

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TEMPORALLY SPARSE ATTACK AGAINST LARGE LANGUAGE MODELS IN TIME SERIES FORECASTING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have recently demonstrated strong potential in zero-shot time series forecasting by leveraging their ability to capture complex temporal patterns through the next-token prediction mechanism. However, recent studies indicate that LLM-based forecasters are highly sensitive to small input perturbations. Existing attack methods, though, typically require modifying the entire time series, which is impractical in real-world scenarios. To address this limitation, we propose a Temporally Sparse Attack (TSA) against LLM-based time series forecasting. We formulate the attack as a Cardinality-Constrained Optimization Problem (CCOP) and introduce a Subspace Pursuit (SP)-based algorithm that restricts perturbations to a limited subset of time steps, enabling efficient and effective attacks. Extensive experiments on state-of-the-art LLM-based forecasters, including LLMTIME (GPT-3.5, GPT-4, LLaMa, and Mistral), TimeGPT, and TimeLLM, across six diverse datasets, demonstrate that perturbing as little as 10% of the input can substantially degrade forecasting accuracy. These results highlight a critical vulnerability of current LLM-based forecasters to low-dimensional adversarial attacks.

1 INTRODUCTION

Time series forecasting is a critical tool across various domains, such as finance, traffic, energy management, and climate science. Accurate predictions of temporal patterns enable stakeholders to make informed decisions, optimize resources, and mitigate risks, thus playing a pivotal role in modern decision-making (Lim & Zohren, 2021; Liu et al., 2022b; Wang et al., 2024a).

Recently, Large Language Models (LLMs), originally designed for Natural Language Processing (NLP), have shown significant promise in capturing complex temporal dependencies across diverse scenarios (Garza & Mergenthaler-Canseco, 2023; Jin et al., 2024; Gruver et al., 2024). LLMs offer advanced capabilities, such as zero-shot forecasting, that allow them to generalize across various tasks without extensive retraining (Rasul et al., 2023; Ye et al., 2024; Liang et al., 2024). This positions LLMs as strong candidates for foundational models in time series forecasting.

Despite these strengths, LLMs are known to be susceptible to adversarial attacks, raising concerns about their reliability in critical applications (Zou et al., 2023; Liu et al., 2024). While LLM-based forecasters have demonstrated impressive accuracy (Ansari et al., 2024; Jiang et al., 2024), it remains uncertain whether decision-making processes can depend on these predictions in adversarial scenarios. Investigating the robustness of LLM-based models is therefore essential for ensuring their trustworthiness in real-world applications.

While adversarial attacks on machine learning models have been widely studied in computer vision and natural language processing domains (Wei et al., 2018; Xu et al., 2020; Morris et al., 2020), attacking LLMs in time series forecasting presents unique challenges. First, ground truth values (i.e., future time steps) cannot be used in attacks to prevent information leakage. Second, accessing the internal parameters, structure, and training data of LLMs is often infeasible for attackers, requiring attacks to operate under strict black-box conditions. Recent studies have explored gradient-free optimization techniques for adversarial attacks against LLM-based time series forecasters (Liu et al., 2025), demonstrating the feasibility of degrading model performance by perturbing the entire input series. However, such approaches present significant limitations in terms of practicality and imperceptibility. In real-world applications, particularly those involving time-sensitive data streams,

Figure 1: Conceptual comparison of three scenarios: (i) jailbreaking LLMs, (ii) full-series attacks on LLM-based forecasters, and (iii) the proposed TSA, which perturbs only a limited number of time steps. In adversarial time series settings, the threat model involves three key roles: the attacker, the user, and the forecaster. The key **gap** is that existing attacks require poisoning the entire input series.

the requirement to manipulate an entire time series, potentially spanning several hours, renders the attack infeasible and easily detectable. This concern motivates a more realistic and operationally relevant research question: **Can LLM-based forecasters be effectively disrupted by modifying only a small subset of the input time series?**

We address this question by proposing a Temporally Sparse Attack (TSA) framework (Figure 1) designed for highly constrained settings, where the adversary is limited to perturbing only a sparse subset of the input time series. This restriction aligns with realistic scenarios where imperceptibility and limited access are essential. To model the attack process, we formulate it as a Cardinality-Constrained Optimization Problem (CCOP) (Bhattacharya, 2009; Ruiz-Torrubiano et al., 2010). CCOP is inherently non-convex and NP-hard, and in this case, its resolution becomes even more challenging under black-box, label-free assumptions. To overcome these challenges, we adapt the Subspace Pursuit (SP) algorithm, originally developed for solving cardinality-constrained white-box LASSO problems (Dai & Milenkovic, 2009; Wang et al., 2012), to this black-box, label-free context by incorporating a gradient-free optimization strategy based solely on black-box queries to the forecasting model. TSA can effectively generate temporally sparse perturbations without access to ground truth labels or model internals, thereby offering a practical and stealthy solution suitable for real-world time series forecasting applications.

Our evaluation spans six LLM-based time series forecasting models across six diverse real-world datasets. The results demonstrate that TSA, which perturbs only 10% of the input data with small modifications, can still induce a substantial degradation in forecasting accuracy. Even filter-based defense mechanisms are largely ineffective against these attacks due to their sparse structure. These experiments empirically confirm that the proposed TSA is not only more stealthy but also more effective at bypassing filter-based adversarial defenses than full-series attacks. Overall, the findings highlight the urgent need to address such vulnerabilities in LLM-based forecasters to ensure their reliability in high-stakes applications.

2 RELATED WORK

Sparse attacks in computer vision aim to mislead recognition or detection models by perturbing only a small portion of the input image (Croce & Hein, 2019). The one-pixel attack (Su et al., 2019) employs a genetic algorithm to deceive deep neural network (DNN)-based image classifiers by modifying a single pixel, while GreedyFool (Dong et al., 2020) adopts a combination of greedy search and Projected Gradient Descent (PGD) to manipulate selected pixels in static settings. However, existing sparse attack studies predominantly operate under white-box assumptions, and the true label is typically required during perturbation generation. These assumptions do not hold in LLM-based

108 time series forecasting, which is inherently black-box and does not provide ground-truth labels during
 109 inference.

110 **Adversarial attacks on LLMs** have garnered significant attention, revealing how minor input manipulations
 111 can lead to substantial output alterations. These attacks are generally categorized into methods
 112 such as jailbreak prompting, where crafted prompts bypass safety guardrails to elicit unintended or
 113 harmful responses (Wei et al., 2024); prompt injection, embedding adversarial instructions within
 114 benign prompts to manipulate outputs (Greshake et al., 2023; Xue et al., 2024; Shen et al., 2024);
 115 gradient-based attacks, which exploit internal model parameters to create minimally invasive input
 116 perturbations (Zou et al., 2023; Jia et al., 2024); and embedding perturbations, which subtly alter
 117 input embeddings to disrupt the model’s internal representations (Schwinn et al., 2024). While much
 118 of this research has focused on text-based tasks, the robustness of LLMs in non-textual domains like
 119 time series forecasting remains underexplored.

120 **Adversarial attacks in time series forecasting** have emerged as a critical research focus, exposing the
 121 vulnerabilities of forecasting models. Unlike static domains such as time series classification (Karim
 122 et al., 2020; Ding et al., 2023), time series forecasting presents unique challenges for adversarial
 123 research. One key constraint is the inability to use future ground truth values when generating
 124 perturbations, as this could lead to information leakage (Dang-Nhu et al., 2020; Liu et al., 2023). For
 125 example, in hourly temperature forecasting, the true label for 10 a.m. corresponds to the temperature
 126 at 11 a.m., which is unavailable to the user, the forecaster, and the attacker. To address this, surrogate
 127 labels have been introduced (Zhu et al., 2023; Lin et al., 2024), enabling attackers to bypass the
 128 need for ground truth. Most prior studies have concentrated on white-box scenarios (Xu et al., 2021;
 129 Liu et al., 2022a), where adversaries have full access to model parameters, structure, and training
 130 data. However, evaluating the robustness of LLM-based forecasting models presents additional
 131 complexities. These models typically operate in black-box settings, limiting access to their internal
 132 workings. Gradient-free black-box attacks have been proposed as a solution (Liu et al., 2025), but
 133 they often require modifying the entire time series, which is impractical.

135 3 THREAT MODEL

136
 137 In what follows, we first provide an overview of LLM-based time series forecasting as the foundation
 138 of our study, and then formally define the goals and capability constraints of adversaries when
 139 conducting sparse attacks against LLM-based forecasters.

140 **LLM-Based Time Series Forecasting.** LLMs have shown great promise in time series forecasting
 141 by leveraging their next-token prediction capability. A typical LLM-based time series forecasting
 142 framework, denoted as $f(\cdot)$, comprises two key components: an embedding or tokenization module
 143 and a pre-trained LLM. The embedding module encodes time series into a sequence of tokens suitable
 144 for processing by the LLM, while the LLM captures temporal dependencies and autoregressively
 145 predicts subsequent tokens based on its learned representations.

146 Let $\mathbf{x}_t \in \mathbb{R}^d$ represent a d -dimensional time series at time t . Define $\mathbf{X}_t = \{\mathbf{x}_{t-T+1}, \dots, \mathbf{x}_t\}$ as the
 147 sequence of T recent historical observations and $\mathbf{Y}_t = \{\mathbf{y}_{t+1}, \dots, \mathbf{y}_{t+L}\}$ as the true future values
 148 for the next L time steps. The forecasting model $f(\cdot)$ predicts the future values from the historical
 149 observations, which is formulated as:

$$150 \quad \hat{\mathbf{Y}}_t = f(\mathbf{X}_t), \quad (1)$$

151 where $\hat{\mathbf{Y}}_t$ denotes the predicted future values. Typically, the prediction horizon L is constrained to
 152 be less than or equal to the historical horizon T , i.e., $L \leq T$. This ensures that the model leverages
 153 sufficient historical context while maintaining computational efficiency.

154 By effectively combining the embedding module’s ability to encode raw time series data and the
 155 LLM’s capacity to model complex temporal patterns, these models have become powerful tools for
 156 addressing a wide range of zero-shot forecasting challenges across various domains.

