

000 SPATIOTEMPORAL FORECASTING AS PLANNING: A 001 MODEL-BASED REINFORCEMENT LEARNING AP- 002 PROACH WITH GENERATIVE WORLD MODELS 003

004 **Anonymous authors**
 005

006 Paper under double-blind review
 007

008 ABSTRACT 009

010 Physical spatiotemporal forecasting poses a dual challenge: The inherent stochasticity of physical systems makes it difficult to capture extreme or rare events, especially under *data scarcity*. Moreover, many critical domain-specific metrics are *non-differentiable*, precluding their direct optimization by conventional deep learning models. To address these challenges, we introduce a new paradigm, *Spatiotemporal Forecasting as Planning*, and propose SFP, a framework grounded in Model-Based Reinforcement Learning. First, SFP constructs a novel Generative World Model to learn and simulate the physical dynamics system. This world model comprises a deterministic base network and a probabilistic Multi-scale Top-K Vector Quantized decoder. It not only provides a single-point prediction of the future but also generates a distribution of diverse, high-fidelity future states, enabling "imagination-based" simulation of the environment's evolution. Building on this foundation, the base forecasting model acts as an *Agent*, whose output is treated as an action to guide exploration. We then introduce a *Planning Algorithm based on Beam Search*. This algorithm performs forward exploration within the learned world model, leveraging the non-differentiable domain metrics as a *Reward Signal* to identify high-return future sequences. Finally, these high-reward candidates, identified through planning, serve as high-quality pseudo-labels to continuously optimize the agent's *Policy* through an iterative self-training process. The SFP framework seamlessly integrates world model learning with reward-based planning, fundamentally addressing the challenge of optimizing non-differentiable objectives and mitigating data scarcity via exploration in its internal simulations. Comprehensive experiments on multiple benchmarks show that SFP not only significantly reduces prediction error (e.g., up to 39% MSE reduction) but also demonstrates exceptional performance on critical domain metrics, including physical consistency and the ability to capture extreme events. Our codes are available at <https://github.com/easylearningscores/SFP>.

039 1 INTRODUCTION 040

041 Spatio-temporal forecasting serves as a cornerstone of modern science and engineering, playing
 042 an indispensable role in critical domains ranging from high-impact weather alerts and long-term
 043 climate modeling to fluid dynamics analysis in aerospace engineering (Wu et al., 2025; Gao et al.,
 044 2025; Bi et al., 2023; Wu et al., 2024b; Lam et al., 2023). In recent years, with the remarkable
 045 rise of deep learning, data-driven approaches, particularly models based on Convolutional Neural
 046 Networks (CNNs) (Shi et al., 2015; Raonic et al., 2023; Gao et al., 2022a), Transformers (Gao et al.,
 047 2022b; Wu et al., 2024a), and Neural Operators (Li et al., 2020; Wu et al., 2024d; Bonev et al., 2023),
 048 have demonstrated exceptional capabilities. They efficiently learn complex, nonlinear dynamics
 049 from high-dimensional spatio-temporal data, often surpassing traditional, computationally expensive
 050 numerical simulations in both prediction efficiency and accuracy on many benchmarks. This series
 051 of breakthroughs is ushering AI for Science into a new era of immense possibilities, promising an
 052 unprecedented enhancement in our ability to understand and predict the complex physical world.

053 However, despite these remarkable successes, the vast majority of current data-driven forecasting
 054 models operate on a fundamentally flawed assumption: that optimizing simple, pixel-wise proxy

losses, such as Mean Squared Error (MSE) (Gao et al., 2022a; Wu et al., 2024c; Schneider et al., 2017), is sufficient to achieve superior real-world performance. This assumption proves particularly fragile when dealing with complex physical systems. In the physical sciences, true prediction quality is not defined by average pixel-wise errors but is instead measured by domain-specific metrics that possess clear physical meaning yet are often *non-differentiable*. These metrics include the Critical Success Index (CSI) (Rasp et al., 2020; Schaefer, 1990; Shu et al., 2025) for evaluating extreme weather events, the Turbulent Kinetic Energy (TKE) spectrum for verifying the physical consistency of fluid systems (Wu et al., 2024d; Wang et al., 2020), or energy norms that ensure adherence to fundamental conservation laws (Müller, 2023). Consequently, a **Fundamental Disconnect** exists between the optimization objectives and the evaluation standards in the current paradigm. *This disconnect leads to models that, even with excellent performance on proxy losses, often fail to capture extreme events critical for scientific decision-making or to maintain physical consistency.* This issue now stands as a core bottleneck hindering the full potential of AI for Science.

To fundamentally address this challenge, we advocate for a **Paradigm Shift: Reframing Forecasting as Planning**. In this new paradigm, we move beyond the goal of passively fitting data. Instead, we treat the forecasting model as an active *agent* (Buşoniu et al., 2010) that learns a *policy* (Fernández & Veloso, 2006) to make "decisions" - that is, to generate an initial intention or *action* (Foerster et al., 2019). This action subsequently guides a learned *world model* (Allen & Koomen, 1983) to perform forward-looking exploration, systematically searching through thousands of "imagined" futures to identify those states that maximize a non-differentiable *reward*. This entire concept finds its most natural theoretical grounding in **Model-Based Reinforcement Learning (MBRL)** (Moerland et al., 2023; Luo et al., 2024), which provides a principled pathway for directly optimizing the domain-specific objectives that truly matter.

Building on this new paradigm, we design and implement a novel framework named **SFP**, as shown in Figure 1. The core of SFP lies in its two synergistic components. First, we construct a **Generative World Model** that efficiently learns the complex, stochastic dynamics of the physical system by combining a deterministic base network with a probabilistic Vector Quantization (VQ) (Van Den Oord et al., 2017) module. This model not only predicts a single future but, more critically, generates a diverse and high-fidelity set of future possibilities in "imagination," conditioned on the agent's intention. Second, we introduce a novel **planning algorithm** that performs efficient exploration among the numerous future trajectories generated by the world model using Beam Search. It directly employs the non-differentiable domain metrics as a reward function to evaluate the quality of each trajectory. Finally, through an iterative **self-training** loop, the high-reward future states discovered via planning are used as high-quality pseudo-labels, which in turn guide the optimization and evolution of the agent's policy, thereby forming the closed-loop learning system illustrated in Figure 1(b). Our contributions can be summarized as follows:

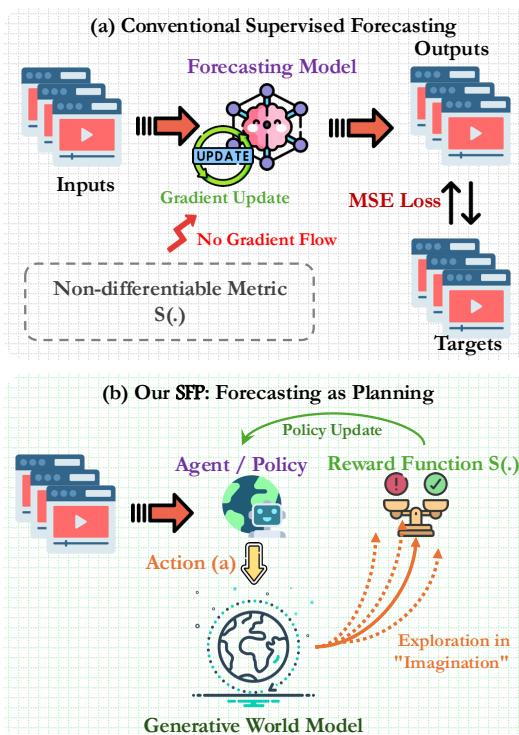


Figure 1: **The SFP Paradigm: From Supervised Learning to Planning.** (a) The conventional paradigm relies on differentiable proxy losses (e.g., MSE) and fails to incorporate non-differentiable metrics $S(\cdot)$ into the optimization loop. (b) Our SFP framework treats forecasting as planning. An *Agent* guides a *Generative World Model* to explore imagined futures. The non-differentiable metric $S(\cdot)$ becomes the *Reward Function*, providing a direct learning signal for the *Policy Update*. This closed-loop process allows the agent to optimize directly for the true objectives of the task.

