

000 BEYOND BINARY REWARDS: TRAINING LMS TO REA- 001 002 SON ABOUT THEIR UNCERTAINTY

003 004 **Anonymous authors**
005 006 Paper under double-blind review

007 008 ABSTRACT

009 010 When language models (LMs) are trained via reinforcement learning (RL) to gen-
011 012 erate natural language reasoning chains, their performance improves on a variety
013 014 of difficult question answering tasks. Today, almost all successful applications of
015 016 RL for reasoning use binary reward functions that evaluate the correctness of LM
017 018 outputs. Because such reward functions do not penalize guessing or low-confidence
019 020 outputs, they often have the unintended side-effect of degrading calibration and
021 022 increasing the rate at which LMs generate incorrect responses (i.e. “hallucinate”)
023 024 in other problem domains. This paper describes **RLCR** (Reinforcement Learning
025 026 with Calibration Rewards), an approach to training reasoning models that jointly
027 028 improves accuracy and calibrated confidence estimation. During RLCR, LMs
029 030 generate both predictions and numerical confidence estimates after reasoning. They
031 032 are trained to optimize a reward function that augments a binary correctness score
033 034 with a Brier score—a scoring rule for confidence estimates that incentivizes cali-
035 036 brated prediction. We first prove that this reward function (or any analogous reward
037 038 function that uses a bounded, proper scoring rule) yields models whose predictions
039 040 are both accurate and well-calibrated. We next show that across diverse datasets,
041 042 RLCR substantially improves calibration while maintaining strong accuracy on
043 044 both in-domain and out-of-domain evaluations—outperforming both ordinary RL
045 046 training and classifiers trained to assign post-hoc confidence scores. While ordinary
047 048 RL hurts calibration, RLCR improves it. Finally, we demonstrate that verbalized
049 050 confidence can be leveraged at test time to improve accuracy and calibration via
051 052 confidence-weighted scaling methods. Our results show that explicitly optimizing
053 054 for calibration can produce more generally reliable reasoning models.

055 1 INTRODUCTION

056 057 Many recent advances in research on language models (LMs) have been driven by *reasoning mod-
058 059 els*—LMs trained via reinforcement learning (RL) to ‘think out loud’ in natural language before
060 061 answering questions, achieving state-of-the-art performance on challenging tasks like math and
062 063 programming (Guo et al., 2025).

064 065 The standard approach to reasoning training (often referred to as **reinforcement learning with verifi-
066 067 able rewards**, or **RLVR**) performs RL with a simple binary correctness reward: $R_{\text{correctness}}(y, y^*) =$
068 069 $\mathbb{1}_{y \equiv y^*}$, where \equiv checks whether the model’s output y matches ground-truth answer y^* . While simple
070 071 and effective for improving accuracy, this reward comes with a critical limitation: it rewards models
072 073 equally whether they are confidently correct or merely guessing, and penalizes identically whether
074 075 they abstain or produce incorrect answers. This incentivizes overconfident guessing.

076 077 Consistent with this concern, studies have shown that even when initially well-calibrated, models
078 079 tend to become overconfident following RL training (Choshen et al., 2019; Leng et al., 2025).
080 081 Reasoning models, in particular, tend to exhibit worsened calibration and increased hallucination
082 083 rates compared to base models, especially when trained with reward signals that emphasize only
084 085 correctness (Kirichenko et al., 2025; Yao et al., 2025; OpenAI, 2025). This is a critical limitation
086 087 in high-stakes domains such as healthcare or law, where models must not only be accurate but also
088 089 communicate uncertainty when appropriate (Omar et al., 2024).

090 091 This paper aims to address these limitations by answering two questions:

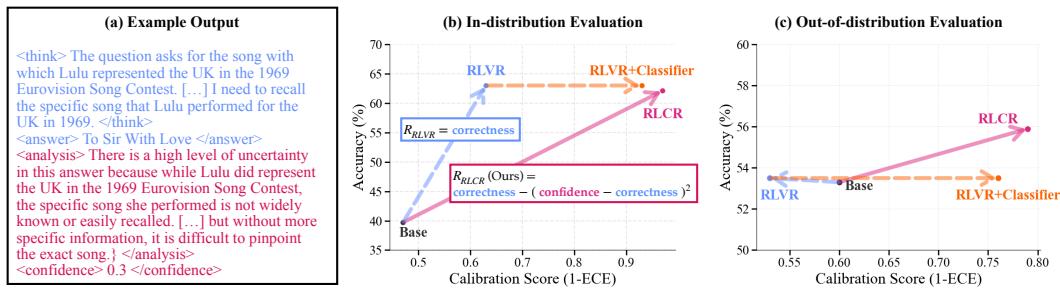


Figure 1: (a): Sample chain-of-thought from a model trained with RLCR, using <think>, <answer>, <analysis>, and <confidence> tags. (b) On in-domain evaluation tasks, RLCR improves on standard reasoning training (RLVR) and even slightly outperforms a combination of RLVR and a dedicated classifier trained to predict RLVR correctness. (c) When evaluating generalization to novel tasks, RLCR improves both accuracy and calibration, while other methods leave accuracy unchanged and sometimes harm calibration. All results shown are for HotpotQA, see Section 4 for more results.

- (1) Can reasoning models be optimized for both correctness and calibration?
- (2) Can the contents of reasoning chains themselves improve calibration?

We approach these questions through the lens of statistical decision theory, specifically the theory of **proper scoring rules**. Given a predictor that produces an output y and a confidence q , a proper scoring rule is minimized when q reflects the true probability that y will agree with a ground-truth outcome y^* (Gneiting & Raftery, 2007). A canonical example is the **Brier score** (Brier, 1950): $R_{\text{Brier}}(y, q, y^*) = -(q - \mathbb{1}_{y \equiv y^*})^2$. Proper scoring rules are widely used in forecasting (Waghmare & Ziegel, 2025), but have seen little application in training LLMs with RL.

Our approach, **RLCR (reinforcement learning with calibration rewards)**, involves a modified version of reasoning training that encourages models to reason about both task correctness and uncertainty. To do so, we simply train models to output both answers y and (verbalized) confidence scores q , optimizing a combined reward function:

$$\begin{aligned} R_{\text{RLCR}}(y, q, y^*) &= R_{\text{correctness}}(y, y^*) + R_{\text{Brier}}(y, q, y^*) \\ &= \mathbb{1}_{y \equiv y^*} - (q - \mathbb{1}_{y \equiv y^*})^2. \end{aligned} \quad (1)$$

We show that this approach has several appealing theoretical and empirical properties:

- RLCR provably incentivizes both accuracy and calibration: R_{RLCR} is maximized when models output the answer most likely to be correct, along with a calibrated estimate of their probability of success. In other words, R_{RLCR} is maximized by LM outputs (y, q) for which $y = \arg \max_{y'} p(y' \equiv y^*)$, and $q = p(y \equiv y^*)$, where p denotes the true underlying probability distribution over correctness labels. More generally, we show that an analogous objective can be constructed whenever a *bounded*, proper scoring rule is used for the calibration term. Notably, log-likelihood, though a proper scoring rule, is unbounded and can incentivize models to output incorrect answers (Section 3).
- In experiments on factual question answering and mathematical reasoning tasks, RLCR matches the task accuracy of RLVR while substantially improving calibration, on in-domain problems, reducing expected calibration error from $0.37 \rightarrow 0.03$ on HotpotQA (Yang et al., 2018) and $0.26 \rightarrow 0.10$ on a collection of math datasets (Section 4).
- RLCR improves calibration on out-of-domain tasks: where RLVR substantially worsens calibration generalization to new domains, RLCR improves calibration, outperforming the RLVR model, base model and a predictor equipped with a second model fine-tuned only to output confidence scores.
- Verbalized confidence can be incorporated into test-time scaling, improving ensembling and best-of- N methods: This may be attributed to the fact that RLVR also improves the *coherence* of model predictions across samples: when multiple reasoning chains and predictions are generated for a given question, RLCR reduces the variance in confidence scores across reasoning chains that lead to the same answer, and reduces the frequency with which models assign high confidence to contradictory answers (Section 4.4).

108 Together, these results show that existing reasoning training methods can be straightforwardly
 109 modified to additionally optimize for calibration, and that this in turn improves their accuracy,
 110 robustness, and scalability.
 111

112 2 PRELIMINARIES

114 Let π_θ be a language model that maps from prompts $x \in X$ to outputs $y \in Y$, perhaps preceded by a
 115 natural language reasoning chain, with x, y and reasoning chains all represented as strings. Given
 116 a dataset of prompt–output pairs $D = \{(x_i, y_i^*)\}$ (e.g. questions and ground-truth answers) and a
 117 reward function $R : Y \times Y \rightarrow \mathbb{R}$ that compares predicted to ground-truth outputs, our goal is to
 118 improve LM outputs by optimizing:

$$119 \arg \max_{\theta} \mathbb{E}_{(x, y^*) \sim D, y \sim \pi_\theta(\cdot | x)} R(y, y^*) . \quad (2)$$

120 **Reinforcement learning with verifiable rewards (RLVR)** When training reasoning models, a
 121 standard choice of R is the binary correctness reward:

$$122 R_{\text{correctness}}(y, y^*) = \mathbb{1}_{y \equiv y^*} , \quad (3)$$

123 where $\mathbb{1}_{y \equiv y^*} \in \{0, 1\}$ is the indicator function that evaluates whether y is correct, i.e. equivalent
 124 (perhaps modulo formatting details) to y^* .
 125

126 **Proper scoring rules** Often, we want predictors that output not only an answer y , but some scalar
 127 measure q of confidence in this answer.¹ A **scoring rule** measures the quality of a confidence estimate.
 128 In the case of modeling binary outcomes (e.g. our confidence that a given answer y is correct), a
 129 scoring rule is a function $S : \mathbb{R} \times \{0, 1\} \rightarrow \mathbb{R}$ that maps a confidence estimate q and an outcome a
 130 to a scalar score. A scoring rule is called **proper** if its expected value is minimized by confidence
 131 scores that match the true outcome probability:
 132

$$133 \mathbb{E}_{a \sim p(a)} S(p(a), a) \leq \mathbb{E}_{a \sim p(a)} S(q, a) \quad \forall q . \quad (4)$$

134 Here, p denotes the true underlying probability distribution over correctness labels. Perhaps the most
 135 familiar example of a proper scoring rule is the log-loss:
 136

$$137 \text{Logarithmic score:} \quad S(q, a) = -a \log q - (1 - a) \log(1 - q) . \quad (5)$$

138 But many other examples exist, including

$$139 \text{Brier score:} \quad S(q, a) = (a - q)^2 , \quad (6)$$

$$140 \text{Spherical score:} \quad S(q, a) = -\frac{qa + (1 - q)(1 - a)}{\sqrt{q^2 + (1 - q)^2}} . \quad (7)$$

141 What all these scores have in common is the property that they are minimized when confidences q
 142 match the true probability $p(a = 1)$.
 143

144 3 METHOD

145 The main idea behind our approach is to train language models via reinforcement learning with
 146 a reward that incentivizes *both* correctness and calibration, by combining a standard correctness
 147 reward with a reward based on the Brier score. In this approach, models are first prompted to produce
 148 reasoning chains that produce both answers and confidence estimates (as in Fig. 1a). They are then
 149 trained to optimize:

$$150 R_{\text{RLCR}}(y, q, y^*) = \mathbb{1}_{y \equiv y^*} - (q - \mathbb{1}_{y \equiv y^*})^2 . \quad (8)$$

151 Intuitively, this reward incentivizes correctness but penalizes models when they output incorrect
 152 answers with high confidence or correct answers with low confidence.

153
 154 ¹It is sometimes even more useful to train models that can place a complete *distribution* over a large set of
 155 possible answers y . But for very large answer spaces or expensive predictors—like language models performing
 156 chain-of-thought reasoning—enumerating and scoring all possible answers is generally impractical. This paper
 157 mainly focuses on models that generate one answer and one confidence score, though see Section 4.6 for one
 158 way of using this approach to generate and score multiple answers.

162 It is not immediately obvious that this reward function
 163 incentivizes desired LM behavior—because it
 164 involves a tradeoff between accuracy (the first term)
 165 and calibration (the second), we might worry that
 166 models will learn to output answers certain to be
 167 wrong in order to obtain a small calibration loss. But
 168 in fact, the calibration term in Eq. (8) comes at no
 169 cost in accuracy:

170 **Theorem 1.** *Suppose, for any prediction y , that*
 171 *the success indicator $\mathbb{1}_{y \equiv y^*}$ is distributed as*
 172 *Bernoulli(p_y). Then R_{RLCR} in Eq. (8) satisfies two*
 173 *properties:*

1. **Calibration incentive.** *For any y , the*

$$\text{expected reward } \mathbb{E}_{\mathbb{1}_{y \equiv y^*}} R_{RLCR}(y, q, y^*) \text{ is}$$

maximized when $q = p_y$.
2. **Correctness incentive.** *Among all cali-*
brated predictions (y, p_y) , expected reward
is maximized by the prediction whose suc-
cess probability p_y is greatest.²

182 Proof is given in Appendix A.

183 An important property of Theorem 1 is that we
 184 cannot replace the Brier term $(q - \mathbb{1}_{y \equiv y^*})^2$ with
 185 any proper scoring rule—for example the log loss
 186 $\mathbb{1}_{y \equiv y^*} \log q + (1 - \mathbb{1}_{y \equiv y^*}) \log(1 - q)$ does not in-
 187 centivize correctness. However an analogous version
 188 of Theorem 1 exists for any *bounded* proper scoring
 189 rule satisfying $S(p, 1) - S(p, 0) < \lambda$ for some λ .