157 **Temporally Sparse Attack against LLM-based Forecaster.** The goal of attacking an LLM-based
 158 time series forecasting model $f(\cdot)$ is to manipulate it into producing abnormal outputs that differ
 159 substantially from their typical predictions and the actual ground truth, using minimal and nearly
 160 undetectable perturbations.

162 The adversarial attack can be modeled as a maximum optimization problem:

$$163 \max_{\rho} \mathcal{L}(f(\mathbf{X}_t + \rho), \mathbf{Y}_t) \quad \text{s.t. } \|\rho_i\|_p \leq \epsilon, i \in [t - T + 1, t], \quad (2)$$

164 where $\rho = \{\rho_{t-T+1}, \dots, \rho_t\}$ denotes the perturbations added into the clean historical time series
 165 $\mathbf{X}_t = \{\mathbf{x}_{t-T+1}, \dots, \mathbf{x}_t\}$. Here, the loss function \mathcal{L} measures the discrepancy between the model's
 166 predictions and the ground truth, while ϵ serves as a constraint on the perturbation magnitude under
 167 the ℓ_p -norm, ensuring that the adversarial attack remains subtle and imperceptible. Typically, the
 168 global average $\bar{\mathbf{X}}$ serves as the reference point to determine whether the added perturbations are
 169 imperceptible. Consequently, ϵ is defined as a proportion of the global average, e.g., $\epsilon = 5\% \times \bar{\mathbf{X}}$.
 170

171 The true future values \mathbf{Y}_t are generally unavailable during the practical forecasting process. As a
 172 result, to avoid future information leakage, the ground truth \mathbf{Y}_t is substituted with the predicted
 173 values $\hat{\mathbf{Y}}_t$ produced by the forecasting model. Specifically, in Equation 2, \mathbf{Y}_t is replaced with $\hat{\mathbf{Y}}_t$. In
 174 practical applications, it is generally infeasible to access the complete set of detailed parameters of an
 175 LLM, compelling the attacker to approach the target model as a black-box system. In other words, no
 176 internal information of $f(\cdot)$ in Equation 2 is available.

177 The computed perturbations $\rho = \{\rho_{t-T+1}, \dots, \rho_t\}$ are typically applied across the entire input
 178 window, which makes full-series poisoning burdensome in practice. For example, for a 5-minute-
 179 ahead traffic forecaster that uses $T = 48$ input steps, an attacker would need to manipulate 48
 180 consecutive measurements, i.e., 48×5 minutes = 4 hours of data. This example illustrates the
 181 practical difficulty of poisoning the entire series. In this study, we impose strict limitations on the
 182 attacker's capabilities, allowing them to pollute only τ time steps. Furthermore, since the future true
 183 values \mathbf{Y}_t are unavailable, they are approximated using the predicted values $\hat{\mathbf{Y}}_t = f(\mathbf{X}_t)$. Under
 184 this constraint, the attack process is reformulated as a CCOP (Bhattacharya, 2009):

$$185 \max_{\mathbf{w}} \mathcal{L}\left(f(\mathbf{X}_t(1 + \mathbf{w})), \hat{\mathbf{Y}}_t\right) \quad (3)$$

$$186 \quad \text{s.t. } \|\mathbf{w}\|_0 = \tau \quad \text{and} \quad \|w_i\|_1 \leq \epsilon, i \in [t - T + 1, t],$$

187 where $\mathbf{w} = \{w_{t-T+1}, \dots, w_t\}$ represents multiplicative adversarial perturbations. The cardinality
 188 constraint, also called τ -sparse ℓ_0 -norm constraint, restricts the number of non-zero elements in
 189 adversarial perturbations to a fixed small number, ensuring that the adversarial perturbations are
 190 sparse on the temporal dimension. Besides, the ℓ_1 -norm constraint limits the magnitude of each
 191 non-zero perturbation, ensuring the modifications remain imperceptible.

192 It should be noted that the global average is unsuitable as a reference for the average magnitude of the
 193 manipulated series under the temporally sparse setting. Instead, each manipulated time step requires
 194 a unique reference point to ensure the magnitude of the perturbation at each time step is bounded.
 195 The limitation of the poisoned value at time step i can be expressed as:

$$196 \|\mathbf{x}_i + \rho_i\|_1 = \|\mathbf{x}_i(1 + w_i)\|_1 \leq \|\mathbf{x}_i(1 + \epsilon)\|_1, \quad (4)$$

197 where $\|\rho_i\|_1 = \|w_i \cdot \mathbf{x}_i\|_1 \leq \|\epsilon \cdot \mathbf{x}_i\|_1$. Consequently, the additive perturbation $\mathbf{X}_t + \rho$ in Equation 2
 198 is replaced with the multiplicative perturbation $\mathbf{X}_t(1 + \mathbf{w})$ in Equation 3.

199 Furthermore, in many real-world applications, adversaries often lack access to the complete training
 200 dataset, rendering it infeasible to exploit the data distribution or model training process directly.
 201 Given the preceding discussion, the **capabilities and constraints** of the attacker under the temporally
 202 sparse attack setting can be summarized as follows: (i) no access to the training dataset; (ii) no access
 203 to the internal architecture or parameters of the LLM-based forecasting model; (iii) no access to the
 204 ground truth values during inference; (iv) the ability to perturb only a sparse subset of the input time
 205 series; and (v) the capability to query the forecasting model in a black-box manner.

208 4 PERTURBATION COMPUTATION

209 The temporally sparse attack process is formulated as a CCOP in Equation 3, which is inherently
 210 non-convex and NP-hard. Subspace Pursuit (SP) has been shown to provide approximate solutions
 211 to cardinality-constrained white-box LASSO problems within polynomial time (Dai & Milenkovic,
 212 2009; Wang et al., 2012). However, applying SP in the context of adversarial attacks against LLM-
 213 based forecasting introduces two major challenges: the unavailability of model parameters and the
 214 absence of ground truth labels. To overcome these constraints, we integrate gradient-free optimization
 215 techniques and adapt the SP algorithm.

216 4.1 τ -SPARSE PERTURBATION COMPUTATION
217

218 To solve the optimization problem in Equation 3, we propose an adapted SP method, outlined as
219 Algorithm 1. In our adaptation, the ℓ_1 -norm constraint is incorporated as a subroutine to maintain the
220 imperceptibility of the perturbations. Here, the support set $S = \text{supp}(\mathbf{w}) = \{i : w_i \neq 0\}$ denotes
221 the indices of nonzero elements in the perturbation vector \mathbf{w} , with $|S|$ representing its cardinality. To
222 efficiently update the support set, we define the merge operator:

$$223 \quad \mathcal{M}(\mathbf{w}_S, w_j) = \begin{cases} \mathbf{w}_S, & j \in S, \\ \{\mathbf{w}_S, w_j\}, & j \notin S. \end{cases} \quad (5)$$

226 This operator ensures that when a new candidate perturbation w_j is selected, it is either retained in
227 the existing support set S if it is already present, or added as a new element if it is not.

228 Algorithm 1 describes the iterative process for
229 estimating the sparse multiplicative adversarial
230 perturbations \mathbf{w} . At each iteration, the algo-
231 rithm identifies the indices corresponding to the
232 τ largest loss values resulting from applying
233 candidate perturbations. The candidate pertur-
234 bations w_j are computed using the gradient-free
235 optimization technique as in Section 4.2. Then,
236 the support set S is updated by including the
237 identified indices. The support set S is subse-
238 quently refined by selecting the τ elements with
239 the largest individual prediction loss. Any com-
240 ponents outside the updated support set are reset
241 to zero. This process repeats until the loss \mathbf{r}
242 converges and the final τ -sparse multiplicative
243 adversarial perturbation \mathbf{w} is returned.

244 This method effectively enforces the CCOP by
245 ensuring that only τ time steps are modified
246 while maintaining a bounded perturbation mag-
247 nitude. The adapted SP approach enables ef-
248 ficient selection of perturbation locations, en-
249 suring maximal adversarial impact while keep-
250 ing modifications imperceptible. Moreover, the
251 computation complexity of the proposed method is $\mathcal{O}(T \times \tau)$, whereas a standard greedy algorithm
has a significantly higher complexity of $\mathcal{O}(T^\tau)$.

252 4.2 CANDIDATE PERTURBATION
253

254 The candidate perturbation in the first step of Algorithm 1 (line 5) is to perturb the specific time step
255 j , which can be formulated as:

$$257 \quad \max_{w_j} \mathcal{L} \left(f \left(\mathbf{X}_t + \{0, \dots, w_j \cdot \mathbf{x}_i, \dots, 0\} \right), \hat{\mathbf{Y}}_t \right) \quad \text{s.t. } \|w_j\|_1 \leq \epsilon. \quad (6)$$

259 Here, the perturbation w_j is applied only at time step j . The magnitude of the perturbation is bounded
260 by the constraint ϵ , while maximizing the impact on the loss function \mathcal{L} .

261 In the black-box setting, Equation 6 cannot be solved using gradient-based methods such as Stochastic
262 Gradient Descent (SGD). Instead, a gradient-free optimization technique can be employed to estimate
263 the gradients, as follows:

$$265 \quad \hat{g} = \frac{\mathcal{F}(\mathbf{X}_t, w_j, \Delta) - \mathcal{F}(\mathbf{X}_t, w_j, -\Delta)}{2 \cdot \Delta}, \quad (7)$$

266 where \hat{g} represents the estimated gradients, Δ denotes a random Gaussian noise, and $\mathcal{F}(\mathbf{X}_t, w_j, a) =$
267 $f(\mathbf{X}_t + \{0, \dots, (w_j + a) \cdot \mathbf{x}_i, \dots, 0\})$ denotes querying the target model with a noise term a .

268 Similar to the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015), the perturbation can
269 be computed using the estimated gradients \hat{g} as $w_j = \epsilon \cdot \text{sign}(\hat{g})$, where $\text{sign}(\cdot)$ denotes the signum

1: **Input:** Time series $\mathbf{X} \in \mathbb{R}^{d \times T}$, the loss function \mathcal{L} ,
the LLM-based forecaster $f(\cdot)$, and sparsity level τ
of the multiplicative adversarial perturbations \mathbf{w} .