Finally, through an iterative **self-training** loop, the high-reward future states discovered via planning are used as high-quality pseudo-labels, which in turn guide the optimization and evolution of the agent's policy, thereby forming the closed-loop learning system illustrated in Figure 1(b). Our contributions can be summarized as follows:

108 ① **A New Paradigm.** We are the first to propose reframing spatiotemporal forecasting as a planning
 109 task (***Spatiotemporal Forecasting as Planning***) and to systematically formalize it as an MBRL
 110 problem. This theoretical framework provides a novel and principled pathway for directly optimiz-
 111 ing domain-specific metrics that are critical for scientific discovery but are non-differentiable.
 112 ② **A Novel Implementation Framework:** SFP. We design and implement SFP, a novel framework
 113 that materializes our proposed paradigm. It creatively combines a **Generative World Model**, for
 114 exploring diverse future possibilities, with a **Beam Search-based planning algorithm**, for learning
 115 from non-differentiable rewards, to form a complete, end-to-end policy learning loop.
 116 ③ **Superior Experimental Performance.** We conduct extensive experiments on several challenging
 117 spatiotemporal forecasting benchmarks. The results demonstrate that our framework not only
 118 significantly outperforms state-of-the-art methods on traditional accuracy metrics, but more im-
 119 portantly, shows exceptional capabilities in improving physical consistency and capturing extreme
 120 events. This provides strong evidence for the effectiveness and superiority of our new paradigm.
 121

122 2 RELATED WORK

124 **Data-Driven Spatiotemporal Forecasting.** Deep learning models, from CNNs like SimVP (Gao
 125 [et al., 2022a](#)) to Transformers like FourCastNet (Pathak [et al., 2022](#)) and Neural Operators like
 126 FNO (Li [et al., 2020](#)), have excelled at learning complex dynamics from data. Physics-Informed
 127 Neural Networks (PINNs) (Raissi [et al., 2019](#)) further improve physical consistency by adding
 128 PDE constraints to the loss. However, a fundamental limitation unites them: their reliance on fully
 129 differentiable loss functions (e.g., MSE) prevents direct optimization for critical, **non-differentiable**
 130 domain metrics like the Critical Success Index (CSI). SFP does not replace these backbones; instead,
 131 *it introduces a new, orthogonal optimization paradigm that enables any model to learn directly*
 132 *from these true real-world objectives.*

133 **Model-Based Reinforcement Learning (MBRL).** MBRL enables efficient, forward-looking
 134 decision-making by learning a *world model* of the environment and planning within it (Hafner [et al.,](#)
 135 2019; 2025). Inspired by this, SFP is the first to systematically apply the MBRL paradigm to physical
 136 spatiotemporal forecasting. Our key challenge and contribution lie in adapting this framework to a
 137 novel setting: instead of learning from simple, scalar rewards via direct interaction, our agent learns
 138 from an ***external, high-dimensional, and non-differentiable evaluation function***. This necessitates a
 139 novel planning algorithm capable of leveraging such complex reward signals to guide policy learning.
 140

141 **Generative Forecasting and Complex Rewards.** While generative models like GANs (Goodfellow
 142 [et al., 2020](#)) and Diffusion Models (Ho [et al., 2020](#)) excel at producing diverse forecasts, they typically
 143 optimize for data likelihood rather than specific downstream metrics. Concurrently, learning from
 144 complex rewards, exemplified by Reinforcement Learning from Human Feedback (RLHF) (Ouyang
 145 [et al., 2022](#)), has been highly successful in aligning large language models. SFP elegantly unifies
 146 these concepts: its generative world model **explores** diverse futures, while its planning mechanism
 147 **exploits** this exploration by learning from complex rewards. We frame this as **RL from Metric**
 148 **Feedback (RLMF)**, extending RLHF from human preferences to any computable domain metric.
 149 Unlike traditional self-training based on model confidence, RLMF derives its learning signal from an
 150 external evaluation of exploration outcomes, making the process more targeted and powerful.

151 3 PROBLEM FORMULATION: REFRAMING FORECASTING AS PLANNING

154 Conventional spatiotemporal forecasting aims to learn a mapping $f_\theta : \mathcal{X}_t \mapsto \hat{\mathbf{y}}_{t+1}$, where the
 155 parameters θ are optimized by minimizing a differentiable proxy loss, such as the MSE. However,
 156 this paradigm cannot directly optimize the **non-differentiable domain metrics**, $\mathcal{S}(\cdot)$, such as the
 157 CSI, which are critical for evaluating performance in the physical sciences.

158 To address this fundamental disconnect, we propose to reframe spatiotemporal forecasting as planning
 159 and formalize it as a Model-Based Reinforcement Learning problem. In this paradigm, we do not
 160 directly predict \mathbf{y}_{t+1} . Instead, we learn a **policy** π_θ that, given the current state $\mathbf{s}_t = \mathcal{X}_t$, generates
 161 a high-dimensional continuous **action** $\mathbf{a}_t = \pi_\theta(\mathbf{s}_t)$. This action represents an initial predictive
 162 intention that guides a learned **Generative World Model**, \mathcal{M}_ϕ , to perform forward exploration. The

162 world model defines the environment's transition dynamics $p_\phi(\mathbf{y}_{t+1}|\mathbf{a}_t)$, which we approximate by
 163 sampling a set of K candidate states $\{\tilde{\mathbf{y}}_{t+1}^{(k)}\}_{k=1}^K$.
 164

165 Our core idea is to employ the non-differentiable metric $\mathcal{S}(\cdot)$ as a **reward function**, \mathcal{R} , which
 166 evaluates the future states explored within the world model, rather than the initial action. Our ultimate
 167 goal is thus to learn an optimal policy π_θ^* that maximizes the expected return defined by this reward
 168 function. We express this learning objective as:

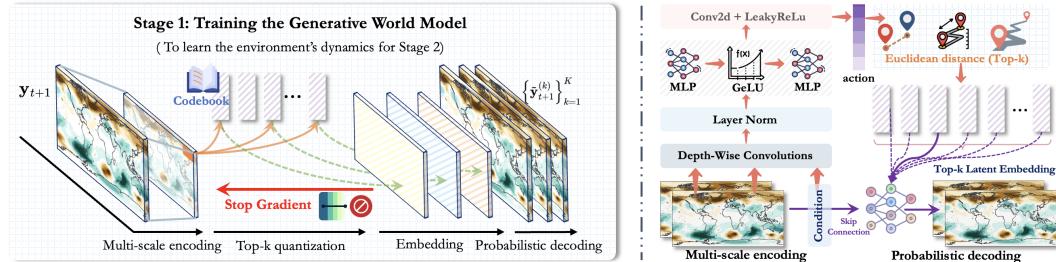
$$169 \pi_\theta^* = \arg \max_{\pi_\theta} \mathbb{E}_{\mathbf{s}_t \sim \mathcal{D}} [\mathcal{R}(\pi_\theta(\mathbf{s}_t))], \quad \text{where } \mathcal{R}(\mathbf{a}_t) = \mathbb{E}_{\tilde{\mathbf{y}} \sim p_\phi(\cdot|\mathbf{a}_t)} [\mathcal{S}(\tilde{\mathbf{y}})] \quad (1)$$

170 Equation equation 1 forms the theoretical cornerstone of our **SFP** framework. Since the reward
 171 function \mathcal{R} depends on a complex, non-differentiable generation and evaluation process, optimizing
 172 π_θ via direct backpropagation is infeasible. The following sections detail how we address this
 173 optimization challenge by jointly learning the world model \mathcal{M}_ϕ and using a novel planning algorithm.
 174

175 4 THE SFP FRAMEWORK

177 Our **SFP** framework operationalizes the *Spatiotemporal Forecasting as Planning* paradigm through
 178 a decoupled, two-stage process designed to solve the optimization objective in Equation equation 1.
 179 **1.** First, we pre-train a generative world model, \mathcal{M}_ϕ , to learn the system's probabilistic dynamics
 180 and provide a high-fidelity "imagination" space. **2.** Subsequently, with the world model's parameters
 181 frozen, we optimize the policy, π_θ , in an iterative loop. In each iteration, the policy's action guides
 182 the world model's exploration of future states; a non-differentiable reward function assesses these
 183 outcomes; and the highest-reward state is then used as a pseudo-label to update the policy via
 184 self-training. This separation of world model learning from planning-based policy optimization
 185 allows **SFP** to effectively translate non-differentiable reward signals into feasible gradient updates,
 186 systematically solving our formulated objective.