191 4 EXPERIMENTS

192 Our main experiments aim to evaluate how RLCR empirically changes the accuracy and calibration
 193 of LMs, both in “in-domain” evaluations on the task used for RL, and “out-of-domain” evaluations
 194 on other question-answering tasks. Additional experiments evaluate interactions between RLCR and
 195 other test-time reasoning paradigms, and the extent to which RLCR causes LM predictions to become
 196 more coherent *across* predictions.

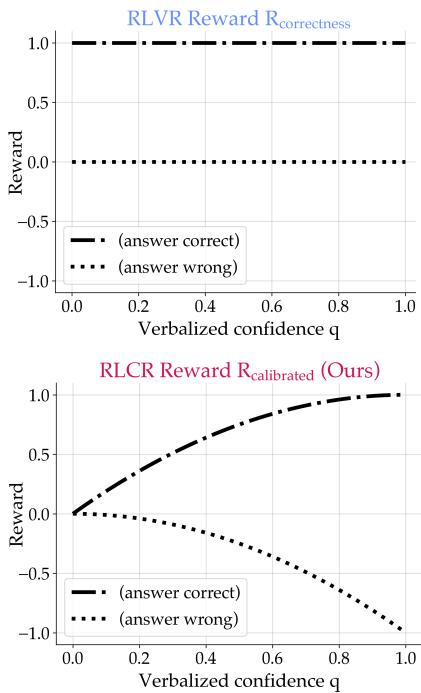
200 4.1 EXPERIMENTAL SETUP

201 **Training Details** We use Group Relative Policy Optimization (GRPO) (Shao et al., 2024) as the
 202 base RL algorithm with some modifications (see Section B.2). We use the Qwen2.5-7B base model,
 203 part of the Qwen family popularly used in RL tasks (Hu et al., 2025; Gandhi et al., 2025). Following
 204 recent work on RL training for LM reasoning (Hu et al., 2025; Guo et al., 2025), we initialize RL
 205 from the base model and do not use any KL regularization.

207 **Methods** We evaluate the following methods:

1. **Base:** The base pre-trained model. We use *Qwen2.5-7B Base* in our experiments. We prompt the
 208 model to output both answers and confidences, detailed in Section B.4.
2. **RLVR:** Initialized from the base model and trained using $R_{\text{correctness}}$ with `<think>` and `<answer>`
 209 tags. During evaluation, the model is also prompted to output a verbalized confidence.

210
 211
 212
 213
 214
 215 ²Note that statement of the problem does not distinguish between epistemic and aleatoric uncertainty about
 success. Obviously, once y has been predicted, the outcome of evaluation is fully determined, and the objective
 probability that $y \equiv y^*$ is either 0 or 1. But an information- or computation-constrained predictor may still
 possess subjective uncertainty.



216 Figure 2: **(a):** RLVR focuses solely on cor-
 217 rectness, which can incentivize guessing. **(b):**
 218 RLCR uses a calibrated reward that jointly
 219 optimizes for correctness and calibration.

216 3. **RLVR + BCE Classifier:** A confidence classifier trained on outputs from the RLVR model.
 217 Specifically, given problems, solution CoTs (from RLVR), and correctness labels $(x, y, \mathbb{1}_{y \equiv y^*})$,
 218 we train a confidence classifier $f_\theta(x, y)$ using the binary cross-entropy (BCE) loss:
 219

$$220 \mathcal{L}_{\text{BCE}}(\theta) = -\mathbb{E}_{(x, y, \mathbb{1}_{y \equiv y^*})} [\mathbb{1}_{y \equiv y^*} \log f_\theta(x, y) + (1 - \mathbb{1}_{y \equiv y^*}) \log(1 - f_\theta(x, y))] \quad (9)$$

221 The classifier is initialized from *Qwen2.5-7B Base* and is thus highly expressive. This approach is
 222 expensive, as it requires training and inference with two large models.

223 4. **RLVR + Brier Classifier:** Instead of using binary cross-entropy (BCE) loss to train a classifier,
 224 we use mean squared error (MSE), which allows more direct optimization of the Brier score:
 225

$$226 \mathcal{L}_{\text{Brier}}(\theta) = \mathbb{E}_{(x, y, \mathbb{1}_{y \equiv y^*})} \left[(f_\theta(x, y) - \mathbb{1}_{y \equiv y^*})^2 \right] \quad (10)$$

228 5. **RLVR + Probe:** Given final-layer embedding $\phi(x, y)$ of the RLVR model, we train a linear
 229 probe to predict confidence. In Eq. (9), we replace the fine-tuned LM with a linear model:
 230 $f_\theta(x, y) = \log \sigma(\theta^\top \phi(x, y))$, where $\sigma(\cdot)$ denotes the sigmoid function.

231 6. **Answer Probability:** We generate outputs using RLVR, extract tokens enclosed within `<answer>`
 232 tags, and compute their average probability: $\text{AnswerProb}(y) = \frac{1}{|\mathcal{A}|} \sum_{t \in \mathcal{A}} P_\theta(y_t \mid y_{<t}, x)$
 233 Here, the set $\mathcal{A} \subseteq \{1, \dots, T\}$ denotes the token positions that appear between the `<answer>` tags.
 234 $P_\theta(y_t \mid y_{<t}, x)$ represents the model’s probability of generating token y_t .

235 7. **RLCR (ours):** Initialized from base model and trained using R_{RLCR} .

236 **Evaluation Metrics** We use the following evaluation metrics:

238 1. **Accuracy** (\uparrow): A measure of performance.
 239 2. **Area under ROC curve (AUROC)** (\uparrow): Measures how well confidence scores distinguish
 240 correct from incorrect answers, treating correctness as a binary label and averaging TPR/FPR
 241 (true and false positive rates) over all thresholds. $\text{AUROC} = \int_0^1 \text{TPR}(\text{FPR}^{-1}(t)) dt$
 242 3. **Brier Score** (\downarrow): Squared difference between confidence and ground truth.
 243 Brier Score = $\frac{1}{N} \sum_{i=1}^N (q_i - \mathbb{1}_{y_i \equiv y_i^*})^2$
 244 4. **Expected Calibration Error (ECE)** (\downarrow): Calibration metric that groups confidences into
 245 bins and computes difference between the average correctness and confidence. $\text{ECE} = \sum_{m=1}^M \frac{|B_m|}{N} |\text{acc}(B_m) - \text{conf}(B_m)|$, where M is the number of bins, B_m is the set of
 246 samples in bin m , and N is the number of samples. We use $M = 10$.

250 **Evaluation datasets** We evaluate RLCR on benchmarks highlighting distinct sources of uncertainty,
 251 including ambiguous evidence, obscure facts, and complex reasoning. HotPotQA (Yang et al., 2018)
 252 tests calibration under incomplete or distracting evidence, while SimpleQA (Wei et al., 2024) and
 253 TriviaQA (Joshi et al., 2017) probe overconfidence on obscure factual knowledge; GPQA (Rein et al.,
 254 2024), Math500 (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), and Big-Math (Albalak et al.,
 255 2025) assess calibration in complex, multi-step or scientific reasoning, where uncertainty accumulates
 256 across steps. CommonsenseQA (Talmor et al., 2019) examines confidence in ambiguous, implicit
 257 reasoning scenarios.

258 4.2 HOTPOTQA

260 **Dataset** We use a modified HotPotQA distractor dataset (Yang et al., 2018) with multi-hop ques-
 261 tions and 10 paragraphs (2 relevant, 8 distractors). To test uncertainty reasoning, *HotPotQA-Modified*
 262 removes 0, 1, or both relevant paragraphs, creating varying information completeness. See Ap-
 263 pendix M for an example. The dataset is evenly split across these conditions, with 8 paragraphs per
 264 example. We train on 20,000 examples and use exact string match to compute correctness.

266 **Results** On the in-distribution HotpotQA distractor dataset (Table 1), RL-trained models outperform
 267 off-the-shelf baselines in multi-hop accuracy, with RLCR being comparable to RLVR in accuracy,
 268 showing that the calibration term does not hurt performance. While both the base and RLVR remain
 269 overconfident and poorly calibrated, our method and the classifiers achieve substantially better
 calibration, with RLCR slightly ahead. The *Answer Probability* baseline performs poorly, as the

Method	(a) Models Trained on HotpotQA				O.O.D. Averaged			
	HotpotQA				O.O.D. Averaged			
	Acc. (↑)	AUROC (↑)	Brier (↓)	ECE (↓)	Acc. (↑)	AUROC (↑)	Brier (↓)	ECE (↓)
Base	39.7%	0.54	0.53	0.53	53.3%	0.54	0.41	0.40
RLVR	—	0.50	0.37	0.37	—	0.50	0.46	0.46
RLVR + BCE Classifier	—	0.66	0.22	0.07	—	0.58	0.27	0.24
RLVR + Brier Classifier	63.0%	0.65	0.22	0.09	53.9%	0.60	0.32	0.33
RLVR + Probe	—	0.55	0.24	0.10	—	0.53	0.38	0.38
Answer Probability	—	0.72	0.36	0.36	—	0.60	0.42	0.42
RLCR (ours)	62.1%	0.69	0.21	0.03	56.2%	0.68	0.21	0.21

Method	(b) Models Trained on Big-Math				O.O.D. Averaged			
	Math				O.O.D. Averaged			
	Acc. (↑)	AUROC (↑)	Brier (↓)	ECE (↓)	Acc. (↑)	AUROC (↑)	Brier (↓)	ECE (↓)
Base	56.1%	0.56	0.40	0.39	47.8%	0.53	0.46	0.45
RLVR	—	0.47	0.28	0.26	—	0.52	0.49	0.49
RLVR + BCE Classifier	—	0.78	0.15	0.10	—	0.55	0.34	0.33
RLVR + Brier Classifier	72.9%	0.78	0.15	0.10	52.5%	0.57	0.28	0.27
RLVR + Probe	—	0.65	0.19	0.13	—	0.53	0.33	0.30
Answer Probability	—	0.52	0.26	0.26	—	0.52	0.44	0.43
RLCR (ours)	72.7%	0.67	0.17	0.10	50.9%	0.60	0.28	0.25
SFT+RLCR (ours)	72.2%	0.78	0.14	0.08	43.8%	0.66	0.24	0.18

Table 1: **Accuracy and calibration metrics for models trained on HotpotQA and Big-Math. Best values bolded. Dataset-specific results in Appendix K.**

(a) **Performance on HotpotQA and 6 out-of-distribution (O.O.D.) datasets.** RLCR achieves competitive accuracy and significantly outperforms all baselines in calibration, especially on O.O.D. datasets, demonstrating the benefits of jointly optimizing accuracy and calibration.

(b) **Performance on Math and 5 out-of-distribution (O.O.D.) datasets.** Math results are averaged over 3 datasets: Math-500, GSM8K and Big-Math. SFT+RLCR variant achieves the best calibration across both in-distribution and O.O.D. settings. However, this comes at the cost of reduced generalization accuracy, possibly due to catastrophic forgetting. RLCR offers a stronger trade-off in O.O.D. settings, maintaining competitive accuracy while improving calibration.

model typically commits to an answer during CoT reasoning, inflating output confidence. Fig. 11 shows that both correctness and calibration reward for RLCR increase smoothly during training.

Next, we evaluate experiments across six out-of-distribution datasets (TriviaQA, SimpleQA, MATH500, GSM8K, CommonsenseQA, GPQA). We find that RL training on HotpotQA does not improve accuracy OOD, with the base model performing comparably to RL-trained models. However, RLVR worsens calibration relative to the base model, whereas RLCR achieves substantial gains over all baselines across calibration metrics while maintaining (or slightly improving) on task accuracy. We hypothesize that better calibration generalization of RLCR could be due to:

1. **Chain-of-thought reasoning about uncertainty** Reasoning about uncertainty can improve calibration by allowing reflection on confidence, in line with recent work (Yoon et al., 2025).
2. **Training dynamics of RL** During RL training, the model’s confidence analysis and scores have to constantly adapt to the model’s improving task performance. This non-stationarity might lead to more robust learning and better generalization.
3. **Shared representations** Using a single model for both solution generation and calibration allows the calibration task to leverage internal representations used by the solution generating process.