2: **Initialize** the perturbation vector $\mathbf{w} := \mathbf{0}$ as zeros,
the support set $S := \emptyset$ as an empty set, and the loss
value $\mathbf{r} := \mathbf{0}$ as zero.

3: **Return** $\mathbf{w} = \{w_t\}$ for $t \in [0, \dots, T - 1]$.

4: **while** not converged **do**

5: Find ℓ as the index set of the τ largest losses of
 $f(\mathbf{X}_t (1 + \mathcal{M}(\mathbf{w}_S, w_j)))$ in which w_j is the
 candidate perturbation, where
 $j \in [1, \dots, T] \& j \notin S$.

6: Update the support set $S := S \cup \{\ell\}$.

7: Update the sparse vector $\mathbf{w}_S := \epsilon \cdot \text{sign}(\hat{g}_S)$.

8: Update the support set S as the index set of the
 τ largest losses of $f(\mathcal{X}_t (1 + w_i))$ for $i \in S$.

9: Set $w_i = 0$ for all $i \notin S$.

10: Update $\mathbf{r} := \mathcal{L} \left(f(\mathcal{X}_t (1 + \mathbf{w}_S)), \hat{\mathbf{Y}}_t \right)$.

11: **end while**

12: **Return** the τ -sparse multiplicative adversarial
perturbations \mathbf{w} .

Algorithm 1: Computing \mathbf{w} with adapted SP.

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270 Table 1: Comparison of adversarial attacks. In this table, TS denotes time series.
271

Method	Black-box	Label-free	No train set	Applicable to LLMs in TS	Temporal sparsity
TS forecasting attacks (Dang-Nhu et al., 2020)	✗	✓	✓	✗	✗
Black-box attacks (Guo et al., 2019)	✓	✗	✗	✗	✗
Attacks against LLMs in TS (Liu et al., 2025)	✓	✓	✓	✓	✗
Proposed temporally sparse attack (TSA)	✓	✓	✓	✓	✓

272
273 function. This approach ensures that the perturbation magnitude is bounded by ϵ while aligning with
274 the direction of the estimated gradients.
275276 After generating the candidate perturbation, the corresponding loss is computed as
277

278
$$r := \mathcal{L}\left(f(\mathbf{X}_t(1 + \mathcal{M}(\mathbf{w}_S, \mathbf{w}_j))), \hat{\mathbf{Y}}_t\right), \quad (8)$$

279

280 which functions as the ranking index in the initial step of the iterative procedure in Algorithm 1.
281282 **Brief Discussion.** Adversarial attacks against LLMs for time series forecasting remain extremely
283 limited, primarily due to the following practical constraints: **(i)** no access to true labels at inference
284 time, in order to avoid future information leakage; **(ii)** no access to model parameters, as LLMs are
285 prohibitively large and impractical for attackers to obtain; and **(iii)** no access to training data, since
286 LLM-based forecasters operate in a zero-shot setting and are trained on massive, heterogeneous
287 datasets drawn from diverse applications. TSA satisfies all these constraints while additionally
288 operating in a temporally sparse setting, making it well-suited for realistic LLM-based forecasting
289 scenarios. Table 1 presents a simple comparison between the proposed TSA and existing methods.
290291

5 EXPERIMENT

292293 In this section, we evaluate the effectiveness of TSA across six datasets and seven forecasting
294 models, including six LLM-based and three non-LLM-based baselines, in comparison with two
295 existing attacks. We primarily address the following potential concerns: **Q1.** Does the proposed TSA
296 significantly degrade the predictive performance of LLM-based forecasters? **Q2.** What explains the
297 effectiveness of TSA? **Q3.** Can TSA bypass existing adversarial mitigation strategies? **Q4.** How
298 sensitive is TSA to different hyperparameter choices?
299300 Detailed experimental settings are provided in Appendix B. In summary: **Baseline attacks.** For
301 comparison, we consider Gaussian White Noise (GWN) and a full-series attack, Directional Gradient
302 Approximation (DGA) (Liu et al., 2025). **Besides, we construct two sparse variants of DGA, which**
303 **perturb the same number of time steps as the proposed TSA, but select the attack positions either**
304 **through random sampling or via a greedy search strategy.** **Target models.** We evaluate TSA against
305 state-of-the-art forecasting systems, including TimeGPT (Garza & Mergenthaler-Canseco, 2023),
306 TimeLLM (Jin et al., 2024), LLMTIME (Gruver et al., 2024) with GPT-3.5, GPT-4, LLaMa2, and
307 Mistral as backbone models, as well as non-LLM forecasters including TimesNet (Wu et al., 2023),
308 TimeMixer (Wang et al., 2024a), and TimeXer (Wang et al., 2024b). **Datasets.** Experiments are
309 conducted on six real-world datasets, ETTh1, ETTh2, Traffic, Weather, Exchange, and Solar, spanning
310 domains such as electricity, transportation, geoscience, economics, and energy. **Metrics.** Forecasting
311 performance is evaluated using two standard error measures: Mean Absolute Error (MAE) and Mean
312 Squared Error (MSE).
313314 Additional experiments are reported in the Appendix. Specifically, the evaluations on long input/out-
315 put horizons and variate-wise forecasting are provided in Appendix C and Appendix D, respectively.
316 Appendix E empirically analyzes the trade-off between effectiveness and efficiency in single-query
317 versus multi-query attacks. Appendix F compares the proposed TSA with two sparse variants of DGA,
318 further demonstrating the strength of the SP-based solution. Appendix G presents a vulnerability
319 comparison between LLM-based and non-LLM-based forecasters. Appendix H extends the proposed
320 TSA to a targeted attack setting to evaluate whether an adversary can force the forecasting model to
321 produce attacker-specified outputs. Appendix I empirically analyzes the computational cost of the
322 SP-based solution and the greedy search strategy. Appendix J examines the reliability of the attack
323 performance by running the proposed attack multiple times and reporting the variance.

324
 325 Table 2: Adversarial attack effectiveness comparison. Forecasting models process each variate
 326 independently, treating the multivariate task as a collection of univariate forecasting problems. A
 327 fixed input length of 96 and an output length of 48 are used across all models and datasets. Lower
 328 MSE and MAE values indicate better predictive performance. For TSA and DGA, the perturbation
 329 magnitude constraint is fixed at $\epsilon = 0.1$, while for GWN, the deviation is set to 2% of the mean
 330 value of each dataset. For clarity, the worst and second-worst performance for each dataset–model
 331 combination are highlighted in bold and italics. The sparsity level of TSA is set to $\tau = 9$, while both
 332 DGA and GWN poison the entire input series.

Models	LLMTime w/ GPT-3.5		LLMTime w/ GPT-4		LLMTime w/ LLaMa 2		LLMTime w/ Mistral		TimeLLM w/ GPT-2		TimeGPT (2024)		TimesNet (non-LLM)	
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Traffic	0.837	0.844	0.805	0.779	0.891	1.005	0.826	0.973	0.995	1.013	1.890	1.201	1.095	1.022
	0.882	0.908	0.883	0.864	0.917	1.063	1.054	1.031	1.123	1.221	1.848	1.204	1.103	1.035
	0.955	1.073	1.417	1.214	0.994	1.083	1.744	1.217	1.161	1.328	1.918	1.218	1.155	1.047
	<i>0.901</i>	<i>1.037</i>	<i>1.179</i>	<i>1.008</i>	<i>0.969</i>	1.085	<i>1.493</i>	<i>1.204</i>	<i>1.147</i>	1.332	1.920	<i>1.208</i>	<i>1.136</i>	1.093
ETTh1	0.073	0.213	0.071	0.202	0.086	0.244	0.097	0.274	0.089	0.202	0.059	0.192	0.073	0.202
	0.077	0.219	0.076	0.213	0.087	0.237	0.094	0.291	0.102	0.231	0.059	0.193	0.074	0.202
	0.085	0.249	0.083	0.232	<i>0.091</i>	0.251	0.098	0.295	0.099	0.248	0.060	0.198	0.081	0.213
	0.082	0.235	0.079	0.230	0.092	0.249	0.097	0.295	0.091	0.237	0.061	0.203	0.080	0.206
ETTh2	0.263	0.372	0.155	0.267	0.237	0.373	0.277	0.492	0.238	0.361	0.161	0.297	0.166	0.316
	0.263	0.342	0.175	0.303	0.231	0.429	0.346	0.505	0.235	0.355	0.160	0.301	0.166	0.316
	0.275	0.408	0.201	0.327	0.257	0.425	0.356	0.554	0.302	0.441	0.171	0.312	0.169	0.321
	0.271	0.402	0.195	0.319	0.258	0.432	0.350	0.547	0.299	0.440	0.168	0.307	0.167	0.319
Weather	0.005	0.051	0.004	0.048	0.008	0.072	0.006	0.057	0.004	0.034	0.004	0.043	0.003	0.042
	0.005	0.053	0.005	0.051	0.008	0.074	0.007	0.066	0.004	0.033	0.004	0.043	0.003	0.042
	0.006	0.063	0.006	0.061	0.009	0.079	0.007	0.062	0.005	0.052	0.006	0.071	0.004	0.045
	0.006	0.060	0.006	0.058	0.010	0.076	0.006	0.065	0.004	0.048	0.007	0.072	0.004	0.043
Exchange	0.038	0.146	0.040	0.152	0.043	0.167	0.151	0.274	0.056	0.188	0.256	0.368	0.056	0.184
	0.042	0.179	0.046	0.182	0.050	0.185	0.160	0.298	0.059	0.194	0.329	0.413	0.065	0.195
	0.058	0.224	0.068	0.199	0.069	0.213	0.219	0.303	0.077	0.256	0.578	0.556	0.062	0.194
	0.049	0.196	0.065	0.190	0.059	0.210	0.190	0.299	0.061	0.189	0.474	0.537	0.062	0.190
Solar	0.316	0.325	0.235	0.276	0.297	0.304	0.303	0.314	0.331	0.347	0.244	0.279	0.301	0.319
	0.319	0.323	0.236	0.280	0.299	0.304	0.305	0.315	0.337	0.348	0.244	0.282	0.305	0.322
	0.342	0.355	0.291	0.308	0.315	0.318	0.327	0.346	0.340	0.354	0.281	0.306	0.317	0.330
	0.342	0.364	0.288	0.310	0.307	0.314	0.325	0.339	0.337	0.351	0.290	0.315	0.312	0.326

353
 354 Figure 2: Comparison of input bias and prediction errors under different attack settings. *Top:*
 355 LLMTTime with GPT-3.5 on the ETTh1 dataset. *Bottom:* TimeGPT on the Weather dataset.

