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Abstract

There has been an increasing interest in mod-
eling continuous-time dynamics of temporal
graph data. Previous methods encode time-
evolving relational information into a low-
dimensional representation by specifying dis-
crete layers of neural networks, while real-
world dynamic graphs often vary continuously
over time. Hence, we propose Continuous Tem-
poral Graph Networks (CTGNs) to capture con-
tinuous dynamics of temporal graph data. We
use both the link starting timestamps and link
duration as evolving information to model con-
tinuous dynamics of nodes. The key idea is
to use neural ordinary differential equations
(ODE) to characterize the continuous dynamics
of node representations over dynamic graphs.
We parameterize ordinary differential equations
using a novel graph neural network. The exist-
ing dynamic graph networks can be considered
as a specific discretization of CTGNs. Experi-
ment results on both transductive and inductive
tasks demonstrate the effectiveness of our pro-
posed approach over competitive baselines.

1 Introduction

Graph neural networks (GNNs) have attracted
growing interest in the past few years due to their
universal applicability in various fields, e.g., social
networks (Fan et al., 2019) and natural language
processing (Liu et al., 2021a). Graph neural net-
works (GNNs) learn a lower-dimensional represen-
tation for a node in a vector space by aggregating
the information from its neighbors using discrete
hidden layers. Then the embedding can be used for
downstream tasks such as node classification (At-
wood and Towsley, 2015), link prediction (Zhang
and Chen, 2018; Li et al., 2020), and knowledge
completion (Liu et al., 2021b).

Most graph neural networks only accept static
graphs as input, although real-life graphs of interac-
tions, such as user-item interactions, often change
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Figure 1: The importance of link duration. Consider
the behavior of a user watching movies. There are two
types of nodes in the graph: user nodes and item nodes.
Given the user’s historical behavior, the predicted target
is (user1, don’t_click, Movie_4). If we ignore the link
duration information, user1 seems interested in cartoon
movies because he clicked on it at timestamp t1. But
user1 only watched the Movie_ 1 for 10s. The link
duration indicated that although the user clicked, he was
not interested.

over time. Learning the node representation on dy-
namic graphs is a very challenging task. Dynamic
graph methods can be divided into discrete-time dy-
namic graph (DTDG) models and continuous-time
dynamic graph (CTDG) models. More recently,
an increasing interest in CTDG-based graph repre-
sentation learning algorithms can be observed (Xu
et al., 2020; Trivedi et al., 2018; Kumar et al., 2019;
Rossi et al., 2020; Wang et al., 2020b; Ding et al.,
2021).

Although the above continuous-time dynamic
methods have achieved impressive results, they still
have limitations. The majority of research (Rossi
et al., 2020; Wang et al., 2020b; Xu et al., 2020;
Trivedi et al., 2018; Kumar et al., 2019) pays at-
tention to the contact sequence dynamic graphs, in
which the links are permanent, and no link dura-
tion is provided (e.g., email networks and citation
networks). However, most real-life networks are
event-based dynamic graphs in which the interac-
tions between source nodes and destination nodes
are not permanent (e.g., employment networks and
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Figure 2: Overview of our Continuous Temporal Graph network.

proximity networks). The event-based dynamic
graph includes the time at which the link appeared
and the duration of the link. Link duration reflects
the degree of association between the two nodes,
e.g., user i browses item j for 2 seconds and k for
20 seconds. It means that the user’s interest in the
two items j, k is different. Ignoring the link du-
ration information can reduce the link prediction
ability and even result in questionable inference.
Thus, it is crucial to consider the influence of link
duration on node relationship prediction (Zhang
and Chen, 2018; Li et al., 2020) and knowledge
completion (Liu et al., 2021b).

The existing GNN-based methods (Weinan,
2017; Oono and Suzuki, 2019) that learn the node
representation over dynamic graphs can be consid-
ered discrete dynamical systems. Chen et al. (2018)
demonstrate that the continuous dynamical systems
are more efficient for modeling continuous-time
dynamic data. The discrete networks can roughly
be regarded as continuous networks by stacking
enough layers. However, Onno and Suzuki (2019)
point out that graph neural networks (GNNs) ex-
ponentially lose expressive power for downstream
tasks, which will lead to over-smoothing problems
as we add more hidden layers. Therefore, design-
ing effective continuous Graph Neural Networks
to model continuous-time dynamics of node rep-
resentation on dynamic graphs is critical. To this
end, many continuous graph neural networks (Chen
et al., 2018; Xhonneux et al., 2019) have been pro-
posed recently. Although those mentioned above
continuous dynamic neural networks are more effi-
cient to model the graph data, few approaches have
been proposed for dealing with dynamic graphs
using continuous-time dynamic neural networks.

