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Abstract

Agency is a vital concept for understanding and predicting the behaviour of future1

AI systems. There has been much focus on the goal-directed nature of agency,2

i.e., the fact that AI agents may capably pursue goals. However, the dynamics of3

agency become significantly more complex when autonomous agents interact with4

other agents and humans, necessitating engagement in theory-of-mind, the ability to5

reason about the beliefs and intentions of others. In this paper, we extend the frame-6

work of multi-agent influence diagrams (MAIDs) to explicitly capture this complex7

form of reasoning. We also show that our extended framework, MAIDs with in-8

complete information (II-MAIDs), has a strong theoretical connection to dynamic9

games with incomplete information with no common prior over types. We prove10

the existence of important equilibria concepts in these frameworks, and illustrate11

the applicability of II-MAIDs using an example from the AI safety literature.12

1 Introduction13

The concept of agency plays a central role in AI, from philosophical discussions of the nature14

of artificial agents [5] to the practical engineering of agent-like systems [12, 39]. Existing work15

formalising agency typically focuses on its goal-directed nature in a single-agent setting [25, 30].16

However, a full picture of agency should describe systems that represent themselves and other systems17

as agents, i.e., systems with theory-of-mind (ToM) [7, 8].18

ToM is characterised by multi-agent interactions involving higher-order intentional states [7], such19

as beliefs about beliefs, or, in the case of deception, intentions to cause false beliefs [40]. Causality20

often plays a key role in philosophical notions of belief [38], and causal models offer a powerful21

representation of beliefs [14, 36], intentions [41], and other intentional states [13]. Additionally,22

causal models have been extended to capture game-theoretic dynamics in the setting of multi-agent23

influence diagrams (MAIDs) [26, 16]. However, MAIDs assume that all agents in the model have24

the same, correct beliefs about the world, each other’s beliefs, each other’s beliefs about beliefs, and25

so on. With this assumption in place, MAIDs do not explicitly model agents’ subjective beliefs or26

higher-order beliefs.27

We generalise MAIDs to the setting of incomplete information with no common prior, wherein agents28

may have different and inconsistent beliefs about the world, and each agent may have different29

beliefs about the beliefs of other agents. Our framework, incomplete information MAIDs (II-MAIDs),30

includes explicit subjective belief hierarchies, and therefore enables us to model systems of agents31

with more complex and realistic ToM.32

Contributions and Outline. In Section 2, we discuss formal background on MAIDs and EFGs. We33

formally define our framework of MAIDs with incomplete information (II-MAIDs) in Section 3. In34

Section 4, we present a variant of an existing formalism for incomplete information games using35

EFGs rather than normal-form games, and in Section 5 we prove that it is equivalent to MAIDs with36

incomplete information. Finally, we review related literature (Section 6) and conclude (Section 7).37
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2 Background38

In this section, we provide formal definitions of MAIDs and EFGs and explain these game represen-39

tations using an example. A Bayesian network is a probabilistic graphical model representing a set of40

variables and their conditional dependencies via a directed acyclic graph. Influence diagrams (IDs)41

generalise Bayesian networks to the decision-theoretic setting by adding decision and utility variables42

[24, 33], and multi-agent influence diagrams (MAIDs) generalise IDs by introducing multiple agents43

[26]. A MAID can therefore be viewed as a Bayesian network over a graph without parameters for44

the decision variables. Endowing edges in a MAID with causal meaning results in a causal game.45

Definition 1 (26, 16). A multi-agent influence diagram (MAID) is a structure M = (G,θ) where46

G = (N,V ,E ) specifies a set of agents N = {1, . . . , n} and a directed acyclic graph (V ,E ). V47

is partitioned into chance variables X , decision variables D, and utility variables U ; decision and48

utility variables are further partitioned based on which agent they belong to, so D =
⋃

i∈N Di and49

U =
⋃

i∈N U i. The parameters θ = {θV }V ∈V \D define the conditional probability distributions50

(CPDs) Pr(V | PaV ; θV ) for each non-decision variable such that for any parameterisation of the51

decision variable CPDs, the resulting joint distribution over V induces a Bayesian network. A52

MAID is a causal game if its edges represent direct causal relationships, or formally if (once decision53

variables are parameterised) the result of an intervention do(X = x) for any X ⊆ V can be computed54

using the truncated factorisation formula: P (v | do(X = x);θ) = Πi:vi /∈xP (vi | pavi ; θi) if v is55

consistent with x, and P (v | do(X = x);θ) = 0 otherwise.56

Edges into decisions are information links observed by an agent, and agents choose their decisions to57

maximise their expected utility. Causal games refine MAIDs, and as such all results presented here58

with application to MAIDs also apply to causal games and further refinements, including structural59

causal games (SCGs) [16].60

Example 1. Figure 1 displays two MAIDs. For Figure 1a, suppose a human H is evaluating the61

honesty of an AI system A. The AI has a level of capabilities C ∈ {low, high} that the human can62

directly observe. Each capability level occurs with probability 0.5. The human also performs an63

evaluation in which the AI is asked to demonstrate its capabilities. The AI can demonstrate low or64

high capabilities. After the evaluation, the human chooses to deploy or not deploy the AI. The AI65

receives utility 1 if deployed and -1 if not deployed. The human receives utility 0 for not deploying66

the AI, utility 1 for deploying an honest AI, and utility -5 for deploying a dishonest AI. Figure 1b is67

similar, but instead of an honesty evaluation, it is an evaluation of dangerous capabilities. In this case,68

the human only learns about the AI’s capabilities from the evaluation. The AI’s utility is the same,69

but the human now receives utility 0 for not deploying the AI, utility 1 for deploying an AI with low70

dangerous capabilities, and utility -5 for deploying an AI with high dangerous capabilities.71

In these examples, a MAID describes the objective world, and it is assumed to be common knowledge72

that this MAID describes reality. However, an agent may be uncertain or incorrect about the game73

they are playing or the beliefs of other agents. Settings in which agents are uncertain about aspects74

of the game structure are known as incomplete information games. Our framework of incomplete75

information MAIDs (II-MAIDs), introduced in Section 3, will enable us to explicitly model the varied76

subjective beliefs that arise in these settings. We now define EFGs, with our running example in EFG77

form in Figure 2. We will also make use of the notions of perfect recall and strategies/policies in78

MAIDs and EFGs.79
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Figure 1: Graphical representations of MAIDs include environment variables (circular), agent deci-
sions (square), and utilities (diamond). Decisions and utilities are coloured according to association
with particular agents. Solid edges represent causal dependence and dotted edges are information
links. Conceptual context and domains and CPDs for the variables are given above the diagrams.
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Figure 2: In (a) and (b), graphical representations of EFGs include environment variables (V 0),
agent decisions (V A and V H ), utilities (tuples on the top and bottom), and information sets (dotted
lines). The EFGs in Figure 2a and Figure 2b are equivalent to the MAIDs in Figure 1a and Figure 1b,
respectively. V 0 represents the initial move, made by nature, which determines A’s capability C. V A

1 ,
V A
2 and V H

1 , V H
2 , V H

3 , & V H
4 represent moves made by A and H , respectively. I21 and I22 represent

H’s non-singleton information sets.