373 5.1 EFFECTIVENESS ANALYSIS AND VISUALIZATION (Q1)

374
 375 TSA induces up to a 4× increase in prediction errors for LLM-based time series forecasters compared
 376 to GWN across a range of real-world applications. As shown in Table 2, TSA significantly increases
 377 both MSE and MAE across most models and datasets, demonstrating its strong impact on degrading
 LLM-based forecasting performance. The Traffic dataset shows the greatest deterioration, with

Figure 3: Input and output distributions for LLMTIME with GPT-3.5 on ETTh1 under clean input, GWN, and the proposed TSA.

TSA increasing errors by 80.75% for LLMTIME w/ Mistral and 46.45% for LLMTIME w/ GPT-4, highlighting the models’ vulnerability.

Despite perturbing only 9 out of 96 time steps, TSA achieves degradation in forecasting performance that is largely comparable to the full-series attack DGA. For example, across datasets such as Traffic, ETTh2, and Solar, the MSE/MAE values under TSA are often close to or even match those obtained with DGA. This demonstrates that sparse perturbations can be just as disruptive as full-series modifications. In contrast to DGA, which requires modifying the entire input and repeated model queries, TSA reaches similar effectiveness with significantly fewer perturbations, underscoring its practicality in real-world adversarial scenarios. The results further confirm that incorporating CCOP and SP techniques effectively enhances the attack’s precision. [In Appendix F](#), we further compare the proposed TSA with two sparse variants of DGA. TSA produces approximately 84% larger prediction errors than the sparse DGA with greedy search and more than 127% larger errors than the sparse DGA with random position selection.

Figure 2 illustrates a direct comparison between GWN and TSA in terms of input perturbations and their effect on forecasting errors. For both LLMTIME w/ GPT-3.5 on ETTh1 and TimeGPT on Weather, GWN introduces small, uniformly distributed fluctuations across the input series, while TSA injects sparse, localized perturbations into only 10% of the time steps. This effect is visible in the *right* panels, where TSA produces significantly larger prediction errors than GWN. Notably, TSA-induced errors align with critical regions of the time series (e.g., sharp rises or drops), demonstrating that the attack effectively exploits model vulnerabilities rather than merely injecting noise.

5.2 INTERPRETATION AND UNDERSTANDING (Q2)

Figure 3 compares input and output distributions under clean input, GWN, and TSA. While the input distributions show minor differences across all cases, the output distribution under TSA deviates significantly, indicating that TSA exerts a stronger adversarial effect than GWN by disrupting model forecasts more severely.

Figure 4 provides insights into the structural effects of TSA on prediction errors and its temporal attack distribution. The *top* panels compare the correlation matrices of prediction errors under clean and attacked settings. Under TSA, the correlation matrix exhibits stronger and more widespread correlations across time steps, revealing that sparse perturbations introduce structured distortions that propagate through the forecast horizon. This demonstrates that TSA does not merely inject noise but systematically alters the temporal dependencies leveraged by LLM-based forecasters.

Figure 4 *bottom* panel illustrates the distribution of attack positions on the ETTh1 dataset. The histogram shows that TSA tends to concentrate perturbations toward later portions of the input sequence, where the influence on the output forecast is strongest. This sparse-yet-targeted strategy

Figure 4: *Top*: Correlation matrices of prediction errors with and without the proposed TSA. *Bottom*: Attack position distribution.

Figure 5: Full series and temporally sparse adversarial attacks on different LLM-based forecasting models protected by filter-based adversarial defense strategies. Light green and light orange indicate the recovered prediction error. The full series attack is DGA (Liu et al., 2025).

Figure 6: Hyperparameter sensitivity analysis. *Left* illustrates how the prediction errors increase exponentially as the perturbation magnitude constraint grows. *Middle* demonstrates that computational cost scales linearly with the sparsity level. *Right* shows that the prediction errors increase as the sparsity level of perturbations rises.

explains why TSA achieves significant adversarial impact with limited perturbations, reinforcing its efficiency and stealth compared to random noise injection.

5.3 MITIGATION BYPASSING TEST (Q3)

This section evaluates whether TSA can bypass adversarial defenses. DGA, a black-box attack against LLM-based forecasters (Liu et al., 2025) that perturbs the full input series, serves as a baseline. Three filter-based defenses, including Gaussian, Mean, and Quantile filters (Xie et al., 2019), are applied without requiring re-training or fine-tuning of the LLM-based forecasters.

Figure 5 shows that these defenses fail to recover errors under TSA (minimal light orange bars), but effectively mitigate full-series attacks (larger light green bars). This suggests that TSA’s sparse, concentrated modifications are harder to correct than full-series attacks, which distribute perturbations more uniformly, allowing them to be smoothed by filtering techniques. By modifying only a limited number of steps, TSA bypasses the statistical assumptions on which many filtering defenses rely. Consequently, the sparse perturbations introduce structured errors that persist through the forecast horizon, leading to significant degradation in model performance despite the application of defenses.

5.4 HYPERPARAMETER SENSITIVITY ANALYSIS (Q4)

There are two key hyperparameters in Algorithm 1: the perturbation magnitude constraint ϵ and the sparsity level τ . In this section, we analyze their impact on the effectiveness and computational cost of TSA, as illustrated in Figure 6.

The *left* panel demonstrates that as ϵ increases, the prediction errors of LLMTIME with LLaMa 2 on Traffic grow exponentially. The magnitude constraint balances the imperceptibility and the attack effectiveness. The *middle* panel shows that the computational cost of TSA scales linearly with the sparsity level τ , meaning that increasing the number of perturbed time steps results in a proportional rise in computation time. The *right* illustrates that the prediction errors of TimeGPT and LLMTIME with Mistral increase as τ rises, though the impact varies across models, with TimeGPT showing a more pronounced error increase at higher sparsity levels. These results suggest a trade-off between attack efficiency and computational complexity.

486 6 POTENTIAL MITIGATION DISCUSSION
487

488 Finally, we discuss potential strategies to mitigate TSA and enhance the resilience of LLM-based
489 forecasting. Although adversarial training (Zhang, 2018; Madry et al., 2018) is a common defense
490 in deep learning, it is impractical here due to the high computational costs of fine-tuning LLMs.
491 Additionally, as discussed in Section 5.3, filter-based defenses fail to counter TSA effectively, as
492 TSA’s sparsity can bypass the statistical assumptions underlying these defenses.

493 A simple but novel autocorrelation-based detection method may be effective, which leverages the
494 zero-shot capability of LLM-based forecasting models. Specifically, the forecaster is used to backcast
495 historical time series from its own predictions, which are then compared with the original inputs to
496 identify manipulated time steps. Once detected, the reformation is applied to correct the poisoned
497 inputs. This approach exploits the autocorrelation properties of time series to detect sparse adversarial
498 modifications without requiring external training.

500 7 CONCLUSION
501

502 This work presents a Temporally Sparse Attack (TSA), designed for LLM-based time series fore-
503 casting models in constrained adversarial scenarios, where only a small subset of input time steps
504 can be modified. We model the attack as a Cardinality-Constrained Optimization Problem (CCOP)
505 and develop a Subspace Pursuit (SP)-based method to efficiently generate sparse perturbations. TSA
506 operates in a black-box setting, requiring no access to future data or internal model parameters.

507 Experiments on advanced LLM-based time series forecasting models across diverse real-world
508 datasets show that perturbing only a small portion of the input significantly degrades forecasting per-
509 formance. LLM-based forecasters exhibit high sensitivity to adversarial manipulation. Our findings
510 demonstrate that conventional filter-based approaches fail to mitigate TSA, emphasizing the impor-
511 tance of enhancing robustness in time series foundation models. This research provides a framework
512 for improving the resilience of AI systems and supports future advancements in Trustworthy AI.

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541 ETHICS STATEMENT542
543 This research explores the robustness and vulnerability of large language models in time series
544 forecasting, which has critical applications in domains such as transportation, finance, and healthcare.
545 As these models become increasingly integral to real-world decision-making, understanding and
546 mitigating their susceptibility to adversarial attacks is essential for the development of trustworthy
547 and reliable AI systems.548 Our work aims to enhance the resilience of time series models against adversarial threats by contributing
549 insights into attack strategies and potential defenses. Strengthening these models can significantly
550 improve the safety and stability of AI-driven systems in high-stakes environments, promoting greater
551 public trust in AI technologies.552 We will make sure that our work will be used ethically and responsibly to lay the foundation for
553 developing robust time series forecasting methods, ultimately contributing to the advancement of
554 secure and reliable AI systems.555
556 REPRODUCIBILITY STATEMENT557
558 We are committed to ensuring the reproducibility of our findings. To this end, we provide a comprehensive
559 description of the proposed Temporally Sparse Attack (TSA), including its formulation,
560 optimization procedure, and evaluation protocols. All experiments are conducted on publicly available
561 datasets that can be accessed through widely used repositories. We also specify the forecasting
562 models used in our evaluation, covering both open-source non-LLM baselines and commercially
563 available LLM APIs.564 The implementation of TSA, together with scripts for data preprocessing, evaluation, and visualization,
565 is included in the supplementary material and will be released publicly upon publication to ensure
566 transparency and ease of verification. We additionally report details of the experimental setup
567 (datasets, metrics, baselines), along with extended studies in the appendix to provide deeper insights
568 into the robustness of our conclusions. Collectively, these measures are intended to make our work
569 fully reproducible and to support future research on adversarial robustness in LLM-based time series
570 forecasting.571
572 REFERENCES573
574 Abdul Fatir Ansari, Lorenzo Stella, Ali Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
575 Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor,
576 et al. Chronos: Learning the language of time series. *Transactions on Machine Learning Research*,
577 2024.578 Debopam Bhattacharya. Inferring optimal peer assignment from experimental data. *Journal of the*
579 *American Statistical Association*, 104(486):486–500, 2009.580 Francesco Croce and Matthias Hein. Sparse and imperceptible adversarial attacks. In *Proceedings of*
581 *the IEEE/CVF international conference on computer vision*, pp. 4724–4732, 2019.582 Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sensing signal reconstruction.
583 *IEEE transactions on Information Theory*, 55(5):2230–2249, 2009.585 Raphaël Dang-Nhu, Gagandeep Singh, Pavol Bielik, and Martin Vechev. Adversarial attacks on
586 probabilistic autoregressive forecasting models. In *International Conference on Machine Learning*,
587 pp. 2356–2365. PMLR, 2020.588 Daizong Ding, Mi Zhang, Fuli Feng, Yuanmin Huang, Erling Jiang, and Min Yang. Black-box
589 adversarial attack on time series classification. In *Proceedings of the AAAI Conference on Artificial*
590 *Intelligence*, volume 37, pp. 7358–7368, 2023.592 Xiaoyi Dong, Dongdong Chen, Jianmin Bao, Chuan Qin, Lu Yuan, Weiming Zhang, Nenghai Yu,
593 and Dong Chen. Greedyfool: Distortion-aware sparse adversarial attack. *Advances in Neural*
594 *Information Processing Systems*, 33:11226–11236, 2020.