This paper proposes a general framework of
continuous temporal graph networks (CTGNs)
to model continuous-time representations for dy-

namic graph-structured data. We combine Ordinary
Differential Equation Systems (ODEs) and graphs
methods. Instead of specifying discrete hidden lay-
ers, we integrate neural layers over continuous time.
Figure 2 illustrates the workflow of the proposed
CTGN method. There is an interaction between
two nodes. First, a novel temporal graph network
(TGN) is applied as the encoder to learn the la-
tent states using the updated memory. Then, the
neural ODE module is used to model the node’s
continuous-time representation. Considering that
the link duration reflects the degree of association
between the two nodes, we use the link duration
as the integration variable to control the weights
of different interactions. After that, we use the
LSTM (Shi et al., 2015) as the decoder to com-
pute the probability of interaction between the two
given nodes. Finally, the memory is updated as the
input of the encoder. Memory is a compressed rep-
resentation of the historical behavior of all nodes
defined in Section 3.1. Experimental results on five
real-world datasets of link prediction demonstrate
the effectiveness of the proposed method over the
state-of-art baselines. The main contributions of
this paper are:

• We present a novel Continuous Temporal
Graph Network (CTGN) inspired by the neu-
ral ODE method.

• CTGNs pay attention to the event-based dy-
namic graph. CTGNs update the node’s rep-
resentation with both the valid discrete times-
tamps when the link appears and the link du-
ration between two linked nodes as evolving
information.

• We show that our model can outperform exist-
ing state-of-the-art methods on both transduc-
tive and inductive tasks.



2 Background

2.1 Dynamic Graph Methods
The existing dynamic graph representation learn-
ing methods can be divided into two categories,
discrete-time dynamic graphs and continuous-time
dynamic graphs.

Discrete-time dynamic graphs (DTDGs) are a
sequence of snapshots at different time intervals.

DG = {G1, G2, ..., GT } , (1)

where T is the number of snapshots. Current dy-
namic graph methods (Wang et al., 2020a; Trivedi
et al., 2017; Xiong et al., 2019) have been mostly
designed for discrete-time dynamic graphs (DT-
DGs).

Continuous-time dynamic graphs (CTDGs)
can be viewed as a set of observations/events
(Kazemi et al., 2019), and the network evolution
information is retained. There are only a few works
on CTDG. But recently, more attention has been
paid to continuous-time graphs. All three repre-
sentations of CTDG are described in more detail
below.

1. The contact sequence dynamic graph is the
simplest representation form of CTDG.

CS = (ui, vi, ti) , (2)

where u is the source node, v is the destina-
tion node, and t is the timestamp when the
link appears. In the contact sequence dynamic
graph, the link is permanent (e.g., citation net-
works) or instantaneous (e.g., email networks).
Therefore, this graph has no link duration.

There has been a lot of research on contact se-
quence dynamic graphs. Trivedi et al. (2018)
learn the representation of node i by aggre-
gating the node destination’s neighborhood
information and updating the embedding for
the node using a recurrent architecture after
an interaction involving node i. Kumar et
al. (2019) employ two recurrent neural net-
works to update the embedding of a user and
an item at every interaction. TGAT (Xu et al.,
2020) proposes a novel functional time encod-
ing method and uses self-attention to inductive
representation learning on temporal graphs.
Wang et al. (2020b) propose the asynchronous
propagation attention network (APAN) for
real-time temporal graph embedding.

2. The event-based dynamic graph consists of
the node pairs (u, v), the edge appears times-
tamp t and the link duration ∆t . Link dura-
tion indicates how long the edge lasts until it
disappears.

EB = (ui, vi, ti,∆ti) . (3)

Rossi et al. (2020) proposes a generic induc-
tive framework operating on contact sequence
dynamic graphs by adding a memory module
on TGAT (Xu et al., 2020). TGN can also
operate on the event-based dynamic graph by
simply replacing the timestamp t with link
duration ∆t in the memory module.

3. The streams graph can be viewed as a par-
ticular case of the event-based dynamic graph.
The streams graph includes the edge label δ,
which indicates edge removal or edge addition.

