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Abstract
To improve the efficiency and sustainability of
learning deep models, we propose CREST, the
first scalable framework with rigorous theoreti-
cal guarantees to identify the most valuable ex-
amples for training non-convex models, particu-
larly deep networks. To guarantee convergence
to a stationary point of a non-convex function,
CREST models the non-convex loss as a series of
quadratic functions and extracts a coreset for each
quadratic sub-region. In addition, to ensure faster
convergence of stochastic gradient methods such
as (mini-batch) SGD, CREST iteratively extracts
multiple mini-batch coresets from larger random
subsets of training data, to ensure nearly-unbiased
gradients with small variances. Finally, to further
improve scalability and efficiency, CREST iden-
tifies and excludes the examples that are learned
from the coreset selection pipeline. Our extensive
experiments on several deep networks trained on
vision and NLP datasets, including CIFAR-10,
CIFAR-100, TinyImageNet, and SNLI, confirm
that CREST speeds up training deep networks on
very large datasets, by 1.7x to 2.5x with minimum
loss in the performance. By analyzing the learning
difficulty of the subsets selected by CREST, we
show that deep models benefit the most by learn-
ing from subsets of increasing difficulty levels 1.

1. Introduction
Large datasets have enabled over-parameterized neural net-
works to achieve unprecedented success (Devlin et al., 2018;
Brown et al., 2020; Zhai et al., 2022). However, train-
ing such models, with millions or billions of parameters,
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on large data requires expensive computational resources,
which consume substantial energy, leave a massive amount
of carbon footprint, and often soon become obsolete and
turn into e-waste (Asi & Duchi, 2019; Schwartz et al., 2019;
Strubell et al., 2019). While there has been a persistent
effort to improve the performance and reliability of machine
learning models (Brown et al., 2020; Xiao et al., 2015; Zhai
et al., 2022), their sustainability is often neglected.

Indeed, not all examples are equally valuable or even re-
quired to guarantee a good generalization performance. To
address the sustainability and efficiency of machine learning,
one approach involves selecting the most relevant data for
training. A recent line of work (Mirzasoleiman et al., 2020;
Killamsetty et al., 2021b;a; Pooladzandi et al., 2022) showed
that for strongly convex models, a weighted subset (core-
set) of data that closely matches full gradient—sum of the
gradient of all the training examples—provide convergence
guarantees for (Incremental) Gradient Descent. Such core-
sets speed up learning by up to 6x. Intuitively, this is possi-
ble as for popular strongly convex models—logistic, linear
regression, and regularized support vector machines—the
gradient error of a coreset during the entire training can be
upper-bounded in advanced (Mirzasoleiman et al., 2020).

Unfortunately, we cannot simply apply the same idea to
non-convex models, for three reasons. First, for non-convex
models, training dynamics—loss and gradient of exam-
ples—drastically change during the training and cannot be
upper-bounded beforehand. As a result, the importance of
examples for learning changes throughout training, and one
coreset cannot guarantee convergence anymore. Second,
non-convex models are learned with (mini-batch) stochastic
gradient methods, such as (mini-batch) SGD, which require
unbiased estimates of the full gradient with a bounded vari-
ance. Existing coresets that capture the gradient of the full
data cannot provide any guarantee for stochastic gradient
methods, as the gradient of mini-batches selected from the
coreset may be biased and have a large variance. Finally,
iteratively selecting coresets from full data becomes very
expensive for large datasets, and does not yield speedup.

In this work, we address the above challenges and propose
CREST, a rigorous method to find coresets for non-convex
models, by making the following contributions:

Coreset selection by modeling the non-convex loss. To
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ensure a small gradient error throughout training, our key
idea is to divide the loss into multiple quadratic sub-regions
and find a coreset for learning every quadratic sub-region.
To do so, we model the loss of every example as a quadratic
function based on its current gradient and curvature infor-
mation at model parameters wwwtl . Then, we find a coreset
that captures the full gradient at wwwtl , and keep training on
it as long as the quadratic approximated loss of the coreset
(sum of quadratic functions corresponding to its elements)
closely captures the actual loss of the full data. Otherwise,
we update the coreset. In doing so, we ensure a small gra-
dient error during the entire training, which we leverage to
guarantee convergence to a stationary point.

Coresets for (mini-batch) stochastic gradient methods.
To address coreset selection for (mini-batch) stochastic
gradient methods, our idea is to sample multiple subsets of
training data uniformly at random, and select a mini-batch
coreset from every random sample to closely capture its
gradient. The gradients of larger random subsets are unbi-
ased estimates of the full gradient, but have a considerably
smaller variance. Hence, the mini-batch coreset gradients
are nearly unbiased, and have a small variance. Updating
the mini-batch coresets based on above piece-wise quadratic
loss approximation, ensures a small bias throughout training.
This allows providing superior convergence guarantee for
training with stochastic gradient methods. Besides, it signif-
icantly improves the computational complexity of finding
coresets and scales coreset selection to much larger datasets.

Further improving the efficiency of coreset selection. To
further improve the efficiency and scalability of coreset se-
lection, we make the following observation. When a group
of examples are learned, their gradients become nearly zero.
Hence, a few examples can well represent the gradient of
the corresponding group and the entire group can be safely
excluded from coreset selection afterwards. CREST itera-
tively excludes examples that are learned and have a very
small loss during multiple consecutive training iterations,
and finds mini-batch coresets from the remaining examples.
This speeds up learning, and improves the efficiency and
performance of coreset selection, in later stages of training.

Through extensive experiments, we demonstrate the effec-
tiveness of CREST for training various over-parameterized
models on different vision and NLP benchmark datasets,
including ResNet20 on CIFAR-10 (Krizhevsky et al., 2009),
ResNet18 on CIFAR-100 (Krizhevsky et al., 2009), ResNet-
50 on TinyImageNet (Russakovsky et al., 2015), and
RoBERTa (Liu et al., 2019) on SNLI (Bowman et al., 2015)
with 570K examples. CREST is able to achieve 1.7x to 2.5x
speedup over training on the full data, while introducing the
smallest relative error compared to the baselines. To our
knowledge, this is the first time coreset selection has been
applied to such large models and datasets in vision and NLP.

Finally, we analyze the examples selected by CREST at dif-
ferent times during the training. We quantify the learning
difficulty of every example using the forgettability score
(Toneva et al., 2018), which counts the number of times an
example is misclassified after being correctly classified dur-
ing training. We find that early in training, the most effective
subsets for learning deep models are easy-to-learn examples.
As training proceeds, the model learns the most from exam-
ples with increasing levels of learning difficulty. Interest-
ingly, the model never requires training on easiest-to-learn
examples to achieve a good generalization performance.

2. Related Work
Several heuristics have been recently proposed for finding
coresets for training machine learning models. A line of
work first fully trains the original model (Birodkar et al.,
2019) or a smaller proxy (Coleman et al., 2020). Then, it
selects examples with the most centrally located embed-
dings (Birodkar et al., 2019), highest uncertainty, i.e., the
entropy of predicted class probabilities (Coleman et al.,
2020), largest forgetting events, i.e., the number of times
an example is misclassified after being correctly classified
(Toneva et al., 2018), or large expected gradient norm over
multiple initializations (Paul et al., 2021). These methods
do not yield any speedup or theoretical guarantees.

Another line of work selects examples during training to
speed up learning. Importance sampling techniques em-
ploy the gradient norm (Alain et al., 2015; Katharopoulos
& Fleuret, 2018) or the loss (Loshchilov & Hutter, 2015;
Schaul et al., 2015) to reduce the variance of stochastic
gradients during the training. However, importance sam-
pling does not provide rigorous convergence guarantees and
cannot provide a notable speedup for training deep models.
Mindermann et al. (2022) finds examples that are non-noisy,
non-redundant, task-relevant, and reduce the loss on a hold-
out set the most. This method speeds up training but requires
a validation set and does not guarantee convergence.