187 4.1 STAGE 1: LEARNING THE GENERATIVE WORLD MODEL



190 Figure 2: **Architecture of our Generative World Model (\mathcal{M}_ϕ)**. Operating as a conditional VQ-VAE,
 191 its probabilistic decoder fuses a latent **action** embedding with a **condition** embedding derived from
 192 the current state \mathbf{s}_t . This design enables the generation of a distribution of K diverse future states
 193 based on the agent's intention.
 194

203 The quality of the world model, \mathcal{M}_ϕ , directly dictates the upper bound of the subsequent planning
 204 stage (Stage 2), as it constitutes the virtual "imagination" space for the agent. Therefore, in this first
 205 stage, our core task is to learn a high-fidelity model that accurately captures the conditional probability
 206 dynamics of the physical system, $p_\phi(\mathbf{y}_{t+1}|\mathbf{s}_t)$. To this end, we design an architecture based on a
 207 Conditional Vector-Quantized Variational Autoencoder (Conditional VQ-VAE), as illustrated in
 208 Figure 2. Our world model \mathcal{M}_ϕ consists of a multi-scale encoder E_ϕ and a conditional decoder D_ϕ .
 209 Given a ground-truth future state \mathbf{y}_{t+1} from the dataset, the encoder E_ϕ first maps it to a continuous
 210 latent feature map $\mathbf{z}_e(\mathbf{y}_{t+1}) \in \mathbb{R}^{h \times w \times d}$ through a series of multi-scale convolutions.
 211

212 Next, we introduce a learnable discrete codebook $\mathcal{C} = \{\mathbf{e}_i\}_{i=1}^N \subset \mathbb{R}^d$, where N is the number of code
 213 vectors and d is their dimensionality. Through a vector quantization process, we deterministically
 214 replace each vector in the continuous latent map \mathbf{z}_e with its nearest neighbor from the codebook \mathcal{C} in
 215 terms of Euclidean distance. This process yields a discretized latent representation $\mathbf{z}_q(\mathbf{y}_{t+1})$:

$$215 \mathbf{z}_q(\mathbf{y})_{i,j} = \mathbf{e}_{k^*}, \quad \text{where } k^* = \arg \min_{k \in \{1, \dots, N\}} \|\mathbf{z}_e(\mathbf{y})_{i,j} - \mathbf{e}_k\|_2^2 \quad (2)$$

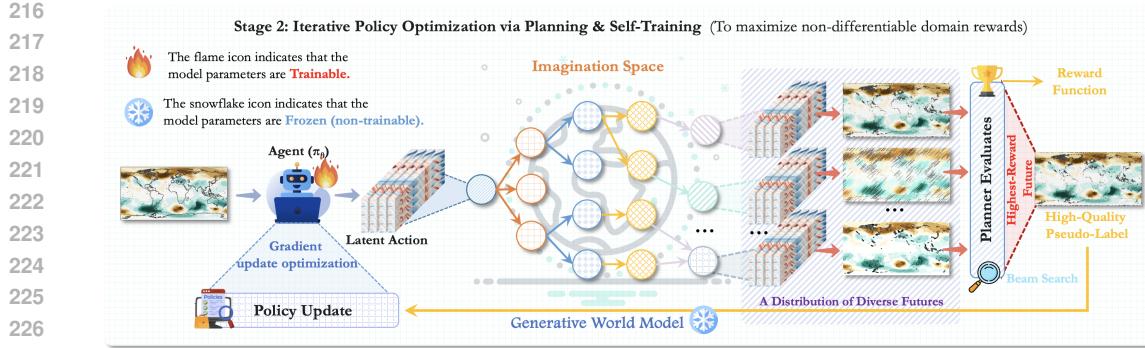


Figure 3: **The architecture of Stage 2: Iterative Policy Optimization via Planning and Self-Training.** The process unfolds in a closed loop. (1) **Agent Decides:** Given the current state s_t , the trainable Agent (Policy π_θ , marked by a 🔥) generates a latent action a_t . (2) **World Model Imagines:** The frozen Generative World Model (M_ϕ , marked by a ❄️) uses this action to perform forward exploration within its "Imagination Space," producing a distribution of diverse future states $\{\hat{y}_{t+1}^{(k)}\}$. (3) **Planner Evaluates:** A planning algorithm leverages a non-differentiable domain metric as a Reward Function to identify the highest-reward future, \hat{y}_{t+1}^* . (4) **Policy Self-Updates:** This high-reward future serves as a high-quality pseudo-label to update the agent's policy π_θ via a standard differentiable loss.

Unlike a standard VQ-VAE, our decoder D_ϕ is **conditional**. As shown in Figure 2 (right), it receives not only the quantized latent representation \mathbf{z}_q from the future state but also a **condition** vector $\mathbf{c}_t = C_\phi(s_t)$ extracted from the current state $s_t = \mathcal{X}_t$. The decoder's task is to fuse these two information sources to reconstruct the original future state, i.e., $\tilde{\mathbf{y}}_{t+1} = D_\phi(\mathbf{z}_q, \mathbf{c}_t)$. This conditional mechanism is crucial as it ensures that the futures generated by the world model evolve in a manner consistent with the historical context.

Training Objective. We optimize the parameters ϕ of the entire world model end-to-end using a composite loss function, \mathcal{L}_{WM} . This loss comprises three components designed to minimize reconstruction error while regularizing the behavior of the encoder and the codebook:

$$\mathcal{L}_{\text{WM}}(\phi) = \underbrace{\|\mathbf{y}_{t+1} - D_\phi(\mathbf{z}_q(\mathbf{y}_{t+1}), \mathbf{c}_t)\|_2^2}_{\text{Reconstruction Loss}} + \underbrace{\|\text{sg}[\mathbf{z}_e(\mathbf{y}_{t+1})] - \mathbf{z}_q(\mathbf{y}_{t+1})\|_2^2}_{\text{Codebook Loss}} + \underbrace{\beta \|\mathbf{z}_e(\mathbf{y}_{t+1}) - \text{sg}[\mathbf{z}_q(\mathbf{y}_{t+1})]\|_2^2}_{\text{Commitment Loss}} \quad (3)$$

Here, $\text{sg}[\cdot]$ denotes the stop-gradient operator. The reconstruction loss optimizes the encoder and decoder; the codebook loss updates the codebook by pulling the selected code vectors towards the encoder's outputs; and the commitment loss encourages the encoder's output to remain close to the chosen code vector, which stabilizes the training process. The hyperparameter β balances the contribution of the commitment loss.

By minimizing \mathcal{L}_{WM} on real data pairs (s_t, \mathbf{y}_{t+1}) , we obtain a high-quality generative world model M_ϕ . Upon entering the next stage, the parameters ϕ of this model are **frozen**, allowing it to serve as a stable and reliable simulation environment for policy optimization.

4.2 STAGE 2: POLICY OPTIMIZATION VIA PLANNING AND SELF-TRAINING

With a high-fidelity, pre-trained generative world model M_ϕ at our disposal, we now address the core challenge of optimizing the policy π_θ . As established, the non-differentiable nature of the reward function \mathcal{R} in Equation 1 precludes direct optimization via backpropagation. Stage 2 introduces a novel iterative loop that translates these black-box reward signals into tractable, differentiable supervision for the policy. This process, illustrated in Figure 3, hinges on a synergistic interplay of planning, evaluation, and self-training.

First, we define our **agent** as the predictive model governed by the policy π_θ . The agent's **action**, $\mathbf{a}_t = \pi_\theta(s_t)$, is not a direct prediction but rather a high-dimensional, continuous latent vector. This vector serves as a *latent directive* that steers the generative process of the world model, encoding the agent's initial intention for the future state.

The cornerstone of this stage is a **planning algorithm** that performs lookahead inference within the learned world model. Given an action \mathbf{a}_t , which defines the initial condition for exploration, we employ **Beam Search** to efficiently navigate the vast "Imagination Space" of possible futures. The algorithm maintains a "beam" of B most promising partial sequences at each step, progressively expanding them to generate a set of B high-quality, full-length future state candidates, denoted as $\{\hat{\mathbf{y}}_{t+1}^{(b)}\}_{b=1}^B$. This forward exploration is computationally inexpensive as it occurs entirely within the frozen world model \mathcal{M}_ϕ .

The climax of the loop is the **reward evaluation and self-training** mechanism. Each candidate future $\hat{\mathbf{y}}_{t+1}^{(b)}$ generated by the planner is evaluated using the domain-specific, non-differentiable metric $\mathcal{S}(\cdot)$ as the reward function. The future state that yields the maximum reward is identified as the optimal outcome of the exploration:

$$\hat{\mathbf{y}}_{t+1}^* = \underset{\hat{\mathbf{y}}_{t+1}^{(b)}}{\operatorname{argmax}} \left[\mathcal{S} \left(\hat{\mathbf{y}}_{t+1}^{(b)} \right) \right], \quad \text{for } b \in \{1, \dots, B\} \quad (4)$$

This highest-reward state, $\hat{\mathbf{y}}_{t+1}^*$, discovered through planning, serves as a high-quality **pseudo-label**. It represents a desirable future that the agent should aim to produce. Consequently, we formulate a differentiable **policy loss** to minimize the discrepancy between a projection of the agent's action and this pseudo-label. While various forms are possible, a common objective is the Mean Squared Error:

$$\mathcal{L}_{\text{policy}}(\theta) = \mathbb{E}_{(\mathbf{s}_t, \hat{\mathbf{y}}_{t+1}^*)} [\|\mathcal{P}(\pi_\theta(\mathbf{s}_t)) - \hat{\mathbf{y}}_{t+1}^*\|_2^2] \quad (5)$$

Here, $\mathcal{P}(\cdot)$ is a simple, lightweight projector that maps the latent action \mathbf{a}_t back to the physical state space. Since $\mathcal{L}_{\text{policy}}$ is fully differentiable with respect to the policy parameters θ , we can update the policy via standard gradient descent. This self-training loop effectively distills the knowledge from the non-differentiable reward into the policy network, iteratively refining the agent's ability to propose actions that lead to high-reward futures.