GS = (ui, vi, ti, δi), δi ∈ [−1, 1] . (4)

TGN (Rossi et al., 2020) converts the streams
graph into an event-based graph for process-
ing. According to the edge label, the event
can be reorganized as (ui, vi, t′, t), which was
created at time t′ and deleted at time t, then
two messages can be computed for the source
and target nodes.

The existing CTDG methods model discrete dy-
namics representations of continuous-time graph
data with multiple discrete propagation layers. Our
proposed method focuses on the event-based tem-
poral graph and updates the node’s representation
with both the timestamps and the link duration be-
tween the two nodes. CTGN also supports contact
sequence dynamic graph. The model details will be
slightly different from event-based dynamic graph.
We will clarify this point in Chapter 3.

2.2 Continuous-time Dynamical Systems

Continuous-time dynamical systems mean that the
system’s behavior changes with time development
in the continuous-time domain. There have been
related works that view data as a continuous ob-
ject in artificial intelligence, e.g., pictures (Chen
et al., 2018) and static graphs (Xhonneux et al.,
2019; Poli et al., 2019). The continuous-time dy-
namic graph (CTDG) we introduced in Section
2.1 is also a continuous-time dynamical system in



which nodes’ state changes over time. Therefore,
it is necessary to model the continuous dynamical
system of CTDG data. To the best of our knowl-
edge, our CTGN is the first approach that learn
continuous-time dynamics on CTDG.

2.3 Neural Ordinary Differential Equations
and Continuous Graph Neural Networks

Considering a residual network:

ht+1 = ht + f(ht, θt) (5)

A theoretical method to improve the perfor-
mance of discrete networks is to stack more neural
layers and take smaller steps (Chen et al., 2018).
However, this scheme is not feasible because of the
limited computer resources and over-fitting prob-
lems. Oono and Suzuki (2019) point out that Graph
Neural Networks (GNNs) exponentially lose ex-
pressive power for downstream tasks when adding
more hidden layers because of over-smoothness
problems.

Inspired by residual network and ordinary dif-
ference, neural ordinary difference is proposed
to solve this problem. Neural ODE models
continuous-time dynamical systems by parameter-
izing the hidden state’s derivative using a neural
network.

dz

dt
= f(z, t), z(0) = x, (6)

NeuralODE can be regarded as a discrete net-
work with an infinitesimal learning rate and in-
finite layers. Weinanl (2017) proposes the idea
of using continuous dynamical systems to model
hidden layers. Chen et al. (2018) introduce neural
ODE, a continuous-depth model by parameteriza-
tion the derivative of the hidden state using a neural
network. Neural ODE only focuses on unstruc-
tured data. Xhonneux et al. (2019) apply continu-
ous dynamical methods to static graph-structured
data. They propose Continuous Graph Neural Net-
works (CGNNs), which solve the over-smoothing
caused by stacking more layers and improve the
performance of GNNs. Zang and Wang (2019)
learn continuous-time dynamics on complex net-
works. However, continuous graph neural networks
(CGNN) can only deal with static data.

3 The Proposed Method: CTGN

In this section, we introduce our proposed approach.
The key idea of the CTGN is to build continuous-

time hidden layers which can learn continuous in-
formative node representations over event-based
dynamic graphs. To characterize the continuous
dynamics of node representation, we use ordinary
differential equations (ODEs) parameterized by a
neural network, which is a continuous function of
time. We study both transductive and inductive
settings. In the transductive task, we predict fu-
ture links of the nodes observed during the training
phase. In the inductive tasks, we predict future
links of the nodes never seen before. We first em-
ploy a temporal graph attention layer (Xu et al.,
2020) to project each node into a latent space based
on its features and neighbors. And then, an ODE
module is designed to define the continuous dy-
namics on the node’s latent representation hi(t).

3.1 Temporal Graph Network
Memory Passing. Memory si(t) is used to record
the historical information of each node i the model
has seen so far. It is a compressed representation of
the historical behavior of all nodes. Memory si(t)
is updated when there is an interaction involving
node i. At the end of each batch, we firstly compute
memory si(t) using the last time message mi(t

−)
and memory si(t−):

si(t) = mem(mi(t), si(t−)) . (7)

Here, mem(·) is a learnable memory update func-
tion. In all experiments, we choose the memory
function as GRU. si(0) is initialized as a zero vec-
tor. At the end of each batch, the message mi(t) for
the node can be updated to compute i’s memory:

mi(t) = msgs(si(t−)||sj(t−)||∆t||eij(t)) ,
mj(t) = msgs(sj(t−)||si(t−)||∆t||eij(t)) .