Most relevant to our work are recent theoretically rigorous
techniques that select coresets by iteratively matching the
(preconditioned) gradient of full training data, namely
(Mirzasoleiman et al., 2020; Killamsetty et al., 2021a;
Pooladzandi et al., 2022), or validation set (Killamsetty
et al., 2021b). Such methods guarantee convergence to
a near-optimal solution, for training (strongly) convex
or nearly convex models under Polyak-Lojasiewicz (PL)
condition, using Incremental Gradient (IG) methods, or
Gradient Descent (GD). However, they do not guarantee
convergence for training non-convex models trained with
(mini-batch) stochastic gradient methods, and do not scale
to very large datasets. Our work addresses the above short-
comings by developing a rigorous and scalable framework
to extract coresets for data-efficient deep learning.
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3. Problem Formulation and Background
The standard approach to training machine learning models
is empirical risk minimization (ERM). Formally, given a
loss function L, we find the model parameters www that mini-
mize the expected loss on training examples {(xxxi, yi)}ni=1

indexed by V ={1, · · ·, n}, sampled from distribution D:

www∗=argmin
www∈W

L(www) := E(xxxi,yi)∼D[L(www; (xxxi, yi))]. (1)

For over-parameterized models trained on large training
data, GD becomes prohibitively slow. Hence, stochastic
gradient methods, such as mini-batch SGD are employed
in practice. Such methods select one or a mini-batchM
of m examples sampled i.i.d. from the training data, and
iteratively step in the negative direction of the stochastic
gradient of the sampled examples, scaled by step-size η:

wwwt+1 = wwwt − η
1

m

∑
i∈M

gt,i, (2)

where gt,i = ∇Li(wwwt) := ∇L(wwwt; (xxxi, yi)) is the gra-
dient of example i at iteration t. Random examples
have an unbiased gradient with a bounded variance, i.e.,
Ei∈V [∥gt,i−∇L(wwwt)∥2] ≤ σ2. Hence, they guarantee con-
vergence with an O(1/

√
t) rate to a stationary point of a

non-convex loss (Ghadimi & Lan, 2013). Importantly, ran-
dom mini-batches of size m have an unbiased gradient with
a reduced variance of σ2/m. As long as mini-batches are
not too large, mini-batch SGD achieves a faster convergence
rate of O(1/

√
mt) (Wang & Srebro, 2019; Jin et al., 2021).

Existing coreset methods, such as CRAIG (Mirzasoleiman
et al., 2020), GRADMATCH (Killamsetty et al., 2021a), and
ADACORE (Pooladzandi et al., 2022) find weighted subsets
of examples that match the full training gradient (precondi-
tioned on Hessian). Formally, the goal is to find the smallest
subset S ⊆ V and corresponding per-element step-sizes
(weights) γj > 0 that approximate the full gradient with an
error at most ϵ > 0 for all the possible values of wwwt ∈ W:

S∗=argmin
S⊆V,γj≥0 ∀j∈S

|S|, s.t. max
wwwt∈W

∥
∑
i∈V

gt,i−
∑
j∈S

γjgt,j∥≤ϵ. (3)

Problem (3) requires calculating the maximum gradient er-
ror between full and coreset gradient for all wwwt ∈ W , which
cannot be computed. To address this, Mirzasoleiman et al.
(2020) showed that for several classes of (strongly) convex
problems, including regularized linear and ridge regression,
and support vector machines (SVMs), the normed gradient
difference between data points during the entire training
can be efficiently upper-bounded by the difference between
feature vectors. This allows turning Problem (3) into the

following submodular2 cover problem:

S∗=argmin |S| s.t. C−
∑
i∈V

min
j∈S
∥xxxi−xxxj∥ ≥ C−ϵ, (4)

where C is a big constant. A near-optimal coreset of size
k can be found from a ground-set of n elements, using
the greedy algorithm with complexity of O(n·k) as a pre-
processing step before training. The weights γj are calcu-
lated as the number of examples i ∈ V for which j ∈ S
minimizes ∥xxxi − xxxj∥. This approach has been adopted by
(Killamsetty et al., 2021b; Pooladzandi et al., 2022). Kil-
lamsetty et al. (2021a) used orthogonal matching pursuit
(OMP) to directly find a weighted coreset, by minimizing
the regularized objective in RHS of Problem (3). However,
OMP provides weaker guarantees than greedy, and does not
always find a large enough subset. Hence, the coreset needs
to be augmented with random examples.

For neural networks, finding coresets based on their very
high-dimensional gradients is slow and does not yield high-
quality coresets. Instead, one can use the gradient of the
loss w.r.t the input to the last layer that is shown to capture
the variation of the gradient norm well (Katharopoulos &
Fleuret, 2018). Such lower-dimensional gradients gL

t,i can
be quickly obtained with a forward pass and can be used
instead of the full gradient to find coresets during the train-
ing (Mirzasoleiman et al., 2013; Pooladzandi et al., 2022;
Killamsetty et al., 2021b). Moreover, with a fixed training
budget one can find a subset of size k by solving the follow-
ing submodular maximization problems, which is the dual
of the submodular cover Problem (4):

S∗
t = argmax

S⊆V
C−

∑
i∈V

min
j∈S
∥gL

t,i− gL
t,j∥, s.t. |S|≤k. (5)

However, it is not clear when the coresets should be updated
to guarantee convergence for training non-convex models.
Besides, finding coresets from the full data does not scale
to training on large datasets. Importantly, the above method
only guarantees convergence for (Incremental) GD and can-
not guarantee convergence for stochastic gradient methods
used for training neural networks, as we will discuss next.

4. Coresets for Training Non-convex Models
In this section, we will first discuss the challenges of ex-
tracting coresets for deep models, and then introduce our
proposed method, CREST, to overcome the above challenges
and make coreset selection applicable to neural networks.

Challenges. The non-convex loss landscape of the non-
convex models makes coreset selection very challenging.

2A set function F : 2V → R+ is submodular if F (S ∪ {e})−
F (S) ≥ F (T ∪{e})−F (T ), for any S ⊆ T ⊆ V and e ∈ V \T .
F is monotone if F (e|S) ≥ 0 for any e∈V \S and S ⊆ V .
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Figure 1: Training ResNet20 on CIFAR-10. (a) 10% CRAIG coresets selected at the beginning of every epoch from full data
may perform very poorly. This is because, (C1): (b) Coresets may have a large error: ∥gt,S−∇L(wwwt)∥, after a few training
iterations; and (C2): Gradient of weighted mini-batches selected from the coresets may have a (c) large bias ∥Ei[gt,Mi

]−
∇L(wwwt)∥ and (d) large variance Ei[∥gt,Mi

−∇L(wwwt)∥2], whereMi ∈ S is a mini-batch and gt,Mi
=Ej∈Mi

[γjgt,j ]. In
contrast, our CREST coresets are nearly unbiased, and have a smaller variance than random mini-batches of same size.

Fig. 1a shows that existing coreset selection methods such
as CRAIG (Mirzasoleiman et al., 2020) that find coresets by
iteratively solving Eq. (5) at every epoch may perform very
poorly for training deep networks, for the following reasons:

(C1) For deep networks, the loss functions associated with
different data points Li change very rapidly (Defazio &
Bottou, 2019). Therefore, in contrast to (strongly) convex
functions, for which the gradient error of a coreset through-
out training can be effectively upper-bounded in advance,
e.g., using their feature vectors, such upper bounds cannot
be computed for neural networks. That is, even within a
relatively small neighborhood N around wwwt, the gradient
∇Li(wwwt) may be drastically different than∇Li(wwwt+δδδ) for
wwwt+ δδδ∈N . Figure 1b shows that the gradient error of core-
sets found by CRAIG can be very large after a few training
iterations. Here, the challenge is to compute the size of the
neighborhood in which a coreset closely captures the full
gradient, and update the coreset otherwise.

(C2) Coresets found from the full training data guarantee
convergence for (Incremental) GD, but cannot provide any
guarantee for stochastic gradient methods, such as (mini-
batch) SGD, that are applied to train neural networks. This
is because stochastic methods require unbiased estimates
of the full gradient with a bounded variance. However,
as the error of the coresets found from the full data may
increase during the training, the gradient of mini-batches
selected from the coresets may have a large bias. Besides, as
some examples may have a very large weight, the variance
of weighted mini-batch gradients are much larger than the
variance of random (unweighted) mini-batch gradients used
when training on the full data. Figure 1c, 1d show that
gradient of mini-batches selected from the coreset can have
a very large bias and variance. Here, the challenge is to find
coresets that are nearly unbiased and have a small variance.

(C3) For deep networks, the importance of examples for
learning changes over time and hence the coresets should be
updated frequently. The greedy algorithm has a complexity
of O(n · k) to find k out of n examples. For large datasets,
this prevents the coreset selection methods to achieve a

significant speedup. Hence, the challenge is to improve the
efficiency of coreset selection for training deep networks.

Next, we discuss how we overcome the above challenges.