Definition 2 (27). An extensive form game (EFG) is a structure E = (N,T, P,A, λ, I, U). N =80

{1, . . . , n} is a set of agents. T = (V ,E ) is a game tree with nodes V connected by edges E that81

are partitioned into sets V 0,V 1, . . . ,V n,L where R ∈ V and L ⊂ V are the root and leaves of82

T , respectively, V 0 are chance nodes, and V i are the decision nodes controlled by agent i ∈ N .83

P = {P1, . . . , P|V 0|} is a set of probability distributions Pj(ChV 0
j
) over the children of each chance84

node V 0
j . A is a set of actions, where Ai

j ⊆ A denotes the set of actions available at each node in85

V i
j ∈ V i; λ : E → A is a labelling function mapping each edge (V i

j , V
k
l ) to an action a ∈ Ai

j .86

I = {I1, . . . , In} contains a set of of information sets Ii for each agent i ∈ N, where Ii ⊂ 2V
i

87

partitions the decision nodes Vi belonging to agent i. U : L → Rn is a utility function mapping each88

leaf node to a vector that determines the final payoff for each agent. A history h ∈ H is a sequence89

of actions (including values of chance variables) leading from the root of the game tree to a particular90

node. Each node v ∈ V is associated with a unique history h(v). An observation at decision node91

Iij,k in information set Iij ∈ Ii for agent i ∈ N is the intersection of all the histories of the nodes in92

that information set, i.e., the common actions in the histories {h(v) : v ∈ Iij}.93

Definition 3 ([26]). Agent i in a MAID M is said to have perfect recall if there exists a total94

ordering D1 ≺ · · · ≺ Dm over Di such that (PaDj ∪Dj) ⊆ PaDk
for any 1 ≤ j < k ≤ m. M is95

a perfect recall game if all agents in M have perfect recall.96

Definition 4. An EFG is said to be a perfect recall game if, for each player i ∈ N , and for any two97

decision nodes v, v′ ∈ Vi that belong to the same information set Iij,k, the following two conditions98

hold. First, the sequences of actions taken by player i leading to v and v′ must be identical. Second,99

the sequences of information sets visited by player i on the paths to v and v′ must be identical.100

Definition 5. Given a MAID M = (G,θ), a decision rule πD for D ∈ D is a CPD πD(D | PaD)101

and a partial policy profile πD′ is a set of decision rules πD for each D ∈ D′ ⊆ D. A (behavioural)102

policy πi refers to πDi , and a (full, behavioural) policy profile π = (π1, . . . ,πn) is a tuple of103

policies. π−i := (π1, . . . ,πi−1,πi+1, . . . ,πn) specifies policies for all agents except i.104

Definition 6 ([15]). Given an EFG E = (N,T, P,A, λ, I, U), a (behavioural) strategy σi for a105

player i is a set of probability distributions σi
j : A

i
j → [0, 1] over the actions available to the player106

at each of their information sets Iij . A strategy profile σ = (σ1, σ2, ..., σn) is a tuple of strategies107

for all players i ∈ N . σ−i = (σ1, ..., σi−1, σi+1, ..., σn) denotes the partial strategy profile of all108

players other than i.109

By combining π with the partial distribution Pr over the chance and utility variables in a MAID,110

we obtain a joint distribution: Prπ(x,d,u) :=
∏

V ∈V \D Pr(v | paV ) ·
∏

D∈D πD(d | paD), over111
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all the variables in M; inducing a Bayesian network. The expected utility for an agent i given a112

policy profile π is defined as the expected sum of their utility variables in this Bayesian Network,113 ∑
U∈Ui Eπ[U ]. Similarly, in an EFG E , the combination of the distributions in P with a strategy114

profile σ defines a full probability distribution over paths in E .115

Finally, prior work 15 has established an equivalence result between MAIDs and EFGs. This result116

takes the form of two transformation procedures converting between MAIDs and EFGs, called117

efg2maid and maid2efg. These transformations both imply the existence of a map from strategies118

in the EFG to policies in the MAID, such that expected utilities are preserved for all agents. This119

means that under either transformations, equilibria in the original game are equilibria in the resulting120

game.121

3 II-MAID Technical Machinery122

We start with an informal description of our II-MAIDs framework before presenting the formal123

definition. A core component of the framework is a set S containing subjective MAIDs. A subjective124

MAID is a self-referential object describing a possible game as envisioned by either the external125

modeller (we call this the objective model S∗) or an agent playing the game. A subjective MAID S126

consists of a MAID M that describes the game being played and beliefs PS
i for each agent i in the127

game. The notation PS
i denotes agent i’s prior over S when the objective model is S, and PS

i (S′)128

denotes the probability ascribed by agent i to subjective MAID S′ given that the objective MAID is S.129

This framework enables us to model theory-of-mind, which is typically characterised by higher-order130

intentional states such as beliefs about beliefs about... ([7]).131

Definition 7. An incomplete information MAID (II-MAID) is a tuple S = (N, S∗,S), where N
is a set of agents, S is a set of subjective MAIDs, S∗ ∈ S is the correct objective model, and each
subjective MAID is a tuple S = (MS , (PS

i )i∈N) ∈ S with MS a MAID and PS
i a prior over S for

agent i such that the following “coherency condition” [17] holds:

PS
i ({S′ ∈ S : PS′

i = PS
i }) = 1 ∀i ∈ N, S ∈ S.

First, notice that the recursive nature of S, with each element S ∈ S including probability distributions132

PS
i over S, allows us to model belief hierarchies of arbitrary and infinite depth. Next, note that agent i133

“observes” PS∗

i at the start of the game, and this justifies the coherency condition: since agent i knows134

PS∗

i , she can rule out all subjective MAIDs S for which PS
i ̸= PS∗

i . Third, note that II-MAIDs are a135

strict generalization of MAIDs: a standard MAID is an II-MAID in which PS∗

i (S∗) = 1 ∀i ∈ N,136

i.e. all agents assign probability 1 to S∗, the objective model.137

Example 2. Suppose a human H is performing an honesty evaluation on an AI A, but A believes
that it is undergoing a dangerous capabilities evaluation. This combines Figure 1a and Figure 1b: H
correctly believes that Figure 1a is the true MAID and also knows that A is mistaken. A incorrectly
believes that Figure 1a is the true MAID and also incorrectly believes that H believes Figure 1a is
the true MAID. We can represent this, including the full infinite belief hierarchy, as an II-MAID as
follows: N = {H,A},S = {SH , SA}, and S∗ = SH , where

SH = (MH , (PSH

H (SH) = 1, PSH

A (SA) = 1)), SA = (MA, (PSA

H (SA) = 1, PSA

A (SA) = 1))

SH is the correct objective model, and is also believed with certainty by H . It specifies the true138

MAID MH represented in Figure 1a, and H’s certainty in SH as well as A’s misplaced certainty in139

SA. SA represents A’s certainty about the MAID MA in Figure 1b, and A’s mistaken belief that H140

is also certain about SA. In fact, A believes it is common knowledge that SA is the true II-MAID.141

SH and SA concisely convey the objective game and all higher-order beliefs for H and A. It can be142

easily verified that the coherency condition holds in this example.143

A common assumption in the incomplete information games literature [17, 18, 19] is that agents’144

beliefs can be derived from a common prior, i.e., agents have consistent beliefs. This assumption145

means that there exists some common knowledge prior distribution p over the set of subjective146

MAIDs S, such that upon arriving in any subjective MAID S ∈ S, agents perform Bayesian updating147

to yield their beliefs. This assumption allows for a game with incomplete information to be converted148

into a game with imperfect information [17], but places a strong constraint on the types of belief149
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hierarchies that can be modelled; namely, it must hold that150

p(S′) =
∑
S∈S

PS
i (S′)p(S) for all S′ ∈ S, i ∈ N. (1)

Example 2 (continued). We see that our running example cannot be modelled with a common prior.151

Supposing that the condition in Equation (1) holds, A’s beliefs are only consistent with a prior in p in152

which p(SH) = 0, which would force H to assign zero probability to SH in both SH and SA.153

3.1 Information Sets and Policies154

When forming a policy at the initialisation of an II-MAID S = (N, S∗,S), each agent may have155

significant uncertainty about S∗, the objective model, represented by their prior over subjective156

MAIDs PS∗

i . They should certainly plan for every eventuality deemed possible according to this prior.157