594 Azul Garza and Max Mergenthaler-Canseco. Timegpt-1. *arXiv preprint arXiv:2310.03589*, 2023.
 595

596 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 597 examples. *International Conference on Learning Representations*, 2015.

598 Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and Mario Fritz.
 599 Not what you've signed up for: Compromising real-world ILM-integrated applications with indirect
 600 prompt injection. In *Proceedings of the 16th ACM Workshop on Artificial Intelligence and Security*,
 601 2023.

602

603 Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
 604 time series forecasters. *Advances in Neural Information Processing Systems*, 36, 2024.

605

606 Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Weinberger. Simple
 607 black-box adversarial attacks. In *International conference on machine learning*, pp. 2484–2493.
 608 PMLR, 2019.

609

610 Xiaojun Jia, Tianyu Pang, Chao Du, Yihao Huang, Jindong Gu, Yang Liu, Xiaochun Cao, and Min
 611 Lin. Improved techniques for optimization-based jailbreaking on large language models. *arXiv
 preprint arXiv:2405.21018*, 2024.

612

613 Yushan Jiang, Zijie Pan, Xikun Zhang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and
 614 Dongjin Song. Empowering time series analysis with large language models: A survey. *arXiv
 preprint arXiv:2402.03182*, 2024.

615

616 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
 617 uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-ilm: Time series forecasting by reprogramming
 618 large language models. *International Conference on Learning Representations*, 2024.

619

620 Fazle Karim, Somshubra Majumdar, and Houshang Darabi. Adversarial attacks on time series. *IEEE
 621 transactions on pattern analysis and machine intelligence*, 43(10):3309–3320, 2020.

622

623 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
 624 temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference on
 625 research & development in information retrieval*, pp. 95–104, 2018.

626

627 Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and
 628 Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In *Proceedings
 629 of the 30th ACM SIGKDD conference on knowledge discovery and data mining*, pp. 6555–6565,
 2024.

630

631 Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. *Philosophical
 632 Transactions of the Royal Society A*, 379(2194):20200209, 2021.

633

634 Xiao Lin, Zhining Liu, Dongqi Fu, Ruizhong Qiu, and Hanghang Tong. Backtime: Backdoor attacks
 635 on multivariate time series forecasting. *Advances in Neural Information Processing Systems*, 37:
 131344–131368, 2024.

636

637 Fan Liu, Hao Liu, and Wenzhao Jiang. Practical adversarial attacks on spatiotemporal traffic
 638 forecasting models. *Advances in Neural Information Processing Systems*, 35:19035–19047, 2022a.

639

640 Fuqiang Liu, Jiawei Wang, Jingbo Tian, Dingyi Zhuang, Luis Miranda-Moreno, and Lijun Sun.
 641 A universal framework of spatiotemporal bias block for long-term traffic forecasting. *IEEE
 642 Transactions on Intelligent Transportation Systems*, 23(10):19064–19075, 2022b.

643

644 Fuqiang Liu, Sicong Jiang, Luis Miranda-Moreno, Seongjin Choi, and Lijun Sun. Adversarial
 645 vulnerabilities in large language models for time series forecasting. In *The 28th International
 646 Conference on Artificial Intelligence and Statistics*, 2025.

647

648 Linbo Liu, Youngsuk Park, Trong Nghia Hoang, Hilaf Hasson, and Jun Huan. Robust multivariate
 649 time-series forecasting: Adversarial attacks and defense mechanisms. *International Conference on
 650 Learning Representations*, 2023.

648 Shuyuan Liu, Jiawei Chen, Shouwei Ruan, Hang Su, and Zhaoxia Yin. Exploring the robustness of
 649 decision-level through adversarial attacks on llm-based embodied models. In *Proceedings of the*
 650 *32nd ACM International Conference on Multimedia*, pp. 8120–8128, 2024.

651

652 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 653 Towards deep learning models resistant to adversarial attacks. In *International conference on*
 654 *machine learning*, 2018.

655

656 John X Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun Qi. Textattack: A
 657 framework for adversarial attacks, data augmentation, and adversarial training in nlp. *arXiv*
 658 *preprint arXiv:2005.05909*, 2020.

659

660 Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos,
 661 Rishika Bhagwatkar, Marin Biloš, Hena Ghonia, Nadhir Hassen, Anderson Schneider, et al.
 662 Lag-llama: Towards foundation models for time series forecasting. In *R0-FoMo: Robustness of*
 663 *Few-shot and Zero-shot Learning in Large Foundation Models*, 2023.

664

665 Rubén Ruiz-Torrubiano, Sergio García-Moratilla, and Alberto Suárez. Optimization problems
 666 with cardinality constraints. In *Computational Intelligence in Optimization: Applications and*
 667 *Implementations*, pp. 105–130. Springer, 2010.

668

669 Leo Schwinn, David Dobre, Sophie Xhonneux, Gauthier Gidel, and Stephan Gunnemann. Soft prompt
 670 threats: Attacking safety alignment and unlearning in open-source llms through the embedding
 671 space. *Advances in Neural Information Processing System*, 2024.

672

673 Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. " do anything now":
 674 Characterizing and evaluating in-the-wild jailbreak prompts on large language models. In *Proceed-
 675 ings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security*, pp.
 676 1671–1685, 2024.

677

678 Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep neural
 679 networks. *IEEE Transactions on Evolutionary Computation*, 23(5):828–841, 2019.

680

681 Jian Wang, Seokbeop Kwon, and Byonghyo Shim. Generalized orthogonal matching pursuit. *IEEE*
 682 *Transactions on signal processing*, 60(12):6202–6216, 2012.

683

684 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
 685 and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
 686 *International Conference on Learning Representations*, 2024a.

687

688 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jianmin
 689 Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting with
 690 exogenous variables. *Advances in Neural Information Processing Systems*, 37:469–498, 2024b.

691

692 Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training fail?
 693 *Advances in Neural Information Processing Systems*, 36, 2024.

694

695 Xingxing Wei, Siyuan Liang, Ning Chen, and Xiaochun Cao. Transferable adversarial attacks for
 696 image and video object detection. *arXiv preprint arXiv:1811.12641*, 2018.

697

698 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 699 Temporal 2d-variation modeling for general time series analysis. *International Conference on*
 700 *Learning Representations*, 2023.

701

702 Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature denoising
 703 for improving adversarial robustness. In *Proceedings of the IEEE/CVF conference on computer*
 704 *vision and pattern recognition*, 2019.

705

706 Aidong Xu, Xuechun Wang, Yunan Zhang, Tao Wu, and Xingping Xian. Adversarial attacks on deep
 707 neural networks for time series prediction. In *2021 10th International Conference on Internet*
 708 *Computing for Science and Engineering*, pp. 8–14, 2021.

702 Han Xu, Yao Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, and Anil K Jain. Adversarial
703 attacks and defenses in images, graphs and text: A review. *International journal of automation*
704 and computing

705 and computing, 17:151–178, 2020.

706 Jiaqi Xue, Mengxin Zheng, Ting Hua, Yilin Shen, Yepeng Liu, Ladislau Bölöni, and Qian Lou.
707 Trojilm: A black-box trojan prompt attack on large language models. *Advances in Neural*
708 *Information Processing Systems*, 36, 2024.

709 Jixia Ye, Weiqi Zhang, Ke Yi, Yongzi Yu, Ziyue Li, Jia Li, and Fugee Tsung. A survey of time
710 series foundation models: Generalizing time series representation with large language mode. *arXiv*
711 *preprint arXiv:2405.02358*, 2024.

712 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
713 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
714 11121–11128, 2023.

715 Hongyi Zhang. mixup: Beyond empirical risk minimization. *International Conference on Learning*
716 *Representations*, 2018.

717 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
718 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
719 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

720 Lyuyi Zhu, Kairui Feng, Ziyuan Pu, and Wei Ma. Adversarial diffusion attacks on graph-based traffic
721 prediction models. *IEEE Internet of Things Journal*, 11(1):1481–1495, 2023.

722 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
723 and transferable adversarial attacks on aligned language models. *arXiv preprint arXiv:2307.15043*,
724 2023.