4.1. Modeling the Non-convex Loss Function

To address the challenge (C1) of finding the size of the
neighborhood in which a coreset closely captures the full
gradient, we model the non-convex loss as a piece-wise
quadratic function. In doing so, we reduce the problem of
finding coresets for a non-convex objective to finding core-
sets for a series of quadratic problems. Formally, at every
coreset selection step l, we find a coreset Sl that captures
the full gradient at wwwtl . Then, we make a quadratic loss
approximation F l based on the gradient and curvature of
the coreset at wwwtl . We keep training on the coreset Sl within
the neighborhood Nl in which the quadratic approximation
closely follows the actual training loss, i.e., we have that
L(wwwtl+δδδ)=F l(δδδ) ∀wwwtl+δδδ∈Nl. Otherwise, we update the
coreset and make a new quadratic approximation. This en-
sures a small gradient error withinNl, and similarly through
the entire training. Hence, convergence can be guaranteed.

In this work, we extract the coresets by greedily solving
the submodular Problem (5). But, our piece-wise quadratic
approximation can be generally applied to any coreset
selection method to check the validity of the coresets, and
updating them to guarantee convergence for deep learning.

In the rest of this section, we first discuss how to efficiently
estimate the coreset loss as a quadratic functionF l, based on
its gradient and curvature at wwwtl . Then, we discuss finding
the size of the neighborhood Nl in which the quadratic
function F l closely captures the loss L of full training data.

Approximating coreset losses by quadratic functions.
We model the coreset loss within the neighborhood Nl by
a quadratic approximation F l, using the 2nd-order Taylor
series of expansion of L(wwwtl) at wwwtl where the coreset is
extracted:

F l(δδδ) =
1

2
δδδTHtl,Sl

δδδ + gtl,Sl
δδδ + L(wwwtl), (6)
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where Htl,Sl
= 1

|Sl|
∑

j∈Sl
γjHtl,j and gtl,Sl

= 1
|Sl|∑

j∈Sl
γjgtl,j are the weighted mean of the Hessian and

gradient of the examples in the coreset Sl. Such modeling is
the main idea behind the popular convexification technique
in mathematical optimization, which powers Levenberg-
Marquardt (Marquardt, 1963) and K-FAC (Martens &
Grosse, 2015) optimization methods, among others (Bert-
sekas, 1979; Carmon et al., 2018; Wang & Srebro, 2019).

To obtain an efficient estimate of the Hessian of the coreset,
we use an approximate Hessian operator instead of the full
Hessian. Specifically, we employ the Hutchinson’s trace
estimator method (Hutchinson, 1989) to obtain a stochastic
estimate of the coreset Hessian diagonal (Bollapragada et al.,
2019; Dembo et al., 1982; Xu et al., 2020; Yao et al., 2018),
without having to form the Hessian matrix explicitly:

diag(Htl,Sl
) = E[zzz ⊙ (Htl,Sl

zzz)]. (7)

This method approximates the Hessian diagonal as the ex-
pectation of Hessian Htl,Sl

multiplied by a random vector
zzz with Rademacher distribution. The multiplication Htl,Sl

zzz
can be efficiently calculated via backprop on gradients of
the coreset multiplied by zzz. i.e., Htl,Sl

zzz = ∂gT
tl,Sl

zzz/∂wwwtl .

As the local gradient and curvature information can be very
noisy for neural networks (Yao et al., 2020), to better ap-
proximate the global gradient and Hessian information, we
smooth them out by applying exponential averaging with
parameters 0 < β1, 0 < β2 < 1:

gtl,j
=

(1− β1)
∑tl

t=1 β
tl−t
1 gt,j

1− βtl
1

, (8)

Hj,tl =

√
(1−β2)

∑tl
t=1 β

tl−t
2 diag(Ht,j)diag(Ht,j)

1− βtl
2

. (9)

For very large networks, gradient and Hessian diagonal w.r.t.
the input to the penultimate layer can be used in Eq. (7-9).

Estimating the size of the quadratic neighborhoods. To
check the validity of the coreset, we iteratively compare the
value of the quadratic loss F l(δδδ) with the value of the actual
training loss. For efficiency, we obtain an unbiased estimate
of the actual loss on a small random sample of training
examples Vr⊆V , i.e., Lr. We update the coreset Sl and the
quadratic approximation F l(δδδ), when the quadratic coreset
loss does not closely follow the actual loss estimate Lr(δδδ +
wwwtl). More precisely, every T1 iterations, we compute the
ratio of the absolute loss difference to the actual loss, i.e.,

ρtl =
|F l(δδδ)− Lr(δδδ+wwwtl)|
Lr(δδδ +wwwtl)

. (10)

We consider the quadratic approximation of the coreset loss
to be sufficiently accurate if ρtl is smaller than a threshold τ .

If ρtl ≤ τ , we keep using the coreset for the T1 subsequent
iterations. Otherwise, we find a new coreset and update the
quadratic approximation, accordingly. Computing ρtl can
be done quite efficiently. F l(δδδ) can be efficiently calculated
based on the gradient and Hessian of the coreset using Eq.
(7-9). δδδ is the total amount of updates calculated by the
optimization algorithm in T1 training iterations. Calculating
Lr(δδδ+wwwtl) requires an additional forward pass on a subset
Vr of data, which we only need once every T1 iterations.

Remark. In the initial phase of training, gradients evolve
very rapidly. Hence, early in training, the quadratic approxi-
mations are accurate in a small neighborhoodNl. Therefore,
it is crucial to update the coresets frequently to be able to
closely capture the full gradient. In contrast, in the final
stage of training, the loss becomes well approximated as a
convex quadratic within a sufficiently large neighborhood
of the local optimum (Martens & Grosse, 2015). Hence, the
same subset can be used for several training iterations. We
show in our experiments that for a fixed τ , CREST updates
the coresets much less frequently as training proceeds. In
practice, T1 can grow proportional to the inverse of the norm
of the Hessian diagonal, as we confirm experimentally.

4.2. Coresets for (Mini-batch) Stochastic GD

Next, we address the challenge (C2) of finding coresets
for (mini-batch) stochastic gradient methods, that are used
for training deep networks. To address this problem, our
main idea is to sample multiple subsets of training data
{V1, · · · , VP } uniformly at random, and directly select a
smaller coreset Sp

l , p ∈ [P ] of the mini-batch size m from
each random subset Vp. Effectively, instead of selecting a
subset to capture the full gradient at wwwtl , we select multiple
mini-batch coresets {S1

l , · · · , SP
l } at wwwtl , where each core-

set Sp
l is of mini-batch size m, and captures the full gradient

of a random subset Vp of training data at wwwtl .

Formally, at every coreset selection iteration l, we solve P
smaller submodular maximization problems. I.e. for p∈ [P ]:

Sp
l
∗
=argmax

S⊆Vp

C−
∑
i∈Vp

min
j∈S
∥gL

tl,i
−gL

tl,j
∥, s.t. |S|≤m, (11)

where gL
tl,i

is the gradient of the loss w.r.t. the input to the
last layer of the network at wwwtl .

Then, we make a quadratic loss approximation of the form
Eq. (6) to the union of mini-batch coresets Sl =

⋃
p∈[P ] S

p
l .

Each random subset Vp provides an unbiased estimate of the
full gradient, and since each mini-batch coreset Sp

l closely
captures the gradient of Vp, it provides a nearly unbiased
estimate of the full gradient. Therefore, the union of the
mini-batch coresets Sl also captures the full gradient. How-
ever, Sl has a smaller error in capturing the full gradient
compared to each of the mini-batch coresets, as small errors
of mini-batch coresets cancel each other out (c.f. Figure 6a
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Algorithm 1 CoREsets for STochastic GD (CREST)

Require: Model parameter www0, mini-batch size m, random
partition size r, learning rate η, total training iterations
N , checking interval T2, multipliers b, h, thresholds α, τ .
t← 0, T1 ← 1, update← 1
while t < N do

if update == 1 then
for p = 1 to P do

Select a random subset Vp ⊆ V s.t. |Vp| = r
Sp
l ∈argmaxS⊆Vp

|S|≤m

C−
∑

i∈Vp
minj∈S∥gL

tl,i
−gL

tl,j
∥

Sl =
⋃

p∈[P ] S
p
l

Calculate F l with Ht,Sl
,gt,Sl

for j = 1 to T1 do
wwwt+1 ← wwwt − ηgSl,t

t← t+ 1
if t mod T2 == 0 then
V ={j∈V |Lj(wwwi)>α,∀i ∈ [t−T2, t]}.