5 EXPERIMENTS

We conduct a series of comprehensive experiments to validate the effectiveness and superiority of our proposed SFP. Our experiments are designed to answer the following key research questions (RQs): **RQ1: General Efficacy**. Does SFP consistently outperform conventional supervised training, especially on non-differentiable domain-specific metrics? **RQ2: Data Scarcity Mitigation**. Does SFP's performance advantage grow as the amount of training data decreases? **RQ3: Cost-Benefit Analysis**. Are SFP's performance gains worth the additional computational overhead in time and memory? **RQ4: Ablation Study**. What are the contributions of SFP's core components (planning, self-training, rewards) and its sensitivity to key hyperparameters? **RQ5: Training Stability and Probabilistic Skill**: How does SFP compare to methods like Direct Preference Optimization (DPO) in terms of training stability? Can it generate high-quality probabilistic ensembles?

Experimental Settings. Our experimental validation is conducted on five diverse benchmarks to ensure robust and generalizable conclusions. These include real-world datasets like *SEVIR* [Veillette et al. \(2020\)](#) for extreme weather and a *Marine Heatwave* dataset for data-scarce scenarios, as well as classic equation-driven systems from PDEBench [Takamoto et al. \(2022\)](#) (**NSE**, **SWE**, **RBC**) and the high-fidelity CFD simulation *Prometheus* [Wu et al. \(2024b\)](#). We employ a wide range of backbone models to demonstrate the plug-and-play nature of SFP, spanning conventional architectures (*SimVP-v2* [Tan et al. \(2022\)](#), *ConvLSTM* [Shi et al. \(2015\)](#), *Earthformer* [Gao et al. \(2022b\)](#)) and Neural Operators (*FNO* [Li et al. \(2020\)](#), *CNO* [Raonic et al. \(2023\)](#)).

Our evaluation protocol is multi-faceted. Beyond standard accuracy metrics like **MSE** and **RMSE**, we focus on critical, non-differentiable domain metrics that also serve as reward signals: the **Critical Success Index (CSI)** for extreme events, the **Turbulent Kinetic Energy (TKE)** spectrum for physical consistency, and the **Structural Similarity Index (SSIM)**. For probabilistic evaluation, we report the **Continuous Ranked Probability Score (CRPS)**. All experiments are implemented in PyTorch on NVIDIA A100 GPUs. We use the Adam optimizer with a learning rate of 1×10^{-3} and a cosine annealing schedule. Key SFP hyperparameters are a 1024-entry codebook and a beam width $B = 10$ for planning, with a detailed sensitivity analysis in Section 5.

Table 1: Performance comparison of SFP against supervised training on three representative benchmarks. SFP shows substantial gains on critical, non-differentiable domain metrics (CSI, TKE Error, and SSIM) while also improving standard accuracy (MSE). Lower is better (\downarrow) for MSE and TKE Error; higher is better (\uparrow) for CSI and SSIM. Best results are in **bold**.

Model	SEVIR (Extreme Weather)				NSE (Turbulence)				Prometheus (Combustion)			
	MSE ↓		CSI ↑		MSE ↓		TKE Error ↓		MSE ↓		SSIM ↑	
	Baseline	+ SFP	Baseline	+ SFP	Baseline	+ SFP	Baseline	+ SFP	Baseline	+ SFP	Baseline	+ SFP
ResNet	0.0671	0.0542	0.32	0.45	0.2330	0.1663	0.48	0.25	0.2356	0.1987	0.72	0.81
ConvLSTM	0.1757	0.1283	0.28	0.42	0.4094	0.1277	0.55	0.18	0.0732	0.0533	0.88	0.94
Earthformer	0.0982	0.0521	0.48	0.62	1.8720	0.1202	0.68	0.15	0.2765	0.2001	0.79	0.86
SimVP-v2	0.0063	0.0032	0.52	0.65	0.1238	0.1022	0.39	0.16	0.1238	0.0921	0.85	0.92
TAU	0.0059	0.0029	0.54	0.68	0.1205	0.1017	0.40	0.17	0.1201	0.0899	0.86	0.93
Earthfarseer	0.0065	0.0021	0.55	0.70	0.1138	0.0987	0.38	0.19	0.1176	0.1092	0.87	0.91
FNO	0.0783	0.0436	0.35	0.51	0.2237	0.1005	0.41	0.17	0.3472	0.2275	0.75	0.84
NMO	0.0045	0.0029	0.58	0.72	0.1007	0.0886	0.35	0.15	0.0982	0.0475	0.89	0.95
CNO	0.0056	0.0053	0.56	0.64	0.2188	0.1483	0.45	0.22	0.1097	0.0254	0.84	0.96
FourcastNet	0.0721	0.0652	0.51	0.60	0.1794	0.1424	0.32	0.21	0.0987	0.0542	0.90	0.95
Avg. Improv. (%)	-34.9%		+29.7%		-56.2%		-57.3%		-33.6%		+11.5%	

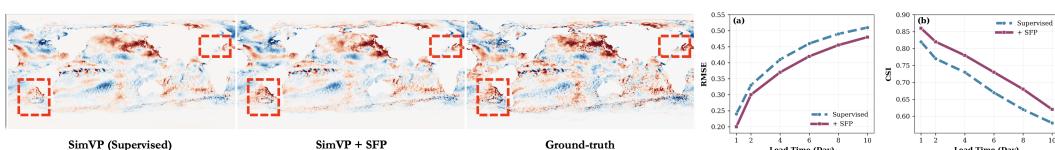


Figure 4: SFP excels at capturing extreme marine heatwaves. (Left) On day 10, SFP successfully predicts critical heatwave regions (red boxes) missed by the supervised baseline. **(Right)** Quantitative curves show SFP’s consistent lead in RMSE and a significantly superior CSI, highlighting its skill in forecasting rare events.

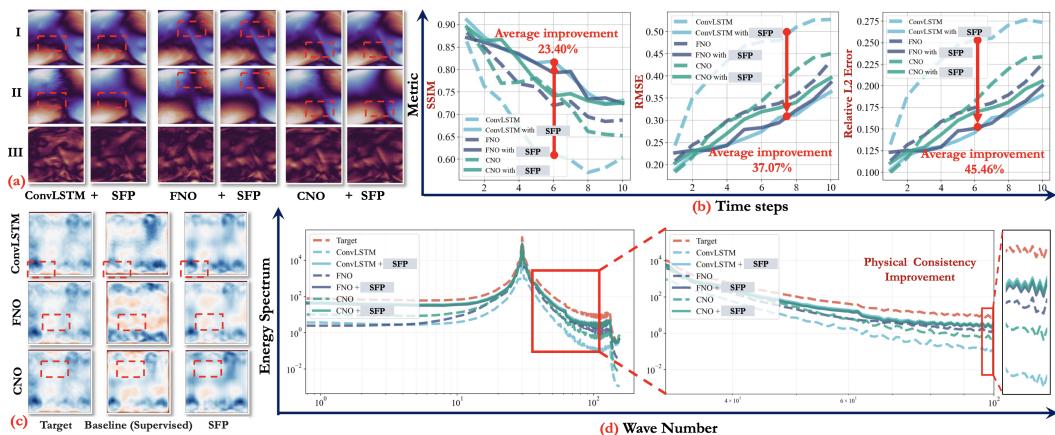


Figure 5: SFP enhances physical consistency in turbulence forecasting (NSE dataset). (a-c) SFP shows sustained improvements on standard metrics and generates more realistic, fine-grained vortex structures. **(d)** The energy spectrum analysis confirms SFP’s physical fidelity: its spectrum (solid lines) closely matches the ground truth, especially in the high-frequency regime, unlike baselines (dashed lines) which exhibit severe energy distortion.

