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ABSTRACT

Large Language Models (LLMs) have recently demonstrated strong potential in
zero-shot time series forecasting by leveraging their ability to capture complex
temporal patterns through the next-token prediction mechanism. However, recent
studies indicate that LLM-based forecasters are highly sensitive to small input
perturbations. Existing attack methods, though, typically require modifying the
entire time series, which is impractical in real-world scenarios. To address this
limitation, we propose a Temporally Sparse Attack (TSA) against LLM-based
time series forecasting. We formulate the attack as a Cardinality-Constrained
Optimization Problem (CCOP) and introduce a Subspace Pursuit (SP)–based
algorithm that restricts perturbations to a limited subset of time steps, enabling
efficient and effective attacks. Extensive experiments on state-of-the-art LLM-
based forecasters, including LLMTime (GPT-3.5, GPT-4, LLaMa, and Mistral),
TimeGPT, and TimeLLM, across six diverse datasets, demonstrate that perturbing
as little as 10% of the input can substantially degrade forecasting accuracy. These
results highlight a critical vulnerability of current LLM-based forecasters to low-
dimensional adversarial attacks.

1 INTRODUCTION

Time series forecasting is a critical tool across various domains, such as finance, traffic, energy
management, and climate science. Accurate predictions of temporal patterns enable stakeholders
to make informed decisions, optimize resources, and mitigate risks, thus playing a pivotal role in
modern decision-making (Lim & Zohren, 2021; Liu et al., 2022b; Wang et al., 2024a).

Recently, Large Language Models (LLMs), originally designed for Natural Language Processing
(NLP), have shown significant promise in capturing complex temporal dependencies across diverse
scenarios (Garza & Mergenthaler-Canseco, 2023; Jin et al., 2024; Gruver et al., 2024). LLMs offer
advanced capabilities, such as zero-shot forecasting, that allow them to generalize across various tasks
without extensive retraining (Rasul et al., 2023; Ye et al., 2024; Liang et al., 2024). This positions
LLMs as strong candidates for foundational models in time series forecasting.

Despite these strengths, LLMs are known to be susceptible to adversarial attacks, raising concerns
about their reliability in critical applications (Zou et al., 2023; Liu et al., 2024). While LLM-
based forecasters have demonstrated impressive accuracy (Ansari et al., 2024; Jiang et al., 2024), it
remains uncertain whether decision-making processes can depend on these predictions in adversarial
scenarios. Investigating the robustness of LLM-based models is therefore essential for ensuring their
trustworthiness in real-world applications.

While adversarial attacks on machine learning models have been widely studied in computer vision
and natural language processing domains (Wei et al., 2018; Xu et al., 2020; Morris et al., 2020),
attacking LLMs in time series forecasting presents unique challenges. First, ground truth values (i.e.,
future time steps) cannot be used in attacks to prevent information leakage. Second, accessing the
internal parameters, structure, and training data of LLMs is often infeasible for attackers, requiring
attacks to operate under strict black-box conditions. Recent studies have explored gradient-free
optimization techniques for adversarial attacks against LLM-based time series forecasters (Liu
et al., 2025), demonstrating the feasibility of degrading model performance by perturbing the entire
input series. However, such approaches present significant limitations in terms of practicality and
imperceptibility. In real-world applications, particularly those involving time-sensitive data streams,
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Figure 1: Conceptual comparison of three scenarios: (i) jailbreaking LLMs, (ii) full-series attacks on
LLM-based forecasters, and (iii) the proposed TSA, which perturbs only a limited number of time
steps. In adversarial time series settings, the threat model involves three key roles: the attacker, the
user, and the forecaster. The key gap is that existing attacks require poisoning the entire input series.

the requirement to manipulate an entire time series, potentially spanning several hours, renders the
attack infeasible and easily detectable. This concern motivates a more realistic and operationally
relevant research question: Can LLM-based forecasters be effectively disrupted by modifying
only a small subset of the input time series?

We address this question by proposing a Temporally Sparse Attack (TSA) framework (Figure 1)
designed for highly constrained settings, where the adversary is limited to perturbing only a sparse
subset of the input time series. This restriction aligns with realistic scenarios where imperceptibility
and limited access are essential. To model the attack process, we formulate it as a Cardinality-
Constrained Optimization Problem (CCOP) (Bhattacharya, 2009; Ruiz-Torrubiano et al., 2010).
CCOP is inherently non-convex and NP-hard, and in this case, its resolution becomes even more
challenging under black-box, label-free assumptions. To overcome these challenges, we adapt the
Subspace Pursuit (SP) algorithm, originally developed for solving cardinality-constrained white-box
LASSO problems (Dai & Milenkovic, 2009; Wang et al., 2012), to this black-box, label-free context
by incorporating a gradient-free optimization strategy based solely on black-box queries to the
forecasting model. TSA can effectively generate temporally sparse perturbations without access to
ground truth labels or model internals, thereby offering a practical and stealthy solution suitable for
real-world time series forecasting applications.

Our evaluation spans six LLM-based time series forecasting models across six diverse real-world
datasets. The results demonstrate that TSA, which perturbs only 10% of the input data with small
modifications, can still induce a substantial degradation in forecasting accuracy. Even filter-based
defense mechanisms are largely ineffective against these attacks due to their sparse structure. These
experiments empirically confirm that the proposed TSA is not only more stealthy but also more
effective at bypassing filter-based adversarial defenses than full-series attacks. Overall, the findings
highlight the urgent need to address such vulnerabilities in LLM-based forecasters to ensure their
reliability in high-stakes applications.

2 RELATED WORK

Sparse attacks in computer vision aim to mislead recognition or detection models by perturbing
only a small portion of the input image (Croce & Hein, 2019). The one-pixel attack (Su et al.,
2019) employs a genetic algorithm to deceive deep neural network (DNN)-based image classifiers by
modifying a single pixel, while GreedyFool (Dong et al., 2020) adopts a combination of greedy search
and Projected Gradient Descent (PGD) to manipulate selected pixels in static settings. However,
existing sparse attack studies predominantly operate under white-box assumptions, and the true label
is typically required during perturbation generation. These assumptions do not hold in LLM-based
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time series forecasting, which is inherently black-box and does not provide ground-truth labels during
inference.

Adversarial attacks on LLMs have garnered significant attention, revealing how minor input manipu-
lations can lead to substantial output alterations. These attacks are generally categorized into methods
such as jailbreak prompting, where crafted prompts bypass safety guardrails to elicit unintended or
harmful responses (Wei et al., 2024); prompt injection, embedding adversarial instructions within
benign prompts to manipulate outputs (Greshake et al., 2023; Xue et al., 2024; Shen et al., 2024);
gradient-based attacks, which exploit internal model parameters to create minimally invasive input
perturbations (Zou et al., 2023; Jia et al., 2024); and embedding perturbations, which subtly alter
input embeddings to disrupt the model’s internal representations (Schwinn et al., 2024). While much
of this research has focused on text-based tasks, the robustness of LLMs in non-textual domains like
time series forecasting remains underexplored.

Adversarial attacks in time series forecasting have emerged as a critical research focus, exposing the
vulnerabilities of forecasting models. Unlike static domains such as time series classification (Karim
et al., 2020; Ding et al., 2023), time series forecasting presents unique challenges for adversarial
research. One key constraint is the inability to use future ground truth values when generating
perturbations, as this could lead to information leakage (Dang-Nhu et al., 2020; Liu et al., 2023). For
example, in hourly temperature forecasting, the true label for 10 a.m. corresponds to the temperature
at 11 a.m., which is unavailable to the user, the forecaster, and the attacker. To address this, surrogate
labels have been introduced (Zhu et al., 2023; Lin et al., 2024), enabling attackers to bypass the
need for ground truth. Most prior studies have concentrated on white-box scenarios (Xu et al., 2021;
Liu et al., 2022a), where adversaries have full access to model parameters, structure, and training
data. However, evaluating the robustness of LLM-based forecasting models presents additional
complexities. These models typically operate in black-box settings, limiting access to their internal
workings. Gradient-free black-box attacks have been proposed as a solution (Liu et al., 2025), but
they often require modifying the entire time series, which is impractical.