δδδ ← wwwt −wwwt−T1

Calculate ρt from Equation (10).
if ρt > τ then

update← 1,
T1 ← h× ∥H0∥/∥Ht∥, P ← b× T1

else
update← 0

in Appendix A.2). Hence, the union of mini-batch coresets
makes a more accurate approximation to the full loss.

As long as the quadratic approximation is valid, we can
train on any of the mini-batch coresets found at wtl . Thus,
we keep selecting mini-batch coresets at random from
{S1

l , · · ·, SP
l }, and training on them, as long as the quadratic

approximation on the union of selected mini-batch coresets
accurately captures the full loss according to Eq. (10).

Notably, mini-batch coresets selected from random subsets
are nearly unbiased and have a very small variance (c.f. Fig-
ure 1c, 1d). This is because random subsets Vp of size r are
unbiased and have a r/m times smaller variance than that of
random mini-batches of size m. As long as random subsets
are not too large, mini-batch coresets capture the gradient of
random subsets very closely. This ensures that the gradients
of mini-batch coresets are nearly unbiased and have a nearly
r/m times smaller variance than random mini-batches of
same size (c.f. Figure 9 in Appendix). Note that there is a
trade-off. For a fixed mini-batch size, selecting mini-batch
coresets from larger random subsets results in a smaller vari-
ance but may introduce a larger bias. The very small bias of
CREST mini-batch coresets allows guaranteed convergence
to a stationary point. At the same time, their smaller vari-
ance ensures superior convergence rate compared to training
on full data, as we will show in Theorem 4.1. This cannot
be achieved by coresets capturing the full gradient.

Note that selecting mini-batches from smaller random parti-
tions speeds up the coreset selection, by breaking one large
problem into smaller ones. For example, using the greedy
algorithm to solve the submodular maximization Problem
(5) has a complexity of O(n.k) to select k examples from a
ground-set of n examples. But, solving Eq. (11) to select
P mini-batches of size k/P from random subsets of size r
has a total complexity of O(P × r · k

P ) = O(r · k).

Remark. Early in training, quadratic approximations are
accurate in a small neighborhood Nl. Hence, a smaller
number of mini-batches can be extracted simultaneously.
In the final stage of training, the loss can be well captured
by a quadratic function (Martens & Grosse, 2015). Hence,
a larger number of mini-batches can be selected simulta-
neously later in training. In practice, simply increasing
P proportional to the inverse of the norm of the Hessian
diagonal works well, as we confirm by our experiments.

4.3. Further Improving Efficiency of Coreset Selection

To address the challenge (C3) of further improving the effi-
ciency and performance of selecting coresets, we make the
following observation. Examples are gradually learned dur-
ing the training. When an example is learned, its gradient
and loss become nearly zero. Hence, such examples do not
affect training and can be dropped from the coreset selection
pipeline to improve efficiently. However, the gradient or loss
of an example at a single point during training can be very
noisy. To quickly identify such examples, we monitor the
loss of examples within non-overlapping intervals of length
T2 during the training, and exclude those that consistently
have a loss smaller than a threshold α. This shrinks the size
of the selection problem over time, and allows CREST to fo-
cus more on examples that are not learned. Hence, it further
improves the efficiency and speedup of the algorithm.

To efficiently exclude the learned examples, we only rely on
the loss values calculated for random subsets used for select-
ing the coresets, and drop examples for which the calculated
loss values are smaller than α in an interval of length T2.

Effectively, dropping the learned examples speeds up train-
ing by increasing the learning rate. Specifically, dropping s
examples with nearly-zero gradients from a ground-set of
n examples increases the full (average) gradient by nearly
n/(n− s), which has a similar effect to that of increasing
the learning rate by a factor of nearly n/(n− s).

The pseudocode of CREST is illustrated in Alg. 1.

The following Theorem shows that training with stochastic
gradient descent on mini-batch coresets found by CREST
converges to a stationary point of the non-convex loss.
Theorem 4.1. For any δ, λ > 0, assume that the function L
is L-gradient Lipschitz, and stochastic gradients gt,i have
a bounded variance, i.e., Ei∈V [∥gt,i −∇L(wwwt)∥2] ≤ σ2.
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Case 1 (CREST: Nearly-unbiased). Let step size be
η = min{ 1

L ,
D̃
√
r

σ
√
N
}, for some D̃ > 0 and N be the

number of training iterations. If the gradient bias of
mini-batch coresets E[∥ξξξtl∥] ≤ ϵ∥∇L(wwwtl)∥ and τ ≤
minl(∥∇L(wwwtl +δδδl)∥− 3ϵ∥∇L(wwwtl)∥)∥δδδl∥/2L(wwwtl+δδδl),
for 0 ≤ϵ≤min{1,∥∇L(wwwtl+δδδl)∥/3∥∇L(wwwtl)∥}, then with
probability at least 1− λ, CREST will visit a ν-stationary
point at least once in the following number of iterations:

Õ
(
L(L(www0)− L∗)

ν2
(1 +

σ2

rν2
)

)
. (12)

Case 2 (Biased). If the bias of mini-batches E[∥ξξξt∥] ≤ ϵ,
but ϵ is larger than the full gradient norm anytime during
the training, then the number of iterations is:

Õ
(
L(L(www0)− L∗)

ν2 − ϵ
(1 +

σ2 + rϵ2

r(ν2 − ϵ)
)

)
. (13)

In particular, if ϵ ≥ ν2, convergence is not guaranteed.

The proof can be found in Appendix A.1. At a high level,
Theorem 4.1 shows that if mini-batch coresets closely cap-
ture gradient of random subsets Vp, CREST with a small
enough τ , converges to a ν-stationary point of the non-
convex loss, but r/m times faster than mini-batch SGD
with mini-batch size m on full data, as discussed next.

Case 1. As CREST mini-batch coresets capture the gradient
of random subsets closely, the bias of mini-batch coresets
is a small fraction, ϵ ∈ [0, 1], of the full gradient norm at se-
lection time. If ϵ ≤ min{1, ∥∇L(wwwtl+δδδl)∥/3∥∇L(wwwtl)∥},
a small enough τ ensures that the bias stays smaller than
the full gradient norm within the neighborhood Nl (c.f. Fig-
ure 6b in Appendix A.2). Importantly, as the gradient norm
shrinks as we get close to a stationary point, a small ϵ im-
plies that the bias in the entire neighborhood vanishes close
to convergence. This guarantees convergence of CREST to a
ν-stationary point. Notably, as long as r ≤ σ2/ν2, training
with CREST linearly speeds up training by a factor of r.
In particular, compared to SGD with mini-batch size m,
CREST speeds up training by a factor of r/m.

Case 2.If the bias of the mini-batch gradients ϵ is is larger
than the full gradient norm or larger than ν, (mini-batch)
SGD does not converge to a ν-stationary point. This ex-
plains why larger bias of mini-batches selected from coresets
extracted from the full data results in a poor performance
(c.f. Figure 1a). Besides, the ϵ bias slows down the training
by a factor of ν2− ϵ. Note that such mini-batches also have
a larger variance than mini-batch coresets found by CREST,
which should be replaced by 1/r in Eq. (13).

5. Experiments
In this section, we evaluate the performance of our core-
set selection, CREST. First, we compare CREST to the

state-of-the-art coreset selection algorithms, namely CRAIG
(Mirzasoleiman et al., 2020), GLISTER (Killamsetty et al.,
2021b), and GRADMATCH (Killamsetty et al., 2021a), as
well as the Random baseline. Second, we evaluate the ef-
fectiveness of our quadratic approximations in determining
the time that the coresets needs to be updated. In addition,
we compare the speedup of training with CREST to other
baselines. Then, we conduct an ablation study to investi-
gate the necessity of the quadratic vs. linear approximation,
smoothing gradient and curvature, and dropping the learned
examples from the selection pipeline. Finally, we study the
learning difficulty of subsets that are selected by CREST
during the course of training.

Datasets and Models. To demonstrate the effectiveness of
CREST across different datasets and architectures, we apply
CREST to several image and language benchmarks, includ-
ing training ResNet-20 on CIFAR10, ResNet-18 on CIFAR-
100 (Krizhevsky et al., 2009), ResNet-50 on TinyImageNet
(Russakovsky et al., 2015), and fine-tuning RoBERTa on
Stanford Natural Language Inference (SNLI) (Bowman
et al., 2015). Table 4 summarizes the datasets and models.