General Efficacy of the SFP Paradigm (RQ1) We first evaluate the general efficacy of SFP by applying it across ten backbone models on several challenging benchmarks. Our results show that SFP not only consistently improves standard accuracy metrics but, more critically, delivers breakthrough performance on non-differentiable, domain-specific metrics crucial for real-world applications and physical fidelity.

Quantitative Analysis. Table 1 demonstrates SFP’s remarkable versatility, outperforming supervised baselines across all tested scenarios. The advantage is most pronounced on domain-specific metrics. For instance, on the SEVIR dataset, SFP boosts the average CSI by a substantial **29.7%**, critical for extreme weather nowcasting. On the highly challenging NSE turbulence task, SFP slashes the TKE spectrum error by an average of **57.3%**, highlighting its exceptional ability to preserve physical

378 consistency. These findings confirm that SFP effectively bridges the gap between conventional
 379 training objectives and true evaluation criteria by optimizing for domain-specific reward signals.
 380

381 *Extreme Event Capturing.* Figure 4 visually confirms SFP’s superiority in forecasting rare but critical
 382 marine heatwaves. While the supervised baseline fails to predict key high-intensity cores on day
 383 10, SFP accurately captures their intensity and spatial extent. The quantitative curves further show
 384 that SFP’s lead in CSI grows over the forecast horizon, showcasing our planning-based paradigm’s
 385 strength in discovering and generating high-reward, low-probability future states.

386 *Physical Consistency.* Figure 5 provides deeper insights into SFP’s physical fidelity. In the NSE
 387 turbulence task, vorticity visualizations (panel c) reveal that SFP generates richer, more realistic
 388 fine-grained vortex structures. This is decisively quantified by the energy spectrum analysis (panel d),
 389 where the spectra of SFP-enhanced models (solid lines) closely match the ground truth, especially in
 390 the high-frequency regime. In contrast, baselines (dashed lines) exhibit severe energy distortion, a
 391 common failure of MSE-based optimization. SFP overcomes this by planning for physically plausible
 392 trajectories within its learned world model.

393 Robustness to Data Scarcity

394 **(RQ2)** To validate the robustness
 395 of SFP in data-scarce regimes, we conduct comparative
 396 experiments on training subsets
 397 of varying sizes (10%-100%). As
 398 illustrated in Figure 6, the per-
 399 formance advantage of SFP over
 400 the supervised baseline becomes
 401 more pronounced as the amount
 402 of training data decreases. The
 403 gap between the two curves is
 404 widest at the lowest data ratio, a
 405 trend that is particularly evident
 406 on the critical CSI metric for extreme event forecasting. This result strongly demonstrates that SFP’s
 407 planning and self-training mechanism effectively generates high-quality pseudo-labels to compensate
 408 for the lack of real data, thereby significantly enhancing the model’s generalization and performance
 409 in low-data settings.

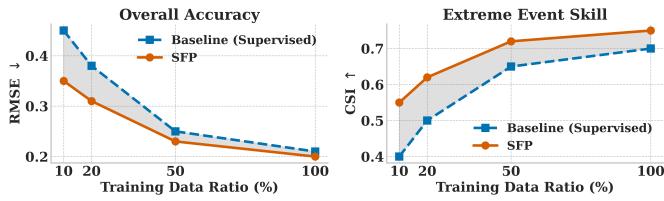


Figure 6: **SFP demonstrates strong robustness in data-scarce regimes.** Performance gap between SFP (red) and the supervised baseline (blue) widens as training data decreases, especially on the critical CSI metric for extreme events.

410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431

410 The performance advantage of SFP over the supervised baseline becomes more pronounced as the amount of training data decreases. The gap between the two curves is widest at the lowest data ratio, a trend that is particularly evident on the critical CSI metric for extreme event forecasting. This result strongly demonstrates that SFP’s planning and self-training mechanism effectively generates high-quality pseudo-labels to compensate for the lack of real data, thereby significantly enhancing the model’s generalization and performance in low-data settings.

412 **Cost-Benefit Analysis (RQ3).** Although SFP delivers significant performance improvements, it also
 413 introduces additional computational complexity. To provide a clear cost-benefit analysis, we evaluate
 414 the computational overhead of SFP compared to the supervised baseline across various configurations,
 415 with results summarized in Table 2. The data reveals that SFP increases training time and model
 416 parameters by a moderate margin, typically around $1.4\times$, due to the inclusion of the generative world
 417 model. The most notable overhead is inference latency, which increases significantly due to the beam
 418 search planning process. However, this computational investment yields disproportionately large
 419 returns in predictive accuracy and physical fidelity. For example, on the challenging NSE task, SFP
 420 achieves a remarkable **-77.9%** reduction in TKE error on the Earthformer backbone for a $\sim 1.4\times$
 421 increase in training time. In critical scientific applications where predictive skill is paramount, this
 422 trade-off is highly favorable, establishing SFP as a practical and valuable paradigm.

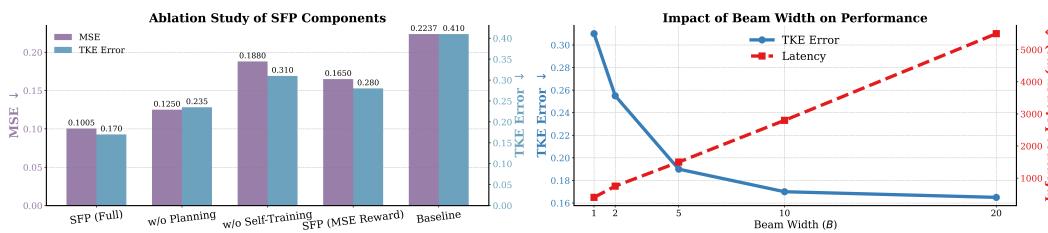
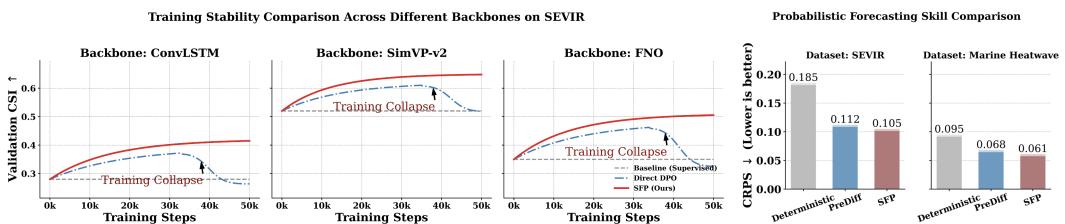


Figure 7: **Ablation and sensitivity analysis of SFP.** (Left) Each component is crucial, especially the non-differentiable TKE reward. (Right) A beam width of $B = 10$ provides a strong balance between performance and latency.

432
 433 **Table 2: Cost-benefit analysis of SFP.** SFP yields substantial performance gains for a moderate
 434 increase in computational overhead. Overhead values are presented as *Baseline* / *SFP*. Key Metric
 435 refers to CSI for SEVIR, TKE Error for NSE, and SSIM for Prometheus.

436 Benchmark	437 Model	438 Performance Gain		439 Training Overhead			440 Inference Overhead	
		441 MSE (%) ↓	442 Key Metric (%) ↓	443 Time (h)	444 Mem (GB)	445 Params (M)	446 Latency (ms)	447 Mem (GB)
438 SEVIR	ConvLSTM	-27.0	+42.8	439 8.5 / 12.0	440 12.1 / 13.5	441 25.8 / 42.1	442 210 / 1650	443 6.5 / 8.2
	SimVP-v2	-49.2	+25.0	444 5.2 / 7.5	445 10.5 / 11.8	446 18.5 / 33.7	447 150 / 1250	448 5.8 / 7.1
	FNO	-44.3	+45.7	449 12.5 / 18.0	450 15.2 / 16.5	451 45.1 / 65.3	452 250 / 1800	453 8.1 / 10.3
450 NSE	ConvLSTM	-68.8	-67.3	451 15.0 / 22.5	452 18.5 / 20.1	453 30.2 / 50.5	454 450 / 3800	455 10.2 / 12.8
	Earthformer	-93.6	-77.9	456 35.2 / 50.1	457 28.9 / 32.5	458 95.7 / 125.1	459 880 / 7500	460 18.5 / 22.4
	FNO	-55.1	-58.5	461 20.5 / 29.0	462 20.1 / 22.3	463 50.8 / 72.4	464 520 / 4100	465 11.5 / 14.1
466 Prometheus	SimVP-v2	-25.8	+8.2	467 10.1 / 14.5	468 16.2 / 17.8	469 22.1 / 38.9	470 330 / 2850	471 9.1 / 11.5
	Earthformer	-27.6	+8.9	472 40.8 / 58.0	473 30.5 / 34.1	474 102.3 / 133.7	475 1100 / 9200	476 20.2 / 24.8
	CNO	-76.8	+14.3	477 25.6 / 36.2	478 22.8 / 25.0	479 60.5 / 85.1	480 650 / 5500	481 13.8 / 16.9



452 **Figure 8: SFP’s advanced capabilities in stability and probabilistic forecasting (RQ5).** (Left)
 453 Across diverse backbones, Direct DPO suffers from training collapse while SFP maintains stable
 454 convergence. (Right) SFP achieves state-of-the-art probabilistic skill, outperforming the deterministic
 455 baseline and the specialized generative model, PreDiff, on the CRPS metric.