(8)

Here || is the concatenation operator, ∆t is the link
duration between node i and j, . In the contact se-
quence dynamic graph, the link duration property is
not available. We use (t−t−) as ∆t. There may be
multiple events ei1(t1), . . . , eiN (tN ) involving the
same node i in the same batch. In the experiment,
we only use the latest interaction eiN (tN ) to com-
pute i’s message. msg(·) is a learnable function,
and we use an RNN network in our experiment:

Multi-head Attention. Given an observed event
p = (i, j, t,∆t), we can compute the node latent
representation respectively for i and j using:

H(l)(t) = Attn(l)(Q(l)(t),K(l)(t),V(l)(t)) , (9)



Event-based dynamic graph Contact sequence dynamic graph

NetFlix Mooc Lastfm Wikipedia Reddit
Nodes 18672 13374 7353 9227 10984
Edges 163417 131660 73358 157474 672447

Chronological Split70%-15%-15%70%-15%-15%70%-15%-15%70%-15%-15% 70%-15%-15%
Unseen nodes 10% 10% 10% 10% 10%

Timespan 2 years 2 years 2 years 30 days 30 days

Table 1: Statistics of the datasets used in our experiments.

Attn(Q,K,V) = softmax(
QKT

√
dk

)V , (10)

where Q , K , V denote the ’querys’, ’keys’, ’val-
ues’, respectively. H(l) = [h(l)

1 , ...,h(l)
i ] are the

embedding of the graph nodes of l-th layers. The
multi-head attention layer compute the node i’s
representation by aggregating it’s N-hop neighbors.

Q(l)(t) = (H(l−1)(t) || ϕ(0))WQ , (11)

K(l)(t) = C(l)(t)WK , (12)

V(l)(t) = C(l)(t)WV , (13)

C(l)(t) = [H(l−1)
1 (t) || E1(t1) || ϕ(t− t1),

. . . ,H(l−1)
N (t) || EN (tN ) || ϕ(t− tN )] .

(14)

Here ϕ(·) represents a generic time encoder (Xu
et al., 2020). WQ,WK ,WV ∈ Rdk×dk are the
projection matrices used to generate attention em-
bedding. We define keys and values as the neighbor
information. h(0)

i (t) = si(t) + vi, si(t) is node i’s
memory which saves the history information for the
node. En(t) = [e1n(t), ..., ein(t)], ein(t) is edge
features between node i and it’s n-hop neighbor
at time t. Temporal graph network is a discrete
method that can be thought of as a discretization of
the continuous dynamical systems.

3.2 Model Continuous Dynamics of Node
Representation

In order to characterize the continuous dynamics
of node representations, instead of only specifying
a discrete sequence of hidden layers, we parame-
terize the hidden layers using ordinary differential
equations (ODEs), a continuous function of time.

dz

dt
= f(z, t), z(0) = x. (15)

Here, x is an initial vector, f is a learnable function,
t is a time interval and z is a vector.

z(t) = z(0) +
∫ t

0
(f(t, z))dτ. (16)

We can compute the node’s continuous-time dy-
namics representation by Equation 16 at arbitrary
time t > 0.

Previous work (Zang and Wang, 2019; Poli et al.,
2019) model continuous-time dynamics for data
by setting integration variable [0, t] as a hyper-
parameter. Considering the influence of link du-
ration on the interaction between two nodes, we
choose the link duration as the integration variable,
in our experiment t = dur.

Link duration shows how long it was (in sec-
onds) until that user terminated browsing. Link
duration can reflect the user’s interest in different
items. Take link duration as an integer variable that
can control the weights of different interactions.

We parameterize the derivative of the hidden
state using a neural network that takes the latent
state, computed by the temporal graph network
mentioned in Section 3.1 as input.

zi(t) = ODESolver(f(t, z),hi(t),∆ti). (17)

Here, hi(t) is a discrete latent state computed by
temporal graph networks, ∆ti is the link duration
between source node i and destination j. f(t, z)
is ODE function, we choose f(t, z) as MLP. A
black-box ODE solver computes the final node
continuous dynamics embedding zi(t). We utilize
the torchdiffeq.odeint_adjoint PyTorch package to
solve reverse-time ODE and backpropagate.