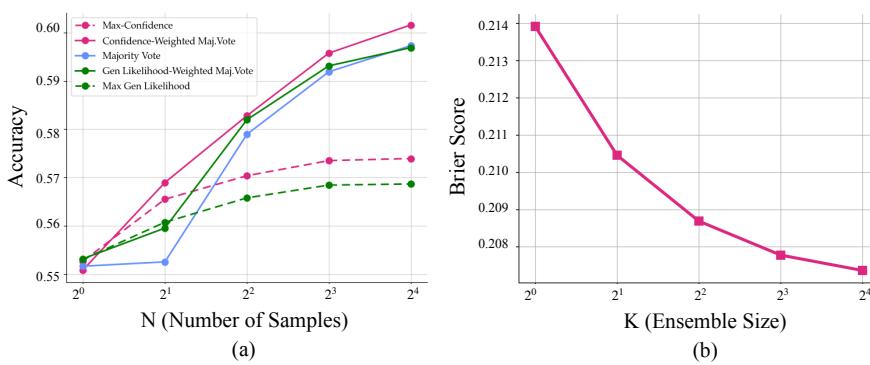


Figure 3: **Test-time scaling curves.** (a) **Accuracy vs Number of Samples (N).** Accuracy improves for all methods with increasing compute. *Confidence-weighted majority vote* outperforms both vanilla *majority vote* and *max-confidence*, highlighting complementary benefits of combining voting with confidence scores. (b) **Brier Scores vs Ensemble Size (K).** Here we evaluate the effect of applying test-time scaling to *confidence estimation alone*, resampling multiple analyses (blue text in Fig. 1). Calibration improves (although modestly) as the size of the analysis ensemble grows.

4.3 MATH

Training Details We use a subset of the Big-Math (Albalak et al., 2025) dataset, containing 15,000 problems selected using criteria defined in Section B.1. We compute correctness using *math-verify*.³ To enhance the quality of uncertainty reasoning, we also train a variant with a lightweight SFT warmup phase. We generate solutions from the base model on 500 examples and use Deepseek-R1 to produce uncertainty analyses for them. Further details in Section B.2.

Results On Math benchmarks (averaged over GSM8K, Math, and Big-Math), all RL methods improve accuracy significantly over the base model. SFT+RLCR achieves the best calibration, slightly surpassing the classifiers, while base and RLVR remain poorly calibrated. Out-of-distribution (TriviaQA, SimpleQA, CommonsenseQA, GPQA, HotPotQA), the accuracies of RLCR and RLVR are marginally better than the base model, but surprisingly the accuracy of the SFT+RLCR model drops significantly, possibly due to catastrophic forgetting induced by SFT warmup. Despite this, SFT+RLCR achieves the strongest calibration. Overall, RLCR offers a stronger trade-off in O.O.D. settings, maintaining accuracy while matching or outperforming all baselines on calibration.

4.4 CAN VERBALIZED CONFIDENCES BE USED FOR TEST-TIME SCALING?

We next evaluate whether confidence scores from RLCR can be incorporated into test-time scaling algorithms to yield improvements in both accuracy and calibration.

Accuracy Test-time scaling methods such as best-of-N or majority vote are widely used to boost model performance by aggregating multiple responses. Given N responses y_1, y_2, \dots, y_N and a reward model $r(x, y)$, **best-of-N** selects the response with highest reward: $y_{\text{chosen}} = \arg \max_{\{y_1, \dots, y_N\} \sim p(\cdot|x)} R(x, y_i)$. Similarly, **majority vote** selects the most frequent answer among N responses. Prior work has also explored **weighted majority vote**, where the voting is weighted using reward model scores.

Our key insight is that the verbalized confidence q output by the model can serve as an effective proxy reward (Taubenfeld et al., 2025). If a model is well-calibrated, then selecting responses with higher confidence will naturally lead to an increase in performance. This insight leads to two simple algorithms: select the response with the highest verbalized confidence from the set of N candidates (**max-confidence**), or weight each vote by its confidence score (**confidence-weighted majority vote**). These algorithms are the confidence-scored analogues to Best-of-N and weighted majority vote. Importantly, both approaches do not require any additional supervision or external reward models.

³<https://github.com/huggingface/Math-Verify>

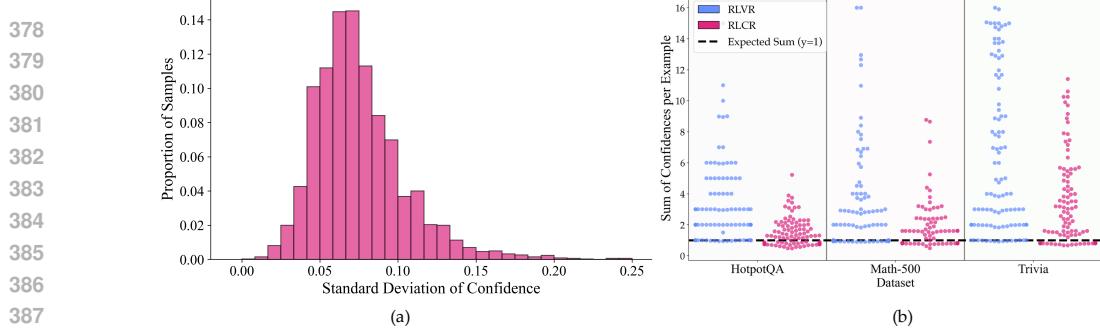


Figure 4: (a): **Distribution of standard deviation in confidence across multiple uncertainty reasoning chains for the same solution/answer.** Most samples exhibit low deviation, indicating that the model’s confidence estimates are self-consistent. (b) **Swarm plot of confidence sums across 3 datasets.** RLCR consistently remains closer to the ideal sum of 1. Nonetheless, overconfidence remains, suggesting room for further improvement.

To contextualize these methods against likelihood-based selection, which is always computable for any open model, we additionally compare against two likelihood-based baselines - **max generation likelihood**, which performs Best-of-N using average sentence likelihood $R = p(y|x)/|y|$ as the reward score, and **generation likelihood-weighted majority vote**, which weights votes by these likelihood scores. We evaluate these approaches using the RLCR model (trained on Hotpot) for generation, plotting average accuracy across the 7 datasets used in Table 1. As shown in Fig. 3a, accuracy consistently improves with more samples, with confidence weighted majority vote outperforming vanilla majority voting, max-confidence, and both likelihood baselines. These gains highlight how calibration can directly underpin test time scaling - better calibrated confidence estimates lead to more accurate aggregated predictions.

Calibration In our structured RLCR CoT, models first output a solution, followed by an analysis and confidence score. To improve confidence scores for a fixed answer y , we sample K analysis CoTs $z_1, \dots, z_K \sim p(\cdot | x, y)$, each producing a verbalized confidence q_i . We then ensemble these confidences to obtain the aggregated confidence estimate $\bar{q} = \frac{1}{K} \sum_i q_i$. Figure 3b plots Brier score (averaged over 7 datasets) as a function of ensemble size K . We observe that calibration improves as the ensemble size grows, though the absolute gains are relatively modest. This reflects the fact that for most questions, there is low “*uncertainty about uncertainty*”, so averaging does not substantially alter the estimate. Nonetheless, ensembling provides a lightweight mechanism for reducing residual noise, especially on harder questions where confidence variability is greater.

4.5 ARE VERBALIZED CONFIDENCES SELF-CONSISTENT?

Intra-solution coherence A desirable property of uncertainty-aware reasoning is that a model should assign consistent confidence estimates when generating multiple uncertainty reasoning chains for the same answer. That is, the model should have low “*uncertainty about uncertainty*”. Given a fixed answer y , we sample K analysis CoTs $z_1, \dots, z_K \sim p(\cdot | x, y)$, where each chain produces a verbalized confidence score q_i . Ideally, these confidence scores should exhibit low variability.

Figure 4a plots the standard deviation across seven datasets, using analysis CoTs generated by the RLCR model trained on HotpotQA. Most samples have low standard deviation, suggesting that the model’s confidence estimates are generally consistent.

Inter-solution consistency For tasks where answers are *mutually exclusive*—i.e., only one answer is correct per instance—it is desirable that the model distributes its confidence across distinct answers such that the total confidence is less than or equal to 1, with equality holding when the set of answers is exhaustive. Let a model generate N responses $\{y_i\}_{i=1}^N$ with associated confidence scores $\{q_i\}_{i=1}^N$, where $q_i \in [0, 1]$. Let $\mathcal{A} = \{a_1, \dots, a_K\}$ denote the set of $K \leq N$ unique answers among the y_i . The mean confidence assigned to answer a_k is:

$$\bar{q}_k = \frac{\sum_i \mathbb{1}_{y_i \equiv a_k} \cdot q_i}{\sum_i \mathbb{1}_{y_i \equiv a_k}} \quad (11)$$

Method	Models Trained on HotpotQA				O.O.D. Averaged			
	Acc.	Tokens	Brier	ECE	Acc.	Tokens	Brier	ECE
	(↑)	(↓)	(↓)	(↓)	(↑)	(↓)	(↓)	(↓)
RLCR (ours)	62.1%	249	0.21	0.03	56.2%	300	0.21	0.21
RLCR w/o Analysis	61.7%	113	0.23	0.09	56.5%	179	0.26	0.26
RLVR w/ Analysis	62.3%	224	0.35	0.34	52.6%	221	0.41	0.39
RLVR	63.0%	92	0.37	0.37	53.9%	142	0.46	0.46

Table 2: **Calibration ablation evaluating the contributions of (i) calibration-aware reward learning and (ii) explicit uncertainty reasoning.** Adding uncertainty analysis improves calibration for both RLCR and RLVR, while removing analysis from RLCR still preserves significant calibration benefits. Together, these results indicate that both components independently contribute to improved calibration, and the strongest performance is achieved when both are used together.

For a model to give consistent answers, we desire: $\sum_{k=1}^K \bar{q}_k \leq 1$.

Fig. 4b shows a swarm plot of predicted confidence sums across three representative datasets. On the in-distribution HotpotQA dataset, RLCR’s confidence sums cluster tightly around 1, indicating well-calibrated belief distribution. For out-of-distribution datasets, both RLCR and RLVR exhibit overconfidence, with sums exceeding 1, though RLCR remains significantly closer to the ideal. This reflects RLCR’s improved calibration, yet highlights room for improvement, particularly OOD.

4.6 WHAT DRIVES CALIBRATION GAINS?

RLCR differs from RLVR along two key axes: (1) RLCR’s reward function directly incentivizes calibrated confidence estimates, and (2) RLCR models are prompted to explicitly reason about uncertainty. To isolate the contribution of these components, we ablate the uncertainty-reasoning portion of the CoT prompt and evaluate the following four variants on the HotpotQA-trained models:

1. **RLCR:** Vanilla RLCR, as presented in Table 1.
2. **RLCR w/o Analysis:** The RLCR model evaluated *without* uncertainty reasoning. At inference time, the model is instructed to output only `<think>`, `<answer>`, and `<confidence>`. The model is instructed to not perform any uncertainty reasoning.
3. **RLVR:** Vanilla RLVR, as presented in Table 1.
4. **RLVR w/ Analysis:** The RLVR model evaluated *with* uncertainty reasoning, using the identical analysis prompt used for training/evaluating RLCR (see long RLCR prompt in Appendix C).

The results in Table 2 reveal several key findings.

(1) Explicit uncertainty reasoning improves calibration for both RLCR and RLVR. Across both training and OOD settings, the variants with uncertainty reasoning achieve lower Brier and ECE than their no-analysis counterparts. This is consistent with prior work (Yoon et al., 2025) and is further corroborated by the classifier ablations in Appendix G.

(2) Reward-based calibration is substantially more effective than prompting alone. Although RLVR w/ Analysis improves over vanilla RLVR, it remains far behind both RLCR variants, including RLCR w/o Analysis. Thus, prompting a model to reason about uncertainty provides only modest gains compared to explicitly training with a calibrated reward.

(3) RLCR w/o Analysis nearly matches RLVR in accuracy and token cost, while dramatically improving calibration. On HotpotQA, RLCR w/o Analysis uses a similar number of tokens as RLVR (113 vs. 92) and achieves comparable accuracy (61.7% vs. 63.0%), yet its calibration is far superior (ECE: 0.09 vs. 0.37).

