution:

o ∼ Pr{y ≻ x|R} = eR(y)

eR(x) + eR(y)
. (3)

Let Rθ(x) be a parametric reward model that we wish to
learn from data generated according to the BT model, with
θ ∈ Θ, where Θ is the parameter space (e.g., Θ = Rm). A
typical approach is maximum likelihood estimation (MLE),
in which we minimize the following loss function (equiva-
lent to maximizing the negative log-likelihood function):

L(D; θ) =
∑
i

−[(1− oi) log Pr{xi ≻ yi|Rθ}

+ oi log Pr{yi ≻ xi|Rθ}].

Commonly, this loss is minimized using gradient descent
with respect to reward model parameters θ.

A.2 Theoretical Analysis
Recall that an important theoretical question in our proposed
approach is whether focusing on the finite-sample approxi-
mation in Problem (2) is principled, in the sense that it yields
a provable approximation guarantee even vis-a-vis the true
objective (Problem (1)). We now address this issue, focusing
on promotion attacks; the analysis for demotion attacks is es-
sentially identical. Note that the answer is not self-evident.
First, we are not merely approximating the expectation with
sample average (and removing the constant factor, which
does not impact the optimal solution), but approximating
an optimization problem. Thus, law of large numbers does



not immediately imply that the quality of solution to the ap-
proximate problem converges. Second, the problem involves
bi-level optimization, since the attacker’s optimal solution
depends, in turn, on the learning optimization problem that
yields the reward model parameters θ. Next, we prove that
this problem has polynomial sample complexity, that is, the
number of samples N grows only polynomially in 1/ϵ and
the dimension of the function class Rθ, where ϵ represents
the quality of the approximation of the solution to Prob-
lem (1) by the solution to Problem (2).

Lemma A.1. Suppose F is a vector space of real-valued
functions, and H = {1{f+f(a)≥0} : f ∈ F}, where a is a
constant, then VCdim(H) ≤ dim(F) + 1, where dim(F) is
the dimension of the vector space of functions F .

Proof. First, we discuss the case where fi(a) has the
same sign for all i. Let {f1, f2, · · · , fd} be a basis of
F . Then if {x1, x2, · · · , xm} is shattered by H , there
are vectors v1, v2, · · · , v2m taking all possible sign pat-
terns, and corresponding w1, w2, · · · , w2m ∈ Rd such that
M(w1 · · ·w2m) = V −C, where Mi,j = fi(xj), Vi,j = vi,j
and Ci,j = fi(a). If m > d then the matrix M is not row-
rank m. Without loss of generality, we assume the last row
can be written as a linear combination of other rows, mean-
ing for some α1, · · · , αm−1 we have vmi =

∑m−1
j=1 αjvji +

(1−
∑m−1

j=1 αj)·fi(a). If (1−
∑m−1

j=1 αj)·fi(a) ≥ 0, then we
choose i such that αjvji ≥ 0 for all j, this means vmi ≥ 0.
If (1 −

∑m−1
j=1 αj) · fi(a) ≤ 0, then we choose i such that

αjvji ≤ 0 for all j, this means vmi ≤ 0. This contradicts the
assumption that vi together take on all 2m sign patterns.

Now we discuss a general case where we do not
have the assumption that fi(a),∀i has the same sign. Let
{f1, f2, · · · , fd} be a basis of F . If 1 ∈ {f1, f2, · · · , fd},
then {1, f1−c1, · · · , fd−cd} is also a basis vector (they are
also linearly independent), we can choose c1, · · · , cd such
that fi(a)− ci ≥ 0, otherwise, we add 1 to the basis vectors
of F . Then we have VCdim(H) ≤ dim(F) + 1.

Theorem A.2 ((Anthony and Bartlett 1999)). Suppose that
H is a set of functions from a set X to {0, 1} and that H
has finite Vapnik-Chervonenkis dimension d ≥ 1. Let L be
any sample error minimization algorithm for H . Then L is
a learning algorithm for H . In particular, if m ≥ d/2 then
its sample complexity satisfies the inequality

mL(ε, γ) ≤ m0(ε, γ) =
64

ε2

(
2d ln

(
12

ε

)
+ ln

(
4

γ

))
.

Here mL(ε, γ) = min{m : m is a sufficient sample size
for (ε, γ)-learning H by L}, meaning for m ≥ m0(ε, γ)
and z ∈ Zm chosen according to Pm, Pm{erP (L(z)) ≥
optP (H)− ε} ≥ 1− γ.