3 THREAT MODEL

In what follows, we first provide an overview of LLM-based time series forecasting as the foundation
of our study, and then formally define the goals and capability constraints of adversaries when
conducting sparse attacks against LLM-based forecasters.

LLM-Based Time Series Forecasting. LLMs have shown great promise in time series forecasting
by leveraging their next-token prediction capability. A typical LLM-based time series forecasting
framework, denoted as f(·), comprises two key components: an embedding or tokenization module
and a pre-trained LLM. The embedding module encodes time series into a sequence of tokens suitable
for processing by the LLM, while the LLM captures temporal dependencies and autoregressively
predicts subsequent tokens based on its learned representations.

Let xt ∈ Rd represent a d-dimensional time series at time t. Define Xt = {xt−T+1, . . . ,xt} as the
sequence of T recent historical observations and Yt = {yt+1, . . . ,yt+L} as the true future values
for the next L time steps. The forecasting model f(·) predicts the future values from the historical
observations, which is formulated as:

Ŷt = f (Xt) , (1)

where Ŷt denotes the predicted future values. Typically, the prediction horizon L is constrained to
be less than or equal to the historical horizon T , i.e., L ≤ T . This ensures that the model leverages
sufficient historical context while maintaining computational efficiency.

By effectively combining the embedding module’s ability to encode raw time series data and the
LLM’s capacity to model complex temporal patterns, these models have become powerful tools for
addressing a wide range of zero-shot forecasting challenges across various domains.

Temporally Sparse Attack against LLM-based Forecaster. The goal of attacking an LLM-based
time series forecasting model f(·) is to manipulate it into producing abnormal outputs that differ
substantially from their typical predictions and the actual ground truth, using minimal and nearly
undetectable perturbations.
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The adversarial attack can be modeled as a maximum optimization problem:
max
ρ

L (f (Xt + ρ) ,Yt) s.t. ∥ρi∥p ≤ ϵ, i ∈ [t− T + 1, t] , (2)

where ρ = {ρt−T+1, . . . , ρt} denotes the perturbations added into the clean historical time series
Xt = {xt−T+1, . . . ,xt}. Here, the loss function L measures the discrepancy between the model’s
predictions and the ground truth, while ϵ serves as a constraint on the perturbation magnitude under
the ℓp-norm, ensuring that the adversarial attack remains subtle and imperceptible. Typically, the
global average X̄ serves as the reference point to determine whether the added perturbations are
imperceptible. Consequently, ϵ is defined as a proportion of the global average, e.g., ϵ = 5%× X̄.

The true future values Yt are generally unavailable during the practical forecasting process. As a
result, to avoid future information leakage, the ground truth Yt is substituted with the predicted
values Ŷt produced by the forecasting model. Specifically, in Equation 2, Yt is replaced with Ŷt. In
practical applications, it is generally infeasible to access the complete set of detailed parameters of an
LLM, compelling the attacker to approach the target model as a black-box system. In other words, no
internal information of f(·) in Equation 2 is available.

The computed perturbations ρ = {ρt−T+1, . . . , ρt} are typically applied across the entire input
window, which makes full-series poisoning burdensome in practice. For example, for a 5-minute-
ahead traffic forecaster that uses T = 48 input steps, an attacker would need to manipulate 48
consecutive measurements, i.e., 48 × 5 minutes = 4 hours of data. This example illustrates the
practical difficulty of poisoning the entire series. In this study, we impose strict limitations on the
attacker’s capabilities, allowing them to pollute only τ time steps. Furthermore, since the future true
values Yt are unavailable, they are approximated using the predicted values Ŷt = f (Xt). Under
this constraint, the attack process is reformulated as a CCOP (Bhattacharya, 2009):

max
w

L
(
f (Xt (1 +w)) , Ŷt

)
s.t. ∥w∥0 = τ and ∥wi∥1 ≤ ϵ, i ∈ [t− T + 1, t],

(3)

where w = {wt−T+1, . . . , wt} represents multiplicative adversarial perturbations. The cardinality
constraint, also called τ -sparse ℓ0-norm constraint, restricts the number of non-zero elements in
adversarial perturbations to a fixed small number, ensuring that the adversarial perturbations are
sparse on the temporal dimension. Besides, the ℓ1-norm constraint limits the magnitude of each
non-zero perturbation, ensuring the modifications remain imperceptible.

It should be noted that the global average is unsuitable as a reference for the average magnitude of the
manipulated series under the temporally sparse setting. Instead, each manipulated time step requires
a unique reference point to ensure the magnitude of the perturbation at each time step is bounded.
The limitation of the poisoned value at time step i can be expressed as:

∥xi + ρi∥1 = ∥xi (1 + wi)∥1 ≤ ∥xi (1 + ϵ)∥1 , (4)
where ∥ρi∥1 = ∥wi ·xi∥1 ≤ ∥ϵ ·xi∥1. Consequently, the additive perturbation Xt +ρ in Equation 2
is replaced with the multiplicative perturbation Xt (1 +w) in Equation 3.

Furthermore, in many real-world applications, adversaries often lack access to the complete training
dataset, rendering it infeasible to exploit the data distribution or model training process directly.
Given the preceding discussion, the capabilities and constraints of the attacker under the temporally
sparse attack setting can be summarized as follows: (i) no access to the training dataset; (ii) no access
to the internal architecture or parameters of the LLM-based forecasting model; (iii) no access to the
ground truth values during inference; (iv) the ability to perturb only a sparse subset of the input time
series; and (v) the capability to query the forecasting model in a black-box manner.

4 PERTURBATION COMPUTATION

The temporally sparse attack process is formulated as a CCOP in Equation 3, which is inherently
non-convex and NP-hard. Subspace Pursuit (SP) has been shown to provide approximate solutions
to cardinality-constrained white-box LASSO problems within polynomial time (Dai & Milenkovic,
2009; Wang et al., 2012). However, applying SP in the context of adversarial attacks against LLM-
based forecasting introduces two major challenges: the unavailability of model parameters and the
absence of ground truth labels. To overcome these constraints, we integrate gradient-free optimization
techniques and adapt the SP algorithm.
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4.1 τ -SPARSE PERTURBATION COMPUTATION

To solve the optimization problem in Equation 3, we propose an adapted SP method, outlined as
Algorithm 1. In our adaptation, the ℓ1-norm constraint is incorporated as a subroutine to maintain the
imperceptibility of the perturbations. Here, the support set S = supp(w) = {i : wi ̸= 0} denotes
the indices of nonzero elements in the perturbation vector w, with |S| representing its cardinality. To
efficiently update the support set, we define the merge operator:

M (wS , wj) =

{
wS , j ∈ S,

{wS , wj} , j /∈ S.
(5)

This operator ensures that when a new candidate perturbation wj is selected, it is either retained in
the existing support set S if it is already present, or added as a new element if it is not.

1: Input: Time series X ∈ Rd×T , the loss function L,
the LLM-based forecaster f(·), and sparsity level τ
of the multiplicative adversarial perturbations w.

2: Initialize the perturbation vector w := 0 as zeros,
the support set S := ∅ as an empty set, and the loss
value r := 0 as zero.

3: Return w = {wt} for t ∈ [0, . . . , T − 1].
4: while not converged do
5: Find ℓ as the index set of the τ largest losses of

f (Xt (1 +M (wS , wj))) in which wj is the
candidate perturbation, where
j ∈ [1, . . . , T ] & j /∈ S.

6: Update the support set S := S ∪ {ℓ}.
7: Update the sparse vector wS := ϵ · sign (ĝS).
8: Update the support set S as the index set of the

τ largest losses of f (Xt (1 + wi)) for i ∈ S.
9: Set wi = 0 for all i /∈ S.

10: Update r := L
(
f (Xt (1 +wS)) , Ŷt

)
.

11: end while
12: Return the τ -sparse multiplicative adversarial

perturbations w.

Algorithm 1: Computing w with adapted SP.

Algorithm 1 describes the iterative process for
estimating the sparse multiplicative adversarial
perturbations w. At each iteration, the algo-
rithm identifies the indices corresponding to the
τ largest loss values resulting from applying
candidate perturbations. The candidate pertur-
bations wj are computed using the gradient-free
optimization technique as in Section 4.2. Then,
the support set S is updated by including the
identified indices. The support set S is subse-
quently refined by selecting the τ elements with
the largest individual prediction loss. Any com-
ponents outside the updated support set are reset
to zero. This process repeats until the loss r
converges and the final τ -sparse multiplicative
adversarial perturbation w is returned.