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A VARIABLES AND DEFINITIONS**
757758 In this section, the meaning or definition of each variable is explained in detail in Table 3.
759760 Table 3: Some important variables and their definitions.
761

d	The number of variables
T	The length of historical input
L	The length of future time series
τ	The number of poisoned time steps for TSA
x_t	d -dimentional observations at time t
X_t	A historical time series composed of T observations
Y_t	A time series composed of observations in the next L time steps
\hat{Y}_t	The prediction of future L time steps
$f(\cdot)$	The forecasting model
ρ	The adversarial perturbation applied the clean historical time series
w	The multiplicative perturbations
ϵ	The scale constraint of perturbations
$\mathcal{L}(\cdot, \cdot)$	The loss function measuring the discrepancy between clean and poisoned prediction
S	The indices of nonzero elements in the perturbation vectors
$\mathcal{M}(\cdot, \cdot)$	The merge operator

779 **B EXPERIMENT SETUP**
780781 We evaluate the effectiveness of TSA on LLM-based forecasting models across multiple real-world
782 datasets. The experimental design involves three key steps: (i) applying TSA in a manner that
783 preserves the global structure of the time series while misleading the forecasts, (ii) introducing
784 Gaussian White Noise (GWN) as a baseline, where random noise sampled from a normal distribution
785 is added to the input sequence, and (iii) measuring forecasting accuracy using Mean Absolute Error
786 (MAE) and Mean Squared Error (MSE) to capture the extent of performance degradation. All
787 experiments are implemented in PyTorch 1.7.1 with Python 3.7.4, and executed on an Ubuntu 18.04
788 LTS system equipped with an NVIDIA Tesla V100 GPU.
789790 **B.1 TARGET MODELS**
791792 Three representative LLM-based forecasting models, along with [three non-LLM-based forecasting](#)
793 [models](#), are included in the experiment to assess the effectiveness of TSA:

- **TimeGPT** (Garza & Mergenthaler-Canseco, 2023): A pre-trained LLM specialized for time series forecasting, incorporating advanced attention mechanisms and temporal encoding to capture complex patterns.
- **LLMTime** (Gruber et al., 2024): A general-purpose LLM adapted for time series forecasting by framing it as a next-token prediction task. We evaluate multiple versions, including those based on GPT-3.5, GPT-4, LLaMA, and Mistral.
- **TimeLLM** (Jin et al., 2024): A model that reprograms time series data into textual inputs for LLMs, leveraging the Prompt-as-Prefix (PaP) technique to enhance forecasting accuracy.
- **TimesNet** (Wu et al., 2023), **TimeMixer** (Wang et al., 2024a), and **TimeXer** (Wang et al., 2024b): [non-LLM transformer-based forecasting models](#) introduced to explore the potential impact of our attack on non-LLM models.

805 These models represent three key strategies for time series forecasting: (1) domain-specific pre-
806 training tailored for time series data (TimeGPT), (2) adapting general-purpose LLMs to forecasting
807 tasks (LLMTime), and (3) input reprogramming to enhance compatibility with LLMs (TimeLLM).
808 Additionally, the inclusion of [non-LLM models](#) (TimesNet, TimeMixer, and TimeXer) provides
809 a broader framework for evaluating adversarial robustness across both LLM-based and non-LLM
models.

810
811 B.2 BASELINE ATTACKS812
813 **Gaussian White Noise (GWN).** As a simple reference point, we consider injecting noise drawn from
814 a Gaussian distribution directly into the input series. This baseline helps distinguish the impact of
815 unstructured, random perturbations from the targeted and systematic disruptions introduced by TSA.816 **Directional Gradient Approximation (DGA).** Following (Liu et al., 2025), DGA is employed as a
817 query-based adversarial method. It estimates gradient information through repeated interactions with
818 the forecasting model and leverages these estimates to craft perturbations. In contrast, TSA requires
819 no access to the target model, highlighting the practicality of a query-free approach that manipulates
820 the tokenization stage instead of relying on gradient exploration.821 **Sparse DGA with random position (DGA_{random}) and Sparse DGA with greedy search**
822 **(DGA_{greedy}).** We construct two sparse variants of DGA. Each variant perturbs the same number
823 of time steps as the proposed TSA, but selects the perturbation positions either through random
824 sampling or via a greedy search strategy (Dong et al., 2020). The perturbation updates follow the
825 same procedure as in the original DGA.826
827 B.3 DATASETS828 Our evaluation makes use of five publicly available datasets, each reflecting unique forecasting
829 challenges across different domains.830 The **ETTh1** and **ETTh2** datasets (Zhou et al., 2021) record hourly temperature and electricity load
831 measurements from transformer stations over two years. These series encompass both rapid variations
832 and recurring seasonal patterns, offering a comprehensive benchmark for assessing model accuracy
833 on energy-related forecasting tasks.834 The **Traffic** dataset (Gruver et al., 2024) reports hourly vehicle flow counts from the city of Istanbul.
835 Its strong dependence on rush-hour cycles and road usage patterns, combined with high volatility,
836 makes it a demanding test case for time series models.837 The **Weather** dataset (Zeng et al., 2023) provides hourly atmospheric readings such as temperature,
838 humidity, and wind. Forecasting here is challenging due to the nonlinear dynamics of meteorological
839 systems, requiring models to account for both short-lived variations and broader climatic tendencies.840 The **Exchange Rates** dataset (Lai et al., 2018) covers daily foreign currency exchange values for
841 eight countries between 1990 and 2016. It reflects complex dependencies in global financial markets
842 and is widely used to evaluate long-horizon economic forecasting.843 The **Solar** dataset (Lai et al., 2018) consists of solar power output measurements collected in 2006
844 from 137 photovoltaic plants in Alabama, sampled every 10 minutes. It highlights the fine-scale
845 variability of renewable energy production and the influence of environmental and weather conditions
846 on short-term generation.847
848 Table 4: Detailed dataset descriptions.849
850
851

Dataset	Dim	Frequency	Size	Information
ETTh1	7	Hourly	14307	Electricity
ETTh2	7	Hourly	14307	Electricity
Traffic	1	Hourly	5310	Transportation
Weather	21	10 minute	52603	Geoscience
Exchange	8	Daily	7207	Economy
Solar	137	Hourly	52179	Energy

852
853
854
855
856
857
858
859
860
861 Across all datasets, we follow a uniform partitioning strategy, using 60% of the samples for training,
862 20% for validation, and the remaining 20% for testing. Each forecasting model operates under the
863 same setup, where a 96-length input sequence is provided to predict the subsequent 48 time steps,
864 guaranteeing comparability across experiments.

864 B.4 METRICS
865

866 To assess both forecasting accuracy and the impact of adversarial perturbations, we report results
867 using Mean Absolute Error (MAE) and Mean Squared Error (MSE). Let \mathbf{Y}_t denote the observed
868 value at time step t and $\hat{\mathbf{Y}}_t$ the model’s prediction. The two metrics are computed as follows:
869

$$870 \quad 871 \quad 872 \quad 873 \quad \text{MAE} = \frac{1}{T} \sum_{t=1}^T |\hat{\mathbf{Y}}_t - \mathbf{Y}_t|, \quad (9)$$

$$874 \quad 875 \quad 876 \quad 877 \quad \text{MSE} = \frac{1}{T} \sum_{t=1}^T (\hat{\mathbf{Y}}_t - \mathbf{Y}_t)^2, \quad (10)$$

878 where T is the number of prediction steps. MAE captures the average magnitude of errors in absolute
879 terms, while MSE penalizes larger deviations more heavily by squaring them.
880

881 C EFFECTIVENESS EVALUATION ON DYNAMIC INPUT/OUTPUT LENGTH
882

883 This section presents results under a long-sequence setting with prediction lengths ranging from 48 to
884 1024 on the ETTh1 dataset. MAE is used as the evaluation metric. We include a historical average
885 baseline and a non-LLM-based model (TimesNet) for comparison. Table 5 records the experiment
886 result.
887

888 Table 5: Forecasting performance on ETTh1 dataset under different horizons, with and without TSA.
889

Models	ETTh1 48	ETTh1 168	ETTh1 336	ETTh1 720	ETTh1 1024
Historical Average	0.205	0.218	0.238	0.262	0.288
TimeGPT (w/o TSA)	0.192	0.334	0.391	0.474	0.497
TimeGPT (w/ TSA)	0.203	0.361	0.408	0.509	0.533
TimesNet (w/o TSA)	0.202	0.346	0.375	0.496	0.512
TimesNet (w/ TSA)	0.206	0.368	0.390	0.525	0.558

890 Our experimental results highlight several important observations. First, the proposed TSA con-
891 sistently degrades the performance of both LLM-based and transformer-based forecasting models,
892 demonstrating its robustness even under very long prediction horizons. Second, we find that as the
893 forecasting horizon increases, both model families experience substantial error accumulation, in many
894 cases performing worse than the historical average baseline. This outcome echoes concerns raised in
895 prior work about the practicality of extremely long-term forecasting tasks. To ensure fairness and
896 avoid potential controversy, we therefore report our main results under a standardized and widely
897 accepted setting, using an input length of 96 and an output length of 48.
898

899 To further examine the robustness of the proposed attack, we evaluate its effectiveness under varying
900 input lengths. In this experiment, LLMTIME with GPT-4 is used as the target model, with input
901 windows of 96, 128, 256, 512, and 1024 steps, while the forecasting horizon is fixed at 48. The
902 proposed TSA, which perturbs only 10% of the input sequence, is compared against GWN and DGA,
903 both of which manipulate the full input.
904

911 Table 6: Forecasting performance of LLMTIME (GPT-4) on ETTh1 under varying input lengths
912 (prediction horizon fixed at 48).
913

Models	ETTh1 96/48	ETTh1 128/48	ETTh1 256/48	ETTh1 512/48	ETTh1 1024/48
LLMTIME (w/o attack)	0.202	0.201	0.197	0.211	0.205
LLMTIME (w/ TSA)	0.230	0.238	0.244	0.249	0.251
LLMTIME (w/ GWN)	0.213	0.202	0.205	0.214	0.199
LLMTIME (w/ DGA)	0.232	0.241	0.249	0.252	0.258

The results in Table 6 reveal several key insights. First, TSA consistently degrades the model’s performance across all input lengths, while GWN has only marginal impact. Second, increasing the input length yields only limited accuracy improvements for the clean model, yet provides more opportunities for adversarial methods to introduce harmful perturbations. Finally, despite perturbing far fewer time steps, TSA achieves attack effectiveness comparable to DGA, demonstrating that sparse, structured perturbations are sufficient to substantially degrade forecasting accuracy.

D EFFECTIVENESS EVALUATION ON VARIATE-WISE FORECASTING

To further substantiate our results, we provide a variate-wise analysis of forecasting performance on the Weather dataset, extending Table 2 from the main submission. In this evaluation, we compare model predictions under clean conditions and under two types of adversarial perturbations: Gaussian White Noise (GWN) and the proposed Temporally Sparse Attack (TSA).