We argue that they should also produce a plan for what to do in circumstances deemed impossible158

under their prior, to avoid situations with undefined actions that might arise for example when159

PS∗

i (S∗) = 0, and to avoid forcing PS
i (S′) > 0 for all i ∈ N, S, S′ ∈ S.160

Therefore, a policy should contain a plan for every possible eventuality that may arise were any161

subjective MAID to be the objective model. But there may be cases where upon reaching a decision162

node D, agent i cannot fully determine the values of certain preceding variables, including cases where163

previous actions were unobserved by the agent, but also including cases in which the observations164

of the agent do not provide enough information to distinguish between multiple subjective MAIDs.165

In these indistinguishable eventualities, a policy must specify the same behaviour, and so we must166

define some analogy of information sets in EFGs.167

At a decision node D, an agent observes the values of PaD and also observes the action set available168

to it, dom(D). A policy should index every possible observation-action set combination (i.e. every169

tuple containing a non-null decision and an associated action set) to a mixed action. We define the170

information sets in an II-MAID as follows:171

Definition 8. Given an II-MAID S = (N, S∗,S), we iteratively build the information sets. For
each subjective MAID S ∈ S and each agent i ∈ N, denote Di(S) as the set of decision nodes
for agent i in MS , PaDi

(S) as the set of parents of Di in MS , and PrπS(·) as the distribution of
variables in MS under some policy π. Define

IS,i := ∪Di∈Di(S){(paDi
, dom(Di)) | paDi

∈ dom(PaDi
(S)) : Pr πS(paDi

) > 0 for some π}.

Then agent i’s information sets are defined as Ii(S) := ∪S∈SIS,i. Finally, we can define the set of172

information sets as I(S) = (Ii(S))i∈N.173

Definition 9. We define an II-MAID S = (N, S∗,S) as having perfect recall if for each S ∈ S,174

MS is a perfect recall game.175

Definition 10. Given an II-MAID S = (N, S∗,S), a decision rule πI for I = (x,d) ∈ I(S), where176

x is a context and d is an action set, is a CPD πI(· | x) over d. A partial policy profile πI′ is a set177

of decision rules πI for each I ∈ I ′ ⊆ I(S), where we write π−I′ for the set of decision rules for178

each I ∈ I(S) \ I ′. A (behavioural) policy πi refers to πIi(S), a (full, behavioural) policy profile179

π = (π1, . . . ,πn) is a tuple of policies, and π−i := (π1, . . . ,πi−1,πi+1, . . . ,πn).180

We note that unlike in standard MAIDs, in which a decision rule specifies behaviour at a given181

decision variable in all contexts, decision rules in II-MAIDs specify a CPD only given a single182

context. We can then calculate the subjective expected utility of a joint behaviour policy for agent i183

according to their beliefs PS∗

i as U i
S∗(π) :=

∑
S∈S

∑
U∈Ui(S)

∑
u∈dom(U) uPr

π
S(U = u)PS∗

i (S),184

where Ui(S) is the set of utility variables associated with agent i in MS and PrπS is the post-policy185

distribution of variables in MS .186

We note that the game we have described does not satisfy the epistemic conditions that are tightly187

sufficient for Nash equilibria [2]. The setting of incomplete information we describe means that agents188

do not have reliable means by which to predict the actions of their opponents. Our framework allows189

for situations with no common knowledge beyond the set of possible worlds S, and in particular190

incorrect beliefs about the values placed by opponents on particular outcomes. Although a Nash191

equilibrium exists, agents would have to stumble across it. We further discuss solution concepts for192

II-MAIDs in Section 5.1.193
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4 Extensive Form Games with Incomplete Information194

We now present a formalisation of EFGs with incomplete information as per [32]. Our formalisation195

modifies the framework from [31] to use EFGs rather than normal-form games. First, we start with a196

definition of belief spaces.197

Definition 11 (Adapted from Def 10.1 in [31]). Let N be a finite set of agents and (S,S) be a198

measurable space of EFGs. A belief space of the set of agents N over the set of states of nature is199

an ordered vector Π = (Y,Y, s, (bi)i∈N), where (Y,Y) is a measurable set of states of the world;200

s : Y → S is a measurable function, mapping each state of the world to an EFG. For each agent201

i ∈ N, a function bi : Y → ∆(Y ) maps each state of the world ω to a probability distribution over202

Y . We will denote the probability that agent i ascribes to event E ⊆ Y , according to their probability203

distribution bi(ω), by bi(E | ω). We require the functions (bi)i∈N to satisfy the following conditions:204

• Coherency: for each agent i ∈ N and each ω ∈ Y , the set {ω′ ∈ Y : bi(ω
′) = bi(ω)} is205

measurable in Y and bi({ω′ ∈ Y : bi(ω
′) = bi(ω)} | ω) = 1.206

• Measurability: for each agent i ∈ N and each measurable set E ∈ Y , the function207

bi(E | ·) : Y → [0, 1] is a measurable function.208

A state of the world in a belief space takes the form ω = (s(ω), b1(ω), . . . , bn(ω)), where s(ω) is209

the true EFG being played, and bi(ω) is the type of agent i, a distribution over states of the world210

representing agent i’s beliefs. When in state of the world ω, agent i has beliefs bi(ω), but does211

not necessarily know the state of the world (or s(ω)), since there may be some ω′ ∈ Y such that212

bi(ω
′) = bi(ω). It is assumed that all agents know bj(ω

′) for all j ∈ N and all ω′ ∈ Y , and so bi(ω)213

defines a full belief hierarchy for agent i. For example, when in state of the world ω, agent i believes214

that agent j places
∑

ω′∈Y bi(ω
′ | ω)bj(ω′′ | ω′) probability on the state of the world being ω′′.215

Definition 12 (Adapted from Def 10.37 in [31]). An incomplete information EFG (II-EFG) is216

an ordered vector G = (N, S,Π), where N is a finite set of agents, S is a finite set of EFGs217

s = (N, Ts,Ps,Ds, λs, I(s), Us), and Π = (Y,Y, s, (bi)i∈N) is a belief space of the players N over218

the set of EFGs S. An II-EFG G = (N, S,Π) has perfect recall if for each s ∈ S, s is a perfect219

recall EFG.220

Definition 13. The meta-information sets Ii for agent i ∈ N in an II-EFG G = (N, S,Π) are defined221

as follows. Let Ii = ∪s∈SI
i(s) be the set of all information sets for agent i across all EFGs s ∈ S.222

Define an equivalence relation ∼ on elements of Ii such that Ii(s) ∋ Iik(s) ∼ Iil (s
′) ∈ Ii(s′) if223

and only if: (1) Di
s,k = Di

s′,l. That is, the nodes in both information sets must have the same set224

of available actions. (2) The nodes in Iik(s) and Iil (s
′) must have the same observations. Define225

the “belief-free” meta-information sets Iibf = Ii/ ∼, the quotient set of Ii by ∼, i.e., the set of226

equivalence classes partitioning Ii. Letting T i = {bi(ω) : ω ∈ Y } be the set of possible beliefs for227

agent i, we set Ii = Iibf × T i.228

Intuitively, we can think of a meta-information set for agent i as a belief bi(ω) and a set of information229

sets in different games that the agent cannot distinguish between at the point of decision, given beliefs230

bi(ω). Arriving at a node in one of these information sets, the agent is unable to distinguish between231

some possible histories, and potentially some possible EFGs. Therefore, strategies in this type of232

game must define a mixed action at each meta-information set.233

This formalisation generalises the better-known Harsanyi game with incomplete information [17], by234

dropping the assumption that agents have as common knowledge a prior over their types (bi)i∈N, i.e.235

that they have consistent beliefs. Maschler ([31]) argues that in most practical settings, it is unrealistic236