3.3 Time Smoothness
The time-encoding method (Xu et al., 2020) used
in this paper is an effective method to map times-
tamp t from the time domain to d-dim vector space.



NetFlix Mooc Lastfm

Transductive Inductive Transductive Inductive Transductive Inductive
GAT* 96.45 ± 0.2 92.09 ± 0.6 83.33 ± 10 77.39 ± 10 76.77 ± 0.5 62.81 ± 0.6

GraphSAGE* 95.14 ± 0.6 89.84 ± 1.7 82.01 ± 2.4 78.36 ± 2.2 77.41 ± 0.6 62.57 ± 0.3
CGNN* 91.82 ± 0.2 † 96.88 ± 0.2 † 74.93 ± 10 †
NDCN* 90.70 ± 0.9 † 96.07 ± 0.1 † 82.09 ± 1.4 †
DyRep 99.07 ± 0.1 97.36 ± 0.1 83.52 ± 6.5 68.96 ± 4.0 82.96 ± 0.3 68.06 ± 0.3
Jodie 99.20 ± 0.1 97.43 ± 0.1 93.12 ± 0.6 80.85 ± 1.2 84.41 ± 0.3 68.14 ± 0.5
TGAT 96.56 ± 0.2 93.04 ± 0.2 73.69 ± 1.3 68.76 ± 1.2 78.80 ± 0.8 64.19 ± 0.7
TGN 99.05 ± 0.2 97.38 ± 0.4 97.76 ± 0.4 93.86 ± 0.9 87.05 ± 0.1 72.89 ± 0.1

APAN 98.23 ±1.7 † 93.64 ± 1.3 † 82.65 ± 0.1 †
CTGN 99.27 ± 0.1 97.84 ± 0.2 97.97 ± 0.4 94.89 ± 0.4 87.20 ± 0.1 74.05 ± 0.1

Table 2: Experiments on event-based datasets. Average Precision (%) for future edge prediction task in transductive
and inductive settings. First best performing method. *Static graph method. †Does not support inductive.

node classification link prediction-tranductive link prediction-inductive

Wikipedia Reddit Wikipedia Reddit Wikipedia Reddit
GAE* 74.85 ± 0.6 58.39 ± 0.5 91.44 ± 0.1 93.23 ± 0.3 † †

VGAE* 73.67 ± 0.8 57.98 ± 0.6 91.34 ± 0.3 92.92 ± 0.2 † †
GAT* 82.34 ± 0.8 64.52 ± 0.5 94.73 ± 0.2 97.33 ± 0.2 91.27 ± 0.4 95.37 ± 0.3

GraphSAGE* 82.42 ± 0.7 61.24 ± 0:6 93.56 ± 0.3 97.65 ± 0.2 91.09 ± 0.3 96.27 ± 0.2
DyRep 84.59 ± 2.2 62.91 ± 2.4 94.59 ± 0.2 97.98 ± 0.1 92.05 ± 0.3 95.68 ± 0.2
Jodie 84.84 ± 1.2 61.83 ± 2.7 94.62 ± 0.5 97.11 ± 0.3 93.11 ± 0.4 94.36 ± 1.1
TGAT 83.69 ± 0.7 65.56 ± 0.7 95.34 ± 0.1 98.12 ± 0.2 93.99 ± 0.3 96.62 ± 0.3
TGN 87.81 ± 0.3 67.06 ± 0.9 98.46 ± 0.1 98.70 ± 0.1 97.81 ± 0.1 97.55 ± 0.1

APAN 89.86 ± 0.3 65.34 ± 0.4 98.12 ± 0.2 99.22 ± 0.2 † †
CTGN 88.01 ± 1.5 68.38 ± 3.4 98.64 ± 0.1 98.28 ± 0.2 98.01 ± 0.1 98.05 ± 0.2

Table 3: Experiments on contact sequence datasets. ROC AUC (%) for the dynamic node classification task, Average
Precision (%) for link prediction task. *Static method, †Does not support inductive.

However, the learning process of each timestamp
is independent of other timestamps. Independent
learning of hyperplanes of adjacent time intervals
may cause adjacent times to be farther apart in em-
bedded space. Actually, adjacent states in the graph
should be more similar. To avoid the problem men-
tioned above, we constrained the variation between
hyperplanes at adjacent timestamps by minimizing
the euclidean distance:

Lsmooth(W ) =
T−1∑
t=1

||wt+1 − wt||2 . (18)

3.4 Model Learning

We use the link prediction loss function for training
CTGN:

loss = αLsmooth(W ) + Ltask , (19)

where α is a tradeoff parameter, ltask is a loss func-
tion defined as the cross-entropy of the prediction
and the ground truth. Our experiment found a pa-
rameter α of 0.002 for contact sequence dynamic
graphs and 0.7 for event-based dynamic graphs.