This method effectively enforces the CCOP by
ensuring that only τ time steps are modified
while maintaining a bounded perturbation mag-
nitude. The adapted SP approach enables ef-
ficient selection of perturbation locations, en-
suring maximal adversarial impact while keep-
ing modifications imperceptible. Moreover, the
computation complexity of the proposed method is O (T × τ), whereas a standard greedy algorithm
has a significantly higher complexity of O (T τ ).

4.2 CANDIDATE PERTURBATION

The candidate perturbation in the first step of Algorithm 1 (line 5) is to perturb the specific time step
j, which can be formulated as:

max
wj

L
(
f (Xt + {0, . . . , wj · xi, . . . , 0}) , Ŷt

)
s.t. ∥wj∥1 ≤ ϵ. (6)

Here, the perturbation wj is applied only at time step j. The magnitude of the perturbation is bounded
by the constraint ϵ, while maximizing the impact on the loss function L.

In the black-box setting, Equation 6 cannot be solved using gradient-based methods such as Stochastic
Gradient Descent (SGD). Instead, a gradient-free optimization technique can be employed to estimate
the gradients, as follows:

ĝ =
F(Xt, wj ,∆)−F(Xt, wj ,−∆)

2 ·∆
, (7)

where ĝ represents the estimated gradients, ∆ denotes a random Gaussian noise, and F(Xt, wj , a) =
f (Xt + {0, . . . , (wj + a) · xi, . . . , 0}) denotes querying the target model with a noise term a.

Similar to the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015), the perturbation can
be computed using the estimated gradients ĝ as wj = ϵ · sign (ĝ), where sign(·) denotes the signum
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Table 1: Comparison of adversarial attacks. In this table, TS denotes time series.

Method Black-box Label-free No train set Applicable to LLMs in TS Temporal sparsity

TS forecasting attacks (Dang-Nhu et al., 2020) ✗ ✓ ✓ ✗ ✗
Black-box attacks (Guo et al., 2019) ✓ ✗ ✗ ✗ ✗
Attacks against LLMs in TS (Liu et al., 2025) ✓ ✓ ✓ ✓ ✗
Proposed temporally sparse attack (TSA) ✓ ✓ ✓ ✓ ✓

function. This approach ensures that the perturbation magnitude is bounded by ϵ while aligning with
the direction of the estimated gradients.

After generating the candidate perturbation, the corresponding loss is computed as

r := L
(
f(Xt(1 +M(wS , wj))) , Ŷt

)
, (8)

which functions as the ranking index in the initial step of the iterative procedure in Algorithm 1.

Brief Discussion. Adversarial attacks against LLMs for time series forecasting remain extremely
limited, primarily due to the following practical constraints: (i) no access to true labels at inference
time, in order to avoid future information leakage; (ii) no access to model parameters, as LLMs are
prohibitively large and impractical for attackers to obtain; and (iii) no access to training data, since
LLM-based forecasters operate in a zero-shot setting and are trained on massive, heterogeneous
datasets drawn from diverse applications. TSA satisfies all these constraints while additionally
operating in a temporally sparse setting, making it well-suited for realistic LLM-based forecasting
scenarios. Table 1 presents a simple comparison between the proposed TSA and existing methods.

5 EXPERIMENT

In this section, we evaluate the effectiveness of TSA across six datasets and seven forecasting
models, including six LLM-based and three non-LLM-based baselines, in comparison with two
existing attacks. We primarily address the following potential concerns: Q1. Does the proposed TSA
significantly degrade the predictive performance of LLM-based forecasters? Q2. What explains the
effectiveness of TSA? Q3. Can TSA bypass existing adversarial mitigation strategies? Q4. How
sensitive is TSA to different hyperparameter choices?

Detailed experimental settings are provided in Appendix B. In summary: Baseline attacks. For
comparison, we consider Gaussian White Noise (GWN) and a full-series attack, Directional Gradient
Approximation (DGA) (Liu et al., 2025). Besides, we construct two sparse variants of DGA, which
perturb the same number of time steps as the proposed TSA, but select the attack positions either
through random sampling or via a greedy search strategy. Target models. We evaluate TSA against
state-of-the-art forecasting systems, including TimeGPT (Garza & Mergenthaler-Canseco, 2023),
TimeLLM (Jin et al., 2024), LLMTime (Gruver et al., 2024) with GPT-3.5, GPT-4, LLaMa2, and
Mistral as backbone models, as well as non-LLM forecasters including TimesNet (Wu et al., 2023),
TimeMixer (Wang et al., 2024a), and TimeXer (Wang et al., 2024b). Datasets. Experiments are
conducted on six real-world datasets, ETTh1, ETTh2, Traffic, Weather, Exchange, and Solar, spanning
domains such as electricity, transportation, geoscience, economics, and energy. Metrics. Forecasting
performance is evaluated using two standard error measures: Mean Absolute Error (MAE) and Mean
Squared Error (MSE).

Additional experiments are reported in the Appendix. Specifically, the evaluations on long input/out-
put horizons and variate-wise forecasting are provided in Appendix C and Appendix D, respectively.
Appendix E empirically analyzes the trade-off between effectiveness and efficiency in single-query
versus multi-query attacks. Appendix F compares the proposed TSA with two sparse variants of DGA,
further demonstrating the strength of the SP-based solution. Appendix G presents a vulnerability
comparison between LLM-based and non-LLM-based forecasters. Appendix H extends the proposed
TSA to a targeted attack setting to evaluate whether an adversary can force the forecasting model to
produce attacker-specified outputs. Appendix I empirically analyzes the computational cost of the
SP-based solution and the greedy search strategy. Appendix J examines the reliability of the attack
performance by running the proposed attack multiple times and reporting the variance.
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Table 2: Adversarial attack effectiveness comparison. Forecasting models process each variate
independently, treating the multivariate task as a collection of univariate forecasting problems. A
fixed input length of 96 and an output length of 48 are used across all models and datasets. Lower
MSE and MAE values indicate better predictive performance. For TSA and DGA, the perturbation
magnitude constraint is fixed at ϵ = 0.1, while for GWN, the deviation is set to 2% of the mean
value of each dataset. For clarity, the worst and second-worst performance for each dataset–model
combination are highlighted in bold and italics. The sparsity level of TSA is set to τ = 9, while both
DGA and GWN poison the entire input series.

Models LLMTime LLMTime LLMTime LLMTime TimeLLM TimeGPT TimesNet
w/ GPT-3.5 w/ GPT-4 w/ LLaMa 2 w/ Mistral w/ GPT-2 (2024) (non-LLM)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic 0.837 0.844 0.805 0.779 0.891 1.005 0.826 0.973 0.995 1.013 1.890 1.201 1.095 1.022
w/ GWN 0.882 0.908 0.883 0.864 0.917 1.063 1.054 1.031 1.123 1.221 1.848 1.204 1.103 1.035
w/ DGA 0.955 1.073 1.417 1.214 0.994 1.083 1.744 1.217 1.161 1.328 1.918 1.218 1.155 1.047
w/ TSA 0.901 1.037 1.179 1.008 0.969 1.085 1.493 1.204 1.147 1.332 1.920 1.208 1.136 1.093
ETTh1 0.073 0.213 0.071 0.202 0.086 0.244 0.097 0.274 0.089 0.202 0.059 0.192 0.073 0.202
w/ GWN 0.077 0.219 0.076 0.213 0.087 0.237 0.094 0.291 0.102 0.231 0.059 0.193 0.074 0.202
w/ DGA 0.085 0.249 0.083 0.232 0.091 0.251 0.098 0.295 0.099 0.248 0.060 0.198 0.081 0.213
w/ TSA 0.082 0.235 0.079 0.230 0.092 0.249 0.097 0.295 0.091 0.237 0.061 0.203 0.080 0.206