486 **Overall.** Both components—explicit analysis and calibration-aware reward learning—contribute to
 487 improved calibration. When efficiency is paramount, RLCR w/o Analysis offers a drop-in alternative
 488 that preserves accuracy and token efficiency while significantly improving calibration over RLVR.
 489

490 5 RELATED WORK
 491

492 Building reliable reasoning models requires not only high accuracy but also calibrated uncertainty—a
 493 property that standard RL objectives often erode (Achiam et al., 2023), leaving models over-
 494 confident (Xiong et al., 2024) and prone to hallucination (Jaech et al., 2024). We survey four
 495 strands of prior work on confidence estimation in LLMs:
 496

497 **Post-hoc verbalizations** prompt models to state their confidence after answering (Xiong et al., 2024;
 498 Yang et al., 2024; Tanneru et al., 2024; Lin et al., 2022). Lin et al. (2022) fine-tune GPT-3 to predict
 499 confidence given a question and answer, using empirical accuracy as the target label. Xiong et al.
 500 (2024) find that LMs exhibit overconfidence when verbalizing their confidence. Tian et al. (2023)
 501 finds that RLHF models’ verbalized confidence scores are better calibrated than their conditional
 502 probabilities. Mei et al. (2025) find that even reasoning models also suffer from overconfidence and
 503 can become even more overconfident with deeper reasoning. Similarly, Kirichenko et al. (2025)
 504 introduce AbstentionBench and show that LMs struggle to abstain appropriately, with reasoning
 505 fine-tuning often degrading abstention performance. Positively, Yoon et al. (2025) and Mei et al.
 506 (2025) find that reasoning models can improve calibration by introspection and slow thinking.
 507

508 **Sampling-based methods** use response agreement (e.g., majority vote or best-of- N) as a proxy for
 509 confidence, but are costly and require clear ground truth (Kang et al., 2025). Aichberger et al. (2025)
 510 estimate uncertainty by generating diverse, plausible responses and measuring their consistency.
 511 Kuhn et al. (2023) propose semantic entropy, a sampling-based method that leverages linguistic
 512 invariances to better estimate uncertainty in natural language generation.
 513

514 **Internal probing** extracts confidence from model features like token probabilities (Gupta et al.,
 515 2024), offering fine-grained scores but lacking generality. Kadavath et al. (2022) prompt language
 516 models to output “true” or “false” and use their probability as a proxy for the model’s confidence.
 517 Mielke et al. (2022) train a LM to generate responses conditioned on confidence estimates provided
 518 by an external probe. Fadeeva et al. (2024) propose a token-level uncertainty method that leverages
 519 internal model signals to fact-check claims and detect hallucinations. Azaria & Mitchell (2023)
 520 train a classifier on hidden layer activations to detect the truthfulness of statements based on the
 521 LLM’s internal state. Orgad et al. (2025) show that internal representations encode rich, token-level
 522 truthfulness signals, which can detect and categorize errors beyond what is reflected in the output.
 523

524 **RL-based methods** train models to output calibrated verbal confidences with RL. Stengel-Eskin
 525 et al. (2024) introduce a speaker-listener framework, where the speaker’s rewards are determined by
 526 the listener’s inferred confidence in the speaker’s responses. Leng et al. (2025) introduce verbalized
 527 confidence scores in reward model training. Most closely related to our work, Xu et al. (2024)
 528 and Stangel et al. (2025) train LMs with RL using proper scoring rules as reward functions. Xu
 529 et al. (2024) adopt the Brier score, while Stangel et al. (2025) use a clipped version of the log loss.
 530 While effective, these approaches optimize solely for calibration, which can inadvertently harm task
 531 accuracy—particularly in larger models that may reward hack by outputting deliberately incorrect
 532 answers with zero confidence to achieve perfect calibration rewards. Furthermore, both methods are
 533 developed and evaluated exclusively on non-reasoning tasks. In contrast, our method incentivizes
 534 both correctness and calibration, and is evaluated on both reasoning and non-reasoning benchmarks.
 535

536 6 CONCLUSION
 537

538 We show that incorporating proper scoring rules into RL, via an objective we call RLCR, enables
 539 reasoning models to improve both accuracy and calibration. Our approach trains models to reason
 540 about and verbalize uncertainty, preserving task performance while significantly improving calibration
 541 in- and out-of-distribution. We demonstrate that reasoning about uncertainty improves calibration,
 542 and that our method improves the self-consistency of confidence, and improves with test-time
 543 scaling. However, there remains significant room for improvement—even after RLCR, out-of-domain
 544 calibration error is often high in an absolute sense, and models may still assign high confidence to
 545 multiple contradictory answers. Nevertheless, these results suggest a path toward reasoning systems
 546 that are not only accurate, but reliably reason about and communicate uncertainty.
 547

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
543 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt4. *arXiv preprint*
544 *arXiv:2303.08774*, 2023.

545 Lukas Aichberger, Kajetan Schweighofer, Mykyta Ielanskyi, and Sepp Hochreiter. Improving
546 uncertainty estimation through semantically diverse language generation. In *The Thirteenth*
547 *International Conference on Learning Representations*, 2025.

548 Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait
549 Singh, Chase Blagden, Violet Xiang, Dakota Mahan, et al. Big-math: A large-scale, high-quality
550 math dataset for reinforcement learning in language models. *arXiv preprint arXiv:2502.17387*,
551 2025.

552 Amos Azaria and Tom Mitchell. The internal state of an llm knows when it's lying. *Empirical Methods*
553 *in Natural Language Processing Findings*, 2023. URL <https://arxiv.org/abs/2304.13734>.

555 Glenn W Brier. Verification of forecasts expressed in terms of probability. *Monthly weather review*,
556 78(1):1–3, 1950.

557 Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
558 Arushi Soman, Peter Hase, Misha Wagner, Fabien Roger, Vlad Mikulik, Samuel R. Bowman, Jan
559 Leike, Jared Kaplan, and Ethan Perez. Reasoning models don't always say what they think, 2025.
560 URL <https://arxiv.org/abs/2505.05410>.

562 Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri Abend. On the weaknesses of reinforcement
563 learning for neural machine translation. In *International Conference on Learning Representations*
564 2020, 2019.

565 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
566 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
567 Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021. URL
568 <https://arxiv.org/abs/2110.14168>.

569 Ekaterina Fadeeva, Aleksandr Rubashevskii, Artem Shelmanov, Sergey Petrakov, Haonan Li, Hamdy
570 Mubarak, Evgenii Tsymbalov, Gleb Kuzmin, Alexander Panchenko, Timothy Baldwin, Preslav
571 Nakov, and Maxim Panov. Fact-checking the output of large language models via token-level
572 uncertainty quantification. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of*
573 *the Association for Computational Linguistics: ACL 2024*, pp. 9367–9385, Bangkok, Thailand,
574 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.558.
575 URL <https://aclanthology.org/2024.findings-acl.558/>.

576 Kanishk Gandhi, Ayush K Chakravarthy, Anikait Singh, Nathan Lile, and Noah Goodman. Cognitive
577 behaviors that enable self-improving reasoners, or, four habits of highly effective STars. In
578 *Second Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=QGJ9ttXLTy>.

581 Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
582 *Journal of the American statistical Association*, 102(477):359–378, 2007.

583 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
584 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
585 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

586 Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna
587 Menon, and Sanjiv Kumar. Language model cascades: Token-level uncertainty and beyond. In *The*
588 *Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=KgaBScZ4VI>.

591 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
592 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
593 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*
(*Round 2*), 2021. URL <https://openreview.net/forum?id=7Bywt2mQsCe>.

594 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 595 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 596 model. *arXiv preprint arXiv:2503.24290*, 2025.

597

598 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 599 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 600 *arXiv:2412.16720*, 2024.

601 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly su-
 602 pervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan (eds.),
 603 *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume*
 604 *1: Long Papers)*, pp. 1601–1611, Vancouver, Canada, July 2017. Association for Computational
 605 Linguistics. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147/>.

606

607 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
 608 Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El Showk,
 609 Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
 610 Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt,
 611 Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas
 612 Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Kaplan. Language models (mostly)
 613 know what they know. *CoRR*, abs/2207.05221, 2022. URL <https://doi.org/10.48550/arXiv.2207.05221>.

614

615 Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language
 616 models via self-certainty. In *2nd AI for Math Workshop @ ICML 2025*, 2025. URL <https://openreview.net/forum?id=nndwJseiyy>.

617

618 Polina Kirichenko, Mark Ibrahim, Kamalika Chaudhuri, and Samuel J. Bell. Abstentionbench:
 619 Reasoning LLMs fail on unanswerable questions. In *ICML 2025 Workshop on Reliable and*
 620 *Responsible Foundation Models*, 2025. URL <https://openreview.net/forum?id=kYbojsAOBJ>.

621

622 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
 623 uncertainty estimation in natural language generation. In *The Eleventh International Conference*
 624 *on Learning Representations*, 2023. URL <https://openreview.net/forum?id=VD-AYtP0dve>.

625 Jixuan Leng, Chengsong Huang, Banghua Zhu, and Jiaxin Huang. Taming overconfidence in
 626 LLMs: Reward calibration in RLHF. In *The Thirteenth International Conference on Learning*
 627 *Representations*, 2025. URL <https://openreview.net/forum?id=l0tg0jzsdl>.

628

629 Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
 630 words. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL <https://openreview.net/forum?id=8s8K2UZGTZ>.

631

632 Zhiting Mei, Christina Zhang, Tenny Yin, Justin Lidard, Ola Shorinwa, and Anirudha Majumdar.
 633 Reasoning about uncertainty: Do reasoning models know when they don't know? *arXiv preprint*
 634 *arXiv:2506.18183*, 2025.

635

636 Sabrina J. Mielke, Arthur Szlam, Emily Dinan, and Y-Lan Boureau. Reducing conversational agents'
 637 overconfidence through linguistic calibration. *Transactions of the Association for Computational*
 638 *Linguistics*, 10:857–872, 2022. doi: 10.1162/tacl_a_00494. URL <https://aclanthology.org/2022.tacl-1.50/>.

639

640 Mohamad Amin Mohamadi, Tianhao Wang, and Zhiyuan Li. Honesty over accuracy: Trustworthy
 641 language models through reinforced hesitation, 2025. URL <https://arxiv.org/abs/2511.11500>.

642

643 Sagnik Mukherjee, Lifen Yuan, Dilek Hakkani-Tur, and Hao Peng. Reinforcement learning finetunes
 644 small subnetworks in large language models. *arXiv preprint arXiv:2505.11711*, 2025.

645

646 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
 647 Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint arXiv:2501.00656*,
 2024.

648 M Omar, BS Glicksberg, GN Nadkarni, and E Klang. Overconfident llm self-
 649 assessment in clinical scenarios. *medRxiv*, 2024.

650

651 OpenAI. Openai o3 and o4-mini system card. 2025.

652

653 Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and
 654 Yonatan Belinkov. LLMs know more than they show: On the intrinsic representation of LLM
 655 hallucinations. In *The Thirteenth International Conference on Learning Representations*, 2025.
 656 URL <https://openreview.net/forum?id=KRnsX5Em3W>.

657

658 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 659 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 660 *First Conference on Language Modeling*, 2024.

661

662 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 663 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 664 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

665

666 Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. RL's razor: Why online reinforcement learning
 667 forgets less. *arXiv preprint arXiv:2509.04259*, 2025.

668

669 Linxin Song, Taiwei Shi, and Jieyu Zhao. The hallucination tax of reinforcement finetuning. *arXiv
 670 preprint arXiv:2505.13988*, 2025.

671

672 Paul Stangel, David Bani-Harouni, Chantal Pellegrini, Ege Özsoy, Kamilia Zaripova, Matthias
 673 Keicher, and Nassir Navab. Rewarding doubt: A reinforcement learning approach to confidence
 674 calibration of large language models. *CoRR*, abs/2503.02623, March 2025. URL <https://doi.org/10.48550/arXiv.2503.02623>.

675

676 Elias Stengel-Eskin, Peter Hase, and Mohit Bansal. LACIE: Listener-aware finetuning for calibra-
 677 tion in large language models. In *The Thirty-eighth Annual Conference on Neural Information
 678 Processing Systems*, 2024. URL <https://openreview.net/forum?id=RnvgYd9RAh>.

679

680 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
 681 answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
 682 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the
 683 Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
 684 Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational
 685 Linguistics. doi: 10.18653/v1/N19-1421. URL <https://aclanthology.org/N19-1421/>.

686

687 Sree Harsha Tanneru, Chirag Agarwal, and Himabindu Lakkaraju. Quantifying uncertainty in
 688 natural language explanations of large language models. In *International Conference on Artificial
 689 Intelligence and Statistics*, pp. 1072–1080. PMLR, 2024.

690

691 Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman, and Gal
 692 Yona. Confidence improves self-consistency in llms. *arXiv preprint arXiv:2502.06233*, 2025.

693

694 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
 695 Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated
 696 confidence scores from language models fine-tuned with human feedback. In *The 2023 Conference
 697 on Empirical Methods in Natural Language Processing*, 2023. URL <https://openreview.net/brum?id=g3faCfrwm7>.

698

699 Benjamin Turtel, Danny Franklin, Kris Skotheim, Luke Hewitt, and Philipp Schoenegger. Outcome-
 700 based reinforcement learning to predict the future. *arXiv preprint arXiv:2505.17989*, 2025.

701

702 Kartik Waghmare and Johanna Ziegel. Proper scoring rules for estimation and forecast evaluation.
 703 *arXiv preprint arXiv:2504.01781*, 2025.