4 Experiment and Analysis

In this section, we first introduce datasets, base-
lines and parameter settings. Then we compare
our proposed method with other strong baselines
and competing approaches for both the inductive
and transductive tasks for two benchmarks contact
sequence dynamic graph datasets and three event-
based dynamic graph datasets.

We study both transductive and inductive tasks.
For event-based dynamic graphs, we learn link
prediction tasks. For contact-sequence dynamic
graphs, we learn dynamic node classification and
link prediction tasks.
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Figure 3: Ablation studies on the Netflix dataset for both the transductive and inductive setting of the link prediction
task. 3(a) Sensitivity study result of batch size in inductive setting. 3(b) Sensitivity study result of batch size in
transductive setting. 3(c) The relationship between number of sampled neighbors and the model performance in
inductive setting. 3(d) The relationship between number of sampled neighbors and the model performance in
transductive setting.

4.1 Datasets

We use five real-world datasets in our experi-
ments, three event-based dynamic graphs: Netflix
1, Mooc (Feng et al., 2019) and Lastfm (Cantador
et al., 2011), two contact sequence dynamic graphs:
Wikipedia (Kumar et al., 2019), Reddit (Kumar
et al., 2019).

The statistics of the datasets used in our experi-
ments are described in detail in Table 1.

4.2 Baseline

We compare our model with four CTDG meth-
ods: Jodie (Kumar et al., 2019), Dyrep (Trivedi
et al., 2018), TGAT (Xu et al., 2020), TGN (Rossi
et al., 2020), APAN (Wang et al., 2020b). And we
also include four DTDG methods: GAE (Kipf and
Welling, 2016), VGAE (Kipf and Welling, 2016),
GAT (Veličković et al., 2018), GraphSAGE (Hamil-
ton et al., 2017) as well as two state-of-the-art static
graph neural ODE methods: CGNN (Xhonneux
et al., 2019), NDCN (Zang and Wang, 2019).

4.3 Parameter Setup

We set the batch size to 200 for training and
patience to 5 for early stopping in all experi-
ments. The node embedding dimension is 172.
During training, we used 0.0001 as the learning
rate for contact sequence dynamic graph datasets
(Wikipedia and Reddit) and 0.00009 for event-
based dynamic graph datasets (Netflix, Mooc,
Lastfm). The weight of time smoothness loss α
is set to 0.002 on Wikipedia , Reddit and 0.7 on
Netflix, Mooc, Lastfm. We choose the LSTM layer
as the decoder for link prediction task and MLP
for node classification task. We report mean and
standard deviation across 10 runs.

1https://vodclickstream.com/

4.4 Result

To demonstrate the effectiveness of our proposed
method, we compare CTGN with competitive base-
lines on five real-world event-based graph datasets.
Table 2 shows the results on link prediction tasks
in both transductive and inductive settings for three
event-based datasets. It is evident that our approach
has achieved better results than the discrete dynam-
ics graph neural networks on almost all datasets,
especially in the inductive setting.

Table 3 shows the dynamic node classification
and link prediction results on two contact sequence-
datasets. CTGN has a solid ability to embed dy-
namic graphs. The conclusion can be obtained
from the Table 2 and Table 3.

Figure 3 shows ablation studies on the Netflix
dataset for both the transductive and inductive set-
ting of the link prediction task. As we can see
from Figure 3(a) and 3(b), our model is not sen-
sitive to batch size. When the training batch size
is 100, CTGN has the same average precision as
TGN. With the continuous increase of batch size,
the performance of CTGN is more stable.

5 Conclusion

This paper introduces CTGN, a continuous tempo-
ral graph neural network for learning representa-
tion for event-based dynamic graphs. We build the
connection between temporal graph networks and
continuous dynamical systems inspired by neural
ODE. Our framework allows the user to trade off
speed for precision by selecting different learning
rates and the weight of time smoothness loss pa-
rameters during training. We demonstrate on the
link prediction task against competitive baselines
that our model can outperform many existing state-
of-the-art methods.

https://vodclickstream.com/
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