Training Setup. For all datasets except SNLI, we consider
a standard deep learning training pipeline that runs for
200 epochs with a SGD optimizer with a momentum of
0.9, and decays the learning rate by a factor of 0.1 after
60% and 85% of training, and use mini-batch size 128.
We warm-start the learning rate to 0.1 in the first 10% of
training, which is essential for stability of all the methods,
except CREST and Random. However, for fair comparison,
we compare all the methods using learning rate warm-start.
For fine-tuning RoBERTa on SNLI we used an AdamW
optimizer and a learning rate of 1e-5 for 8 epochs, with
mini-batch size 32. We ran all experiments with a single
NVIDIA RTX A6000 GPU.

Evaluation. We evaluate all the methods under 10% budget
for training. That is, for CRAIG, GRADMATCH, and GLIS-
TER, we find a new coreset of size 10% of the full data at
the beginning of every epoch. On the other hand, Random
iteratively selects random mini-batches, and CREST finds
mini-batch coresets and automatically finds the time to up-
date them. We stop all methods after the same number of
training iterations as that of 10% training on the full data.
Note that under the above ‘training setup’, the Random base-
line achieves a much higher accuracy than that of epoch 20
of a standard 200 epoch training pipeline (see SGD† in Ta-
ble 1). This is because the learning rate drops twice during
training on Random (and coresets) under 10% budget.

CREST Setup. In our experiments, we used b = 5, and
T2 = 20 for all the datasets, and tuned τ, α and h, as
discussed in Appendix A.2. Nevertheless, our method is not
very sensitive to the choice of α. We used |Vp| = |Vr| =
r = 0.005 × n for SNLI and 0.01 × n for the rest of the
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Table 1: Relative error (%) of different methods over training on the full data. All the baselines select subsets of size 10%
of full data at the beginning of every epoch. On the other hand, CREST selects mini-batches and decides when to update
the mini-batches based on its quadratic loss approximation. (*) GLISTER uses the validation set, and (‡) GRADMATCH uses
higher dimensional gradients to find coresets. SGD† shows accuracy of a standard mini-batch SGD pipeline at 10% training.

DATASET - MODEL BACKPROP SGD† RANDOM CRAIG GRAD-MATCH‡ GLISTER* CREST (OURS)

CIFAR-10 - RESNET-20 10% 21.3±8.0 7.2±1.4 13.0±5.1 6.0±0.1 7.0±0.1 5.5±0.2

CIFAR-100 - RESNET-18 10% 36.5±2.9 11.7±0.4 17.2±4.5 12.7±0.9 27.6±4.0 9.4±0.3

TINYIMAGENET - RESNET-50 10% 32.8±2.1 16.0±0.5 28.5±0.6 27.7±0.2 32.8±2.1 15.4±0.6

SNLI - ROBERTA (FINETUNE) 10% 1.2±0.3 1.2±0.3 - - - 0.8±0.2
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Figure 2: Normalized run-time and test accuracy of CREST by that of full data, when training ResNet-20 on CIFAR10,
ResNet-18 on CIFAR100, ResNet-50 on TinyImagenet, and fine-tuning RoBERTa on SNLI.

datasets, without further tuning. For RoBERTa we used last
layer gradient and Hessian diagonal, and for other networks
we used full gradient and Hessian diagonal in Eq. (6).

5.1. Evaluating Accuracy and Speedup

Accuracy. Table 1 shows the relative error, i.e.,
|acccoreset−accfull|

accfull
of models trained with each coreset se-

lection algorithm. We see that while the baselines yield a
very high relative error in particular for larger models and
more difficult tasks, e.g. CIFAR100 and TinyImageNet,
CREST can successfully outperform all the baselines and
obtain up to 18.2% better relative error compared to baseline
coreset selection methods, and up to 2.3% better relative
error compared to Random baseline. Note that as the size
of the data increases, existing methods that select coresets
from the full data become prohibitively expensive. Notably,
CREST is the only coreset selection method that is applica-
ble to SNLI with 570k examples. Other coreset baselines
that find subsets from the full data cannot scale to such a
large data. Table 1 confirms that CREST can successfully
finds mini-batch coresets with small bias and variance and
identify when they need to be updated during the training.

Speedup. Figure 2 compares the accuracy and wall-clock
run time of CREST vs baselines, and training on full data.
We see that CREST is able to achieve up to 2.5x speeds up
over training on full data, while introducing the smallest rel-
ative error compared to the baselines, when training ResNet-
20 on CIFAR-10, ResNet-18 on CIFAR-100, ResNet-50 on
TinyImageNet, and fine-tuning RoBERTa on SNLI. Table 2
further lists the average wall-clock time for selecting every
mini-batch coreset of size 128, calculating the quadratic loss
approximation based on Eq. (6), and checking the validity
of the approximation on a random subset of data according

Table 2: Average time for different components of CREST
for training ResNet-18 on CIFAR-100 with batch size 128.

STEP TIME (SECONDS)

SELECTION (CREST) 0.006
SELECTION (CRAIG) 0.089
LOSS APPROXIMATION 0.115
CHECKING THRESHOLD 0.796

to Eq. (10), when selecting coresets with CREST to train
ResNet-18 on CIFAR100. Note that selecting a mini-batch
from a larger random subset is much faster than selecting a
subset of size 10% from the full data, done by the baselines.

5.2. Ablation Study

Modeling the loss. Next, we evaluate the effectiveness
of CREST in approximating the loss as piece-wise quadratic
regions and identifying the time that the coresets need to
be updated. To do so, we compare CREST with greedy
mini-batch selection, which selects every mini-batch by ap-
plying the greedy algorithm to solve Eq. (5) on one random
subset, and trains on it before selecting the next mini-batch.
Figure 3 compares the relative error and the number of
times CREST updates the coresets to greedy mini-batch
selection. We see that CREST can effectively reduce the
number of updates to 2% and 3% of the total update time of
greedy mini-batch selection while preserving 98% and 99%
of its performance, when training ResNet18 on CIFAR-100
and ResNet20 on CIFAR-10. For training ResNet50 on
TinyImagenet and fine-tuning RoBERTa on SNLI, CREST
reduces the number of updates to 19% and 26% respectively,
while preserving 95% and 99% of the performance.

Quadratic approximation. As discussed in Sec. 4.1, in
later stages of training, the loss can be better approximated
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Figure 3: Normalized test accuracy and number of coreset
updates for CREST over greedily selecting every mini-batch
from a larger random subset by solving Eq. (5).
Table 3:Effect of CREST components (ResNet20/CIFAR10).

ALGORITHM REL. ERROR # UPDATES

CREST-FIRST 7.45 343
CREST W/O SMOOTH 7.44 369
CREST W/O EXCLUDING 4.61 346
CREST 4.33 185

as a convex quadratic function within larger neighborhoods.
Figure 4 (left) shows that as training proceeds, CREST can
successfully increase the size of the neighborhoods in which
the quadratic approximation is valid, and reduce the number
of updates over time. Moreover, Figure 4 (right) shows that
using a first-order approximation instead of our quadratic
approximation, or not smoothing the gradient and curvature
in calculating the quadratic approximation, leads to higher
number of coreset updates, and harms the accuracy. Table 3
further compares the number of updates and the relative
error at the end of training. We see that excluding the learned
examples further improves the performance of CREST.

Table 3 and Figure 4 show that it is crucial when the coresets
are updated. Figure 4 shows that updating the coreset more
frequently in the beginning is the key (notice that the green
line is slightly higher than blue and orange in the first 1000
iterations). This slight difference results in a much better
final accuracy. However, updating the coreset frequently
later in training does not improve the accuracy (it does not
hurt but does not help). Hence, blue and orange lines achieve
a lower accuracy than Crest with more updates. CREST can
accurately find when is best to update the coresets based
on its quadratic loss approximation, and achieve a better
accuracy while minimizing the number of updates.

Importance of Examples during the Training. Figure 5
shows the average forgetting score for the selected exam-
ples during the training. Forgetting score counts the number
of times examples are misclassified after being correctly
classified during the training, and quantifies the difficulty
of learning an example (Toneva et al., 2018). We see that
CREST selects examples of increasing difficulty during the
training, and excluding the learned examples allows further
focusing on the difficult-to-learn examples. In contrast, ran-
dom subsets have a constantly lower forgetting score during
the training. Figure 7b in Appendix A.2 shows that while
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Figure 4: Training ResNet-20 on CIFAR-10 with CREST
under 10% training budget. (Left) Number of coreset up-
dates vs. training iterations. (Right) test accuracy vs. the
total number of coreset updates.
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Figure 5: Average forgettability score of CREST coresets
during training, when learned examples are not discarded
(Left), and are discarded (Right). Learning difficulty of
examples selected by CREST increases during the training.