In our result below, we capture the solution to the lower-
level problem in which the reward model parameters θ are
learned based on the poisoned dataset D̃(δ) as θ(δ). Let Ω
denote the space of possible attacks δ.

Theorem A.3. Let F = {Rθ|θ ∈ Θ} and suppose
dim(F) = d. Then for all ϵ > 0, and for all N > m0(ϵ, γ)

where m0(ϵ, γ) = 64
ε2

(
2(d+ 1) ln

(
12
ε

)
+ ln

(
4
γ

))
,

maxδ∈Ω F̂ (δ) ≥ maxδ∈Ω F (δ)− ε with probability at least
1− γ.

Proof. Let Θ(Ω) = {θ ∈ argmaxθ′∈Θ L(D̃(δ), θ′)|δ ∈
Ω}. This is the set of all parameters θ of Rθ that can be
induced by the adversarial label perturbations δ ∈ Ω. Define
F ′ = {Rθ(x)|θ ∈ Θ(Ω)}. Next, note that Problem (1) is
equivalent to

max
θ∈Θ(Ω)

∑
c∈CT

Pr
x∼P
{Rθ(c) ≥ Rθ(x)}.

Similarly, Problem (2) is equivalent (up to 1/N factor) to

max
θ∈Θ(Ω)

∑
c∈CT

1

N

∑
i

1Rθ(c)≥Rθ(xi).

In this transformation, we effectively collapsed the bi-level
structure into a pair single-level optimization problems, and
can now make use of the machinery in Lemma A.1 and The-
orem A.2. Since F ′ ⊆ F , we have dim(F ′) ≤ dim(F). Let
H = {1{Rθ(xT )−Rθ≥0} : Rθ ∈ F ′}, which is a class of
functions that map from a set X to {0, 1}. Set the correct
label for all x ∈ X to be 1 (which maximizes the attack
success rate). Let erP (h) = P{(x, y) ∈ Z : h(x) ̸= 1},
and êrz(h) = 1

N |{i : 1 ≤ i ≤ m and h(xi) ̸= 1}|,
h ∈ H . optP (H) = infg∈H erP (g) = maxδ∈∆ F (δ), and
êrz(L(z)) = minh∈H êrz(h). We can then apply Lemma
A.1 and Theorem A.2 to get the desired result.

A.3 Experiment Setup (Detailed)
Our experiments involve four problem settings. Our first ex-
periment involves training a reward model toward safety
alignment of Large Language Models (LLMs). In the next
two, reward model learning is done in the context of value
alignment for control (Christiano et al. 2017). The first
of these generates control trajectories in MuJoCo environ-
ment associated with low-dimensional state inputs, whereas
the second uses Atari to generate control trajectories with
images as inputs. The fourth considers a recommendation
system context using textual information. For this we use
the Amazon rating data,1 which we transform into pair-
wise comparisons. The motivation for exploring these four
settings is to assess the performance and impact of our
proposed attack for qualitatively different control prob-
lems, since the preference-based reward model learning and
RLHF have been used in domains as distinct as robotic con-
trol (Jain et al. 2013) and LLMs (Ouyang et al. 2022).

We conducted 5 independent runs for all but one exper-
iment, which means that the data were collected indepen-
dently for each run, and report the mean and standard error
of the mean (SEM) in the plots. The only exception is LLM,
where we conducted only 1 run due to high computational
requirements. In most cases below, we learn a neural net-
work reward model Rθ, with one exception where we also

1cseweb.ucsd.edu/∼jmcauley/datasets/amazon v2/, Home and
Kitchen.



investigate robustness of a linear reward model in compari-
son with a neural network in the same setting. In all cases,
we vary the budget B between 1% and 10% of data. Next we
provide further details about the experiment environments
and our setup; further details are provided in the Appendix.

Safety Alignment: We use the PKU-SafeRLHF-30k
dataset2, which includes 30k question-answer pairs anno-
tated with both helpfulness and harmlessness preference la-
bels. For the scope of our study, we only use the harmless-
ness preference labels for our safety alignment task. Then
we train the reward model initialized with an instruction fol-
lowing language model, which is obtained by performing
supervised fine-tuning on the pre-trained model LLaMA-
7B (Touvron et al. 2023) using the Stanford Alpaca Dataset.