to expect consistency of beliefs, and Example 2 above supports this argument.237

This game has two stages, known as the ex-ante and interim stages. The former takes place before the238

state of the world ω ∈ Y is selected. We note that without a common prior, there is no distribution239

from which a state of the world can be said to be selected, and so the procedure by which it is240

generated is left unspecified. The work we present here concerns the interim stage of the game, which241

takes place after the state of the world has been selected. At this stage, all agents i know their type242

bi(ω).243

Example 3. Coming back to our recurring example, we demonstrate how to model the situation244

described with an II-EFG (N , S,Π) at interim stage, where Π = (Y,Y, s, (bi)i∈N ). N = {H,A},245
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and we let Y = {ω∗, ωa}, where the true state of the world is ω∗, and the state of the world assumed246

true by the agent is ωa, set s(ω∗) as the EFG in Figure 2a and s(ωa) as the EFG in Figure 2b. S is a set247

containing these two EFGs. All that remains is to specify the beliefs bi(ω) for each ω ∈ Y and each248

agent i ∈ N . These are bH(ω∗ | ω∗) = 1, bH(ωa | ωa) = 1, bA(ω
a | ω∗) = 1, bA(ω

a | ωa) = 1.249

In what follows, we define Iti as the set of meta-information sets with belief t ∈ {bi(ω) : ω ∈ Y },250

and denote by DI the action set at meta-information set I .251

Definition 14 (Adapted from Def 10.38 in [31]). A behaviour strategy of player i in an II-EFG G =
(N, S,Π) is a tuple σi = (σω

i )ω∈Y with each element a measurable function σω
i ∈×Ii∈I

bi(ω)

i

∆(DIi)

for some state of the world ω ∈ Y . σω
i determines a mixed action for each meta-information set

with belief bi(ω). σω
i is dependent solely on the type of the player bi(ω). In other words, for each

ω, ω′ ∈ Y ,
bi(ω) = bi(ω

′) =⇒ σω
i = σω′

i .

A joint behaviour strategy takes the form σ = (σi)i∈N. Further denote σω = (σω
i )i∈N. We denote252

by σi[I] the behaviour of agent i at meta-information set I .253

Then, given some joint behaviour strategy σ, agent i’s expected utility when in state of the world ω254

(according to their beliefs bi(ω)) is255

γG
i (σ | ω) :=

∑
ω′∈Y

U i
s(ω′)(σ

ω′
)bi(ω

′ | ω)

=
∑

ω′∈{ω′:bi(ω′)=bi(ω)}

U i
s(ω′)(σ

ω
i , σ

ω′

−i)bi(ω
′ | ω) =: γG

i (σω
i , σ−i | ω).

This follows from the coherency condition bi({ω′ ∈ Y : bi(ω
′) = bi(ω)} | ω) = 1. Under some256

assumptions, at the interim stage, we can prove the existence of Nash equilibria.257

Definition 15. A Nash equilibrium at the interim stage of an II-EFG G = (N, S,Π) with state of the
world ω is a strategy σ̂ satisfying

γG
i (σ̂ω

i , σ̂−i | ω) ≥ γG
i (σω

i , σ̂−i | ω), ∀i ∈ N,∀σω
i ∈ ×

Ii∈I
bi(ω)

i

∆(DIi)

Theorem 16. Let G = (N, S,Π) be an II-EFG with perfect recall, where Y is a finite set of states of258

the world, and each player i has a finite set of actions Di. Then at the interim stage, G has a Nash259

equilibrium in behaviour strategies. Pf: A.20260

Note that σω has the same expected payoff for agent i in all states of the world ω′ such that261

bi(ω
′) = bi(ω). Hence, if σω

i is a perceived best response to σω
−i in ω, it is also a perceived best262

response in ω′.263

We can also prove the existence of a Bayesian equilibrium at the ex-ante stage of the game.264

Definition 17 ([31] 10.39). A Bayesian equilibrium is a strategy σ̂ = (σ̂i)i∈N satisfying

γG
i (σ̂ω

i , σ̂−i | ω) ≥ γG
i (σω

i , σ̂−i | ω), ∀i ∈ N,∀σω
i ∈ ×

Ii∈I
bi(ω)

i

∆(DIi),∀ω ∈ Y.

Theorem 18 (Adaptation of [31] Theorem 10.42). Let G = (N, S,Π) be an II-EFG with perfect265

recall, where Y is a finite set of states of the world, and Di is finite for all agents i ∈ N. Then at266

ex-ante stage, G has a Bayesian equilibrium in behaviour strategies. Pf: A.22267

5 Equivalence of Frameworks268

In this section, we show that our framework is “equivalent” to the interim stage of an II-EFG. At269

the interim stage of an II-EFG G = (N, S,Π) where Π = (Y,Y, s, (bi)i∈N), with state of the270

world ω, the true EFG is defined by s(ω), and the belief hierarchies are defined by bi(ω), for each271

agent i ∈ N. In an II-MAID S = (N, S∗,S) with objective model S∗ = (MS∗
, (PS∗

i )i∈N), the272

true MAID is MS∗
and the belief hierarchies are defined by PS∗

i for each agent i ∈ N. In both273
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frameworks, the belief hierarchies are probability distributions over objects (states of the world274

ω = (s(ω), (bi(ω))i∈N) in the former, subjective MAIDs S = (MS , (PS
i )i∈N) in the latter) that275

determine a true game and a belief hierarchy for each agent. Intuitively, the two frameworks are276

representing the same things, though our framework takes the games upon which belief hierarchies277

are built to be MAIDs, not EFGs.278

Building a framework on top of MAIDs rather than EFGs has the benefit we need not describe the279

ex-ante stage of the game, as we treat the “objective model” as known by the modeller. II-MAIDs280

also have the advantage that games are represented with MAIDs, which can be much more compact281

than EFGs, and can also represent causal relationships between variables. Motivated by AI safety, we282

see II-MAIDs as a useful means with which to describe multi-agent interactions, as it is likely that283

the agents of the future will both reason causally and model the beliefs of other agents.284

We now show, using results connecting EFGs to MAIDs that there exists a natural mapping between285

strategies in the two frameworks that preserves expected utilities according to the agents’ subjective286

models, and therefore preserves Nash equilibria. We first define a notion of equivalence, such that if287

an II-MAID S and an II-EFG G are equivalent, then there exists such a natural mapping.288

Definition 19 (Equivalence). We say that an II-MAID S = (N, S∗,S) and an II-EFG G = (N, S,Π)289

at interim stage, with state of the world ω, are equivalent if there is a bijection f : Σ → Q/ ∼290

between the strategies Σ in G’s interim stage, and a partition of the policies Q in S (the quotient291

set of Q by an equivalence relation ∼) such that: (1) for π, π′ ∈ Q, π ∼ π′ only if πi and π′
i differ292

only on null decision contexts according to PS∗

i , for each agent i ∈ N, and (2) for every π ∈ f(σ)293

and every agent i ∈ N, U i
S(π) = γG

i (σ | ω), for each σ ∈ Σ. We refer to f as a natural mapping294

between G and S.295

We leverage maid2efg and efg2maid 15 to construct transformations between II-MAIDs and II-296

EFGs, which we denote maid2efgII and efg2maidII (see Appendix B). These transformations297

start by mapping all MAIDs (EFGs) in the belief hierarchy to EFGs (MAIDs) using maid2efg298

(efg2maid), and then match up the corresponding features of the frameworks as detailed above. They299

guarantee a one-to-one correspondence between meta-information sets in the II-EFG and information300

sets in the II-MAID, allowing for a simple map between strategies and policies.301

Theorem 20. If G = maid2efgII(S) or S = efg2maidII(G), G and S are equivalent. Pf: A.24302