CREST trains on a diverse set of examples, the distribution
of the number of times different examples are selected by
CREST is very long-tailed. This shows not all examples con-
tribute equally to training, and CREST can successfully find
examples that are important for learning at different times.

Limitations. In general, coreset methods are most benefi-
cial under a limited training budget. While CREST can still
achieve a superior accuracy under a larger budget (Table 5
in Appendix A.2), it achieves a smaller accuracy gap com-
pared to the Random baseline. Besides, more efficient data
loading can significantly speed up coreset selection.

6. Conclusion
We proposed the first scalable framework with rigorous the-
oretical guarantees to identify the most valuable examples
for training non-convex models, particularly deep networks.
Our approach models the non-convex loss as a series of
quadratic functions and extracts a coreset for each quadratic
sub-region. In addition, to ensure convergence of stochastic
gradient methods such as (mini-batch) SGD, it iteratively
extracts multiple coresets from smaller random subsets of
training data, to ensure nearly-unbiased gradient estimates
with small variance. In doing so, it provides rigorous theo-
retical guarantee for convergence of the extracted coresets
to stationary point of a non-convex function. With extensive
experiments, we confirmed the effectiveness of our method
on various vision and NLP deep learning tasks.
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A. Appendix
A.1. Proofs

We assume that the stochastic gradients are unbiased and have a bounded variance, i.e.,

Ei∈V [∥gt,i − gt,V ∥] = E[∥ζζζt∥] = 0, Ei∈V [∥gt,i − gt,V ∥2] = E[∥ζζζt∥2] ≤ σ2. (14)

Also assume that the function L is L-gradient Lipschitz, i.e.,

∥∇L(www1)−∇L(www2)∥ ≤ L∥www1 −www2∥, ∀www1,www2 ∈ W. (15)

Then, we have that:

|L(www1)− L(www2)− ⟨∇L(www2),www1 −www2⟩ | ≤
L

2
∥www1 −www2∥2, ∀www1,www2 ∈ W. (16)

We can write the gradient descent updates when training on mini-batch coresets found by CREST, as follows:

wwwt+1 ← wwwt − ηt(∇L(wwwt) + ζ̃ζζt), s.t. ζ̃ζζt = ζζζt + ξξξt (17)

where ζζζt is the error of random subset Vp in capturing the full gradient, and ξξξt is the error of mini-batch coreset Sp
l in

capturing the gradient of Vp.

We build on the analysis of (Ghadimi & Lan, 2013) and characterize the effect of the coreset gradient error on the convergence.
From Eq. (16), (17) we have:

L(wwwt+1) ≤ L(wwwt) + ⟨∇L(wwwt),wwwt+1 −wwwt⟩+
L

2
η2t ∥∇L(wwwt) + ζ̃ζζt∥2 (18)

≤ L(wwwt)− ηt

〈
∇L(wwwt),∇L(wwwt) + ζ̃ζζt

〉
+

L

2
η2t ∥∇L(wwwt) + ζ̃ζζt∥2 (19)

= L(wwwt)− ηt∥∇L(wwwt)∥2 − ηt

〈
∇L(wwwt), ζ̃ζζt

〉
+

L

2
η2t

[
∥∇L(wwwt)∥2 + 2

〈
∇L(wwwt), ζ̃ζζt

〉
+ ∥ζ̃ζζt∥2

]
(20)

= L(wwwt)− (ηt −
L

2
η2t )∥∇L(wwwt)∥2 − (ηt − Lη2t )

〈
∇L(wwwt), ζ̃ζζt

〉
+

L

2
η2t ∥ζ̃ζζt∥2 (21)

For ηt < 2/L, we have ηt − Lη2t /2 > 0. Summing up the above inequalities and re-arranging the terms, we obtain:

N∑
t=1

(ηt −
L

2
η2t )∥∇L(wwwt)∥2 ≤ L(www0)− L(wwwN+1)−

N∑
t=1

(ηt − Lη2t )
〈
∇L(wwwt), ζ̃ζζt

〉
+

L

2

N∑
t=1

η2t ∥ζ̃ζζt∥2 (22)

≤ L(www0)− L∗ −
N∑
t=1

(ηt − Lη2t )
〈
∇L(wwwt), ζ̃ζζt

〉
+

L

2

N∑
t=1

η2t ∥ζ̃ζζt∥2, (23)

= L(www0)− L∗ −
N∑
t=1

(ηt − Lη2t ) ⟨∇L(wwwt), ζζζt + ξξξt⟩+
L

2

N∑
t=1

η2t ∥ζζζt + ξξξt∥2, (24)

= L(www0)− L∗ −
N∑
t=1

(ηt − Lη2t ) ⟨∇L(wwwt), ζζζt + ξξξt⟩+
L

2

N∑
t=1

η2t (∥ζζζ2t∥+ ∥ξξξ2t∥+ 2 ⟨ζζζt, ξξξt⟩),

(25)

where L∗ is the optimal solution and Eq. (23) follows from the fact that L(wwwN+1) ≥ L∗. Taking expectations (with
respect to the history ΨN of the generated random process) on both sides of Eq. (25) and noting that E[∥ζζζt∥] = 0, and
E[∥ζζζt∥2] ≤ σ2, and E[⟨∇L(wwwt), ζζζt⟩ |Ψt−1] = 0, and E[⟨ζζζt, ξξξt⟩ |Ψt−1] = 0 (since∇L(wwwt) and ξξξt and ζζζt are independent),
we obtain:

N∑
t=1

(ηt −
L

2
η2t )EΨN

[∥∇L(wwwt)∥2] ≤ L(www0)− L∗−
N∑
t=1

(ηt − Lη2t )EΨN
[⟨∇L(wwwt), ξξξt⟩] +

N∑
t=1

L

2
η2t (

σ2

r
+ EΨN

[∥ξξξt∥2]).

(26)

Next, we analyze convergence under two cases: (1) where E[∥ξξξt∥] ≤ ϵ∥∇L(wwwt)∥, and (2) where E[∥ξξξt∥] ≤ ϵ.
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Case 1. Assuming E[∥ξξξt∥] ≤ ϵ∥∇L(wwwt)∥ for 0 ≤ ϵ < 1. With 1/L ≤ ηt < 2/L, we have ηt − Lη2t ≤ 0. Hence,

N∑
t=1

(ηt−
L

2
η2t )EΨN

[∥∇L(wwwt)∥2] ≤L(www0)−L∗−
N∑
t=1

(ηt − Lη2t )ϵEΨ[∥∇L(wwwt)∥2] +
N∑
t=1

L

2
η2t (

σ2

r
+ϵ2EΨN

[∥∇L(wwwt)∥2]).

(27)

Hence,

N∑
t=1

(
ηt −

L

2
η2t + ϵ(ηt − Lη2t )−

L

2
η2t ϵ

2

)
EΨN

[∥∇L(wwwt)∥2] ≤ L(www0)− L∗ +
Lσ2

2r

N∑
t=1

η2t , (28)

N∑
t=1

(
(1 + ϵ)ηt −

L

2
(1 + ϵ)2η2t

)
EΨN

[∥∇L(wwwt)∥2] ≤ L(www0)− L∗ +
Lσ2

2r

N∑
t=1

η2t , (29)

and we get:

EΨN
[∥∇L(wwwt)∥2] ≤

1∑N
t=1(1 + ϵ)ηt − L

2 (1 + ϵ)2η2t

[
L(www0)− L∗ +

σ2L

2r

N∑
t=1

η2t

]
(30)

If ηt < (1 + ϵ)/(L2 (1 + ϵ)2) = 2/L(1 + ϵ), then (1 + ϵ)− L
2 (1 + ϵ)2ηt > 0 and we have:

EΨN
[∥∇L(wwwt)∥2] ≤

1∑N
t=1 ηt

[
2(L(www0)− L∗) +

σ2L

r

N∑
t=1

η2t

]
. (31)

For a random iterate R of a run of the algorithm that is selected with probability (2(1 + ϵ)ηt − L(1 + ϵ)2η2t )/
∑N

t=1(2(1 +
ϵ)ηt − L(1 + ϵ)2η2t ), we have that

E[∥∇L(wwwR)∥2] = ER,ΨN
[∥∇L(wwwR)∥2] =

∑N
t=1(2(1 + ϵ)ηt − L(1 + ϵ)2η2t )EΨN

[∥∇L(wwwt)∥2]∑N
t=1(2(1 + ϵ)ηt − L(1 + ϵ)2η2t )