We examine two representative LLM-based forecasters:

- **LLMTime**, implemented with GPT-3.5 as its backbone.
- **TimeGPT**, a pre-trained commercial LLM-based forecasting system.

In the reported results, “+ GWN” refers to forecasts under GWN injection, while “+ TSA” denotes forecasts under our proposed attack. Model performance is quantified using MAE. As summarized in Table 7, TSA consistently leads to a marked increase in prediction error across all variates, underscoring its effectiveness compared to random noise.

Table 7: Comparison of forecasting errors across different variates under clean input, Gaussian White Noise (GWN), and Temporally Sparse Attack (TSA) for LLMTime and TimeGPT.

Model	LLMTime			TimeGPT		
Variate	-	+ GWN	+ TSA	-	+ GWN	+ TSA
T (degC)	0.0150	0.0152	0.0164	0.0142	0.0147	0.0160
Tpot (K)	0.0162	0.0167	0.0205	0.0153	0.0154	0.0173
rh (%)	0.0221	0.0227	0.0268	0.0218	0.0221	0.0254
VPact (mbar)	0.0207	0.0207	0.0221	0.0205	0.0208	0.0220
H2OC (mmol/mol)	0.0264	0.0262	0.0311	0.0247	0.0253	0.0304
rho (g/m ³)	0.0176	0.0180	0.0202	0.0160	0.0162	0.0189
max. wv (m/s)	0.0008	0.0008	0.0009	0.0007	0.0008	0.0008
wd (deg)	0.1022	0.1052	0.1304	0.0986	0.0994	0.1042
raining (s)	0.0601	0.0598	0.0674	0.0582	0.0590	0.0657
SWDR (W/m ²)	0.0177	0.0180	0.0206	0.0173	0.0172	0.0208
PAR (umol/m ² /s)	0.0351	0.0378	0.0421	0.0324	0.0328	0.0372
Tlog (degC)	0.0104	0.0121	0.0143	0.0102	0.0108	0.0127

To avoid further misunderstanding, we want to highlight the distinction between univariate forecasting methods and multivariate forecasting tasks. Although all forecasting models (e.g., LLMTime, TimesNet) adopt a univariate forecasting mechanism, they process each variate separately, effectively treating the multivariate task as multiple univariate tasks.

Please note that changing the forecasting mechanism (from univariate to multivariate) would require re-designing or re-training the models, which is not applicable in our adversarial attack setting. This constraint is especially relevant for commercial LLM-based forecasters like TimeGPT, which only provide API-level access without exposing internal model parameters or allowing architectural modifications.

972 **E EFFECTIVENESS–EFFICIENCY TRADE-OFF IN ONE-QUERY AND**
 973 **MULTI-QUERY ATTACKS**
 974

975 Section 4 introduced an SP-based approach for selecting attack positions and generating an FGSM-
 976 like (Goodfellow et al., 2015) one-query attack. Although efficient, the one-query attack may be
 977 suboptimal in terms of perturbation effectiveness. In contrast, PGD (Madry et al., 2018) enables
 978 more flexible and powerful perturbation optimization but requires multiple model queries, making
 979 it significantly more costly in black-box settings. This section presents an experiment designed to
 980 examine the effectiveness–efficiency trade-off between one-query and multiple-query attacks.

981 We first provide a PGD-style multi-step extension of the proposed TSA, defined as
 982

$$x^{z+1} = \Pi_{\mathcal{B}_\epsilon(x)}(x^z + \alpha \operatorname{sign}(\hat{g}^z)), \quad (11)$$

983 where x^z denotes the adversarial example at iteration z , and \hat{g}^z represents the surrogate gradient
 984 estimated at step z according to Equation 7.

985 We set the maximum number of iterations to Z , and Table 8 summarizes the attack effectiveness and
 986 query cost for the one-query attack (proposed) and the multi-query variants with $Z \in [5, 20]$.
 987

988 Table 8: Balancing effectiveness and efficiency in single-query and multiple-query attacks.
 989

Datasets/Models	Metrics	clean	one-query	5-query	10-query	15-query	20-query
ETTh1/LLMTime	MAE Minute	0.202 -	0.230 1.20	0.230 4.15	0.228 8.50	0.232 13.35	0.231 16.75
Traffic/TimeGPT	MAE Minute	1.201 -	1.208 0.65	1.210 2.30	1.216 4.45	1.215 6.95	1.217 8.20
Exchange/TimeLLM	MAE Minute	0.034 -	0.048 2.35	0.048 8.60	0.050 14.85	0.052 23.70	0.051 30.25

990 This trade-off experiment shows that the PGD-like multi-step attack can improve attack effectiveness
 991 by approximately 5%, but at the expense of incurring more than 11 \times additional query cost. Therefore,
 992 we adopt the one-step attack as a practical compromise between effectiveness and efficiency.
 993

1003 **F ADDITIONAL SPARSE ATTACK BASELINES**
 1004

1005 We propose an SP-based method to identify sparse attack positions that optimize adversarial perfor-
 1006 mance. In this section, we compare the proposed approach with two alternative sparse attack baselines,
 1007 PGD_{random} and PGD_{greedy}, which maintain the same number of perturbed steps but determine the
 1008 perturbation positions through either random selection or a greedy strategy.
 1009

1010 Table 9: Comparison of adversarial attack effectiveness between TSA and sparse DGA variants.
 1011

Models	LLMTime w/ GPT-3.5		LLMTime w/ GPT-4		LLMTime w/ LLaMa 2		LLMTime w/ Mistral		TimeLLM w/ GPT-2		TimeGPT (2024)		TimesNet (non-LLM)	
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Traffic	0.837	0.844	0.805	0.779	0.891	1.005	0.826	0.973	0.995	1.013	1.890	1.201	1.095	1.022
w/ DGA _{random}	0.848	0.867	0.812	0.801	0.905	1.010	1.012	1.008	1.055	1.042	1.897	1.202	1.098	1.026
w/ DGA _{greedy}	0.861	0.905	0.865	8.337	0.923	1.025	1.138	1.085	1.072	1.115	1.904	1.206	1.117	1.035
w/ TSA	0.901	1.037	1.179	1.008	0.969	1.085	1.493	1.204	1.147	1.332	1.920	1.208	1.136	1.093
ETTh1	0.073	0.213	0.071	0.202	0.086	0.244	0.097	0.274	0.089	0.202	0.059	0.192	0.073	0.202
w/ DGA _{random}	0.078	0.221	0.076	0.212	0.086	0.246	0.097	0.280	0.092	0.227	0.060	0.197	0.078	0.205
w/ DGA _{greedy}	0.080	0.226	0.078	0.219	0.089	0.247	0.099	0.293	0.092	0.235	0.060	0.199	0.077	0.202
w/ TSA	0.082	0.235	0.079	0.230	0.092	0.249	0.097	0.295	0.091	0.237	0.061	0.203	0.080	0.206
Weather	0.005	0.051	0.004	0.048	0.008	0.072	0.006	0.057	0.004	0.034	0.004	0.043	0.003	0.042
w/ DGA _{random}	0.005	0.055	0.004	0.050	0.008	0.073	0.006	0.060	0.004	0.036	0.004	0.050	0.003	0.043
w/ DGA _{greedy}	0.005	0.058	0.005	0.054	0.009	0.074	0.006	0.060	0.004	0.040	0.005	0.058	0.003	0.042
w/ TSA	0.006	0.060	0.006	0.058	0.010	0.076	0.006	0.065	0.004	0.048	0.007	0.072	0.004	0.043

1023 **Sparse DGA with Random Position (DGA_{random}) and Sparse DGA with Greedy Search**
 1024 **(DGA_{greedy}).** We design two sparse variants of DGA. Each variant perturbs the same number
 1025 of time steps as the proposed TSA, but selects the attack positions either through random sampling or

1026 via a greedy search strategy (Dong et al., 2020). The perturbation update rule remains identical to
 1027 that of the original DGA.

1028 The experimental setup follows Section 5.1. This comparison against plausible sparse baselines
 1029 further demonstrates the strength of the proposed TSA. As shown in Table 9, TSA consistently
 1030 outperforms both sparse DGA variants across most settings. Notably, for LLM-based forecasting
 1031 models, TSA yields approximately 84% larger prediction errors compared with the greedy sparse
 1032 DGA.

1034 G VULNERABILITY COMPARISON BETWEEN LLM-BASED AND 1035 NON-LLM-BASED FORECASTERS

1038 This section presents a vulnerability comparison between LLM-based and non-LLM-based time
 1039 series forecasting models under the proposed TSA attack. The experimental setup follows Section 5.1.
 1040 We evaluate four LLM-based forecasters and three non-LLM-based forecasters across six datasets.

1041 The results, summarized in Table 10, reveal two key findings: **i.** The proposed TSA consistently
 1042 degrades the performance of both LLM-based and non-LLM-based models; and **ii.** LLM-based
 1043 forecasting models are generally more vulnerable to adversarial attacks. A similar observation
 1044 is reported by Liu et al. (2025). These results suggest that, although LLM-based models offer
 1045 strong zero-shot forecasting capabilities, their reduced robustness warrants careful consideration in
 1046 real-world applications.