456 **Ablation and Sensitivity Analysis (RQ4).** Our ablation studies, shown in Figure 7, confirm the
 457 importance of each component within the SFP framework. The bar chart (left) shows that removing
 458 any key element degrades performance, with the most significant drop in physical consistency
 459 (TKE Error) occurring when the domain-specific TKE reward is replaced by a standard MSE. This
 460 highlights that optimizing directly for relevant, nondifferentiable metrics is the cornerstone of SFP’s
 461 success. Furthermore, the sensitivity analysis (right) reveals a clear trade-off between performance
 462 and latency as a function of beam width B . The results justify our choice of $B = 10$ as a default, as
 463 it achieves near-optimal accuracy at a manageable computational cost, demonstrating the practical
 464 robustness of the framework.

466 **Advanced Capabilities: Stability & Probabilistic Skill (RQ5).** We conclude our analysis by
 467 evaluating SFP’s advanced capabilities, focusing on training stability and probabilistic skill. Figure 8
 468 summarizes the key findings. The training curves (left) reveal a critical advantage: while Direct
 469 DPO frequently collapses during training across different backbones, SFP consistently and stably
 470 converges. This superior stability stems from our decoupled world model, which provides a robust
 471 foundation for planning-based exploration. Furthermore, the bar charts (right) demonstrate SFP’s
 472 state-of-the-art probabilistic forecasting ability. By forming an ensemble from its planned trajectories,
 473 SFP achieves the best (lowest) CRPS score on both benchmarks, outperforming even specialized
 474 generative models like PreDiff. These results establish SFP as a robust, high-performance paradigm
 475 for both deterministic and probabilistic forecasting.

477 6 CONCLUSION

478 In this work, we introduce a new paradigm, spatial-temporal forecasting as planning, reframing
 479 the traditional forecasting task as a model-based reinforcement learning problem. Our proposed
 480 framework, SFP, effectively addresses the long-standing challenge of optimizing for nondifferentiable,
 481 domain-specific metrics by integrating a generative world model with a planning-based policy
 482 optimization process. Comprehensive experiments demonstrate that SFP not only significantly
 483 improves predictive accuracy across a wide range of backbones but also excels at capturing extreme
 484 events, maintaining physical consistency, and generating high-quality probabilistic forecasts, all while
 485 ensuring robust training stability. By bridging the gap between differentiable proxy losses and true
 486 scientific objectives, SFP paves the way for developing more reliable and impactful AI for science.

486 REFERENCES
487488 James F Allen and Johannes A Koomen. Planning using a temporal world model. In *Proceedings of
489 the Eighth international joint conference on Artificial intelligence-Volume 2*, pp. 741–747, 1983.490 Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
491 range global weather forecasting with 3d neural networks. *Nature*, 619(7970):533–538, 2023.
492493 Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik Kashinath,
494 and Anima Anandkumar. Spherical fourier neural operators: Learning stable dynamics on the
495 sphere. In *International conference on machine learning*, pp. 2806–2823. PMLR, 2023.496 Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent reinforcement learning: An
497 overview. *Innovations in multi-agent systems and applications-I*, pp. 183–221, 2010.
498499 Fernando Fernández and Manuela Veloso. Probabilistic policy reuse in a reinforcement learning agent.
500 In *Proceedings of the fifth international joint conference on Autonomous agents and multiagent
501 systems*, pp. 720–727, 2006.502 Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson, Matthew
503 Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent reinforcement
504 learning. In *International Conference on Machine Learning*, pp. 1942–1951. PMLR, 2019.
505506 Yuan Gao, Hao Wu, Ruiqi Shu, Huanshuo Dong, Fan Xu, Rui Chen, Yibo Yan, Qingsong Wen,
507 Xuming Hu, Kun Wang, et al. Oneforecast: A universal framework for global and regional weather
508 forecasting. *arXiv preprint arXiv:2502.00338*, 2025.509 Zhangyang Gao, Cheng Tan, Lirong Wu, and Stan Z Li. Simvp: Simpler yet better video prediction.
510 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
511 3170–3180, 2022a.
512513 Zhihan Gao, Xingjian Shi, Hao Wang, Yi Zhu, Yuyang Bernie Wang, Mu Li, and Dit-Yan Yeung.
514 Earthformer: Exploring space-time transformers for earth system forecasting. *Advances in Neural
515 Information Processing Systems*, 35:25390–25403, 2022b.516 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
517 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
518 ACM*, 63(11):139–144, 2020.
519520 Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
521 Davidson. Learning latent dynamics for planning from pixels. In *International conference on
522 machine learning*, pp. 2555–2565. PMLR, 2019.523 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
524 through world models. *Nature*, pp. 1–7, 2025.
525526 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
527 neural information processing systems*, 33:6840–6851, 2020.528 Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirsberger, Meire Fortunato, Ferran
529 Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful
530 medium-range global weather forecasting. *Science*, 382(6677):1416–1421, 2023.
531532 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
533 Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
534 *arXiv preprint arXiv:2010.08895*, 2020.535 Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A survey on
536 model-based reinforcement learning. *Science China Information Sciences*, 67(2):121101, 2024.
537538 Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
539 force learning: A survey. *Foundations and Trends® in Machine Learning*, 16(1):1–118,
2023.

540 Eike Hermann Müller. Exact conservation laws for neural network integrators of dynamical systems.
 541 *Journal of Computational Physics*, 488:112234, 2023.
 542

543 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 544 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 545 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 546 27744, 2022.

547 Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
 548 Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-
 549 net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
 550 *arXiv preprint arXiv:2202.11214*, 2022.

551 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 552 deep learning framework for solving forward and inverse problems involving nonlinear partial
 553 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

554 Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
 555 Alaifari, Siddhartha Mishra, and Emmanuel de Bezenac. Convolutional neural operators for robust
 556 and accurate learning of PDEs. In *Thirty-seventh Conference on Neural Information Processing
 557 Systems*, 2023. URL <https://openreview.net/forum?id=MtekhXRP4h>.

558 Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukaina Mouatadid, and Nils
 559 Thüre. Weatherbench: a benchmark data set for data-driven weather forecasting. *Journal of
 560 Advances in Modeling Earth Systems*, 12(11):e2020MS002203, 2020.

561 Joseph T Schaefer. The critical success index as an indicator of warning skill. *Weather and forecasting*,
 562 5(4):570–575, 1990.

563 Tapiro Schneider, Shiwei Lan, Andrew Stuart, and Joao Teixeira. Earth system modeling 2.0:
 564 A blueprint for models that learn from observations and targeted high-resolution simulations.
 565 *Geophysical Research Letters*, 44(24):12–396, 2017.

566 Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
 567 Convolutional lstm network: A machine learning approach for precipitation nowcasting. *Advances
 568 in neural information processing systems*, 28, 2015.

569 Ruiqi Shu, Hao Wu, Yuan Gao, Fanghua Xu, Ruijian Gou, Wei Xiong, and Xiaomeng Huang.
 570 Advanced forecasts of global extreme marine heatwaves through a physics-guided data-driven
 571 approach. *Environmental Research Letters*, 20(4):044030, 2025.

572 Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
 573 Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
 574 *Advances in Neural Information Processing Systems*, 35:1596–1611, 2022.

575 Cheng Tan, Zhangyang Gao, Siyuan Li, and Stan Z Li. Simvp: Towards simple yet powerful
 576 spatiotemporal predictive learning. *arXiv preprint arXiv:2211.12509*, 2022.

577 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 578 neural information processing systems*, 30, 2017.

579 Mark Veillette, Siddharth Samsi, and Chris Mattioli. Sevir: A storm event imagery dataset for
 580 deep learning applications in radar and satellite meteorology. *Advances in Neural Information
 581 Processing Systems*, 33:22009–22019, 2020.

582 Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
 583 informed deep learning for turbulent flow prediction. In *Proceedings of the 26th ACM SIGKDD
 584 international conference on knowledge discovery & data mining*, pp. 1457–1466, 2020.