This result shows that II-MAIDs and II-EFGs at the interim stage have the same representational303

capacity, that is, they can both describe the same set of games.304

5.1 Difficulties in Solving Incomplete Information MAIDs305

The equivalence of II-EFGs and II-MAIDS mean that II-MAIDs inherit theoretical guarantees of306

II-EFGs, including the existence of Nash equilibria in the case of perfect recall and finite S and finite307

action spaces. (Theorem 18 does not carry over to II-MAIDs, since the equivalence is with the interim308

stage of II-EFGs, and Bayesian equilibria exist in the ex-ante stage.)309

Theorem 21. Let S = (N, S∗,S) be an II-MAID, where S is a finite set of subjective MAIDs, S310

has perfect recall, and dom(V ) is finite for each V ∈ MS for each S ∈ S. Then S has a Nash311

equilibrium in behaviour policies. Pf: A.25312

However, Nash Equilibria may not be sensible outcomes in an II-MAID. Let us return to our running313

example to see why.314

Example 2 (continued). One Nash Equilibrium in the capabilities evaluation game is when the AI315

always honestly reports its true capabilities and the human deploys the AI if and only if it honestly316

reports its true capabilities. The outcome in this case is that the human and the AI each receive 1317

utility, and they are each playing best responses to each other. However, this is not what the AI318

would predict, because it has an incorrect conception of the world. It believes the human only wants319

to deploy it if it has low dangerous capabilities, so it would likely believe that the human will not320

deploy it if it demonstrates high capabilities. Even though demonstrating truthful capabilities is a321

best response to the human’s optimal policy, the AI is unlikely to demonstrate high capabilities when322

it has them because doing so is not a best response to the AI’s beliefs. An outcome that intuitively323

seems more plausible in this case is that the AI hides its high capabilities, but the human knows that324

the AI has been dishonest and decides not to deploy it, yielding -1 utility for the AI and 0 utility for325

the human.326
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This example suggests that a plausible solution concept should involve every agent playing a best327

response to their beliefs at every level in the belief hierarchy, whether or not this ends up being a328

best response to the actual policies of other agents. We leave it to future work to flesh out a solution329

concept along these lines. This will likely require augmenting agents’ beliefs about the world to330

include beliefs about the policies of other agents, and solutions would be policies for all agents along331

with a setting for every agent’s beliefs about the policies of other agents at every level of their belief332

hierarchy. There may be further restrictions that narrow the range of plausible outcomes; again, we333

believe this is a promising direction for future work.334

6 Related Work335

MAIDs [26] were introduced as a compact means of representing a game. Causal games [16] refine336

MAIDs by attributing a causal meaning to each edge in the DAG, and have been extensively applied337

to problems in AI safety [10, 6, 9, 20, 28, 36, 41, 29, 40]. In his three-part seminal paper [17, 18, 19],338

John Harsanyi demonstrated means by which to model situations of incomplete information as339

situations of complete but imperfect information, where uncertainty about aspects of the game is340

remodelled as failure to observe the types of other agents. His work largely relies on an assumption341

of “belief consistency”, i.e., the existence of a common prior over types, which we discard in this342

work, although his notion of Bayesian equilibrium continues to apply without this assumption [32]. A343

popular framework called NIDs 11 constructs belief hierarchies upon MAIDs, under the assumption344

of a common prior. NIDs are shown to reduce to a single MAID.345

A majority of theoretical work on incomplete information games retains the belief consistency346

assumption, as discarding it introduces significant complications to the modelling of incomplete347

information. Some previous works [1, 34, 31] have proposed means by which to represent these348

games. Early work [34] demonstrates that strategies will converge to equilibria in repeated Bayesian349

games, even without a common prior. More recent work [1] represented these games with a belief350

graph, a graphical structure compactly representing different possible worlds and their connections.351

This places a restriction on the game by forcing each information set to have a “corresponding”352

information set in each other possible world, representing the same decision. The formalism for353

II-EFGs discussed in this paper is a slight adaptation of an existing framework [31], introducing354

‘meta-information sets’ to model dynamic games. This framework can capture any belief hierarchy355

for all agents, on a set of EFGs.356

We prove that Nash equilibria exist in our framework, under some assumptions. Other works offer357

more refined solution concepts for games with incomplete information with no common prior. Mirage358

equilibria [37] assume that agents attribute to their opponents a belief hierarchy one layer shorter359

than their own. Belief-free equilibria [22, 21, 23] do not depend on an agent’s belief about the state360

of nature, and so obviate the need to update beliefs as the game progresses, but are not guaranteed to361

exist. ∆-rationalization [4] generalises the notion of rationalization [35, 3] to games with incomplete362

information. It places a restriction ∆ on the first-order beliefs of each agent, providing a refinement363

on the set of Bayesian equilibria. Future work could find analogies to these solution concepts suitable364

for II-MAIDs.365

7 Conclusion and Limitations366

Accurately modeling agentic cognition is crucial for understanding, describing, predicting, and367

steering agents’ behavior. In this paper, we have introduced the framework of incomplete information368

MAIDs (II-MAIDs) for explicitly modeling higher-order beliefs in multi-agent interactions alongside369

probabilistic and causal dependencies between variables. We have demonstrated the firm theoretical370

grounding of the framework by proving the connections between our work and existing frameworks371

for incomplete information games, using incomplete information extensive-form games as a bridge.372

We believe this framework will prove useful going forward as a tool for modeling realistic multi-373

agent interactions, and we are particularly excited about its applications for ensuring the safety of374

increasingly agentic AI systems. The main limitation of our work is the lack of a useful solution375

concept. Nash equilibria exist, but are in general impossible for agents to identify. We hope that376

future work will define useful solution concepts for our framework, so that we can gain a better377

understanding of the behaviour we should expect from agents engaging in theory-of-mind.378
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Appendix460

A Proofs461

Theorem 16. Let G = (N, S,Π) be a game with incomplete information with perfect recall, where462

Y is a finite set of states of the world, and each player i has a finite set of actions Di. Then at interim463

stage, G has a Nash equilibrium in behaviour strategies.464

Proof. Given the finite sets of states of the world Y and actions Di for each player i ∈ N, we can465

focus on behavior strategies due to Kuhn’s theorem, which ensures that in games with perfect recall,466

mixed strategies are realization-equivalent to behavior strategies.467

The expected utility for player i in state of the world ω is:468

γG
i (σ | ω) =

∑
ω′∈{ω′:bi(ω′)=bi(ω)}

U i
s(ω′)(σ

ω′
)bi(ω

′ | ω).

This utility function is continuous and multilinear in the behavior strategies σω
i .469

Given that the strategy space is a compact and convex set of behavior strategies, and the utility470

functions are continuous, we apply the Kakutani fixed-point theorem. This theorem guarantees the471

existence of a fixed point, which corresponds to a Nash equilibrium in behavior strategies.472

Thus, there exists a Nash equilibrium σ̂ in behavior strategies such that:473

γG
i (σ̂ω

i , σ̂−i | ω) ≥ γG
i (σω

i , σ̂−i | ω) ∀i ∈ N,∀σω
i ∈ ×

Ii∈I
bi(ω)

i

∆(DIi).

474

Theorem 18 (Adaptation of [31] Theorem 10.42). Let G = (N, S,Π) be a game with incomplete475

information, where Y is a finite set of states of the world, and Di is finite for all agents i ∈ N. Then476

at ex-ante stage, G has a Bayesian equilibrium in behaviour strategies.477

Proof. Since Y and Di are finite and each EFG in S has perfect recall, Kuhn’s theorem ensures that478

mixed strategies can be represented as behavior strategies. The expected utility for player i given a479

strategy profile σ is:480

γG
i (σ | ω) =

∑
ω′∈Y

U i
s(ω′)(σ

ω′
)bi(ω

′ | ω).