1047 Table 10: Vulnerability comparison between LLM-based and non-LLM-based time series forecasters.

1049 Models	LLMTime w/ GPT-3.5		LLMTime w/ GPT-4		TimeLLM w/ GPT-2		TimeGPT (2024)		TimesNet (2023)		TimeMixer (2024)		TimeXer (2024)	
1050 Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
1051 Traffic	0.837	0.844	0.805	0.779	0.995	1.013	1.890	1.201	1.095	1.022	0.902	0.913	0.877	0.904
	0.882	0.908	0.883	0.864	1.123	1.221	1.848	1.204	1.103	1.035	0.913	0.932	0.890	0.921
	0.901	1.037	1.179	1.008	1.147	1.332	1.920	1.208	1.136	1.093	1.017	1.135	0.963	1.125
1052 ETTh1	0.073	0.213	0.071	0.202	0.089	0.202	0.059	0.192	0.073	0.202	0.062	0.198	0.069	0.195
	0.077	0.219	0.076	0.213	0.102	0.231	0.059	0.193	0.074	0.202	0.065	0.200	0.070	0.196
	0.082	0.235	0.079	0.230	0.091	0.237	0.061	0.203	0.080	0.206	0.068	0.201	0.072	0.201
1053 ETTh2	0.263	0.372	0.155	0.267	0.238	0.361	0.161	0.297	0.166	0.316	0.163	0.294	0.160	0.292
	0.263	0.342	0.175	0.303	0.235	0.355	0.160	0.301	0.166	0.316	0.165	0.295	0.164	0.296
	0.271	0.402	0.195	0.319	0.299	0.440	0.168	0.307	0.167	0.319	0.166	0.299	0.168	0.301
1054 Weather	0.005	0.051	0.004	0.048	0.004	0.034	0.004	0.043	0.003	0.042	0.003	0.038	0.004	0.040
	0.005	0.053	0.005	0.051	0.004	0.033	0.004	0.043	0.003	0.042	0.003	0.041	0.004	0.040
	0.006	0.060	0.006	0.058	0.004	0.048	0.007	0.072	0.004	0.043	0.004	0.051	0.005	0.048
1055 Exchange	0.038	0.146	0.040	0.152	0.056	0.188	0.256	0.368	0.056	0.184	0.059	0.193	0.043	0.181
	0.042	0.179	0.046	0.182	0.059	0.194	0.329	0.413	0.065	0.195	0.061	0.199	0.044	0.190
	0.049	0.196	0.065	0.190	0.061	0.189	0.474	0.537	0.062	0.190	0.068	0.203	0.050	0.195
1056 Solar	0.316	0.325	0.235	0.276	0.331	0.347	0.244	0.279	0.301	0.319	0.287	0.288	0.294	0.303
	0.319	0.323	0.236	0.280	0.337	0.348	0.244	0.282	0.305	0.322	0.286	0.290	0.294	0.305
	0.342	0.364	0.288	0.310	0.337	0.351	0.290	0.315	0.312	0.326	0.292	0.298	0.302	0.311

1067 H TRANSFORMATION FOR TARGETED ATTACKS

1068 The proposed TSA is an untargeted, label-free black-box attack, where attack success is evaluated
 1069 based on how much the perturbation worsens MAE or MSE. In practice, however, a more realistic
 1070 adversarial objective is to force the forecasting model to output attacker-specified predictions. This
 1071 section extends TSA to support such targeted attack goals.

1072 First, the proposed TSA is reformulated into a targeted attack version. The original optimization in
 1073 Equation 3 becomes:

$$\begin{aligned} & \min_{\mathbf{w}} \mathcal{L}(f(\mathbf{X}_t(1 + \mathbf{w})), \mathcal{Y}_t) \\ & \text{s.t. } \|\mathbf{w}\|_0 = \tau, \quad \|\mathbf{w}_i\|_1 \leq \epsilon, \quad i \in [t - T + 1, t], \end{aligned} \quad (12)$$

1074 where \mathcal{Y}_t is the attacker-chosen target output.

1080 Next, the gradient estimation in Equation 7 is updated as:
 1081

$$1082 \hat{g} = \frac{\mathcal{L}(\mathcal{Y} - \mathcal{F}(\mathbf{X}_t, w_j, \Delta)) - \mathcal{L}(\mathcal{Y} - \mathcal{F}(\mathbf{X}_t, w_j, -\Delta))}{2\Delta}, \quad (13)$$

1084 where \mathcal{Y} denotes the attacker-chosen forecast.
 1085

1086 A targeted version of Algorithm 1 is obtained by modifying the loss computation in line 5. Equation 8
 1087 is replaced with:
 1088

$$1089 \mathbf{r} := \mathcal{L}(f(\mathbf{X}_t(1 + \mathcal{M}(\mathbf{w}_S, w_j))), \mathcal{Y}_t). \quad (14)$$

1090 With these three modifications, TSA becomes a targeted attack. Attack effectiveness is evaluated
 1091 through success rate rather than degradation of MAE/MSE. The success indicator at time step t is:
 1092

$$1093 l_t^S(\hat{\mathbf{Y}}_t, \mathcal{Y}_t) = \begin{cases} 1, & \|\hat{\mathbf{Y}}_t - \mathcal{Y}_t\|_2 \leq \xi, \\ 0, & \|\hat{\mathbf{Y}}_t - \mathcal{Y}_t\|_2 > \xi, \end{cases} \quad (15)$$

1096 where ξ is a predefined boundary. The overall success rate is computed as:
 1097

$$1098 l^S = \frac{\sum l_t^S}{L} \times 100\%, \quad (16)$$

1100 where L is the number of examples.
 1101

1102 Table 11: Attack effectiveness on targeted TSA.

Models	LLMTime w/ GPT-3.5		LLMTime w/ GPT-4		TimeLLM w/ GPT-2		TimeGPT (2024)	
	MSE	l^S	MSE	l^S	MSE	l^S	MSE	l^S
Traffic w/ TSA	0.837	-	0.805	-	0.995	-	1.890	-
	0.898	11.2%	1.174	17.8%	1.140	13.5%	1.933	10.4%
ETTh1 w/ TSA	0.073	-	0.071	-	0.089	-	0.059	-
	0.081	9.6%	0.077	8.6%	0.093	4.3%	0.060	2.8%
ETTh2 w/ TSA	0.263	-	0.155	-	0.238	-	0.161	-
	0.268	6.3%	0.193	18.4%	0.287	16.6%	0.165	8.4%
Weather w/ TSA	0.005	-	0.004	-	0.004	-	0.004	-
	0.006	12.7%	0.006	14.9%	0.004	17.1%	0.007	22.3%
Exchange w/ TSA	0.038	-	0.040	-	0.056	-	0.256	-
	0.044	8.5%	0.063	18.8%	0.059	9.7%	0.455	31.4%
Solar w/ TSA	0.316	-	0.235	-	0.331	-	0.244	-
	0.337	13.5%	0.269	17.2%	0.336	5.7%	0.281	16.9%

1118 We evaluate the targeted TSA on four LLM-based forecasters across six datasets. Two metrics are
 1119 used to assess attack effectiveness: MSE and the success rate (l^S). The results, shown in Table 11,
 1120 indicate that the targeted TSA still induces substantial degradation in forecasting accuracy. The attack
 1121 success rate ranges from 3% to over 30%, with an average of approximately 17%. These findings
 1122 also suggest that the vulnerability of LLM-based forecasters varies considerably across datasets.
 1123

1124 I COST EVALUATION OF THE SP-BASED SOLUTION

1127 This section compares the computational cost of generating adversarial perturbations using the
 1128 proposed SP-based solution versus a greedy search strategy. The experiment is conducted on four
 1129 LLM-based time series forecasters across two datasets, with results summarized in Table 12. The
 1130 findings show that the proposed SP-based algorithm not only produces more effective perturbations
 1131 but also requires substantially less computation, reducing cost by roughly 80%. These empirical
 1132 results are consistent with the theoretical analysis in Section 4.1, where the computational complexity
 1133 of the SP-based method is $\mathcal{O}(T \times \tau)$, compared to the much higher complexity $\mathcal{O}(T^\tau)$ of a standard
 greedy algorithm.

1134 Table 12: Attack effectiveness and computational cost comparison between SP-based TSA and sparse
1135 DGA with greedy search.
1136

Models	LLMTime w/ GPT-3.5		LLMTime w/ GPT-4		TimeLLM w/ GPT-2		TimeGPT (2024)	
	MSE	Minute	MSE	Minute	MSE	Minute	MSE	Minute
Traffic	0.837	-	0.805	-	0.995	-	1.890	-
	0.861	7.55	0.865	6.48	1.072	10.06	1.904	3.80
	0.901	1.35	1.179	1.24	1.147	3.88	1.920	0.65
Solar	0.316	-	0.235	-	0.331	-	0.244	-
	0.325	9.03	0.248	6.98	0.332	13.76	0.260	4.92
	0.337	1.90	0.269	1.41	0.336	4.25	0.281	6.28

1144
1145 **J UNCERTAINTY ANALYSIS**
11461147 This section evaluates the uncertainty of the attack by reporting the standard deviation of the increased
1148 errors across multiple runs, thereby assessing the reliability of the observed performance gaps.
11491150 We evaluate four LLM-based forecasters across three datasets and run the proposed attack 20
1151 times. The results, summarized in Table 13, show that the proposed TSA exhibits strong stability in
1152 attack effectiveness. Even at the lower bound of its performance range, TSA consistently induces a
1153 substantial degradation in forecasting accuracy.1154
1155 Table 13: Reliability analysis on attack performance.
1156

Models	LLMTime w/ GPT-3.5		LLMTime w/ GPT-4		TimeLLM w/ GPT-2		TimeGPT (2024)	
	MSE	Variance	MSE	Variance	MSE	Variance	MSE	Variance
Traffic	0.837	-	0.805	-	0.995	-	1.890	-
	0.892	± 0.012	1.171	± 0.006	1.140	± 0.010	1.914	± 0.008
ETTh1	0.073	-	0.071	-	0.089	-	0.059	-
	0.081	± 0.001	0.07	± 0.002	0.090	± 0.002	0.061	± 0.001
Solar	0.316	-	0.235	-	0.331	-	0.244	-
	0.334	± 0.005	0.260	± 0.011	0.332	± 0.007	0.269	± 0.014

1164
1165 **K LLM USAGE STATEMENT**
11661167 We employed ChatGPT-5 solely for language polishing, such as refining grammar and improving
1168 readability. At no stage were LLMs used to generate research ideas, construct the attack methodology,
1169 carry out experiments, or perform literature review.
11701171 All technical elements of this study, including the design and definition of the Temporally Sparse
1172 Attack (TSA), the development of algorithms, the setup and execution of experiments, and the
1173 subsequent analysis and interpretation, are entirely the authors' own work.1174 In this research, Large Language Models (LLMs) based time series forecasting models appear only
1175 as the *objects of study*, functioning as the forecasting systems that our attack targets. Their role as
1176 experimental subjects is fully detailed in Section 5.
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187