ETTh2 0.263 0.372 0.155 0.267 0.237 0.373 0.277 0.492 0.238 0.361 0.161 0.297 0.166 0.316
w/ GWN 0.263 0.342 0.175 0.303 0.231 0.429 0.346 0.505 0.235 0.355 0.160 0.301 0.166 0.316
w/ DGA 0.275 0.408 0.201 0.327 0.257 0.425 0.356 0.554 0.302 0.441 0.171 0.312 0.169 0.321
w/ TSA 0.271 0.402 0.195 0.319 0.258 0.432 0.350 0.547 0.299 0.440 0.168 0.307 0.167 0.319

Weather 0.005 0.051 0.004 0.048 0.008 0.072 0.006 0.057 0.004 0.034 0.004 0.043 0.003 0.042
w/ GWN 0.005 0.053 0.005 0.051 0.008 0.074 0.007 0.066 0.004 0.033 0.004 0.043 0.003 0.042
w/ DGA 0.006 0.063 0.006 0.061 0.009 0.079 0.007 0.062 0.005 0.052 0.006 0.071 0.004 0.045
w/ TSA 0.006 0.060 0.006 0.058 0.010 0.076 0.006 0.065 0.004 0.048 0.007 0.072 0.004 0.043

Exchange 0.038 0.146 0.040 0.152 0.043 0.167 0.151 0.274 0.056 0.188 0.256 0.368 0.056 0.184
w/ GWN 0.042 0.179 0.046 0.182 0.050 0.185 0.160 0.298 0.059 0.194 0.329 0.413 0.065 0.195
w/ DGA 0.058 0.224 0.068 0.199 0.069 0.213 0.219 0.303 0.077 0.256 0.578 0.556 0.062 0.194
w/ TSA 0.049 0.196 0.065 0.190 0.059 0.210 0.190 0.299 0.061 0.189 0.474 0.537 0.062 0.190

Solar 0.316 0.325 0.235 0.276 0.297 0.304 0.303 0.314 0.331 0.347 0.244 0.279 0.301 0.319
w/ GWN 0.319 0.323 0.236 0.280 0.299 0.304 0.305 0.315 0.337 0.348 0.244 0.282 0.305 0.322
w/ DGA 0.342 0.355 0.291 0.308 0.315 0.318 0.327 0.346 0.340 0.354 0.281 0.306 0.317 0.330
w/ TSA 0.342 0.364 0.288 0.310 0.307 0.314 0.325 0.339 0.337 0.351 0.290 0.315 0.312 0.326

PredictionETTh1 Input bias Prediction error

Truth Clean TSAGWN

Input

PredictionWeather Input Input bias Prediction error

Figure 2: Comparison of input bias and prediction errors under different attack settings. Top:
LLMTime with GPT-3.5 on the ETTh1 dataset. Bottom: TimeGPT on the Weather dataset.

5.1 EFFECTIVENESS ANALYSIS AND VISUALIZATION (Q1)

TSA induces up to a 4× increase in prediction errors for LLM-based time series forecasters compared
to GWN across a range of real-world applications. As shown in Table 2, TSA significantly increases
both MSE and MAE across most models and datasets, demonstrating its strong impact on degrading
LLM-based forecasting performance. The Traffic dataset shows the greatest deterioration, with
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Figure 3: Input and output distributions for LLMTime with
GPT-3.5 on ETTh1 under clean input, GWN, and the pro-
posed TSA.

Attack Density

PoisonedClean

Figure 4: Top: Correlation matrices
of prediction errors with and without
the proposed TSA. Bottom: Attack
position distribution.

TSA increasing errors by 80.75% for LLMTime w/ Mistral and 46.45% for LLMTime w/ GPT-4,
highlighting the models’ vulnerability.

Despite perturbing only 9 out of 96 time steps, TSA achieves degradation in forecasting performance
that is largely comparable to the full-series attack DGA. For example, across datasets such as
Traffic, ETTh2, and Solar, the MSE/MAE values under TSA are often close to or even match those
obtained with DGA. This demonstrates that sparse perturbations can be just as disruptive as full-series
modifications. In contrast to DGA, which requires modifying the entire input and repeated model
queries, TSA reaches similar effectiveness with significantly fewer perturbations, underscoring its
practicality in real-world adversarial scenarios. The results further confirm that incorporating CCOP
and SP techniques effectively enhances the attack’s precision. In Appendix F, we further compare the
proposed TSA with two sparse variants of DGA. TSA produces approximately 84% larger prediction
errors than the sparse DGA with greedy search and more than 127% larger errors than the sparse
DGA with random position selection.

Figure 2 illustrates a direct comparison between GWN and TSA in terms of input perturbations
and their effect on forecasting errors. For both LLMTime w/ GPT-3.5 on ETTh1 and TimeGPT on
Weather, GWN introduces small, uniformly distributed fluctuations across the input series, while TSA
injects sparse, localized perturbations into only 10% of the time steps. This effect is visible in the right
panels, where TSA produces significantly larger prediction errors than GWN. Notably, TSA-induced
errors align with critical regions of the time series (e.g., sharp rises or drops), demonstrating that the
attack effectively exploits model vulnerabilities rather than merely injecting noise.

5.2 INTERPRETATION AND UNDERSTANDING (Q2)

Figure 3 compares input and output distributions under clean input, GWN, and TSA. While the input
distributions show minor differences across all cases, the output distribution under TSA deviates
significantly, indicating that TSA exerts a stronger adversarial effect than GWN by disrupting model
forecasts more severely.

Figure 4 provides insights into the structural effects of TSA on prediction errors and its temporal
attack distribution. The top panels compare the correlation matrices of prediction errors under clean
and attacked settings. Under TSA, the correlation matrix exhibits stronger and more widespread
correlations across time steps, revealing that sparse perturbations introduce structured distortions that
propagate through the forecast horizon. This demonstrates that TSA does not merely inject noise but
systematically alters the temporal dependencies leveraged by LLM-based forecasters.

Figure 4 bottom panel illustrates the distribution of attack positions on the ETTh1 dataset. The
histogram shows that TSA tends to concentrate perturbations toward later portions of the input
sequence, where the influence on the output forecast is strongest. This sparse-yet-targeted strategy
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TimeGPT LLMTime 
GPT-4
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Weather, Quantile
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w/ sparse attack
w/ sparse attack, w/ defense

w/ full-series attack
w/ full-series attack, w/ defense

Figure 5: Full series and temporally sparse adversarial attacks on different LLM-based forecasting
models protected by filter-based adversarial defense strategies. Light green and light orange indicate
the recovered prediction error. The full series attack is DGA (Liu et al., 2025).

Figure 6: Hyperparameter sensitivity analysis. Left illustrates how the prediction errors increase ex-
ponentially as the perturbation magnitude constraint grows. Middle demonstrates that computational
cost scales linearly with the sparsity level. Right shows that the prediction errors increase as the
sparsity level of perturbations rises.

explains why TSA achieves significant adversarial impact with limited perturbations, reinforcing its
efficiency and stealth compared to random noise injection.

5.3 MITIGATION BYPASSING TEST (Q3)

This section evaluates whether TSA can bypass adversarial defenses. DGA, a black-box attack against
LLM-based forecasters (Liu et al., 2025) that perturbs the full input series, serves as a baseline. Three
filter-based defenses, including Gaussian, Mean, and Quantile filters (Xie et al., 2019), are applied
without requiring re-training or fine-tuning of the LLM-based forecasters.

Figure 5 shows that these defenses fail to recover errors under TSA (minimal light orange bars),
but effectively mitigate full-series attacks (larger light green bars). This suggests that TSA’s sparse,
concentrated modifications are harder to correct than full-series attacks, which distribute perturbations
more uniformly, allowing them to be smoothed by filtering techniques. By modifying only a limited
number of steps, TSA bypasses the statistical assumptions on which many filtering defenses rely.
Consequently, the sparse perturbations introduce structured errors that persist through the forecast
horizon, leading to significant degradation in model performance despite the application of defenses.

5.4 HYPERPARAMETER SENSITIVITY ANALYSIS (Q4)

There are two key hyperparameters in Algorithm 1: the perturbation magnitude constraint ϵ and the
sparsity level τ . In this section, we analyze their impact on the effectiveness and computational cost
of TSA, as illustrated in Figure 6.