MuJoCo Control: We use three MuJoCo environ-
ments: Reacher, Hopper, and Walker2D. We use trajec-
tory data as inputs (outcomes), where trajectory T =
((s1, a1), (s2, a2), · · · (sl, al)) is induced by a random pol-
icy ai = π(si), with si representing the system state (low-
dimensional and observable) and ai the action. Following
(Christiano et al. 2017), we record the total reward returned
by the MuJoCo simulator as the reward for the trajectory.
The trajectory with the higher reward is marked as winning,
and the other as losing. The trajectory length for each envi-
ronment is 30.

Atari Vision-Based Control: For Atari control with im-
age inputs, we experiment with three environments: Pong,
Breakout, and Qbert. We used trajectory data as inputs as
in the previous setting, except now our states si are images.
We concatenate actions with image embeddings in the mid-
linear layer. For experiments with PCA we reduces the input
dimension to 20, and we then concatenate it with the action.

Recommendation System: Finally, we use Amazon Rat-
ing Data collected with the purpose of designing recom-
mendation systems. While this, like many conventional rec-
ommendation datasets, relies on user ratings, it has been
observed that learning utilities using pairwise comparisons
rather then relying solely on ratings can yield better rec-
ommendations (Kalloori, Ricci, and Gennari 2018). Conse-
quently, we used this data to generate a derived dataset of
pairwise comparisons by comparing the recorded ratings of
pairs of comments, which were used as inputs (outcomes).
We used BERT to generate embeddings for each input com-
ment, considering it as the input representation. When we
apply PCA instead, we reduce the original dimension to 20
components. In this domain, we experiment using both a lin-
ear neural network and a 3-layer neural network with ReLU
activations (multilayer perceptron (MLP)). For linear neu-
ral networks, the average training accuracy was 92.3%, and
the average test accuracy was 91.5%. For the neural network
architecutre, average training accuracy was 100%, while av-
erage test accuracy was 92.3%. While it seems that the latter
architecture is superior to the linear model, our experiments
below offer an interesting qualification in that regard.

2huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-
30K

A.4 Results (Detailed)
We present the results below in the case of promotion and
demotion attacks for a single target outcome cT , with the re-
sults considering multiple target candidates deferred to the
Appendix. In promotion attacks, we choose the target out-
come as the least preferred outcome in the dataset in terms of
the reward model Rθ learned on clean data. Similarly, when
considering a set CT , we choose the set of smallest-reward
outcomes to promote. Demotion attacks, on the other hand,
aim to demote that best outcomes in terms of Rθ learned
on clean data. Consequently, our attack settings provide the
most challenging attack tasks to accomplish.
Safety Alignment. Our first consideration involves the
safety alignment problem in the context of language mod-
els. Specifically, we consider a dataset of pairwise compar-
isons involving relative harmfulness of prompt responses.
We learn both the clean, and poisoned reward model Rθ by
fine-tuning the LLaMA-7B model using the Stanford Alpaca
Dataset. As gradient-based methods are not scalable in this
setting due to the size of the neural networks, we only con-
sider the RBD-based approaches for attacks.

Figure 2 presents the results on the efficacy of the poison-
ing attacks (top) and accuracy degradation (bottom). What
we observe is that the LLM setting is extremely vulnerable:
the best attack achieves 100% success rate for both promo-
tion and demotion goals with only 0.3% poisoned instances.
A key reason is the structure of this and similar datasets:
outcome comparisons are made with respect to a relatively
limited set of prompts and responses, which entails many
identical outcomes in pairwise comparisons. Consequently,
it is often the case that there are a large set of outcomes sim-
ilar to the target, and flipping the comparison label for all of
these (or any subset) is highly efficacious. We also observe
that in this setting, both RBD-Reward and RBD-Embedding
(using Llama embedding) perform comparably. In addition,
we see minimal accuracy degradation as a result of the at-
tack.

Figure 4: Promotion attack efficacy in MuJoCo. Top row:
success rate. Bottom row: accuracy.

Next, we evaluate the downstream impact of reward
model attacks on RLHF in this setting. The success rates



(of the learned policy choosing the target response to a
prompt) are provided in Table 1 for a randomly chosen tar-
get candidate, for whom baseline success rate (with no at-
tack) is < 1%. What we can see is that while the efficacy of
the attack degrades somewhat compared to targeting reward
model learning directly, it is nevertheless quite successful,
achieving 99% success rate with only 5% of labels flipped.