585 Hao Wu, Yuxuan Liang, Wei Xiong, Zhengyang Zhou, Wei Huang, Shilong Wang, and Kun Wang.
 586 Earthfarsser: Versatile spatio-temporal dynamical systems modeling in one model. In *Proceedings
 587 of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 15906–15914, 2024a.

594 Hao Wu, Huiyuan Wang, Kun Wang, Weiyan Wang, Yangyu Tao, Chong Chen, Xian-Sheng Hua,
595 Xiao Luo, et al. Prometheus: Out-of-distribution fluid dynamics modeling with disentangled graph
596 ode. In *Forty-first International Conference on Machine Learning*, 2024b.

597

598 Hao Wu, Fan Xu, Chong Chen, Xian-Sheng Hua, Xiao Luo, and Haixin Wang. Pastnet: Introducing
599 physical inductive biases for spatio-temporal video prediction. In *Proceedings of the 32nd ACM*
600 *International Conference on Multimedia*, pp. 2917–2926, 2024c.

601 Hao Wu, Shuyi Zhou, Xiaomeng Huang, and Wei Xiong. Neural manifold operators for learning
602 the evolution of physical dynamics, 2024d. URL <https://openreview.net/forum?id=SQnOmOzqAM>.

603

604 Hao Wu, Yuan Gao, Ruiqi Shu, Kun Wang, Ruijian Gou, Chuhan Wu, Xinliang Liu, Juncai He,
605 Shuhao Cao, Junfeng Fang, Xingjian Shi, Feng Tao, Qi Song, Shengxuan Ji, Yanfei Xiang, Yuze
606 Sun, Jiahao Li, Fan Xu, Huanshuo Dong, Haixin Wang, Fan Zhang, Penghao Zhao, Xian Wu,
607 Qingsong Wen, Deliang Chen, and Xiaomeng Huang. Advanced long-term earth system forecasting
608 by learning the small-scale nature. *arXiv preprint arXiv:2505.19432*, 2025.

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A THE USE OF LARGE LANGUAGE MODELS (LLMS)
649650 LLMs were not involved in the research ideation or the writing of this paper.
651652 B METRIC
653654 B.1 STANDARD EVALUATION METRICS
655656 **Mean Squared Error (MSE)** MSE is a common statistical metric used to assess the difference
657 between predicted and actual values. The formula is:
658

659
$$\text{MSE} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 \quad (6)$$

660

661 where n is the number of samples, y_i is the actual value, and \hat{y}_i is the predicted value.
662663 **Relative L2 Error** Relative L2 error measures the relative difference between predicted and actual
664 values, commonly used in time series prediction. The formula is:
665

666
$$\text{Relative L2 Error} = \frac{\|Y_{\text{pred}} - Y_{\text{true}}\|_2}{\|Y_{\text{true}}\|_2} \quad (7)$$

667

668 where Y_{pred} is the predicted value and Y_{true} is the actual value.
669670 **Continuous Ranked Probability Score (CRPS)** The Continuous Ranked Probability Score (CRPS)
671 is a proper scoring rule used to assess the quality of probabilistic forecasts. It generalizes the Mean
672 Absolute Error (MAE) to probabilistic forecasts; for a deterministic forecast, CRPS reduces to MAE.
673 The CRPS is defined by the integral of the squared difference between the forecast Cumulative
674 Distribution Function (CDF) F and the empirical CDF of the observation y :
675

676
$$\text{CRPS}(F, y) = \int_{-\infty}^{\infty} (F(x) - H(x - y))^2 dx \quad (8)$$

677

678 where $H(x - y)$ is the Heaviside step function, which is 0 for $x < y$ and 1 for $x \geq y$. For an
679 ensemble forecast with M members $\{x_i\}_{i=1}^M$, CRPS can be more intuitively computed as:
680

681
$$\text{CRPS}(\{x_i\}, y) = \frac{1}{M} \sum_{i=1}^M |x_i - y| - \frac{1}{2M^2} \sum_{i=1}^M \sum_{j=1}^M |x_i - x_j| \quad (9)$$

682 This formulation highlights that CRPS rewards accuracy (the first term, average absolute error of
683 ensemble members) and sharpness (the second term, a penalty for large spread among members).
684 Lower CRPS values indicate a better forecast.
685686
687 B.2 DETAILED DEFINITIONS OF DOMAIN-SPECIFIC REWARD METRICS
688689 To clarify the physical significance of the non-differentiable metrics used as reward functions in our
690 SFP framework, we provide their detailed mathematical definitions below.
691

692 1. Critical Success Index (CSI)

693 Used as the reward signal for the SEVIR (Extreme Weather) benchmark. CSI is a standard meteorological
694 metric for evaluating the prediction of rare events (e.g., heavy precipitation). Unlike MSE, it
695 ignores true negatives and focuses on the "hit rate" of the target event. Given a binarized prediction
696 map based on a specific threshold τ , the CSI is calculated using the confusion matrix counts:
697

698
$$\text{CSI} = \frac{\text{Hits}}{\text{Hits} + \text{Misses} + \text{False Alarms}} \quad (10)$$

699

700 where Hits represents correctly predicted event pixels, Misses represents observed events that were
701 not predicted, and False Alarms represents predicted events that did not occur. Optimizing CSI
702 directly allows the model to capture extreme events that are typically smoothed out by standard
703 regression losses.

702 **2. Turbulent Kinetic Energy (TKE) Error**

703 Used as the reward signal for the NSE (Fluid Dynamics) benchmark. TKE measures the physical
 704 consistency of the flow by evaluating the energy distribution across different spatial scales. We
 705 calculate the energy spectrum $E(k)$ of the velocity field \mathbf{u} . Let $\hat{\mathbf{u}}(\mathbf{k})$ be the discrete Fourier transform
 706 of the velocity field, where \mathbf{k} is the wave vector. The energy at scalar wavenumber k is given by
 707 summing over spherical shells:

$$708 \quad E(k) = \sum_{k-\frac{1}{2} < \|\mathbf{k}\| \leq k+\frac{1}{2}} \|\hat{\mathbf{u}}(\mathbf{k})\|^2 \quad (11)$$

709 The TKE Error is defined as the distance (e.g., RMSE or Log-Spectral Distance) between the predicted
 710 energy spectrum $E_{\text{pred}}(k)$ and the ground truth spectrum $E_{\text{true}}(k)$. Minimizing this error ensures the
 711 model adheres to fundamental conservation laws and correctly models the energy cascade, avoiding
 712 spectral bias.

713 **3. Structural Similarity Index (SSIM)**

714 Used as the reward signal for the Prometheus (Combustion) benchmark. SSIM assesses the structural
 715 fidelity of the simulation, which is critical for analyzing complex flame fronts. Given two image
 716 windows x and y , SSIM combines luminance (l), contrast (c), and structure (s) measurements:

$$717 \quad \text{SSIM}(x, y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)} \quad (12)$$

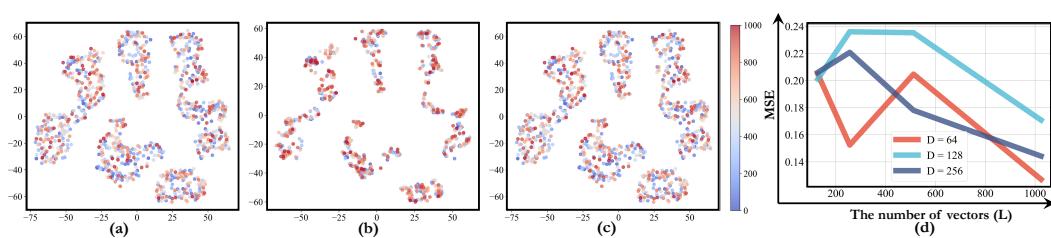
718 where μ_x, μ_y are the local means, σ_x^2, σ_y^2 are the local variances, σ_{xy} is the covariance, and C_1, C_2
 719 are small constants for stability.

720 **C MORE EXPERIMENTS**

721 **C.1 INTERPRETATION ANALYSIS**

722 **Qualitative Analysis Using t-SNE.** Figure 9 shows t-SNE visualizations on the RBC dataset: (a)
 723 ground truth, (b) ConvLSTM predictions, and (c) ConvLSTM + SFP predictions. In (a), the ground
 724 truth has clear clusters. In (b), ConvLSTM’s clustering is blurry with overlaps, indicating limited
 725 capability in capturing data structure. In (c), ConvLSTM + SFP yields clearer clusters closer to the
 726 ground truth, demonstrating that SFP significantly enhances the model’s predictive accuracy and
 727 physical consistency.