Given the compactness and convexity of the strategy space and the continuity of the utility functions481

γG
i (σ | ω), we apply the Kakutani fixed-point theorem. This guarantees the existence of a fixed point,482

which corresponds to a Bayesian equilibrium in behavior strategies.483

Thus, there exists a strategy profile σ̂ such that:484

γG
i (σ̂ω

i , σ̂−i | ω) ≥ γG
i (σω

i , σ̂−i | ω), ∀i ∈ N,∀σω
i ∈ ×

Ii∈I
bi(ω)

i

∆(DIi),∀ω ∈ Y.

Hence, σ̂ is a Bayesian equilibrium.485

Theorem 20. If G = maid2efgII(S) or S = efg2maidII(G) then G and S are equivalent.486

Proof (follows the proof of Lemma 1 in (15) closely). This follows from the construction of487

maid2efgII and efg2maidII.488

First suppose G = maid2efgII(S). A behaviour policy π in S specifies a distribution over actions489

at each information set I in S. Suppose that I has associated action set D. Each information set490

in S corresponds to a single meta-information set in G. Supposing that I = (x,d) corresponds491

to meta-information set J , we have that for all nodes Y ∈ J , and each d ∈ dom(D), there exists492

a unique Z ∈ ChY such that λ(Y, Z) = d. Thus, we can simply assign σi[J ] = πi(d | x). By493

construction, if under policy π an information set in S is reached with probability p, then in G under494

σ the corresponding meta-information set will also be reached with probability p. It follows that495

expected utilities in G and S are the same, under σ and π respectively.496
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Second, suppose S = efg2maidII(G). By our construction, policies defined on S define a mixed497

action on each information set, defined as a non-null decision context crossed with an action set.498

Again, using our constructed bijection h between meta-information sets and information sets in499

our framework, we have a one-to-one mapping. Therefore, for any strategy σ in G, we can assign500

πi[h(J)] = σi[J ] for each J ∈ Iω
∗
(G), and again expected utilities are the same in both models.501

Theorem 21. Let S = (N, S∗,S) be an II-MAID, where S is a finite set of subjective MAIDs, S502

has perfect recall, and dom(V ) is finite for each V ∈ MS for each S ∈ S. Then S has a Nash503

equilibrium in behaviour policies.504

Proof. Applying G = maid2efgII(S) we yield a game with incomplete with perfect recall at505

interim stage ω, with finite action spaces. By Theorem 16, we know that G has a Nash equilibrium σ506

in behaviour strategies. By Theorem 20, we know that G and S are equivalent, and therefore there507

exists a utility-preserving map f from strategies in G to policies in S. Therefore and π ∈ f(σ) is a508

Nash equilibrium in S.509

B efg2maidII and maid2efgII510

B.1 maid2efgII511

maid2efg transforms a MAID to a set of equivalent EFGs, as per definition 17 in [[15]]. We are512

interested in transforming an II-MAID S = (N, S∗,S) into a set of equivalent games with incomplete513

information G = (N, S,Π) at interim stage with state of the world ω∗, as per definition 19. We514

describe such a transformation here, which we call maid2efgII:515

• The set of agents N in G is the same as in S .516

• The set of states of nature (EFGs) S is formed by {maid2efg(MS) : s ∈ S}.517

• We now construct the belief space Π = (Y,Y, s, (bi)i∈N). Each ω ∈ Y is of the form518

(s(ω), (bi(ω))i∈N). We build a map m : S → Y , noting that each subjective MAID s ∈ S519

is of the form s = (MS , (PS
i )i∈N).520

– s(m(s)) ∈ maid2efg(MS), choosing an arbitrary element.521

– bi(m(s′) | m(s)) := P s
i (s

′) for all s′ ∈ S.522

• ω∗ = mS∗
.523

• We now verify that information sets in the II-MAID are mapped one-to-one to meta-524

information sets with belief bi(ω∗) in the game with incomplete information defined by the525

above steps. Information sets in S are defined by decision-context-action-set pairs across526

MAIDs. For each MAID m ∈ {MS : s ∈ S}, maid2efg(m) is a set of EFGs, each of527

which has the same information sets, but potentially different variable orderings.528

– For any node Z (corresponding to some variable SZ in m) in the tree T of some EFG529

in maid2efg(m), it is labelled with an instantiation µ(Z) corresponding to the values530

taken by each EFG node on the path from the tree’s root R to Z. Nodes will only exist531

for those paths corresponding to values with non-zero probability according to m. We532

can query the values of the parents of SZ at the node Z via µ(Z)[PaSZ
]. maid2efg533

forms information sets by grouping nodes for which this value (and the corresponding534

node SZ in the MAID) is the same.535

– To form meta-information sets, we simply follow [definition of meta-information sets].536

Letting Iim be the information sets for agent i in any EFG in maid2efg(m), we can537

define an equivalence relation ∼ over ∪m∈MIim such that I1 ∼ I2 if and only if538

µ(Z1)[PaSZ1
] = µ(Z2)[PaSZ2

] and dom(SZ1
) = dom(SZ2

) for every Z1 ∈ I1 and539

every Z2 ∈ I2. Then the set of meta-information sets for player i is the quotient540

set ∪m∈MIim/ ∼ - the set of equivalence classes partitioning ∪m∈MIim. To match541

notation, for each element of each meta-information set, append the belief bi(ω∗) for542

the appropriate agent i ∈ N.543

– Hence, we have a one-to-one mapping between information sets in S and meta-544

information sets (restricted to belief bi(ω
∗) for each i ∈ N in G, and action sets545

are preserved under this mapping.546
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B.2 efg2maidII547

efg2maid transforms an EFG into an equivalent MAID, as per definition 17 in [[15]]. We are548

interested in transforming a game with incomplete information G = (N, S,Π), at interim stage with549

state of the world ω∗, into an equivalent II-MAID S = (N, S∗,S), as per Definition 19. We describe550

such a transformation here, which we call efg2maidII:551

• The set of agents N in S is the same as in G.552

• Given belief space Π = (Y,Y, s, (bi)i∈N), we can map each state of the world w =553

(s(ω), (bi(ω))i∈N) ∈ Y to a subjective MAID s ∈ S with g : Y → S, noting that s is of554

the form s = (MS , (PS
i )i∈N).555

– Mg(ω) := efg2maid(s(ω)).556

– P
g(ω)
i (g(ω′)) := bi(ω

′ | ω) for all w′ ∈ Y .557

• S∗ = g(ω∗).558

• Meta-information sets in the game with incomplete information are defined as sets of559

information sets, across various EFGs, in which nodes has the same action set and the same560

observations, with observations defined as all information available at a given information561

set. Since we are at the interim stage of the game, we can restrict our attention to those562

information sets with belief bi(ω∗). In the II-MAID resulting from the above operations,563

the information sets as per Definition 8 correspond one-to-one with those in the game with564

incomplete information, as they are defined by sets of observation-action set pairs, with565

observations defined by the values of parents of the given decision variable. efg2maid566

determines the parents of a decision variable according to those ancestors of nodes in a567

given intervention set that have the same value in paths to each node. As a result, there568

is a one-to-one correspondence between meta-information sets in a game with incomplete569

information, and the resulting II-MAID, and since action sets of decision variable are570

preserved by efg2maid, strategies can easily be mapped to policies.571

• More precisely, we can define a bijection between meta-information sets in G and informa-572

tion sets in S as follows. Given ω∗, we denote the meta-information sets in G corresponding573

to beliefs bi(ω∗) for some agent i as Iω
∗
(G). Further, for I ∈ Iω

∗
(G) denote D(I) as the574

associated action set and O(I) the associated observation. O(I) is a potentially empty tuple575

containing observed values of previous decisions or chance nodes. For any information set576