MuJoCo Control. Next we consider promotion attacks
in the low-dimensional MuJoCo setting. Figure 4 (top)
presents attack success rate for the best-performing vari-
ants of each attack class. Our first observation, which will
be echoed in other domains below, is that attack suc-
cess rate (and, thus, vulnerability) varies quite significantly
with problem setting. For example, success rate in Hopper
reaches over 60% with 5% of the attack budget, and approx-
imately 90% with 10% of the budget. On the other hand,
success rate for Reacher and Walker is just over 50% even
with 10% of the budget.

Our second observation is that in all three domains, the
(best) gradient-based method is most effective. Neverthe-
less, we do note that the (best) RBD heuristic is typically
competitive with the best attack overall, particularly at small
budgets. For example, at 1-5% of the budget, the perfor-
mance of both classes of attacks is similar.

Next, we consider stealth of the attack with increasing at-
tack budget (Figure 4 (bottom)). Although none of the meth-
ods we developed are explicitly stealthy, the results show
that our targeted attacks have a limited impact on overall
accuracy, particularly at the smaller range of attack budgets
between 1% and 5%.

Figure 5: Relative efficacy of gradient-based attacks (top
row) and RBD attacks (bottom row) in MuJoCo.

In Figure 5, we consider now ablations in terms of dif-
ferent gradient-based approaches (top) and RBD methods
(bottom). Here we make two observations. First, in this set-
ting, pretraining the neural network before performing the
gradient-based attack, as done by (Koh and Liang 2017),
performs extremely poorly, yielding a nearly zero success
rate. This is likely because it is fragile to uncertainty about
neural network initialization. Rather, our primary approach
in which we train the attack to be explicitly robust to initial-

ization uncertainty performs best. In addition, we note that
black-box attacks in this context are essentially as effective
as white-box attacks, suggesting that we do not need precise
knowledge of the neural network architecture. Second, we
generally find that RBD-Norm outperforms RBD-Reward in
two of the three environments, with the two exhibiting sim-
ilar performance in the third (Hopper).

Figure 6: Demotion attack efficacy in MuJoCo.

Finally, Figure 6 presents the results of demotion at-
tacks. We can observe that in this setting, demotion attacks
are somewhat easier than promotion attacks, with success
rates of the best attacks tending to be higher. The overall
trends, however, parallel what we observed in promotion at-
tacks: gradient-based methods outperform RBD as budget
increases. On interesting exception is the demotion attack
in the Hopper environment, where low-budget settings yield
better RBD success rate than gradient-based method, with
the former nearly 100% successful even with a budget of
1%. As in the case of promotion attacks, demotion attacks
are also relatively stealthy (see Figure 19 in the Appendix)
and black-box gradient-based attacks are nearly as effective
as white-box (see Figure 17 in the Appendix). Finally, the
results are comparable when we consider a set of 5 target
outcomes instead of just a single one (see Figure 18 in the
Appendix).
Atari Vision-Based Control. Next, we turn to the more
challenging control setting in which true state of the con-
trolled system is not directly observable, but is instead ob-
served using (relatively) high-dimensional visual percep-
tion.

Figure 7: Promotion attack efficacy in Atari. Top row: suc-
cess rate. Bottom row: accuracy.



First, as above, we consider attack efficacy in terms of
both success rate (Figure 7, top) and stealth (test accuracy;
Figure 7, bottom). In this setting, success rate is markedly
lower than in MuJoCo, although we still reach nearly 50%
success rate of the best attack with only 5% of the data poi-
soned. What is particularly noteworthy is that here there is
little difference between the best gradient-based method and
the best RBD heuristic. As RBD is simpler, considerably
faster, and requires no information about the model, this is
noteworthy as one of the sources of threat are individuals
themselves who are asked for their relative preferences over
outcomes. Thus, the simplicity and intuitive nature of RBD,
along with its efficacy, may well make the attack a particu-
larly significant concern in practice.

Figure 8: Relative efficacy of gradient-based attacks (top
row) and RBD attacks (bottom row) in Atari.

Next, we consider again the relative efficacy of gradient-
based methods (Figure 8, top row). In this setting, surpris-
ingly, the most effective attack is to first preprocess the high-
dimensional input images using PCA (20 dimensions), and
perform a (black-box) attack on a neural network over this
reduced-dimensional outcome space. This approach is sig-
nificantly better than making use of the low-dimensional
embedding learned as part of the reward model Rθ trained
on clean data. Additionally, making use of the conjugate-
gradient method to approximate the inverse in implicit gra-
dient computation, as suggested by (Koh and Liang 2017)
was extremely slow, with a single attack taking ∼ 12 hours
for one seed.