The left panel demonstrates that as ϵ increases, the prediction errors of LLMTime with LLaMa 2 on
Traffic grow exponentially. The magnitude constraint balances the imperceptibility and the attack
effectiveness. The middle panel shows that the computational cost of TSA scales linearly with the
sparsity level τ , meaning that increasing the number of perturbed time steps results in a proportional
rise in computation time. The right illustrates that the prediction errors of TimeGPT and LLMTime
with Mistral increase as τ rises, though the impact varies across models, with TimeGPT showing a
more pronounced error increase at higher sparsity levels. These results suggest a trade-off between
attack efficiency and computational complexity.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 POTENTIAL MITIGATION DISCUSSION

Finally, we discuss potential strategies to mitigate TSA and enhance the resilience of LLM-based
forecasting. Although adversarial training (Zhang, 2018; Madry et al., 2018) is a common defense
in deep learning, it is impractical here due to the high computational costs of fine-tuning LLMs.
Additionally, as discussed in Section 5.3, filter-based defenses fail to counter TSA effectively, as
TSA’s sparsity can bypass the statistical assumptions underlying these defenses.

A simple but novel autocorrelation-based detection method may be effective, which leverages the
zero-shot capability of LLM-based forecasting models. Specifically, the forecaster is used to backcast
historical time series from its own predictions, which are then compared with the original inputs to
identify manipulated time steps. Once detected, the reformation is applied to correct the poisoned
inputs. This approach exploits the autocorrelation properties of time series to detect sparse adversarial
modifications without requiring external training.

7 CONCLUSION

This work presents a Temporally Sparse Attack (TSA), designed for LLM-based time series fore-
casting models in constrained adversarial scenarios, where only a small subset of input time steps
can be modified. We model the attack as a Cardinality-Constrained Optimization Problem (CCOP)
and develop a Subspace Pursuit (SP)-based method to efficiently generate sparse perturbations. TSA
operates in a black-box setting, requiring no access to future data or internal model parameters.

Experiments on advanced LLM-based time series forecasting models across diverse real-world
datasets show that perturbing only a small portion of the input significantly degrades forecasting per-
formance. LLM-based forecasters exhibit high sensitivity to adversarial manipulation. Our findings
demonstrate that conventional filter-based approaches fail to mitigate TSA, emphasizing the impor-
tance of enhancing robustness in time series foundation models. This research provides a framework
for improving the resilience of AI systems and supports future advancements in Trustworthy AI.
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ETHICS STATEMENT

This research explores the robustness and vulnerability of large language models in time series
forecasting, which has critical applications in domains such as transportation, finance, and healthcare.
As these models become increasingly integral to real-world decision-making, understanding and
mitigating their susceptibility to adversarial attacks is essential for the development of trustworthy
and reliable AI systems.

Our work aims to enhance the resilience of time series models against adversarial threats by contribut-
ing insights into attack strategies and potential defenses. Strengthening these models can significantly
improve the safety and stability of AI-driven systems in high-stakes environments, promoting greater
public trust in AI technologies.

We will make sure that our work will be used ethically and responsibly to lay the foundation for
developing robust time series forecasting methods, ultimately contributing to the advancement of
secure and reliable AI systems.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our findings. To this end, we provide a com-
prehensive description of the proposed Temporally Sparse Attack (TSA), including its formulation,
optimization procedure, and evaluation protocols. All experiments are conducted on publicly avail-
able datasets that can be accessed through widely used repositories. We also specify the forecasting
models used in our evaluation, covering both open-source non-LLM baselines and commercially
available LLM APIs.

The implementation of TSA, together with scripts for data preprocessing, evaluation, and visualization,
is included in the supplementary material and will be released publicly upon publication to ensure
transparency and ease of verification. We additionally report details of the experimental setup
(datasets, metrics, baselines), along with extended studies in the appendix to provide deeper insights
into the robustness of our conclusions. Collectively, these measures are intended to make our work
fully reproducible and to support future research on adversarial robustness in LLM-based time series
forecasting.

REFERENCES

Abdul Fatir Ansari, Lorenzo Stella, Ali Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor,
et al. Chronos: Learning the language of time series. Transactions on Machine Learning Research,
2024.

Debopam Bhattacharya. Inferring optimal peer assignment from experimental data. Journal of the
American Statistical Association, 104(486):486–500, 2009.

Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4724–4732, 2019.

Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sensing signal reconstruction.
IEEE transactions on Information Theory, 55(5):2230–2249, 2009.
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A VARIABLES AND DEFINITIONS

In this section, the meaning or definition of each variable is explained in detail in Table 3.

Table 3: Some important variables and their definitions.

d The number of variables
T The length of historical input
L The length of future time series
τ The number of poisoned time steps for TSA
xt d-dimentional observations at time t
Xt A historical time series composed of T observations
Yt A time series composed of observations in the next L time steps
Ŷt The prediction of future L time steps
f(·) The forecasting model
ρ The adversarial perturbation applied the clean historical time series
w The multiplicative perturbations
ϵ The scale constraint of perturbations

L(·, ·) The loss function measuring the discrepancy between clean and poisoned prediction
S The indices of nonzero elements in the perturbation vectors

M(·, ·) The merge operator

B EXPERIMENT SETUP

We evaluate the effectiveness of TSA on LLM-based forecasting models across multiple real-world
datasets. The experimental design involves three key steps: (i) applying TSA in a manner that
preserves the global structure of the time series while misleading the forecasts, (ii) introducing
Gaussian White Noise (GWN) as a baseline, where random noise sampled from a normal distribution
is added to the input sequence, and (iii) measuring forecasting accuracy using Mean Absolute Error
(MAE) and Mean Squared Error (MSE) to capture the extent of performance degradation. All
experiments are implemented in PyTorch 1.7.1 with Python 3.7.4, and executed on an Ubuntu 18.04
LTS system equipped with an NVIDIA Tesla V100 GPU.

B.1 TARGET MODELS

Three representative LLM-based forecasting models, along with three non-LLM-based forecasting
models, are included in the experiment to assess the effectiveness of TSA:

• TimeGPT (Garza & Mergenthaler-Canseco, 2023): A pre-trained LLM specialized for time
series forecasting, incorporating advanced attention mechanisms and temporal encoding to
capture complex patterns.

• LLMTime (Gruver et al., 2024): A general-purpose LLM adapted for time series forecasting
by framing it as a next-token prediction task. We evaluate multiple versions, including those
based on GPT-3.5, GPT-4, LLaMA, and Mistral.

• TimeLLM (Jin et al., 2024): A model that reprograms time series data into textual inputs
for LLMs, leveraging the Prompt-as-Prefix (PaP) technique to enhance forecasting accuracy.

• TimesNet (Wu et al., 2023), TimeMixer (Wang et al., 2024a), and TimeXer (Wang et al.,
2024b): non-LLM transformer-based forecasting models introduced to explore the potential
impact of our attack on non-LLM models.

These models represent three key strategies for time series forecasting: (1) domain-specific pre-
training tailored for time series data (TimeGPT), (2) adapting general-purpose LLMs to forecasting
tasks (LLMTime), and (3) input reprogramming to enhance compatibility with LLMs (TimeLLM).
Additionally, the inclusion of non-LLM models (TimesNet, TimeMixer, and TimeXer) provides
a broader framework for evaluating adversarial robustness across both LLM-based and non-LLM
models.
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B.2 BASELINE ATTACKS

Gaussian White Noise (GWN). As a simple reference point, we consider injecting noise drawn from
a Gaussian distribution directly into the input series. This baseline helps distinguish the impact of
unstructured, random perturbations from the targeted and systematic disruptions introduced by TSA.

Directional Gradient Approximation (DGA). Following (Liu et al., 2025), DGA is employed as a
query-based adversarial method. It estimates gradient information through repeated interactions with
the forecasting model and leverages these estimates to craft perturbations. In contrast, TSA requires
no access to the target model, highlighting the practicality of a query-free approach that manipulates
the tokenization stage instead of relying on gradient exploration.

Sparse DGA with random position (DGArandom) and Sparse DGA with greedy search
(DGAgreedy). We construct two sparse variants of DGA. Each variant perturbs the same num-
ber of time steps as the proposed TSA, but selects the perturbation positions either through random
sampling or via a greedy search strategy (Dong et al., 2020). The perturbation updates follow the
same procedure as in the original DGA.