704

705 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 706 John Schulman, and William Fedus. Measuring short-form factuality in large language models.
 707 *arXiv preprint arXiv:2411.04368*, 2024.

702 Zhepei Wei, Xiao Yang, Kai Sun, Jiaqi Wang, Rulin Shao, Sean Chen, Mohammad Kachuee, Teja
 703 Gollapudi, Tony Liao, Nicolas Scheffer, et al. Truthrl: Incentivizing truthful llms via reinforcement
 704 learning. *arXiv preprint arXiv:2509.25760*, 2025.

705 Changyi Xiao, Mengdi Zhang, and Yixin Cao. Bnpo: Beta normalization policy optimization. *arXiv*
 706 *preprint arXiv:2506.02864*, 2025.

708 Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie Fu, Junxian He, and Bryan Hooi. Can LLMs
 709 express their uncertainty? an empirical evaluation of confidence elicitation in LLMs. In *The*
 710 *Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=gjeQKFxFpZ>.

712 Tianyang Xu, Shujin Wu, Shizhe Diao, Xiaoze Liu, Xingyao Wang, Yangyi Chen, and Jing Gao.
 713 Sayself: Teaching llms to express confidence with self-reflective rationales. In *Proceedings of the*
 714 *2024 Conference on Empirical Methods in Natural Language Processing*, pp. 5985–5998, 2024.

716 Daniel Yang, Yao-Hung Hubert Tsai, and Makoto Yamada. On verbalized confidence scores for llms,
 717 2024. URL <https://arxiv.org/abs/2412.14737>.

718 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
 719 Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answer-
 720 ing. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings*
 721 *of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2369–2380,
 722 Brussels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
 723 10.18653/v1/D18-1259. URL <https://aclanthology.org/D18-1259/>.

724 Zijun Yao, Yantao Liu, Yanxu Chen, Jianhui Chen, Junfeng Fang, Lei Hou, Juanzi Li, and Tat-Seng
 725 Chua. Are reasoning models more prone to hallucination? *arXiv preprint arXiv:2505.23646*, 2025.

727 Dongkeun Yoon, Seungone Kim, Sohee Yang, Sunkyoung Kim, Soyeon Kim, Yongil Kim, Eunbi
 728 Choi, Yireun Kim, and Minjoon Seo. Reasoning models better express their confidence. *arXiv*
 729 *preprint arXiv:2505.14489*, 2025.

730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **A PROOF OF THEOREM 1**
 757

758 We consider a slightly more general family of reward functions than in the main paper body. As
 759 above, we assume that predictors produce a response y , a confidence $q \in [0, 1]$; we now assume that
 760 scores depend additionally on an arbitrary binary correctness signal c , distributed according to some
 761 $p_y := p(c = 1 \mid y)$.

762 We consider all reward functions of the form:
 763

$$764 R(c, q) = \lambda c - S(q, c)$$

765 where $S(q, c)$ is a scoring rule and $\lambda > 0$ is a scalar reward for producing the correct answer.
 766

767 We define the expected reward of choosing a confidence q for a given response y as:
 768

$$769 V(y, q) = \mathbb{E}_c R(c, q) = \lambda p_y - [p_y S(q, 1) + (1 - p_y) S(q, 0)] .$$

770 **Lemma 1** (Calibration incentive). *For any response y , the expected reward $V(y, q)$ is maximized at
 771 $q = p_y$ if and only if $S(q, c)$ is a proper scoring rule.*

772 *Proof.* The correctness term λp_y in the reward function does not depend on q , so
 773

$$774 \arg \max_q V(y, q) = \arg \max_q -p_y S(q, 1) + (1 - p_y) S(q, 0) = \arg \min_q \mathbb{E}_c S(q, c) .$$

776 But by a scoring rule is proper by definition if $\mathbb{E}_{c \sim \text{Bernoulli}(p_y)} S(q, c)$ is minimized by $q = p_y$, so the
 777 statement of the lemma follows immediately. \square

778 **Lemma 2** (Correctness incentive). *Consider y, y' with associated success probabilities $p_y \geq p_{y'}$.
 779 Then $V(y, p_y) \geq V(y', p_{y'})$ if and only if
 780*

$$781 S(p, 1) - S(p, 0) \leq \lambda \quad \text{for all } p \in [0, 1] .$$

782 *Proof.* First, define:

$$783 W(p) = \lambda p - pS(p, 1) + (1 - p)S(p, 0) ,$$

784 Note that $V(y, p_y) = W(p_y)$, and $W(p)$ represents the maximum reward attainable for any y with
 785 associated success probability p_y . Thus, to verify the statement of the lemma, it suffices to show
 786 that $W(p) \geq W(p')$ if and only if $p \geq p'$, which in turn is equivalent to showing that $W(p)$ is
 787 nondecreasing in p .

788 We first compute the derivative of W :

$$789 W'(p) = \lambda - S(p, 1) + S(p, 0) - pS'(p, 1) - (1 - p)S'(p, 0) .$$

790 From the Savage-Dawid representation (Gneiting & Raftery, 2007) of proper scoring rules, there
 791 exists some non-negative weight function $\omega(t) \geq 0$ such that:
 792

$$793 S'(p, 1) = -(1 - p) \cdot \omega(p) , \quad S'(p, 0) = p \cdot \omega(p) .$$

794 Substituting this in:

$$795 W'(p) = \lambda - S(p, 1) + S(p, 0) + p \cdot (1 - p) \cdot \omega(p) - (1 - p) \cdot p \cdot \omega(p) \\ = S(p, 1) - S(p, 0) .$$

800 Thus the derivative of W is non-negative (W is nondecreasing) if and only if $S(p, 1) - S(p, 0) \leq \lambda$
 801 for $p \in [0, 1]$. \square

803 Then the main theorem statement in Section 3 follows immediately from these two lemmas:
 804

805 *Proof of Theorem 1.* First observe that R_{RLCR} satisfies the conditions of Lemma 2 with $\lambda = 1$ and
 806 $S(q, \mathbb{1}_{y \equiv y^*}) = (q - \mathbb{1}_{y \equiv y^*})^2$, we have $\max_p S(p, 1) - S(p, 0) = 1$. Then condition 1 (calibration)
 807 follows from Lemma 1 and the fact that the Brier score is a proper scoring rule, and condition 2
 808 (correctness) follows from Lemma 2 and the boundedness of $S(p, 1) - S(p, 0)$. \square

809 **Corollary 1.** *Let $S(q, c)$ be a strictly proper scoring rule.*

1. If $S(p, 1) - S(p, 0)$ is bounded, then there exists a finite $\lambda > 0$ such that the reward function $R(c, q) = \lambda c - S(q, c)$ satisfies the correctness condition:

$$S(p, 1) - S(p, 0) \leq \lambda \quad \text{for all } p \in [0, 1]$$

and thus jointly incentivizes calibration and correctness.

2. If $S(p, 1) - S(p, 0)$ is unbounded, then for any finite $\lambda > 0$, there may exist some $y \geq y'$ such that $W(p_y) < W(p_{y'})$, and R_{RLCR} prefers $(y', p_{y'})$ to (y, p_y) .

Examples. The Brier score is bounded: $S(p, 1) = (1 - p)^2$, $S(p, 0) = p^2$, so:

$$S(p,1) - S(p,0) = 1 - 2p \leq 1 \quad \text{for all } p \in [0,1]$$

Thus, the condition holds for $\lambda = 1$.

In contrast, the logarithmic score is unbounded:

$$S(p, 1) = -\log p, \quad S(p, 0) = -\log(1-p), \quad S(p, 1) - S(p, 0) = \log \left(\frac{1-p}{p} \right) \rightarrow \infty \quad \text{as } p \rightarrow 0$$

So no finite λ can satisfy the condition.

864 **B EXPERIMENTAL SETUP**
865866 **B.1 TRAINING DATASETS**
867868 **HotpotQA-Modified:** We use a modified version of the HotPotQA distractor dataset, which contains
869 factual questions requiring multi-hop reasoning. (Yang et al., 2018). Each example in this setting
870 presents ten paragraphs, only two of which contain the information necessary to answer the question;
871 the remaining eight paragraphs include closely related but irrelevant details. Consequently, solving
872 this task requires the model to identify and reason over the pertinent passages. To more strongly
873 develop uncertainty reasoning capability, we construct a new dataset, *HotPotQA-Modified*, in which
874 we systematically remove either 0, 1, or both of the key paragraphs required to answer each question.
875 This modification introduces varying levels of informational completeness that the model must reason
876 over. We distribute questions across three equal groups: one-third have no relevant paragraphs (0/8),
877 one-third have 1 relevant paragraph (1/7), and one-third have both relevant paragraphs (2/6). Each
878 question consistently contains 8 total paragraphs. Our training dataset consists of 20,000 examples.
879 We measure correctness using exact string match.
880881 **Big-Math Digits:** We use Big-Math (Albalak et al., 2025), a large, curated training dataset for RL
882 containing over 250,000 math problems, including questions from benchmarks such as Math and
883 GSM8K. To ensure an appropriate range of difficulty, we retain problems for which the LLaMA-8B
884 solve rate (provided in the dataset) is between 0-70%. We also found that verifier noise can be
885 significant in Math datasets and can cause training instability. To reduce verifier noise, we further
886 restrict the dataset to problems with numerical answers, enabling near-perfect automatic verification.
887 Our final training set consists of 15,000 problems. We compute correctness using *math-verify*.
888889 **B.2 ADDITIONAL TRAINING DETAILS**
890891 Following Turtel et al. (2025), we remove the standard deviation division in the advantage, which
892 might help with learning on examples where there are extreme miscalibrations. We use the BNPO
893 loss function, which aggregates token level losses using the number of active tokens in the local
894 training batch (Xiao et al., 2025). We generate 32 responses per prompt with a temperature of 0.7,
895 and use an effective batch size of 2048. Experiments were conducted on both NVIDIA A100 and
896 H100 GPUs (and we observed consistent results across hardware types). We use a constant learning
897 rate with warmup of 1e-06 for HotpotQA and 5e-06 for Math. We use a warmup ratio 0.1. For Hotpot,
898 we set a maximum completion length of 1536 while for Math, we use a completion length of 4096.
899 Hotpot requires significantly less reasoning, and using a smaller completion length helped improve
900 training time. We do 1 epoch of training. For training *RLCR*, we use the *Long RLCR* system prompt
901 for Hotpot and the *Simple RLCR* prompt for Math (the long version did not provide additional benefit
902 on Math). We use the *Simple Generation* prompt for *RLVR*. All prompts in Appendix C.
903904 **Format Reward:** We use a format reward to encourage adherence to the structured format shown
905 in Fig. 1. In *RLVR*, models must format their output in `<think>` and `<answer>` tags. In *RLCR*,
906 in addition to `<think>` and `<answer>` tags, we require an `<analysis>` tag to enclose uncertainty
907 reasoning and a `<confidence>` tag for verbalized confidence. A valid response must contain all these
908 tags in the correct order. Both format and calibration rewards are weighted equally.
909910 **SFT Warmup in Math:** While RL directly on the base model improves calibrated reward, the
911 uncertainty analyses produced in Math remain qualitatively generic, often lacking reasoning tied to
912 specific solution steps (See Appendix M for an example). To improve their quality, we train a variant
913 with a lightweight SFT warmup phase before RL to obtain higher quality uncertainty analyses. We
914 generate solutions from the base model on 500 examples and prompt Deepseek-R1 with the *Expert*
915 *SFT Prompt* to produce uncertainty analyses for them. We then perform SFT with the `<think>` and
916 `<answer>` obtained from the base model, appended with the `<analysis>` obtained from Deepseek-R1.
917 Note that we do not ask Deepseek-R1 to output confidence scores.
918919 **B.3 EVALUATION DATASETS**
920921 We run evaluation on a large number of datasets:
922

918 1. **HotPotQA (Distractor):** We use 1000 validation examples from the original HotpotQA
 919 distractor dataset. We slightly modify the dataset and remove 2 non-relevant paragraphs
 920 from each question. Thus, each question has 8 paragraphs with both supporting paragraphs
 921 present. We measure correctness using exact-match (Yang et al., 2018).
 922 2. **HotPotQA-Modified:** We evaluate on 500 held-out validation examples. We measure
 923 correctness using exact-match.
 924 3. **TriviaQA:** We use 2000 examples from the validation set of the TriviaQA dataset (Joshi
 925 et al., 2017). We use the no-context split to purely test factual accuracy. We evaluate using
 926 LLM-as-a-judge.
 927 4. **SimpleQA:** We use the full SimpleQA dataset consisting of 4326 factual questions (Wei
 928 et al., 2024). We evaluate using LLM-as-a-judge.
 929 5. **Math-500** We use the popular MATH-500 dataset, which contains a subset of problems
 930 from the original MATH dataset (Hendrycks et al., 2021). We evaluate using *math-verify*, a
 931 mathematical expression evaluation system released by huggingface.
 932 6. **GSM8K:** We use the test set (1319 problems) of the popular Grade School Math 8K
 933 dataset (Cobbe et al., 2021). We evaluate using *math-verify*.
 934 7. **Big-Math-Digits:** We evaluate on 1000 held-out validation examples. We evaluate using
 935 *math-verify*.
 936 8. **CommonSenseQA:** We use the validation set (1220 problems) of the CommonsenseQA
 937 dataset (Talmor et al., 2019), a multiple-choice question answering dataset that requires
 938 different types of commonsense knowledge to predict the correct answers. We evaluate
 939 using LLM-as-a-judge.
 940 9. **GPQA:** We use the GPQA main dataset containing 448 multiple-choice questions written
 941 by experts in biology, physics, and chemistry (Rein et al., 2024). We evaluate using LLM-
 942 as-a-judge.
 943