Turning now to the comparison of alternative RBD heuris-
tics (Figure 8, bottom row), we find that their relative effi-
cacy can now vary a great deal by environment. In Pong,
for example, all three are quite comparable, although RBD-
Reward tends to outperform RBD-Embedding (which ranks
by distance with respect to the embedding from Rθ learned
on clean data) and RBD-Norm (which measures distances
directly in pixel space). In Breakout, RBD-Norm is the worst
heuristic, while in Qbert, it is the best of the three, while
RBD-Reward is the weakest one in this setting.

Our observation that relative performance of different at-
tack methods varies considerably by domain and environ-
ment is instructive: our consideration of two classes of at-

tack algorithms, and multiple variants in each class thereby
demonstrates the value of comprehensive vulnerability anal-
ysis that this provides. This is in contrast to common vul-
nerability analysis of ML to poisoning attacks in prior work,
where only a single attack algorithm is typically evaluated
(e.g., (Jha, Hayase, and Oh 2023; Xiao, Xiao, and Eckert
2012; Zhang et al. 2020b)).

Figure 9: Demotion attack efficacy in Atari.

Finally, we consider demotion attacks in the Atari control
domain. The results are shown in Figure 9, are are broadly
similar to what we have observed for promotion attacks.
However, here we see that RBD heuristics tend to outper-
form the best gradient-based method in nearly all cases. This
may seem surprising at first, given that the more expensive
gradient-based methods are generally viewed as highly prin-
cipled, but note that these are also heuristic in a number of
ways. For example, in this discrete setting, gradient-based
approaches rely on relaxation of the discrete decision vari-
ables. Moreover, as the basic variant of these fails to scale to
the higher-input-dimension problem posed in vision-based
control, we now also rely on the linear (PCA) dimensionality
reduction technique blended with the gradient-based method
(which does outperform a non-linear learned embedding). In
any case, this again reinforces our broader observation that
the nature of the best attack can vary by domain, environ-
ment, and attacker’s objective.

Figure 10: Efficacy of promotion (left) and demotion (right)
attacks on the recommendation dataset (neural network
model).

Recommendation System. Finally, we consider a recom-
mendation system setting. In Figure 10 we show the re-
sults of poisoning in this context for both promotion and
demotion attacks, when we learn a neural network reward
model (MLP). Notably, in this setting, which is also too
high-dimensional for a direct application of the gradient-
based approach, RBD methods are significantly more effec-
tive than gradient-based algorithms, both in the case of pro-
motion and demotion attacks. Additionally, the best method



(RBD) in this setting achieves 100% success rate in both
types of attacks with only a 5% attack budget, and 60-70%
success rate with a mere 1% attack budget.

Figure 11: Accuracy of promotion and demotion attacks on
the recommendation dataset (neural network model).

In Figure 11 we present accuracy results as a function of
the attacker budget. As in all the settings so far, our targeted
attacks have only a small impact on test accuracy, both for
promotion and demotion attacks.

Figure 12: Relative efficacy of gradient-based attacks (top)
and RBD attacks (bottom) on the recommendation dataset
(neural network model).

Consider now Figure 11, which evaluates relative efficacy
of gradient-based approaches (top) and relative efficacy of
RBG approaches (bottom). In this domain, we observe that
gradient-based approaches aimed at improving scalability
via the use of conjugate gradient methods still do not scale
well (running a single attack takes ∼ 5 hours), and simple
PCA to reduce the input dimension can relatively effectively
combine with a gradient-based approach. Nevertheless, as
we highlight above, scalability becomes a practical issue for
such approaches, with the RBG heuristics now appearing to
be a better option. In the case of RBG variants, on the other
hand, there is in this domain a clear advantage for using fea-
ture (BERT embedding) distance directly, rather than reward
as a measure of distance.

Thus far, our consideration of reward model poisoning
was focused on neural network reward models. We now ex-
plore the extent to which using linear models yields bet-

Figure 13: Efficacy of promotion and demotion attacks on
the recommendation dataset (linear model).

ter or worse robustness to poisoning attacks. In Figure 13

Figure 14: Accuracy of promotion and demotion attacks on
the recommendation dataset (linear model).

we present the results of poisoning attacks on linear reward
models. It is instructive to compare these results to what we
saw in the case of neural network reward models in Fig-
ure 10: the linear model is considerably more robust than the
neural network, and it takes twice as much budget (10%, as
compared to 5%) to reach 100% attack success rate. Never-
theless, both model classes are clearly vulnerable to poison-
ing. The second observation we can make in the comparison
is that in the case of linear models, gradient-based meth-
ods are somewhat better than RBD, whereas the reverse was
true, as we noted above, in the case of neural networks.