= EΨN
[∥∇L(wwwt)∥2]

(32)

Hence, for ηt = η we get:

E[∥∇L(wwwR)∥2] ≤
1

Nη

[
2(L(www0)− L∗) +

σ2L

r
Nη2

]
. (33)

For η = min{ 1
L ,

D̃
√
r

σ
√
N
}, and D̃ > 0, we get

E[∥∇L(wwwR)∥2] ≤
1

Nη
[2(L(www0)− L∗)] +

σ2L

r
η (34)

≤ 2(L(www0)− L∗)

N
max{L, σ

√
N

D̃
√
r
}+ σ2L

r

D̃
√
r

σ
√
N

(35)

≤ 2L(L(www0)− L∗)

N
+

(
LD̃ +

2(L(www0)− L∗)

D̃

)
σ√
rN

(36)

Replacing the optimal value D̃ =
√
2(L(www1)− L∗)/L, we get

E[∥∇L(wwwR)∥2] ≤ BN :=
2L(L(www0)− L∗)

N
+

2σ
√

2L(L(www0)− L∗)√
rN

(37)

Hence, training with CREST exhibits an O(1/
√
rN) rate of convergence, compared to O(1/

√
mN) for mini-batch SGD

with mini-batch size m < r.
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To derive large-deviation properties for a single run of this method, we are interested in the number of iterations required
to find a point satisfying P[∥∇L(wwwR)∥2 ≤ ν2] ≥ 1 − 1

λ . We use Markov’s inequality to calculate the probability
P[∥∇L(wwwR)∥2 ≥ λBN ] ≤ 1

λ . We get that with probability at least 1 − λ, at least one iteration of a single run of the
algorithm visits a ν-stationary point in the following number of iterations:

Õ
(
L(L(www0)− L∗)

ν2
(1 +

σ2

rν2
)

)
. (38)

As long as r ≤ σ2/ν2 increasing the size of the random subsets r used by CREST will reduce the number of iterations
linearly, while not increasing the total number of stochastic gradient queries.

Case 2. Assuming E[∥ξξξt∥] ≤ ϵ < ν2. For 1/L ≤ ηt < 2/L we have ηt − Lη2t < 0. Hence:

N∑
t=1

(ηt −
L

2
η2t )EΨ[∥∇L(wwwt)∥2] ≤ L(www0)− L∗ −

N∑
t=1

(ηt − Lη2t )EΨ[⟨∇L(wwwt), ξξξt⟩] +
N∑
t=1

L

2
η2t (

σ2

r
+ ϵ2), (39)

≤ L(www0)− L∗ −
N∑
t=1

(ηt − Lη2t )EΨ[|⟨∇L(wwwt), ξξξt⟩|] +
N∑
t=1

L

2
η2t (

σ2

r
+ ϵ2), (40)

≤ L(www0)− L∗ −
N∑
t=1

(ηt − Lη2t )ϵEΨ[∥∇L(wwwt)∥] +
N∑
t=1

L

2
η2t (

σ2

r
+ ϵ2) (41)

≤ L(www0)− L∗ −
N∑
t=1

(ηt − Lη2t )ϵ∇max +

N∑
t=1

L

2
η2t (

σ2

r
+ ϵ2), (42)

where ∇max = max{0,maxi∈V,wwwt∈W ∥gt,i∥}. For a random iterate R of a run of the algorithm that is selected with
probability (2ηt − Lη2t )/

∑N
t=1(2ηt − Lη2t ), we have that

E[∥∇L(wwwR)∥2] = ER,ΨN
[∥∇L(wwwR)∥2] =

∑N
t=1(2ηt − Lη2t )EΨN

[∥∇L(wwwt)∥2]∑N
t=1(2ηt − Lη2t )

= EΨN
[∥∇L(wwwt)∥2] (43)

If η = ηt and η ≤ 1/L+ 1/2L∇max, we have −2(1− Lη) ≤ 1/∇max and we get

E[∥∇L(wwwR)∥2] ≤
1

Nη(1− L
2 η)

[
L(www0)− L∗ −N(η − Lη2)ϵ∇max + (

σ2

r
+ ϵ2)

L

2
Nη2

]
(44)

≤ 2

Nη

[
L(www0)− L∗ −N(η − Lη2)ϵ∇max + (

σ2

r
+ ϵ2)

L

2
Nη2

]
(45)

=
2

Nη
[L(www0)− L∗]− 2(1− Lη)ϵ∇max + (

σ2

r
+ ϵ2)Lη (46)

≤ 2

Nη
[L(www0)− L∗] + ϵ+ (

σ2

r
+ ϵ2)Lη (47)

For η = min{ 1
L ,

D̃√
N(σ2/r+ϵ2)

}, and D̃ > 0, we get

E[∥∇L(wwwR)∥2] ≤
1

Nη
[2(L(www0)− L∗)] + (

σ2

r
+ ϵ2)Lη + ϵ (48)

≤ 2(L(www0)− L∗)

N
max{L,

√
N(σ2/r + ϵ2)

D̃
}+ (

σ2

r
+ ϵ2)

LD̃√
N(σ2/r + ϵ2)

+ ϵ (49)

≤ 2L(L(www0)− L∗)

N
+

(
LD̃ +

2(L(www0)− L∗)

D̃

) √
σ2/r + ϵ2)√

N
+ ϵ (50)

For the optimal value of D̃ =
√
2(L(www1)− L∗)/L, we get

E[∥∇L(wwwR)∥2] ≤ BN :=
2L(L(www0)− L∗)

N
+

2
√
σ2 + rϵ2

√
2L(L(www0)− L∗)√
rN

+ ϵ (51)
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Hence, the number of iterations becomes:

Õ
(
L(L(www0)− L∗)

ν2 − ϵ
(1 +

σ2 + rϵ2

r(ν2 − ϵ)
)

)
(52)

Hence, more number of iterations is required. Besides, if ϵ ≥ ν2, convergence is not guaranteed.

Incorporating τ . Assume c2 is the error of the coreset in capturing the full gradient at the beginning of the neighborhood.
From Eq. (10) we know |L(wwwtl + δδδ) − F l(δδδ)| = ρtlL(wwwtl + δδδl). Using the quadratic approximation in Eq. (6), i.e.,
F l(δδδ) = 1

2δδδ
THtl,Sl

δδδ+ gtl,Sl
δδδ+L(wwwtl), and noting that L can also be modeled by a similar quadratic function for small τ ,

we get:

ρtlL(wwwtl + δδδl) = |L(wwwtl + δδδl)−F l(δδδl)| = |
1

2
δδδTl (Htl,V

−Htl,Sl
)δδδl + (gtl,V − gtl,Sl

)δδδl| (53)

≥
∣∣∣1
2
|δδδTl (Htl,V

−Htl,Sl
)δδδl| − ∥gtl,V

− gtl,Sl
∥ · ∥δδδl∥

∣∣∣ (54)

≥
∣∣∣1
2
|δδδTl (Htl,V

−Htl,Sl
)δδδl| − c2 · ∥δδδl∥

∣∣∣ (55)

≥ 1

2
|δδδTl (Htl,V

−Htl,Sl
)δδδl| − c2 · ∥δδδl∥ (56)

As long as ρtl is small, we can assume that the loss can be well modeled by a quadratic using the Hessian diagonal. Using the
Hessian diagonal for both L and F l, we have |δδδTl (Htl,Sl

−Htl,V
)δδδl| = ∥δδδTl (diag(Htl,Sl

)− diag(Htl,V ))∥ · ∥δδδl∥. Hence,

1

2
|δδδTl (Htl,Sl

−Htl,V
)δδδl| =

1

2
∥δδδT (diag(Htl,Sl

)− diag(Htl,V
))∥ · ∥δδδl∥ ≤ ρtlL(wwwtl + δδδl) + c2∥δδδl∥, (57)

∥δδδTl (diag(Htl,Sl
)− diag(Htl,V

))∥ ≤ 2ρtlL(wwwtl + δδδl)/∥δδδl∥+ 2c2. (58)

On the other hand, we have that∇F l(δδδ) = δδδTHtl,Sl
+ gtl,Sl

and ∇L(wwwtl + δδδl) = δδδTl Htl,V
+ gtl,V

. Hence, we have:

∥∇L(wwwtl + δδδl)−∇F l(δδδl)∥ = ∥δδδTl (Htl,V
−Htl,Sl

) + (gtl,V
− gtl,Sl

)∥ (59)

≤ ∥δδδTl (Htl,V
−Htl,Sl

)∥+ ∥gtl,V
− gtl,Sl

∥ (60)

≤ ∥δδδTl (Htl,V
−Htl,Sl

)∥+ c2. (61)

Therefore, using Hessian diagonal and from Eq. (58) and (61) we get:

∥∇L(wwwtl + δδδl)−∇F l(δδδl)∥ ≤ ∥δδδTl (diag(Htl,V
)− diag(Htl,Sl

))∥+ c2 ≤ 2ρtlL(wwwtl + δδδl)/∥δδδl∥+ 3c2 (62)

Eq. (62) shows that for a fixed ρtl and loss, if the convex approximation F l is valid in a larger neighborhood δδδl, then the
error of the Hessian diagonal at the beginning of the neighborhood was smaller and hence the gradient error at the end of the
neighborhood is smaller.