944 **B.4 EVALUATION DETAILS**

945 All models are evaluated with temperature 0. For all datasets except Math and GSM8K, we use a
 946 maximum token budget of 4096. The system prompt for evaluation and the pipeline to extract answer
 947 and confidence scores varies slightly based on the method we are evaluating:
 948

949 1. **RLCR (ours):** RLCR models use <think>, <answer>, <analysis> and <confidence>
 950 tags. They are evaluated with the same system prompts they are trained on. We extract their
 951 answer from <answer> tag and their confidence from <confidence> tag.
 952 2. **RLVR:** RLVR models use the <think> and <answer>. It is evaluated with the same system
 953 prompt and we extract their answer from the <answer> tag. To obtain their verbalized
 954 confidence, we append *“Thinking time ended. My verbalized confidence in my answer as a*
 955 *number between 0 and 100 is equal to”* to their generated output.
 956 3. **Classifier/Probe:** Both methods are conditioned on the question and the *RLVR* model’s
 957 generation (solution and answer). These methods thus use *RLVR* model as a generator and
 958 their reported accuracies in the result tables are equal.
 959 4. **Base:** The base model is not good at instruction following and is prompted with a simpler
 960 system prompt (*Simple Confidence Prompt*) that guides it to use <think>, <answer> and
 961 <confidence> tags. In case no valid confidence can be extracted, we append *“Thinking*
 962 *time ended. My verbalized confidence in my answer as a number between 0 and 100 is equal*
 963 *to”* to their output and call them again to extract confidence.
 964

965 For all methods, if we are unable to extract a valid answer from the <answer> tags, we append
 966 *“Thinking time ended. My final answer is”* to their output and call them again. The main goal of these
 967 custom pipelines is to be able to fairly extract an answer and a confidence level and minimize cases
 968 where incorrect formatting adversely affects performance. Note that because they are trained with
 969 format rewards, both the RL-trained models are nearly perfect in adhering to the desired format and
 970 require minimal interventions. However, the base model benefits from this full extraction pipeline.
 971

972 **Importantly, once answers and confidences are extracted, all methods are evaluated identically**
 973 **and based on the dataset, exact-match, LLM-as-a-judge or math-verify is used.**

974
 975 **LLM-as-a-judge:** We use Llama-3.1-8B-Instruct with temperature set to 0 as our judge. The judge
 976 is provided with the question, the ground truth answer and the answer extracted from the evaluation
 977 pipeline. It is prompted to respond with "YES" or "NO" based on the correctness of the answer.
 978 As the datasets we evaluate have short and objective answers, we do not condition the judge on the
 979 thinking traces which can add biases.

980 C SYSTEM PROMPTS

983 Long RLCR Prompt

985 "A conversation between User and Assistant. The user asks a question, and the Assistant
 986 solves it. The assistant first thinks about the reasoning process in the mind, provides the user
 987 with the final answer, then analyzes its confidence about the solution and then provides the
 988 user with its confidence level. The confidence level is a number between 0 and 1 (inclusive)
 989 enclosed within <confidence> </confidence> tags. The final answer is enclosed between
 990 <answer> </answer> tags. The analysis about confidence and uncertainty is enclosed within
 991 <analysis> </analysis> tags. The assistant should reason about its confidence in the
 992 solution and its uncertainty in the solution within these tags. Here are some guidelines for the
 993 analysis: 1. Your task is to point out things where the model could be wrong in its thinking,
 994 or things where there might be ambiguity in the solution steps, or in the reasoning process
 995 itself.

996 2. You should not suggest ways of fixing the response, your job is only to reason about
 997 uncertainties.

998 3. For some questions, the response might be correct. In these cases, It is also okay to have
 999 only a small number of uncertainties and then explicitly say that I am unable to spot more
 1000 uncertainties.

1001 4. Uncertainties might be different from errors. For example, uncertainties may arise from
 1002 ambiguities in the question, or from the application of a particular lemma/proof.

1003 5. If there are alternate potential approaches that may lead to different answers, you should
 1004 mention them.

1005 6. List out plausible uncertainties, do not make generic statements, be as specific about
 1006 uncertainties as possible.

1007 7. Enclose this uncertainty analysis within <analysis> </analysis> tags.

1008 The final format that must be followed is : <think> reasoning process here
 1009 </think> <answer> final answer here </answer> <analysis> analysis about confidence
 1010 and uncertainty here </analysis> <confidence> confidence level here (number between 0
 1011 and 1) </confidence>)

1012 Simple RLCR Prompt

1014 A conversation between User and Assistant. The user asks a question, and the Assistant
 1015 solves it. The Assistant first thinks about the reasoning process in the mind, pro-
 1016 vides the user with the final answer, then analyzes its confidence about the solution and
 1017 provides the user with its confidence level. The confidence level is a number between
 1018 0 and 1 (inclusive) enclosed within <confidence> </confidence> tags. The final an-
 1019 swer is enclosed between <answer> </answer> tags. The analysis about confidence and
 1020 uncertainty is enclosed within <analysis> </analysis> tags. The Assistant should
 1021 reason about its confidence in the solution and its uncertainty in the solution within
 1022 these tags. The final format that must be followed is: <think> reasoning process here
 1023 </think><answer> final answer here </answer><analysis> analysis about confidence and
 1024 uncertainty here </analysis><confidence> confidence level here (number between 0 and
 1025 1) </confidence>

1026

1027

1028

Simple Confidence Prompt

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and analyzes its confidence about the solution and then provides the user with the final answer as well as its confidence level. The confidence level is a number between 0 and 1 (inclusive) enclosed within `<confidence> </confidence>` tags. The final answer is enclosed between `<answer> </answer>` tags. The final format that must be followed is : `<think> reasoning process here </think><answer> final answer here </answer> <confidence> confidence level here (number between 0 and 1) </confidence>`.

1041

1042

1043

1044

1045

1046

A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within `<think> </think>` and `<answer> </answer>` tags, respectively, i.e., `<think> reasoning process here </think><answer> answer here </answer>`.

1047

1048

1049

Expert SFT Prompt

1050

1051

1052

1053

1054

You are given a question and a solution to it. You have to verify if the solution is correct and enclose your verification reasoning within `<analysis> </analysis>` tags. Your analysis should be a minimum of 300 characters and should sequentially go through the thinking solution step by step. Here are the guidelines for your analysis:

1055

1. Your analysis should also be in 'I' form as if you wrote the solution and are now verifying it.
2. Your goal is not to solve the problem but instead to verify if the steps in the presented solution are correct.
3. If there are ambiguities in the solution steps or if a step introduces uncertainty, you should mention it in the analysis.
4. Go through the solution sequentially in a step-by-step manner.
5. The analysis should be 300 characters minimum.
6. Enclose this uncertainty analysis within `<analysis> </analysis>` tags.

1063

1064

1065

D LLM USAGE

1066

1067

1068

The authors made limited use of ChatGPT to refine wording for clarity. It was not used for research ideation, related work retrieval, or substantive content generation.

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080
1081

E COMPARING LOG SCORE AND BRIER SCORE

1082
1083

E.1 INTUITION

1084
1085
1086
1087
1088
1089
1090
1091

Logarithmic score and Brier scores are both widely used proper scoring rules. Lemma 1 showed that combining proper scoring rules with correctness rewards preserves the calibration incentive. Models are incentivized to output true correctness probability $q = p_y$ for both log and Brier scores. Using this, we can write out the expected reward when the model outputs answer y and honestly reports confidence $q = p_y$:

1092
1093
1094

$$\mathbb{E}_{\text{brier}}[R(y)] = p_y(1 - (1 - p_y)^2) + (1 - p_y)(-p_y^2) \quad (12)$$

1095
1096
1097

$$\mathbb{E}_{\text{log}}[R(y)] = p_y(1 + \log p_y) + (1 - p_y)\log(1 - p_y). \quad (13)$$



Figure 5: Expected Reward vs correctness probability p_y .

1098
1099
1100
1101
1102
1103

Fig. 5 plots the expected reward as a function of p_y . While the Brier-based expected reward is strictly increasing in p_y , the expected reward under the log score is not. This means that, when using log score combined with correctness rewards, there exist ranges of p_y where the model receives higher expected reward by reporting answers with *lower* true correctness probability. Intuitively, the log score’s calibration term can outweigh the correctness bonus, creating a non-monotonic reward landscape that can discourage the model from preferring more accurate answers.

1104
1105

E.2 TOY EXPERIMENT

1106
1107
1108

Environment Setup. To empirically validate this phenomenon, we construct a simple K -arm prediction task. For each instance, Nature samples a probability vector

1109
1110
1111

$$\mathbf{p} = (p_1, \dots, p_K), \quad p_i \geq 0, \quad \sum_{i=1}^K p_i = 1,$$

1112
1113
1114

which is *unknown* to the model. A sequence of N IID draws

$$x_1, \dots, x_N \sim \mathbf{p}, \quad x_t \in \{1, \dots, K\},$$

1115
1116
1117

is revealed to the model in the prompt. The value of N is drawn uniformly from

$$N \sim \text{Unif}\{0, 1, 2, 3, 4, 5\}.$$

1118
1119
1120

The model’s task is to predict the next draw

$$x_{N+1} \sim \mathbf{p},$$

1121
1122
1123
1124
1125

by outputting an arm index $\hat{y} \in \{1, \dots, K\}$ along with a confidence value $q \in [0, 1]$. The model is free to output an invalid answer $\hat{y} = -1$ with $q = 0$ if it wishes to abstain. We use $K = 5$ throughout. A sample task instance is shown below.

1126
1127
1128
1129
1130
1131
1132
1133

Toy Arm Task Instance

There are 5 arms, each arm has a different probability of being sampled. You are given some draws from this 5-arm distribution. Your task is to predict which arm the next draw will be from. You are also free to output -1 with confidence 0 if you are really unsure.

Observed draws (in order): 1, 1, 0.

Number of observed draws shown: 3

Answer with the arm index (0-4) that you predict for the next draw.

1134 Since the observation sequence is short and p varies arbitrarily across tasks, this setting induces
 1135 substantial aleatoric uncertainty. The Bayes-optimal prediction conditioned on the observed data is
 1136 the arm with highest empirical frequency,
 1137

$$1138 \hat{y}^* = \arg \max_{i \in \{1, \dots, K\}} \sum_{t=1}^N \mathbf{1}\{x_t = i\}.$$

1139

1140
 1141 This environment is intentionally designed so that the model is often highly uncertain about the
 1142 correct arm. Referring to Fig. 5, we observe that under the logarithmic scoring rule, the expected
 1143 reward in such low-confidence regimes is maximized by outputting an intentionally incorrect answer
 1144 with confidence 0, rather than attempting a good-faith prediction.

1145 **Training Setup.** We train RLCR-Brier and RLCR-Log on 10,000 examples from the above dataset.
 1146 We use the Qwen-2.5-7B model and use the same training configuration as Section B.2. For simplicity,
 1147 we do not ask the model to do any uncertainty reasoning.

1148 Results.

1149
 1150 Fig. 6 presents evaluation results on the Toy Arm
 1151 task. Sample outputs from the two models are also
 1152 shown below. The empirical findings closely match
 1153 our theoretical predictions. Under the logarithmic
 1154 scoring rule, the model rapidly converges to a de-
 1155 generate policy: it outputs the invalid arm (-1)
 1156 with reported confidence $q = 0$ for nearly all tasks.
 1157 This strategy yields the *maximum* possible expected
 1158 reward under the log score in the low- p_y regime,
 1159 and consequently the model achieves an almost per-
 1160 fect calibration metric. However, because the model never predicts a valid arm, its accuracy on the
 1161 underlying task collapses to 0.

1162 In contrast, RLCR-Brier behaves qualitatively differently. Because the expected Brier reward is strictly
 1163 increasing in the true correctness probability, collapsing to the invalid low-confidence answer is
 1164 strongly suboptimal. Models trained with RLCR-Brier therefore continue to make genuine predictions
 1165 about the next arm, achieving both non-trivial accuracy and stable calibration.