(p, d) ∈ I(S), where efg2maidII(G), p is a tuple containing the values of parent nodes,577

and d is the associated action set. (p, d) ∈ I(S) has the same type as (O(I), D(I)) for578

I ∈ Iω
∗
(G). Since for any I, J ∈ Iω

∗
(G), (O(I), D(I)) = (O(J), D(J)) =⇒ I = J ,579

we can construct a bijection h : Iω
∗
(G) → I(S); I 7→ (O(I), D(I)). We use this construc-580

tion in the proof of Theorem 20 when converting strategies from one framework to the581

other.582
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NeurIPS Paper Checklist583

1. Claims584

Question: Do the main claims made in the abstract and introduction accurately reflect the585

paper’s contributions and scope?586

Answer: [Yes]587

Justification: We claim in the abstract to have developed a new framework with a strong588

theoretical connection to dynamic games with incomplete information and no common prior589

over types. We also claim to have proven the existence of equilibria concepts. We have done590

both of these things, along with the rest of the stated achievements.591

Guidelines:592

• The answer NA means that the abstract and introduction do not include the claims593

made in the paper.594

• The abstract and/or introduction should clearly state the claims made, including the595

contributions made in the paper and important assumptions and limitations. A No or596

NA answer to this question will not be perceived well by the reviewers.597

• The claims made should match theoretical and experimental results, and reflect how598

much the results can be expected to generalize to other settings.599

• It is fine to include aspirational goals as motivation as long as it is clear that these goals600

are not attained by the paper.601

2. Limitations602

Question: Does the paper discuss the limitations of the work performed by the authors?603

Answer: [Yes]604

Justification: We discuss limitations in the conclusion.605

Guidelines:606

• The answer NA means that the paper has no limitation while the answer No means that607

the paper has limitations, but those are not discussed in the paper.608

• The authors are encouraged to create a separate "Limitations" section in their paper.609

• The paper should point out any strong assumptions and how robust the results are to610

violations of these assumptions (e.g., independence assumptions, noiseless settings,611

model well-specification, asymptotic approximations only holding locally). The authors612

should reflect on how these assumptions might be violated in practice and what the613

implications would be.614

• The authors should reflect on the scope of the claims made, e.g., if the approach was615

only tested on a few datasets or with a few runs. In general, empirical results often616

depend on implicit assumptions, which should be articulated.617

• The authors should reflect on the factors that influence the performance of the approach.618

For example, a facial recognition algorithm may perform poorly when image resolution619

is low or images are taken in low lighting. Or a speech-to-text system might not be620

used reliably to provide closed captions for online lectures because it fails to handle621

technical jargon.622

• The authors should discuss the computational efficiency of the proposed algorithms623

and how they scale with dataset size.624

• If applicable, the authors should discuss possible limitations of their approach to625

address problems of privacy and fairness.626

• While the authors might fear that complete honesty about limitations might be used by627

reviewers as grounds for rejection, a worse outcome might be that reviewers discover628

limitations that aren’t acknowledged in the paper. The authors should use their best629

judgment and recognize that individual actions in favor of transparency play an impor-630

tant role in developing norms that preserve the integrity of the community. Reviewers631

will be specifically instructed to not penalize honesty concerning limitations.632

3. Theory Assumptions and Proofs633

Question: For each theoretical result, does the paper provide the full set of assumptions and634

a complete (and correct) proof?635
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Answer: [Yes]636

Justification: For each of our theorems, we state the assumptions clearly, and all proofs are637

in the appendix.638

Guidelines:639

• The answer NA means that the paper does not include theoretical results.640

• All the theorems, formulas, and proofs in the paper should be numbered and cross-641

referenced.642

• All assumptions should be clearly stated or referenced in the statement of any theorems.643

• The proofs can either appear in the main paper or the supplemental material, but if644

they appear in the supplemental material, the authors are encouraged to provide a short645

proof sketch to provide intuition.646

• Inversely, any informal proof provided in the core of the paper should be complemented647

by formal proofs provided in appendix or supplemental material.648

• Theorems and Lemmas that the proof relies upon should be properly referenced.649

4. Experimental Result Reproducibility650

Question: Does the paper fully disclose all the information needed to reproduce the main ex-651

perimental results of the paper to the extent that it affects the main claims and/or conclusions652

of the paper (regardless of whether the code and data are provided or not)?653

Answer: [NA]654

Justification: We did not run any experiments.655

Guidelines:656

• The answer NA means that the paper does not include experiments.657

• If the paper includes experiments, a No answer to this question will not be perceived658

well by the reviewers: Making the paper reproducible is important, regardless of659

whether the code and data are provided or not.660

• If the contribution is a dataset and/or model, the authors should describe the steps taken661

to make their results reproducible or verifiable.662

• Depending on the contribution, reproducibility can be accomplished in various ways.663

For example, if the contribution is a novel architecture, describing the architecture fully664

might suffice, or if the contribution is a specific model and empirical evaluation, it may665

be necessary to either make it possible for others to replicate the model with the same666

dataset, or provide access to the model. In general. releasing code and data is often667

one good way to accomplish this, but reproducibility can also be provided via detailed668

instructions for how to replicate the results, access to a hosted model (e.g., in the case669

of a large language model), releasing of a model checkpoint, or other means that are670

appropriate to the research performed.671

• While NeurIPS does not require releasing code, the conference does require all submis-672

sions to provide some reasonable avenue for reproducibility, which may depend on the673

nature of the contribution. For example674

(a) If the contribution is primarily a new algorithm, the paper should make it clear how675

to reproduce that algorithm.676

(b) If the contribution is primarily a new model architecture, the paper should describe677

the architecture clearly and fully.678

(c) If the contribution is a new model (e.g., a large language model), then there should679

either be a way to access this model for reproducing the results or a way to reproduce680

the model (e.g., with an open-source dataset or instructions for how to construct681

the dataset).682

(d) We recognize that reproducibility may be tricky in some cases, in which case683

authors are welcome to describe the particular way they provide for reproducibility.684

In the case of closed-source models, it may be that access to the model is limited in685

some way (e.g., to registered users), but it should be possible for other researchers686

to have some path to reproducing or verifying the results.687

5. Open access to data and code688
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Question: Does the paper provide open access to the data and code, with sufficient instruc-689

tions to faithfully reproduce the main experimental results, as described in supplemental690

material?691

Answer: [NA]692

Justification: We did not present any experimental results.693

Guidelines:694

• The answer NA means that paper does not include experiments requiring code.695

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/696

public/guides/CodeSubmissionPolicy) for more details.697

• While we encourage the release of code and data, we understand that this might not be698

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not699

including code, unless this is central to the contribution (e.g., for a new open-source700

benchmark).701

• The instructions should contain the exact command and environment needed to run to702

reproduce the results. See the NeurIPS code and data submission guidelines (https:703

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.704

• The authors should provide instructions on data access and preparation, including how705

to access the raw data, preprocessed data, intermediate data, and generated data, etc.706

• The authors should provide scripts to reproduce all experimental results for the new707

proposed method and baselines. If only a subset of experiments are reproducible, they708

should state which ones are omitted from the script and why.709

• At submission time, to preserve anonymity, the authors should release anonymized710

versions (if applicable).711

• Providing as much information as possible in supplemental material (appended to the712

paper) is recommended, but including URLs to data and code is permitted.713

6. Experimental Setting/Details714

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-715

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the716

results?717

Answer: [NA]718

Justification: We did not present any experimental results.719

Guidelines:720

• The answer NA means that the paper does not include experiments.721

• The experimental setting should be presented in the core of the paper to a level of detail722

that is necessary to appreciate the results and make sense of them.723

• The full details can be provided either with the code, in appendix, or as supplemental724

material.725

7. Experiment Statistical Significance726

Question: Does the paper report error bars suitably and correctly defined or other appropriate727

information about the statistical significance of the experiments?728

Answer: [NA]729

Justification: We did not present any experimental results.730

Guidelines:731

• The answer NA means that the paper does not include experiments.732

• The authors should answer "Yes" if the results are accompanied by error bars, confi-733

dence intervals, or statistical significance tests, at least for the experiments that support734

the main claims of the paper.735

• The factors of variability that the error bars are capturing should be clearly stated (for736

example, train/test split, initialization, random drawing of some parameter, or overall737

run with given experimental conditions).738

• The method for calculating the error bars should be explained (closed form formula,739

call to a library function, bootstrap, etc.)740
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• The assumptions made should be given (e.g., Normally distributed errors).741