From Eq. (62) we know that ∥∇L(wwwtl +δδδl)−∇F l(δδδl)∥ ≤ 2ρtlL(wwwtl +δδδl)/∥δδδl∥+3c2. Let c1 be the desired upper-bound
on the gradient error at wwwtl + δδδl. Hence, we wish

∥∇L(wwwtl + δδδl)−∇F l(δδδl)∥ ≤ 2ρtlL(wwwtl + δδδl)/∥δδδl∥+ 3c2 ≤ c1. (63)

Hence, for c2 ≤ c1/3 we get:

ρtl ≤
(c1 − 3c2)∥δδδl∥
2L(wwwtl + δδδl)

, τ ≤ min
tl

ρtl . (64)

For ∥∇L(wwwtl + δδδl)−∇F l(δδδl)∥ ≤ c1 = c∥∇L(wwwtl+δδδl)∥, and with c2 ≤ c∥∇L(wwwtl+δδδl)∥/3, we have:

ρtl ≤
(c∥∇L(wwwtl + δδδl)∥ − 3c2)∥δδδl∥

2L(wwwtl + δδδl)
, (65)

For c = 1 and c2 = ϵ∥∇L(wwwt)∥, we get Case 1 in the Theorem. We see that when gradient norm is smaller, we should have
a smaller error c2 in capturing the random subset gradients.
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Table 4: Experiment setups.

DATASET CLASSES TRAIN NETWORK PARAMETERS FUL ACC

CIFAR-10 10 50K RESNET-20 0.27M 92.1±0.1

CIFAR-100 100 50K RESNET-18 11M 75.6±0.3

TINYIMAGENET 200 100K RESNET-50 23M 66.9±0.1

SNLI 3 570K ROBERTA 123M 92.9±0.2

Table 5: Relative error (%) with 20% of the full training budget (backprop) can reach a very close accuracy to that of full
training (with only 2-3% difference) on all datasets, namely, CIFAR-10, CIFAR-100, and TinyImageNet.

CREST RANDOM SGD†

CIFAR-10 - RESNET-20 2.32 2.87 16.47
CIFAR-100 - RESNET-18 3.37 3.66 32.68
TINYIMAGENET - RESNET-50 3.05 3.51 47.43

A.2. Experimental details

Tuning Hyperparameters. We tuned the hyperparameters τ ∈ {0.1, 0.05, 0.01, 0.005, 0.001}, h ∈ {1, 2, 4, 8, 10} and
used τ = 0.05, 0.01, 0.005, 0.05, h = 1, 10, 1, 4 on CIFAR-10, CIFAR-100, TinyImagenet, and SNLI, respectively, as
listed in Table 6. To determine τ , we calculated the average loss approximation error divided by the training loss, i.e. ρtl in
Eq. (10), after some coresets updates during training. Across all datasets, we found that α = 0.1 yielded satisfactory results.

Convergence of CREST vs CRAIG. Figure 6b shows training ResNet-20 on CIFAR-10 with CREST vs CRAIG. We see that
the normalized bias of CREST mini-batch coresets over full gradient norm, i.e., ϵ = E[∥ξξξtl∥]/∥∇L(wwwtl)∥ is consistently
small (< 1) during the training. As the gradient norm becomes smaller closer to a stationary point, small ϵ implies that the
bias of the CREST mini-batch coresets E[∥ξξξtl∥] diminishes as we get closer to a stationary point. Hence, convergence of
CREST can be guaranteed (Case 1 in Theorem 4.1). On the other hand, the normalized error for CRAIG coresets can be large
during the training. Hence, convergence is not guaranteed (Case 2 in Theorem 4.1).

CREST has a Similar Performance to Training with Large Mini-batches. Figure 9 shows the variance of gradient of
CREST mini-batch coresets of size m = 128 selected from random subsets Vp of size r = 500. We see that the variance
of CREST mini-batch coresets is very close to the variance of Vr. In contrast, random subsets of size m = 128 have
a considerably larger variance. Figure 8 further compares the relative error of CREST with mini-batch coresets of size
m = 128 selected from random subsets of size r = 500. We see that training on CREST mini-batch coresets has a smaller
relative error than training on random mini-batches of size m = 128. In particular, relative error of CREST with m = 128 is
close to that of training on random mini-batches of size m = 500. This is due to the smaller gradient variance of CREST
mini-batch coresets, as is shown in Figure 9.

Effect of Dropping the Learned Examples. By tracking the prediction accuracy of the dropped training examples
(Figure 7a), we found that even though some of the dropped examples could be forgotten after being dropped (the accuracy
of the dropped examples is 92% earlier in training), they can be learned again when training on the coresets selected from
the remaining training examples (the accuracy of dropped examples always increases to above 99% even though we never
train on them again). This confirms that dropping the learned examples does not harm the performance.

CREST with Larger Training Budget. In general, coreset methods are most beneficial under a limited training budget.
Table 5 compares the relative error of training ResNet-18 on CIFAR-10, ResNet-20 on CIFAR-100 and ResNet-50 on
TinyImagenet with CREST vs. Random, under 20% training budget. Note that under the standard learning rate schedule
used for training on the above datasets for 200 epochs, there is a large gap up to 44.38% between SGD† (i.e., training for
20%× 200 = 40 epochs on full data with mini-batch SGD) and CREST. But, the gap reduces when learning rate drops at
60% and 85% of training (Random vs. CREST).

16



Towards Sustainable Learning: Coresets for Data-efficient Deep Learning

Table 6: Hyperparameters used for different datasets.

DATASET τ h

CIFAR-10 0.05 1
CIFAR-100 0.01 10
TINYIMAGENET 0.005 1
SNLI 0.05 4
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Figure 6: Training ResNet-20 on CIFAR-10. (a) Union of mini-batch coresets has a smaller error in capturing the full
gradient, compared to the bias of the individual mini-batch coresets. (b) Normalized bias of coresets by the full gradient
norm, i.e., ϵ = E[∥ξξξtl∥]/∥∇L(wwwtl)∥ in Theorem 4.1. CREST coresets have a consistently small ϵ < 1. As the gradient norm
becomes smaller closer to the stationary points, small ϵ implies that the bias of the CREST mini-batch coresets E[∥ξξξtl∥]
diminishes closer to the stationary points. Hence, convergence of CREST can be guaranteed (Case 1 in Theorem 4.1). On
the other hand, ϵ can be large for CRAIG coresets. Hence, convergence is not guaranteed (Case 2 in Theorem 4.1).
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Figure 7: Training ResNet-20 on CIFAR-10 with CREST. (a) Dropped examples are learned later in training, by training
on CREST subsets. (b) Distribution of forgetting scores for the examples selected by CREST during the training. The
distribution is long-tailed, confirming that not all examples contribute equally to training.

Figure 8: Relative error (%) with 10% training budget. Train-
ing on CREST mini-batch coresets of size m = 128 selected
from random subsets Vp of size r = 500 has a smaller relative
error than training on random mini-batches of size m = 128.
In particular, relative error of CREST with m = 128 is close
to that of training on random mini-batches of size m = 500.

METHOD RELATIVE ERROR

CREST M=128 5.2
RANDOM M=128 7.1
RANDOM M=512 4.0
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Figure 9: Variance of gradients of CREST mini-batches of size
m = 128 selected from random subsets Vp of size r = 500 is
very closer to the variance of Vr. In contrast, random subsets
of size m = 128 have a considerably larger variance.
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