1166

1167

1168 RLCR-Brier Sample Output

1169

1170 <think> Analyzing the frequency of each arm </think><answer> 1 </answer>
 1171 <confidence> 0.25 </confidence>

1172

1173

1174

1175 RLCR-Log Sample Output

1176

1177

1178 <think> Based on the given information, there is no data to predict the next draw.
 1179 </think><answer> -1 </answer> <confidence> 0 </confidence>

1180

1181

1182

1183

1184

1185

1186

1187

E.3 EXPERIMENTS ON HOTPOT

We also evaluate the two scoring rules in a realistic QA setting. To do so, we train an RLCR-Log model using the same training configuration as the RLCR models used in our main HotpotQA results (see Table 1). Table 3 reports a direct comparison between RLCR-Brier and RLCR-Log; the RLCR-Brier and RLVR numbers are copied over from the main results table.

Overall, RLCR-Log performs slightly worse than RLCR-Brier on both accuracy and calibration. However, unlike the toy bandit setting, we do not observe any evidence of reward hacking: the RLCR-Log model maintains reasonable accuracy and does not collapse to degenerate predictions. This suggests that even though using log score can lead to reward hacking, for many datasets hacking

Method	Acc.	Brier	ECE
RLCR-Brier (ours)	34.4%	0.22	0.02
RLCR-Log	0	0.00	0.00

Figure 6: Performance on the Toy Arm Task dataset. RLCR-Log collapses to degenerate solution, while RLCR-Brier achieves non-trivial accuracy and calibration.

Method	HotpotQA				O.O.D Averaged			
	Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
RLVR	63.0%	0.50	0.37	0.37	53.9%	0.50	0.46	0.46
RLCR-Brier (ours)	62.1%	0.69	0.21	0.03	56.2%	0.68	0.21	0.21
RLCR-Log	59.5%	0.68	0.22	0.07	53.6%	0.67	0.22	0.21

Table 3: **Comparison of RLCR-Brier and RLCR-Log on HotpotQA and 6 out-of-distribution (O.O.D.) datasets.** RLCR-Brier marginally outperforms RLCR-Log in both accuracy and calibration.

might not happen in practice. We believe the emergence of hacking is dependent on both the data distribution as well as the model size.

F GENERALIZATION TO OTHER MODELS

F.1 OLMO-2

Method	HotpotQA				O.O.D Averaged			
	Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
Base	16.4%	0.55	0.78	0.79	47.8%	0.56	0.48	0.48
RLVR	61.7%	0.51	0.38	0.38	50.8%	0.53	0.48	0.48
RLCR (ours)	61.3%	0.58	0.24	0.09	49.3%	0.65	0.22	0.20

Table 4: **Results of RLCR and RLVR training using OLMO-2-7B-Instruct.** RLCR has comparable accuracy to RLVR, while significantly outperforming it in calibration.

Setup: To assess how well the RLCR framework generalizes across model families, we train RLCR and RLVR variants starting from the OLMO-2-7B-Instruct model (OLMO et al., 2024) on our HotpotQA-Modified dataset.

Results: Table 4 reports the final performance. The overall trends are consistent with our main findings: RLCR and RLVR achieve similar accuracy, and both substantially improve accuracy over the base model. RLCR also delivers markedly better calibration than both RLVR and the base model.

F.2 QWEN3

Method	HotpotQA				O.O.D Averaged			
	Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
Base	61.1%	0.53	0.35	0.34	62.8%	0.59	0.28	0.28
RLVR	62.7%	0.53	0.36	0.36	65.5%	0.62	0.28	0.29
RLCR (ours)	61.8%	0.58	0.28	0.23	65.6%	0.71	0.17	0.17

Table 5: **Results of RLCR and RLVR training using Qwen-3-8B.** RLCR maintains accuracy while substantially improving calibration in both in-distribution and OOD settings.

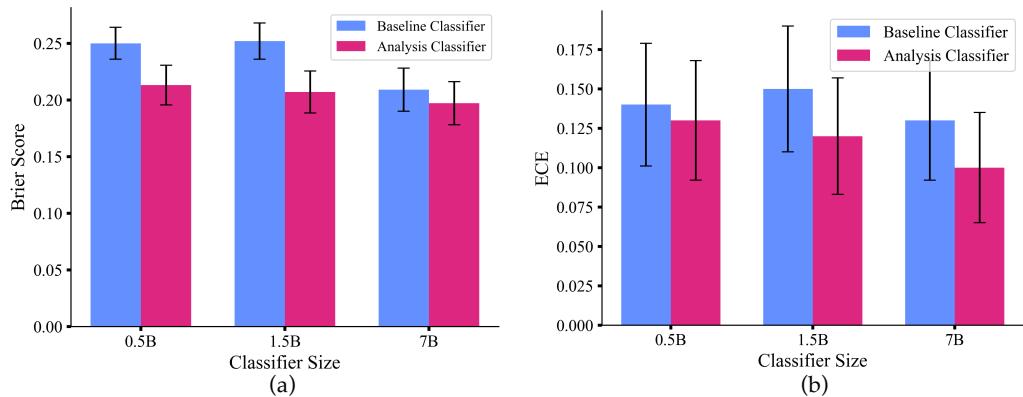
We further assess performance on the newly released Qwen3 model family. Under in-distribution evaluation, RLCR matches RLVR in accuracy and surpasses it on AUROC, Brier, and ECE. When averaged across our OOD benchmarks, RLCR continues to outperform RLVR on AUROC, Brier, and ECE, with accuracy remaining effectively equivalent.

1242 G DOES REASONING IMPROVE CALIBRATION?

1244 Recent work has shown that CoT reasoning can be unfaithful, with generated CoTs that do not
 1245 influence their final answers (Chen et al., 2025). This raises the possibility that uncertainty analysis
 1246 may not meaningfully inform the verbalized confidence score. To test this, we train two classifiers on
 1247 *HotPotQA-Modified*:

- 1249 1. **Baseline classifier:** Trained on RLVR outputs (these contain no uncertainty analysis).
- 1250 2. **Analysis classifier:** Trained on outputs of RLCR with confidence scores (present within
 1251 <confidence> tags) removed to prevent direct hacking.

1253 As both RL models have comparable task accuracy, differences in classifier performance would
 1254 indicate that the RLCR-trained model’s reasoning chains contain information specifically useful
 1255 for calibration. We train classifiers for 3 different model sizes of the Qwen-base model: 0.5B,
 1256 1.5B and 7B. Figure 7 shows Brier and ECE scores on HotPotQA-Modified. Interestingly, while
 1257 7B classifiers perform similarly, the *analysis classifier* outperforms the *baseline* at smaller sizes,
 1258 suggesting classifier capacity is key. For a sufficiently expressive classifier (as with the 7B model),
 1259 it is possible to infer confidence-relevant features directly from the solution. In contrast, smaller
 1260 classifiers can make better use of RLCR reasoning chains. We believe that broader questions about
 1261 the relationship between classifier capacity and CoT contents are an important topic for future work.



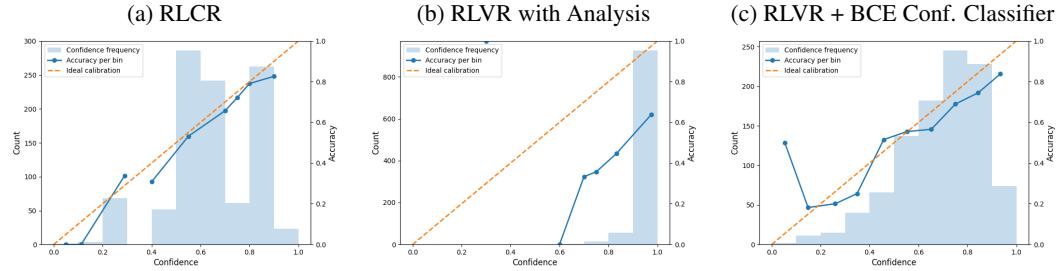
1277 **Figure 7: Brier scores (a) and ECE (b) of baseline / analysis classifiers on HotPotQA-Modified**
 1278 **across three model sizes.** Analysis classifiers outperform baselines at smaller sizes, suggesting that
 1279 uncertainty CoT is essential for better calibration when capacity is limited.

1296

H CONFIDENCE DISTRIBUTIONS

1298

H.1 CONFIDENCE DISTRIBUTIONS ACROSS DIFFERENT INPUTS



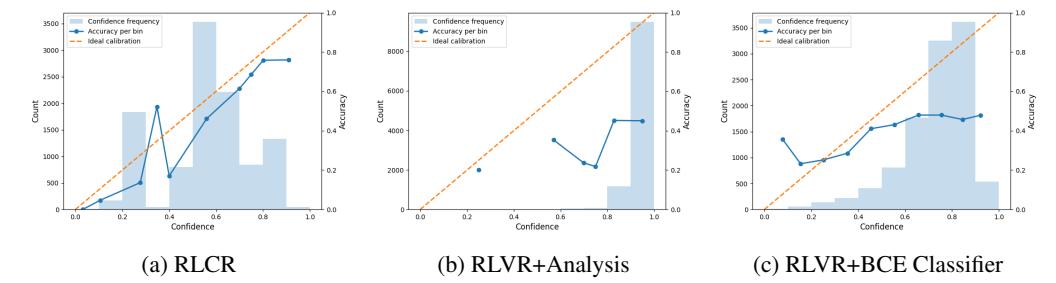
1311 Figure 8: In-Distribution HotpotQA — calibration charts overlaid with confidence-frequency his-
 1312 tograms for RLCR, RLVR, and RLVR+BCE Confidence Classifier.

1314 Here, we present calibration charts overlaid with confidence–frequency histograms. For an ideally
 1315 calibrated model, the accuracy-calibration curve would lie close to the orange dashed line. The
 1316 histograms directly address whether a model’s confidence values are genuinely diverse or instead
 1317 clustered around a narrow range.

1318 In Figure 8a, we show results for In Distribution evaluation for HotpotQA. For RLCR, the histogram
 1319 shows that the model uses the full confidence range, with substantial mass in mid-confidence
 1320 bins (0.4–0.8) and non-trivial usage of both lower and higher bins. This indicates that RLCR
 1321 produces input-dependent confidence scores rather than collapsing toward a single accuracy-like
 1322 value. The accuracy-per-bin curve also closely tracks the ideal diagonal, demonstrating that these
 1323 varied confidence levels correspond to meaningful differences in correctness likelihood.

1325 In contrast, RLVR (Figure 8b) concentrates almost all predictions in the 0.9–1.0 range, with very
 1326 little representation of lower bins. This clustering suggests that RLVR’s outputs are largely uniform
 1327 and overconfident, and that its confidence does not meaningfully vary across inputs.

1328 Finally, when we use an RLVR-trained model as the base for a BCE confidence classifier (Figure
 1329 8c), the accuracy-per-bin curve aligns more closely with the ideal line compared to the RLVR plots,
 1330 suggesting that the classifier is also effective. However, it still underperforms RLCR.

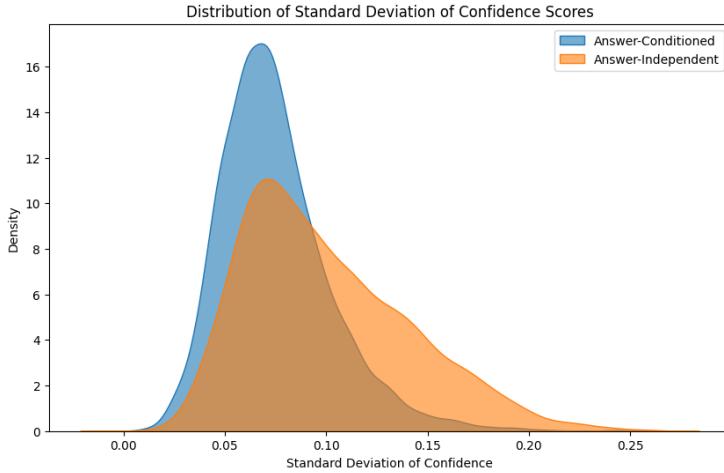


1341 Figure 9: Out-of-Distribution averaged over 6 datasets — calibration charts overlaid with confidence-
 1342 frequency histograms for RLCR, RLVR, and RLVR+BCE Confidence Classifier.