Figure 14 presents linear model accuracy as a function of
attack strength. Here, again, we observe that accuracy degra-
dation is minimal, and the attack is quite stealthy.

Finally, Figure 15 presents ablation results comparing dif-
ferent gradient (top) and RBD (bottom) approaches in terms
of relative efficacy. In this domain, we find that using a pre-
trained model as part of the gradient-based scheme now out-
performs the approach that instead uses K random initial-
izations, especially in the demotion attack. In RBD com-
parison, on the other hand, RBD-Norm handily outperforms
RBD-Reward in this setting, comparable to our observations
above.

Partial Knowledge of Data. Our experiments thus far have
assumed that the attacker observes the entire dataset D. We
now consider the impact of relaxing this assumption, when
only partial information about D is available. The results are
provided in Figure 16 for the MuJoCo and Atari control en-
vironments, and demonstrate that while attack success rate
degrades under partial knowledge of data, it does so rela-
tively slowly.



Figure 15: Relative efficacy of gradient-based attacks (top)
and RBD attacks (bottom) on the recommendation dataset
(linear model).

Figure 16: Promotion attack with partial knowledge of data
(best attack results). MuJoCo (top) and Atari (bottom).

B Additional Experiment Details
MuJoCo Control We use a feedforward 3-layer neural
network with ReLU activation functions, where the mid-
layer size is 32. We collect 1250 pairs of trajectories for
each environment, and train for 2000 epochs with learning
rate 6.25 × 10−4. Training and testing data have the same
size. For gradient-based black-box attacks, we use a 3-layer
neural network with mid-layer size 16 for attack.

Atari Vision-Based Control We trained for 100 epochs
with a 6.25× 10−4 learning rate. PCA reduces the input di-
mension to 20, and we then concatenate it with the action
(final dimension is 21). Then we use a 3-layer neural net-
work with mid-layer size 16.

Recommendation System We explored both a simple lin-
ear model and a 3-layer neural network with ReLU activa-
tion functions and a mid-layer size of 1024. In the PCA sce-
nario, we reduced it to 20 components and then employed a
3-layer neural network with ReLU activation functions and
a mid-layer size of 32. Training data has 4500 pairwise pref-
erences, and testing data has 500 pairwise preferences. For
gradient-based black-box attacks, we first do PCA to reduce
its dimension to size 10; then we use a 3-layer neural net-
work with mid-layer size 16.

C Additional Results
MuJoCo Control Figure 19 presents the results of trained
reward model accuracy for demotion attacks. The results are
similar to promotion attacks: accuracy degradation is small,
demonstrating that the attack is sufficiently stealthy. Fig-
ure 17 presents the ablation results for gradient and RBD
methods in the case of demotion attacks. Finally, Figure 18
shows that the results for multiple target candidates (5, in
this case) are comparable to a single target candidate.

Atari Vision-Based Control Figure 20 presents the re-
sults of trained reward model accuracy for demotion attacks
in Atari. We can again observe that there is little degradation
in training accuracy after the attack. Figure 21 presents the
ablation results for gradient and RBD methods in the case of
demotion attacks in the Atari domain. Figure 22 shows that
the results for multiple target candidates are comparable to
a single target candidate in the Atari domain.

Recommendation System Figure 23 presents the results
with 5 target candidates on the Amazon dataset. As we can
see, these are broadly consistent with the single-target case
in the main body.



Figure 17: Relative efficacy of gradient-based demotion (top
row) and RBD demotion attacks (bottom row) in MuJoCo.

Figure 18: Attack efficacy in MuJoCo with 5 target candi-
dates.

Figure 19: Demotion attack stealth in MuJoCo: test set ac-
curacy.

Figure 20: Demotion attack stealth in Atari: test set accuracy.

Figure 21: Relative efficacy of gradient-based demotion at-
tacks (top row) and RBD demotion attacks (bottom row) in
Atari.

Figure 22: Attack efficacy in Atari with 5 target candidates.

Figure 23: Attack efficacy with 5 target candidates on the
Amazon recommendation ratings dataset. Neural Network
Model (top row) and Linear Model (bottom row).