• It should be clear whether the error bar is the standard deviation or the standard error742

of the mean.743

• It is OK to report 1-sigma error bars, but one should state it. The authors should744

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis745

of Normality of errors is not verified.746

• For asymmetric distributions, the authors should be careful not to show in tables or747

figures symmetric error bars that would yield results that are out of range (e.g. negative748

error rates).749

• If error bars are reported in tables or plots, The authors should explain in the text how750

they were calculated and reference the corresponding figures or tables in the text.751

8. Experiments Compute Resources752

Question: For each experiment, does the paper provide sufficient information on the com-753

puter resources (type of compute workers, memory, time of execution) needed to reproduce754

the experiments?755

Answer: [NA]756

Justification: We did not present any experimental results.757

Guidelines:758

• The answer NA means that the paper does not include experiments.759

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,760

or cloud provider, including relevant memory and storage.761

• The paper should provide the amount of compute required for each of the individual762

experimental runs as well as estimate the total compute.763

• The paper should disclose whether the full research project required more compute764

than the experiments reported in the paper (e.g., preliminary or failed experiments that765

didn’t make it into the paper).766

9. Code Of Ethics767

Question: Does the research conducted in the paper conform, in every respect, with the768

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?769

Answer: [Yes]770

Justification: We had no research subjects or data, so no harms were caused in this way. We771

believe our work is very unlikely to have negative societal impact via the listed categories,772

as it is purely a theoretical framework and we did not train any models. Our work does not773

touch on any political issues.774

Guidelines:775

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.776

• If the authors answer No, they should explain the special circumstances that require a777

deviation from the Code of Ethics.778

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-779

eration due to laws or regulations in their jurisdiction).780

10. Broader Impacts781

Question: Does the paper discuss both potential positive societal impacts and negative782

societal impacts of the work performed?783

Answer: [Yes]784

Justification: We include a few sentences in the conclusion discussing how we feel our paper785

could have positive societal impact via a useful model for understanding the behaviour and786

reasoning of intelligent systems. We feel it is very unlikely that the theory we present here787

could have any negative societal impact.788

Guidelines:789

• The answer NA means that there is no societal impact of the work performed.790
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• If the authors answer NA or No, they should explain why their work has no societal791

impact or why the paper does not address societal impact.792

• Examples of negative societal impacts include potential malicious or unintended uses793

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations794

(e.g., deployment of technologies that could make decisions that unfairly impact specific795

groups), privacy considerations, and security considerations.796

• The conference expects that many papers will be foundational research and not tied797

to particular applications, let alone deployments. However, if there is a direct path to798

any negative applications, the authors should point it out. For example, it is legitimate799

to point out that an improvement in the quality of generative models could be used to800

generate deepfakes for disinformation. On the other hand, it is not needed to point out801

that a generic algorithm for optimizing neural networks could enable people to train802

models that generate Deepfakes faster.803

• The authors should consider possible harms that could arise when the technology is804

being used as intended and functioning correctly, harms that could arise when the805

technology is being used as intended but gives incorrect results, and harms following806

from (intentional or unintentional) misuse of the technology.807

• If there are negative societal impacts, the authors could also discuss possible mitigation808

strategies (e.g., gated release of models, providing defenses in addition to attacks,809

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from810

feedback over time, improving the efficiency and accessibility of ML).811

11. Safeguards812

Question: Does the paper describe safeguards that have been put in place for responsible813

release of data or models that have a high risk for misuse (e.g., pretrained language models,814

image generators, or scraped datasets)?815

Answer: [NA]816

Justification: We do not present any experimental results, use any data, or train any models.817

Guidelines:818

• The answer NA means that the paper poses no such risks.819

• Released models that have a high risk for misuse or dual-use should be released with820

necessary safeguards to allow for controlled use of the model, for example by requiring821

that users adhere to usage guidelines or restrictions to access the model or implementing822

safety filters.823

• Datasets that have been scraped from the Internet could pose safety risks. The authors824

should describe how they avoided releasing unsafe images.825

• We recognize that providing effective safeguards is challenging, and many papers do826

not require this, but we encourage authors to take this into account and make a best827

faith effort.828

12. Licenses for existing assets829

Question: Are the creators or original owners of assets (e.g., code, data, models), used in830

the paper, properly credited and are the license and terms of use explicitly mentioned and831

properly respected?832

Answer: [NA]833

Justification: There are no assets associated with the paper.834

Guidelines:835

• The answer NA means that the paper does not use existing assets.836

• The authors should cite the original paper that produced the code package or dataset.837

• The authors should state which version of the asset is used and, if possible, include a838

URL.839

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.840

• For scraped data from a particular source (e.g., website), the copyright and terms of841

service of that source should be provided.842
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• If assets are released, the license, copyright information, and terms of use in the843

package should be provided. For popular datasets, paperswithcode.com/datasets844

has curated licenses for some datasets. Their licensing guide can help determine the845

license of a dataset.846

• For existing datasets that are re-packaged, both the original license and the license of847

the derived asset (if it has changed) should be provided.848

• If this information is not available online, the authors are encouraged to reach out to849

the asset’s creators.850

13. New Assets851

Question: Are new assets introduced in the paper well documented and is the documentation852

provided alongside the assets?853

Answer: [NA]854

Justification: There are no assets associated with the paper.855

Guidelines:856

• The answer NA means that the paper does not release new assets.857

• Researchers should communicate the details of the dataset/code/model as part of their858

submissions via structured templates. This includes details about training, license,859

limitations, etc.860

• The paper should discuss whether and how consent was obtained from people whose861

asset is used.862

• At submission time, remember to anonymize your assets (if applicable). You can either863

create an anonymized URL or include an anonymized zip file.864

14. Crowdsourcing and Research with Human Subjects865

Question: For crowdsourcing experiments and research with human subjects, does the paper866

include the full text of instructions given to participants and screenshots, if applicable, as867

well as details about compensation (if any)?868

Answer: [NA]869

Justification: We ran no such experiments.870

Guidelines:871

• The answer NA means that the paper does not involve crowdsourcing nor research with872

human subjects.873

• Including this information in the supplemental material is fine, but if the main contribu-874

tion of the paper involves human subjects, then as much detail as possible should be875

included in the main paper.876

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,877

or other labor should be paid at least the minimum wage in the country of the data878

collector.879

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human880

Subjects881

Question: Does the paper describe potential risks incurred by study participants, whether882

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)883

approvals (or an equivalent approval/review based on the requirements of your country or884

institution) were obtained?885

Answer: [NA]886

Justification: We ran no such experiments.887

Guidelines:888

• The answer NA means that the paper does not involve crowdsourcing nor research with889

human subjects.890

• Depending on the country in which research is conducted, IRB approval (or equivalent)891

may be required for any human subjects research. If you obtained IRB approval, you892

should clearly state this in the paper.893
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• We recognize that the procedures for this may vary significantly between institutions894

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the895

guidelines for their institution.896

• For initial submissions, do not include any information that would break anonymity (if897

applicable), such as the institution conducting the review.898
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