728 **Analysis on Code Bank.** We train FNO+SFP on NSE for 100 epochs with a learning rate of 0.001
 729 and batch size of 100. In the VQVAE codebank dimension experiment, increasing the number of
 730 vectors L notably reduces MSE. When $L = 1024$ and $D = 64$, the MSE reaches a minimum of
 731 0.1271. Although MSE fluctuates more at $L = 256$ or 512, overall, higher L helps improve accuracy.
 732 Most training losses quickly stabilize within 20 epochs; $L = 512$ and $D = 128$ notably shows higher
 733 stability, but $L = 1024$ and $D = 64$ achieves the lowest MSE.



740 Figure 9: The t-SNE visualization in (a), (b), and (c) shows the Ground-truth, ConvLSTM and
 741 ConvLSTM+SFP predictions, respectively. (d) shows the analysis of the Codebank parameters.

742 **C.2 ADDITIONAL EXPERIMENTS**

743 **C.2.1 LONG-TERM FORECASTING EXPERIMENT EXPANSION**

744 In the long-term forecasting experiments, we compare the performance of different backbone models
 745 on the SWE benchmark, evaluating the relative L2 error for three variables (U, V, and H). Our setup

inputs 5 frames and predicts 50 frames. For the SimVP-v2 model, using SFP reduces the relative L2 error for SWE (u) from 0.0187 to 0.0154, SWE (v) from 0.0387 to 0.0342, and SWE (h) from 0.0443 to 0.0397. We visualize SWE (h) in 3D as shown in Figure 10 [I]. For the ConvLSTM model, applying SFP reduces the relative L2 error for SWE (u) from 0.0487 to 0.0321, SWE (v) from 0.0673 to 0.0351, and SWE (h) from 0.0762 to 0.0432. For the FNO model, using SFP reduces the relative L2 error for SWE (u) from 0.0571 to 0.0502, SWE (v) from 0.0832 to 0.0653, and SWE (h) from 0.0981 to 0.0911. Overall, SFP significantly improves the long-term forecasting accuracy of different backbone models.

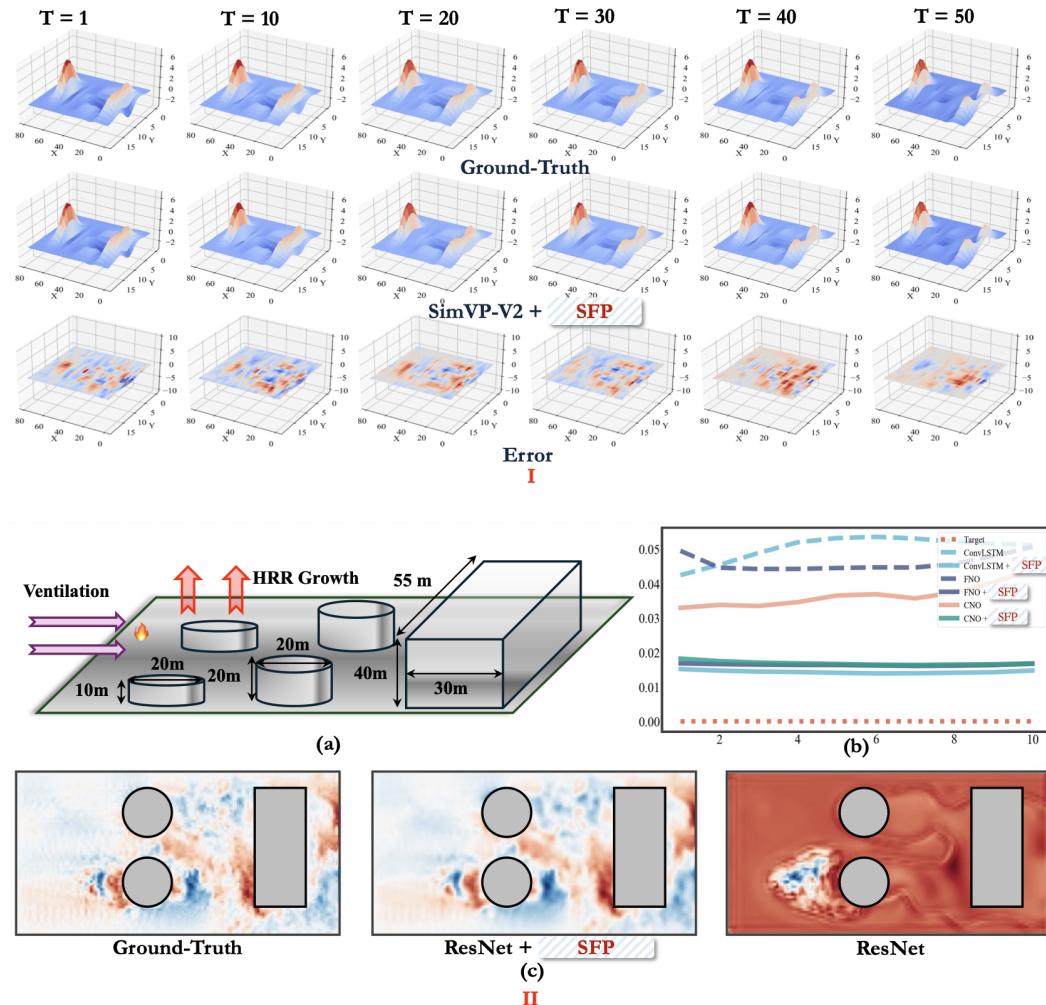


Figure 10: I. 3D visualization of the SWE(h), showing Ground-truth, SimVP-V2+SFP predictions, and Error at T=1, 10, 20, 30, 40, 50. The first row shows Ground-truth, the second SimVP-V2+SFP predictions, and the third Error. II. A case study. Building fire simulation with ventilation settings added to Wu’s Prometheus (Wu et al., 2024b). (a) Layout and HRR growth. (b) Comparison of physical metrics for different methods. (c) Ground-truth, ResNet+SFP, and ResNet predictions.

C.2.2 EXPERIMENT STATISTICAL SIGNIFICANCE

To measure the statistical significance of our main experiment results, we choose three backbones to train on two datasets to run 5 times. Table 3 records the average and standard deviation of the test MSE loss. The results prove that our method is statistically significant to outperform the baselines because our confidence interval is always upper than the confidence interval of the baselines. Due to limited computation resources, we do not cover all ten backbones and five datasets, but we believe these results have shown that our method has consistent advantages.

810
811
812 Table 3: The average and standard deviation of MSE in 5 runs
813
814
815
816
817

MODEL	BENCHMARKS			
	NSE		SEVIR	
	ORI	+ SFP	ORI	+ SFP
CONVLSTM	0.4092 \pm 0.0002	0.1277\pm0.0001	0.1762 0.0007	0.1279\pm0.0009
FNO	0.2227 \pm 0.0003	0.1007\pm0.0002	0.0787 \pm 0.0012	0.0437\pm0.0013
CNO	0.2192 \pm 0.0008	0.1492\pm0.0011	0.0057 \pm 0.0005	0.0053\pm0.0006

818
819
820
821
822 C.3 EXPERIMENTAL SETUP FOR DIRECT PREFERENCE OPTIMIZATION (DPO)
823824 In RQ5, we compare the training stability of SFP against Direct Preference Optimization (DPO).
825 Since DPO is originally designed for discrete language modeling, we adapt it for our continuous
826 spatiotemporal forecasting task as follows:
827828 1. Preference Data Construction
829830 For a given input history x , we construct a preference pair (y_w, y_l) based on the domain-specific
831 reward function $S(\cdot)$ defined in Appendix B.
832833

- **The Winner** (y_w): Defined as either the ground truth future sequence or a model-generated
834 trajectory that yields a high reward score.
- **The Loser** (y_l): Defined as a model-generated trajectory that yields a lower reward score,
i.e., $S(y_w) > S(y_l)$.

835 2. DPO Loss Function
836837 We treat the pre-trained supervised model as the reference policy π_{ref} . The agent (policy) π_θ is
838 optimized to maximize the margin between the likelihood of the winner and the loser, constrained by
the KL divergence from the reference policy. The loss function is formulated as:
839

840
$$\mathcal{L}_{\text{DPO}}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right] \quad (13)$$

841 where σ is the sigmoid function and β is a hyperparameter controlling the strength of the KL
842 constraint.
843844 3. Discussion on Instability
845846 As discussed in Section 5 (RQ5), we found that optimizing this objective directly in the high-
847 dimensional continuous pixel space often leads to training collapse or mode collapse. In contrast,
848 SFP avoids this issue by decoupling exploration (World Model) from exploitation (Policy Update via
pseudo-labels), resulting in superior stability and performance.
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863