B.3 DATASETS

Our evaluation makes use of five publicly available datasets, each reflecting unique forecasting
challenges across different domains.

The ETTh1 and ETTh2 datasets (Zhou et al., 2021) record hourly temperature and electricity load
measurements from transformer stations over two years. These series encompass both rapid variations
and recurring seasonal patterns, offering a comprehensive benchmark for assessing model accuracy
on energy-related forecasting tasks.

The Traffic dataset (Gruver et al., 2024) reports hourly vehicle flow counts from the city of Istanbul.
Its strong dependence on rush-hour cycles and road usage patterns, combined with high volatility,
makes it a demanding test case for time series models.

The Weather dataset (Zeng et al., 2023) provides hourly atmospheric readings such as temperature,
humidity, and wind. Forecasting here is challenging due to the nonlinear dynamics of meteorological
systems, requiring models to account for both short-lived variations and broader climatic tendencies.

The Exchange Rates dataset (Lai et al., 2018) covers daily foreign currency exchange values for
eight countries between 1990 and 2016. It reflects complex dependencies in global financial markets
and is widely used to evaluate long-horizon economic forecasting.

The Solar dataset (Lai et al., 2018) consists of solar power output measurements collected in 2006
from 137 photovoltaic plants in Alabama, sampled every 10 minutes. It highlights the fine-scale
variability of renewable energy production and the influence of environmental and weather conditions
on short-term generation.

Table 4: Detailed dataset descriptions.

Dataset Dim Frequency Size Information
ETTh1 7 Hourly 14307 Electricity

ETTh2 7 Hourly 14307 Electricity

Traffic 1 Hourly 5310 Transportation

Weather 21 10 minute 52603 Geoscience

Exchange 8 Daily 7207 Economy

Solar 137 Hourly 52179 Energy

Across all datasets, we follow a uniform partitioning strategy, using 60% of the samples for training,
20% for validation, and the remaining 20% for testing. Each forecasting model operates under the
same setup, where a 96-length input sequence is provided to predict the subsequent 48 time steps,
guaranteeing comparability across experiments.
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B.4 METRICS

To assess both forecasting accuracy and the impact of adversarial perturbations, we report results
using Mean Absolute Error (MAE) and Mean Squared Error (MSE). Let Yt denote the observed
value at time step t and Ŷt the model’s prediction. The two metrics are computed as follows:

MAE =
1

T

T∑
t=1

∣∣Ŷt −Yt

∣∣, (9)

MSE =
1

T

T∑
t=1

(
Ŷt −Yt

)2
, (10)

where T is the number of prediction steps. MAE captures the average magnitude of errors in absolute
terms, while MSE penalizes larger deviations more heavily by squaring them.

C EFFECTIVENESS EVALUATION ON DYNAMIC INPUT/OUTPUT LENGTH

This section presents results under a long-sequence setting with prediction lengths ranging from 48 to
1024 on the ETTh1 dataset. MAE is used as the evaluation metric. We include a historical average
baseline and a non-LLM-based model (TimesNet) for comparison. Table 5 records the experiment
result.

Table 5: Forecasting performance on ETTh1 dataset under different horizons, with and without TSA.

Models ETTh1 48 ETTh1 168 ETTh1 336 ETTh1 720 ETTh1 1024
Historical Average 0.205 0.218 0.238 0.262 0.288

TimeGPT (w/o TSA) 0.192 0.334 0.391 0.474 0.497
TimeGPT (w/ TSA) 0.203 0.361 0.408 0.509 0.533

TimesNet (w/o TSA) 0.202 0.346 0.375 0.496 0.512
TimesNet (w/ TSA) 0.206 0.368 0.390 0.525 0.558

Our experimental results highlight several important observations. First, the proposed TSA con-
sistently degrades the performance of both LLM-based and transformer-based forecasting models,
demonstrating its robustness even under very long prediction horizons. Second, we find that as the
forecasting horizon increases, both model families experience substantial error accumulation, in many
cases performing worse than the historical average baseline. This outcome echoes concerns raised in
prior work about the practicality of extremely long-term forecasting tasks. To ensure fairness and
avoid potential controversy, we therefore report our main results under a standardized and widely
accepted setting, using an input length of 96 and an output length of 48.

To further examine the robustness of the proposed attack, we evaluate its effectiveness under varying
input lengths. In this experiment, LLMTime with GPT-4 is used as the target model, with input
windows of 96, 128, 256, 512, and 1024 steps, while the forecasting horizon is fixed at 48. The
proposed TSA, which perturbs only 10% of the input sequence, is compared against GWN and DGA,
both of which manipulate the full input.

Table 6: Forecasting performance of LLMTime (GPT-4) on ETTh1 under varying input lengths
(prediction horizon fixed at 48).

Models ETTh1 96/48 ETTh1 128/48 ETTh1 256/48 ETTh1 512/48 ETTh1 1024/48
LLMTime (w/o attack) 0.202 0.201 0.197 0.211 0.205
LLMTime (w/ TSA) 0.230 0.238 0.244 0.249 0.251
LLMTime (w/ GWN) 0.213 0.202 0.205 0.214 0.199
LLMTime (w/ DGA) 0.232 0.241 0.249 0.252 0.258

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The results in Table 6 reveal several key insights. First, TSA consistently degrades the model’s
performance across all input lengths, while GWN has only marginal impact. Second, increasing
the input length yields only limited accuracy improvements for the clean model, yet provides more
opportunities for adversarial methods to introduce harmful perturbations. Finally, despite perturbing
far fewer time steps, TSA achieves attack effectiveness comparable to DGA, demonstrating that
sparse, structured perturbations are sufficient to substantially degrade forecasting accuracy.

D EFFECTIVENESS EVALUATION ON VARIATE-WISE FORECASTING

To further substantiate our results, we provide a variate-wise analysis of forecasting performance on
the Weather dataset, extending Table 2 from the main submission. In this evaluation, we compare
model predictions under clean conditions and under two types of adversarial perturbations: Gaussian
White Noise (GWN) and the proposed Temporally Sparse Attack (TSA).

We examine two representative LLM-based forecasters:

• LLMTime, implemented with GPT-3.5 as its backbone.

• TimeGPT, a pre-trained commercial LLM-based forecasting system.

In the reported results, “+ GWN” refers to forecasts under GWN injection, while “+ TSA” denotes
forecasts under our proposed attack. Model performance is quantified using MAE. As summarized
in Table 7, TSA consistently leads to a marked increase in prediction error across all variates,
underscoring its effectiveness compared to random noise.

Table 7: Comparison of forecasting errors across different variates under clean input, Gaussian White
Noise (GWN), and Temporally Sparse Attack (TSA) for LLMTime and TimeGPT.

Model LLMTime TimeGPT

Variate - + GWN + TSA - + GWN + TSA

T (degC) 0.0150 0.0152 0.0164 0.0142 0.0147 0.0160
Tpot (K) 0.0162 0.0167 0.0205 0.0153 0.0154 0.0173
rh (%) 0.0221 0.0227 0.0268 0.0218 0.0221 0.0254
VPact (mbar) 0.0207 0.0207 0.0221 0.0205 0.0208 0.0220
H2OC (mmol/mol) 0.0264 0.0262 0.0311 0.0247 0.0253 0.0304
rho (g/m³) 0.0176 0.0180 0.0202 0.0160 0.0162 0.0189
max. wv (m/s) 0.0008 0.0008 0.0009 0.0007 0.0008 0.0008
wd (deg) 0.1022 0.1052 0.1304 0.0986 0.0994 0.1042
raining (s) 0.0601 0.0598 0.0674 0.0582 0.0590 0.0657
SWDR (W/m²) 0.0177 0.0180 0.0206 0.0173 0.0172 0.0208
PAR (umol/m²/s) 0.0351 0.0378 0.0421 0.0324 0.0328 0.0372
Tlog (degC) 0.0104 0.0121 0.0143 0.0102 0.0108 0.0127

To avoid further misunderstanding, we want to highlight the distinction between univariate forecasting
methods and multivariate forecasting tasks. Although all forecasting models (e.g., LLMTime,
TimesNet) adopt a univariate forecasting mechanism, they process each variate separately, effectively
treating the multivariate task as multiple univariate tasks.

Please note that changing the forecasting mechanism (from univariate to multivariate) would require
re-designing or re-training the models, which is not applicable in our adversarial attack setting.
This constraint is especially relevant for commercial LLM-based forecasters like TimeGPT, which
only provide API-level access without exposing internal model parameters or allowing architectural
modifications.
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E EFFECTIVENESS–EFFICIENCY TRADE-OFF IN ONE-QUERY AND
MULTI-QUERY ATTACKS

Section 4 introduced an SP-based approach for selecting attack positions and generating an FGSM-
like (Goodfellow et al., 2015) one-query attack. Although efficient, the one-query attack may be
suboptimal in terms of perturbation effectiveness. In contrast, PGD (Madry et al., 2018) enables
more flexible and powerful perturbation optimization but requires multiple model queries, making
it significantly more costly in black-box settings. This section presents an experiment designed to
examine the effectiveness–efficiency trade-off between one-query and multiple-query attacks.

We first provide a PGD-style multi-step extension of the proposed TSA, defined as

xz+1 = ΠBϵ(x)(x
z + α sign(ĝz)) , (11)

where xz denotes the adversarial example at iteration z, and ĝz represents the surrogate gradient
estimated at step z according to Equation 7.

We set the maximum number of iterations to Z, and Table 8 summarizes the attack effectiveness and
query cost for the one-query attack (proposed) and the multi-query variants with Z ∈ [5, 20].

Table 8: Balancing effectiveness and efficiency in single-query and multiple-query attacks.

Datasets/Models Metrics clean one-query 5-query 10-query 15-query 20-query

ETTh1/LLMTime MAE 0.202 0.230 0.230 0.228 0.232 0.231
Minute - 1.20 4.15 8.50 13.35 16.75

Traffic/TimeGPT MAE 1.201 1.208 1.210 1.216 1.215 1.217
Minute - 0.65 2.30 4.45 6.95 8.20

Exchange/TimeLLM MAE 0.034 0.048 0.048 0.050 0.052 0.051
Minute - 2.35 8.60 14.85 23.70 30.25

This trade-off experiment shows that the PGD-like multi-step attack can improve attack effectiveness
by approximately 5%, but at the expense of incurring more than 11× additional query cost. Therefore,
we adopt the one-step attack as a practical compromise between effectiveness and efficiency.

F ADDITIONAL SPARSE ATTACK BASELINES

We propose an SP-based method to identify sparse attack positions that optimize adversarial perfor-
mance. In this section, we compare the proposed approach with two alternative sparse attack baselines,
PGDrandom and PGDgreedy, which maintain the same number of perturbed steps but determine the
perturbation positions through either random selection or a greedy strategy.

Table 9: Comparison of adversarial attack effectiveness between TSA and sparse DGA variants.

Models LLMTime LLMTime LLMTime LLMTime TimeLLM TimeGPT TimesNet
w/ GPT-3.5 w/ GPT-4 w/ LLaMa 2 w/ Mistral w/ GPT-2 (2024) (non-LLM)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic 0.837 0.844 0.805 0.779 0.891 1.005 0.826 0.973 0.995 1.013 1.890 1.201 1.095 1.022
w/ DGArandom 0.848 0.867 0.812 0.801 0.905 1.010 1.012 1.008 1.055 1.042 1.897 1.202 1.098 1.026
w/ DGAgreedy 0.861 0.905 0.865 8.337 0.923 1.025 1.138 1.085 1.072 1.115 1.904 1.206 1.117 1.035
w/ TSA 0.901 1.037 1.179 1.008 0.969 1.085 1.493 1.204 1.147 1.332 1.920 1.208 1.136 1.093
ETTh1 0.073 0.213 0.071 0.202 0.086 0.244 0.097 0.274 0.089 0.202 0.059 0.192 0.073 0.202
w/ DGArandom 0.078 0.221 0.076 0.212 0.086 0.246 0.097 0.280 0.092 0.227 0.060 0.197 0.078 0.205
w/ DGAgreedy 0.080 0.226 0.078 0.219 0.089 0.247 0.099 0.293 0.092 0.235 0.060 0.199 0.077 0.202
w/ TSA 0.082 0.235 0.079 0.230 0.092 0.249 0.097 0.295 0.091 0.237 0.061 0.203 0.080 0.206
Weather 0.005 0.051 0.004 0.048 0.008 0.072 0.006 0.057 0.004 0.034 0.004 0.043 0.003 0.042
w/ DGArandom 0.005 0.055 0.004 0.050 0.008 0.073 0.006 0.060 0.004 0.036 0.004 0.050 0.003 0.043
w/ DGAgreedy 0.005 0.058 0.005 0.054 0.009 0.074 0.006 0.060 0.004 0.040 0.005 0.058 0.003 0.042
w/ TSA 0.006 0.060 0.006 0.058 0.010 0.076 0.006 0.065 0.004 0.048 0.007 0.072 0.004 0.043

Sparse DGA with Random Position (DGArandom) and Sparse DGA with Greedy Search
(DGAgreedy). We design two sparse variants of DGA. Each variant perturbs the same number
of time steps as the proposed TSA, but selects the attack positions either through random sampling or
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via a greedy search strategy (Dong et al., 2020). The perturbation update rule remains identical to
that of the original DGA.

The experimental setup follows Section 5.1. This comparison against plausible sparse baselines
further demonstrates the strength of the proposed TSA. As shown in Table 9, TSA consistently
outperforms both sparse DGA variants across most settings. Notably, for LLM-based forecasting
models, TSA yields approximately 84% larger prediction errors compared with the greedy sparse
DGA.

G VULNERABILITY COMPARISON BETWEEN LLM-BASED AND
NON-LLM-BASED FORECASTERS

This section presents a vulnerability comparison between LLM-based and non-LLM-based time
series forecasting models under the proposed TSA attack. The experimental setup follows Section 5.1.
We evaluate four LLM-based forecasters and three non-LLM-based forecasters across six datasets.

The results, summarized in Table 10, reveal two key findings: i. The proposed TSA consistently
degrades the performance of both LLM-based and non-LLM-based models; and ii. LLM-based
forecasting models are generally more vulnerable to adversarial attacks. A similar observation
is reported by Liu et al. (2025). These results suggest that, although LLM-based models offer
strong zero-shot forecasting capabilities, their reduced robustness warrants careful consideration in
real-world applications.

Table 10: Vulnerability comparison between LLM-based and non-LLM-based time series forecasters.

Models LLMTime LLMTime TimeLLM TimeGPT TimesNet TimeMixer TimeXer
w/ GPT-3.5 w/ GPT-4 w/ GPT-2 (2024) (2023) (2024) (2024)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic 0.837 0.844 0.805 0.779 0.995 1.013 1.890 1.201 1.095 1.022 0.902 0.913 0.877 0.904
w/ GWN 0.882 0.908 0.883 0.864 1.123 1.221 1.848 1.204 1.103 1.035 0.913 0.932 0.890 0.921
w/ TSA 0.901 1.037 1.179 1.008 1.147 1.332 1.920 1.208 1.136 1.093 1.017 1.135 0.963 1.125
ETTh1 0.073 0.213 0.071 0.202 0.089 0.202 0.059 0.192 0.073 0.202 0.062 0.198 0.069 0.195
w/ GWN 0.077 0.219 0.076 0.213 0.102 0.231 0.059 0.193 0.074 0.202 0.065 0.200 0.070 0.196
w/ TSA 0.082 0.235 0.079 0.230 0.091 0.237 0.061 0.203 0.080 0.206 0.068 0.201 0.072 0.201
ETTh2 0.263 0.372 0.155 0.267 0.238 0.361 0.161 0.297 0.166 0.316 0.163 0.294 0.160 0.292
w/ GWN 0.263 0.342 0.175 0.303 0.235 0.355 0.160 0.301 0.166 0.316 0.165 0.295 0.164 0.296
w/ TSA 0.271 0.402 0.195 0.319 0.299 0.440 0.168 0.307 0.167 0.319 0.166 0.299 0.168 0.301
Weather 0.005 0.051 0.004 0.048 0.004 0.034 0.004 0.043 0.003 0.042 0.003 0.038 0.004 0.040
w/ GWN 0.005 0.053 0.005 0.051 0.004 0.033 0.004 0.043 0.003 0.042 0.003 0.041 0.004 0.040
w/ TSA 0.006 0.060 0.006 0.058 0.004 0.048 0.007 0.072 0.004 0.043 0.004 0.051 0.005 0.048
Exchange 0.038 0.146 0.040 0.152 0.056 0.188 0.256 0.368 0.056 0.184 0.059 0.193 0.043 0.181
w/ GWN 0.042 0.179 0.046 0.182 0.059 0.194 0.329 0.413 0.065 0.195 0.061 0.199 0.044 0.190
w/ TSA 0.049 0.196 0.065 0.190 0.061 0.189 0.474 0.537 0.062 0.190 0.068 0.203 0.050 0.195
Solar 0.316 0.325 0.235 0.276 0.331 0.347 0.244 0.279 0.301 0.319 0.287 0.288 0.294 0.303
w/ GWN 0.319 0.323 0.236 0.280 0.337 0.348 0.244 0.282 0.305 0.322 0.286 0.290 0.294 0.305
w/ TSA 0.342 0.364 0.288 0.310 0.337 0.351 0.290 0.315 0.312 0.326 0.292 0.298 0.302 0.311

H TRANSFORMATION FOR TARGETED ATTACKS

The proposed TSA is an untargeted, label-free black-box attack, where attack success is evaluated
based on how much the perturbation worsens MAE or MSE. In practice, however, a more realistic
adversarial objective is to force the forecasting model to output attacker-specified predictions. This
section extends TSA to support such targeted attack goals.

First, the proposed TSA is reformulated into a targeted attack version. The original optimization in
Equation 3 becomes:

min
w

L(f(Xt (1 +w)) ,Yt)

s.t. ∥w∥0 = τ, ∥wi∥1 ≤ ϵ, i ∈ [t− T + 1, t],
(12)

where Yt is the attacker-chosen target output.
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Next, the gradient estimation in Equation 7 is updated as:

ĝ =
L(Y − F(Xt, wj ,∆))− L(Y − F(Xt, wj ,−∆))

2∆
, (13)

where Y denotes the attacker-chosen forecast.

A targeted version of Algorithm 1 is obtained by modifying the loss computation in line 5. Equation 8
is replaced with:

r := L(f(Xt(1 +M(wS , wj))) ,Yt) . (14)

With these three modifications, TSA becomes a targeted attack. Attack effectiveness is evaluated
through success rate rather than degradation of MAE/MSE. The success indicator at time step t is:

lSt (Ŷt,Yt) =

{
1, ∥Ŷt − Yt∥2 ≤ ξ,

0, ∥Ŷt − Yt∥2 > ξ,
(15)

where ξ is a predefined boundary. The overall success rate is computed as:

lS =

∑
lSt

L
× 100%, (16)

where L is the number of examples.

Table 11: Attack effectiveness on targeted TSA.

Models LLMTime LLMTime TimeLLM TimeGPT
w/ GPT-3.5 w/ GPT-4 w/ GPT-2 (2024)

Metrics MSE lS MSE lS MSE lS MSE lS

Traffic 0.837 - 0.805 - 0.995 - 1.890 -
w/ TSA 0.898 11.2% 1.174 17.8% 1.140 13.5% 1.933 10.4%

ETTh1 0.073 - 0.071 - 0.089 - 0.059 -
w/ TSA 0.081 9.6% 0.077 8.6% 0.093 4.3% 0.060 2.8%

ETTh2 0.263 - 0.155 - 0.238 - 0.161 -
w/ TSA 0.268 6.3% 0.193 18.4% 0.287 16.6% 0.165 8.4%

Weather 0.005 - 0.004 - 0.004 - 0.004 -
w/ TSA 0.006 12.7% 0.006 14.9% 0.004 17.1% 0.007 22.3%

Exchange 0.038 - 0.040 - 0.056 - 0.256 -
w/ TSA 0.044 8.5% 0.063 18.8% 0.059 9.7% 0.455 31.4%

Solar 0.316 - 0.235 - 0.331 - 0.244 -
w/ TSA 0.337 13.5% 0.269 17.2% 0.336 5.7% 0.281 16.9%

We evaluate the targeted TSA on four LLM-based forecasters across six datasets. Two metrics are
used to assess attack effectiveness: MSE and the success rate (lS). The results, shown in Table 11,
indicate that the targeted TSA still induces substantial degradation in forecasting accuracy. The attack
success rate ranges from 3% to over 30%, with an average of approximately 17%. These findings
also suggest that the vulnerability of LLM-based forecasters varies considerably across datasets.

I COST EVALUATION OF THE SP-BASED SOLUTION

This section compares the computational cost of generating adversarial perturbations using the
proposed SP-based solution versus a greedy search strategy. The experiment is conducted on four
LLM-based time series forecasters across two datasets, with results summarized in Table 12. The
findings show that the proposed SP-based algorithm not only produces more effective perturbations
but also requires substantially less computation, reducing cost by roughly 80%. These empirical
results are consistent with the theoretical analysis in Section 4.1, where the computational complexity
of the SP-based method is O(T × τ), compared to the much higher complexity O(T τ ) of a standard
greedy algorithm.
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Table 12: Attack effectiveness and computational cost comparison between SP-based TSA and sparse
DGA with greedy search.

Models LLMTime LLMTime TimeLLM TimeGPT
w/ GPT-3.5 w/ GPT-4 w/ GPT-2 (2024)

Metrics MSE Minute MSE Minute MSE Minute MSE Minute

Traffic 0.837 - 0.805 - 0.995 - 1.890 -
w/ DGAgreedy 0.861 7.55 0.865 6.48 1.072 10.06 1.904 3.80
w/ TSA 0.901 1.35 1.179 1.24 1.147 3.88 1.920 0.65
Solar 0.316 - 0.235 - 0.331 - 0.244 -
w/ DGAgreedy 0.325 9.03 0.248 6.98 0.332 13.76 0.260 4.92
w/ TSA 0.337 1.90 0.269 1.41 0.336 4.25 0.281 6.28

J UNCERTAINTY ANALYSIS

This section evaluates the uncertainty of the attack by reporting the standard deviation of the increased
errors across multiple runs, thereby assessing the reliability of the observed performance gaps.

We evaluate four LLM-based forecasters across three datasets and run the proposed attack 20
times. The results, summarized in Table 13, show that the proposed TSA exhibits strong stability in
attack effectiveness. Even at the lower bound of its performance range, TSA consistently induces a
substantial degradation in forecasting accuracy.

Table 13: Reliability analysis on attack performance.

Models LLMTime LLMTime TimeLLM TimeGPT
w/ GPT-3.5 w/ GPT-4 w/ GPT-2 (2024)

Metrics MSE Variance MSE Variance MSE Variance MSE Variance

Traffic 0.837 - 0.805 - 0.995 - 1.890 -
w/ TSA 0.892 ±0.012 1.171 ±0.006 1.140 ±0.010 1.914 ±0.008

ETTh1 0.073 - 0.071 - 0.089 - 0.059 -
w/ TSA 0.081 ±0.001 0.07 ±0.002 0.090 ±0.002 0.061 ±0.001

Solar 0.316 - 0.235 - 0.331 - 0.244 -
w/ TSA 0.334 ±0.005 0.260 ±0.011 0.332 ±0.007 0.269 ±0.014

K LLM USAGE STATEMENT

We employed ChatGPT-5 solely for language polishing, such as refining grammar and improving
readability. At no stage were LLMs used to generate research ideas, construct the attack methodology,
carry out experiments, or perform literature review.

All technical elements of this study, including the design and definition of the Temporally Sparse
Attack (TSA), the development of algorithms, the setup and execution of experiments, and the
subsequent analysis and interpretation, are entirely the authors’ own work.

In this research, Large Language Models (LLMs) based time series forecasting models appear only
as the objects of study, functioning as the forecasting systems that our attack targets. Their role as
experimental subjects is fully detailed in Section 5.
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