1344 We observe a similar pattern in our out-of-distribution evaluations. Results are shown in Figure 9.
 1345 RLVR (Figure 9b) continues to produce confidence values that collapse to 1.0 regardless of accuracy,
 1346 and its accuracy-per-bin curve deviates substantially from ideal calibration—for example, predictions
 1347 with verbalized confidences of 0.8–0.9 achieve only around 0.3 accuracy on average. Training a BCE
 1348 confidence classifier on top of the RLVR model (Figure 9c) mitigates this behavior to some extent,
 1349 yielding a *slightly* more distributed spread of confidence values and an accuracy-per-bin curve that
 moves a bit closer to the ideal line. However, RLCR (Figure 9a) still performs best: it exhibits a

1350 healthy spread of confidence values across the full range (0–1) and an accuracy-per-bin curve that
 1351 remains much closer to ideal calibration than either RLVR or its BCE classifier variant.
 1352

1353 H.2 PER INPUT CONFIDENCE DISTRIBUTION



1370 Figure 10: Distribution of Standard Deviation of Answer-Conditioned and Answer-Independent
 1371 confidence scores
 1372

1373 To analyze how the model’s confidence values are distributed for a given question, we conduct an
 1374 analysis of per-input confidence variability. For each question, we compute the standard deviation
 1375 of the model’s confidence scores across sampled generations, and the plot shows the distribution of
 1376 these per-question standard deviations.
 1377

1378 We plot two distributions:

- 1379 1. **Answer-Conditioned Distribution:** $p(c|x, y, a)$. For a given question, solution, and final
 1380 answer, we sample $N = 16$ analysis/CoT trajectories and compute the standard deviation
 1381 of their confidence scores. This reflects how stable the model’s confidence is for a given
 1382 reasoning trajectory and answer. Intuitively, a high standard deviation here would be
 1383 undesirable, as it would indicate that the model is internally inconsistent or “confused” about
 1384 its confidence for a given solution.
- 1385 2. **Answer-Independent Distribution:** $p(c|x)$. We sample $N = 16$ full CoTs, each with unique
 1386 reasoning paths. These trajectories correspond to a variety of distinct reasoning paths (and
 1387 may include multiple different answers). We then compute the standard deviation of the
 1388 confidences over these trajectories for the same question, capturing how confidence varies
 1389 across different solutions produced by the model for a particular question.

1390 As shown in Figure 10, the answer-independent distribution (orange) has significantly more mass to
 1391 the right, indicating noticeably higher variability in confidence across different reasoning trajectories.
 1392 In contrast, the answer-conditioned distribution (blue) is narrower - reflecting reduced noise once the
 1393 answer is fixed - but importantly, it still displays a non-trivial spread rather than collapsing near zero.
 1394

1395 Together, these findings show that when generating multiple reasoning trajectories for the same
 1396 question, the confidence scores have noticeably higher variance compared to generating multiple
 1397 confidence scores for a fixed reasoning trajectory.

1398
 1399
 1400
 1401
 1402
 1403

1404
1405
1406
1407 I COMPARISON TO RL-CALIBRATION BASELINES
1408
1409
1410
1411
1412
1413
1414

Method	HotpotQA				O.O.D Averaged			
	Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
Calibration RL (Full Seq)	0.00	N.A	0.00	0.00	0.00	N.A	0.00	0.00
Calibration RL (Analysis + Conf)	62.0%	0.53	0.24	0.08	52.8%	0.57	0.27	0.25
Abstention-RL	62.1%	0.61	0.32	0.31	54%	0.59	0.35	0.35
RLVR	63.0%	0.50	0.37	0.37	53.9%	0.50	0.46	0.46
RLCR (ours)	62.1%	0.69	0.21	0.03	56.2%	0.68	0.21	0.21

1415
1416 Table 6: **Results of RL-calibration baselines.** All baselines significantly outperform RLVR on
1417 calibration, but underperform against RLCR on both accuracy and calibration. Training only with
1418 calibration rewards leads to degenerate solutions. This collapse can be avoided by masking loss
1419 over the the answer and think tokens. Training models to abstain never explicitly teaches confidence
1420 estimation and can also suppress exploration.

1421
1422 **Baselines.** We compare RLCR against carefully adapted variants of the most relevant RL-for-
1423 calibration baselines. Several prior approaches focus primarily on calibration and do not explicitly
1424 optimize accuracy. To ensure fair comparison, we adapt these methods to the reasoning setting by
1425 initializing these baselines from our RLVR model, which has already been trained for accuracy.
1426

- 1427 1. **Calibration RL (Full-Sequence)** (Stangel et al., 2025; Xu et al., 2024): We train a variant
1428 that optimizes only the Brier-score reward, without any accuracy-dependent term. We
1429 apply the loss over the entire generation (think, answer, analysis, confidence). This
1430 represents the most direct application of a proper-scoring-rule reward to the reasoning-LLM
1431 setting. We initialize from the RLVR model.
- 1432 2. **Calibration RL (Analysis+Confidence Only).** Prior work (Stangel et al., 2025) demon-
1433 strates that applying calibration rewards only to the analysis and confidence portions can
1434 stabilize training and preserve task accuracy. We therefore implement a stronger, accuracy-
1435 preserving variant of the above baseline by restricting the reward to the analysis and confi-
1436 dence spans while taking no loss over the thinking/answer. Similar to the above baseline,
1437 we initialize from the RLVR model.
- 1438 3. **Abstention-RL** (Wei et al., 2025; Mohamadi et al., 2025; Song et al., 2025): Recent papers
1439 propose ternary rewards that give +1 for correct answers, 0 for incorrect answers, and an
1440 intermediate reward λ for explicit abstentions (e.g., “I don’t know”). We adopt this family
1441 of methods with $\lambda = 0.5$, a standard midpoint value. Because abstention models do not
1442 produce confidence scores, we evaluate calibration by using a test-time prompt that instructs
1443 the model to *never* abstain. As this method directly optimizes for accuracy as well, we
1444 initialize from the standard Qwen2.5-7B model.

1445
1446 **Results.** Table 6 reports the full results. All baselines significantly outperform vanilla RLVR on
1447 calibration, but underperform against RLCR on all metrics.

1448 *Calibration RL (Full-Sequence)* collapses to near-zero accuracy: with no reward shaping for cor-
1449 rectness, the model rapidly converges to a degenerate but reward-maximizing behavior, outputting
1450 empty or trivial answers with confidence 0. This yields perfect calibration under the Brier score
1451 and is essentially the optimal policy with a calibration-only reward. While KL-regularization can
1452 potentially reduce this collapse, there is constant pressure to reduce task accuracy with this variant.

1453 *Calibration RL (Analysis+Confidence Only)* prevents collapse and maintains accuracy comparable to
1454 RLCR, but calibration remains noticeably weaker. We hypothesize two contributing factors. First,
1455 the RLVR models might not be good starting points for further RL optimization. They might have
1456 reduced entropy or a very different output distribution compared to the base model. Second, jointly
1457 optimizing accuracy and calibration, as RLCR does, might provide complementary gradient signals
that reinforce one another and enable more effective learning of confidence estimation.

1458 *Abstention-RL* underperforms RLCR on calibration. Because the abstention reward only teaches
 1459 whether the model’s internal confidence exceeds the threshold λ , it never learns fine-grained confi-
 1460 dence estimation. Moreover, rewarding abstention can also suppress exploration: once the model
 1461 learns to abstain on difficult questions, it may no longer attempt them, limiting both reasoning
 1462 improvement and calibration learning. Abstention rewards are better suited for settings where the
 1463 primary goal is not to improve accuracy, but rather teach model the skill to abstain.

1464

1465 J ANALYZING SFT+RLCR

1468 Method	1469 HotpotQA				1470 O.O.D Averaged			
	1471 Acc.	1472 AUROC	1473 Brier	1474 ECE	1475 Acc.	1476 AUROC	1477 Brier	1478 ECE
1479 Base	1480 56.1%	1481 0.56	1482 0.40	1483 0.39	1484 47.8%	1485 0.53	1486 0.46	1487 0.45
1488 RLVR	1489 72.9%	1490 0.47	1491 0.28	1492 0.26	1493 52.5%	1494 0.52	1495 0.49	1496 0.49
1497 RLCR	1498 72.7%	1499 0.67	1500 0.17	1501 0.10	1502 50.9%	1503 0.60	1504 0.28	1505 0.25
1506 SFT+RLCR (original)	1507 72.2%	1508 0.78	1509 0.14	1510 0.08	1511 43.8%	1512 0.66	1513 0.24	1514 0.18
1515 SFT+RLCR (tweaked prompt)	1516 72.5%	1517 0.75	1518 0.15	1519 0.09	1520 49.8%	1521 0.62	1522 0.25	1523 0.21

1476 Table 7: **Results of SFT+RLCR with simple prompt change.** Adding a single line to the prompt
 1477 boosts O.O.D accuracy from 43.8% to 48%.

1479

1480 The results in Table 1 showed that our SFT+RLCR model experienced a substantial drop in O.O.D.
 1481 accuracy. While RLVR and vanilla RLCR achieve O.O.D. accuracies of 52.5% and 50.9% respec-
 1482 tively, SFT+RLCR reaches only 43.8%. To investigate this degradation, we manually examined
 1483 SFT+RLCR’s generations and uncovered a consistent abnormality unique to this model: the model
 1484 often identifies the correct answer during its reasoning, but then places an incorrect, seemingly ran-
 1485 dom number inside the answer tags. This behavior suggests that extended RL training on Math-heavy
 1486 data may induce overfitting or domain-specific bias in how the model formats its final answer.

1487

1488 To test whether this issue reflects catastrophic forgetting or a more superficial misalignment, we reran
 1489 the evaluation with minor modifications to the prompt. We added a single clarifying instruction:

1490

1491 “*Be careful about what you put in the answer tags. Do not arbitrarily put numbers there if the question
 1492 has nothing to do with Math.*”

1493

1494 Remarkably, this simple change improves O.O.D. accuracy from 43.8% to 49.8%, as shown in
 1495 Table 7. This indicates that the degradation is not solely due to catastrophic forgetting; rather, most
 1496 of the failure arises from formatting biases learned during Math-focused RL training, which are
 1497 straightforward to reverse.

1498

1499 We hypothesize that introducing a small amount of KL regularization, or training on a more diverse
 1500 RL dataset beyond Math, would mitigate these effects. Prior work has also observed that SFT can
 1501 induce more forgetting than RL (Shenfeld et al., 2025; Mukherjee et al., 2025), and the remaining
 1502 performance gap may indeed reflect residual forgetting—but to a much lesser extent than we initially
 1503 suspected.

1504

1505

1506

1507

1508

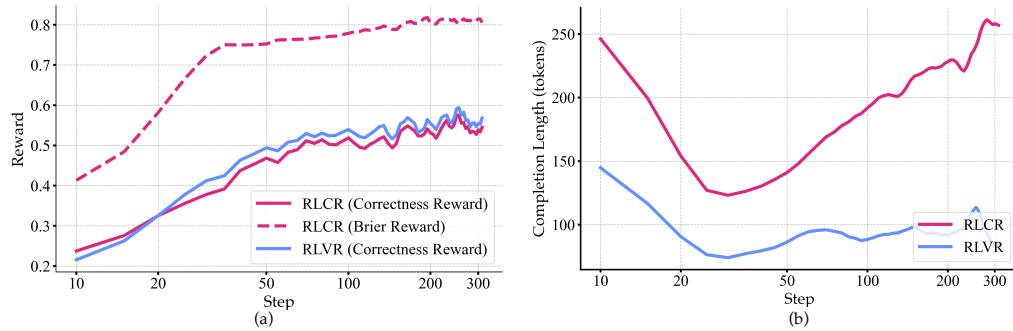
1509

1510

1511

1512 K HOTPOT TRAINING RESULTS

1514 Fig. 11 shows the training curves for RLCR and RLVR. Both the correctness and calibration reward
 1515 for RLCR increase smoothly, indicating that the model is able to jointly improve accuracy and
 1516 calibration. Notably, the completion lengths of our method gradually increase during training as
 1517 uncertainty reasoning improves.



1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530 Figure 11: **(a) Reward curves for RLCR (ours) and RLVR.** Both correctness and calibration
 1531 rewards improve under our method, demonstrating simultaneous gains in correctness and calibration.
 1532 The Brier reward is shifted upward by 1 for clarity. **(b) Completion lengths during training.**
 1533 The completion lengths of our method gradually increase during training as uncertainty reasoning
 1534 improves.

1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566 **L FULL RESULTS: MODELS TRAINED ON HOTPOTQA**
1567

1568 **Discussion** Below we present the full dataset-specific results. Although RLCR outperforms base-
1569 lines on average, there can be considerable variance in calibration on individual O.O.D datasets. A
1570 particularly illustrative case is CommonsenseQA, where all methods achieve roughly 90% accuracy.
1571 RLVR is highly overconfident and consistently predicts 85–100% confidence across all questions and
1572 datasets. On CommonsenseQA this overconfidence happens to coincide with the dataset’s high accu-
1573 racy, producing deceptively strong calibration. Importantly, this alignment is a spurious correlation
1574 arising from RLVR’s uniformly inflated confidence rather than genuine uncertainty modeling.

1575 At the same time, we acknowledge that all methods, including RLCR, have significant room for
1576 improvement in O.O.D. calibration. We believe that extending RL training and incorporating a more
1577 diverse training dataset can further strengthen robustness and calibration.

Method	SimpleQA				Trivia			
	Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
Base	13.5% \pm 1.0	0.50 \pm 0.01	0.77 \pm 0.01	0.81	57.8% \pm 2.2	0.51 \pm 0.01	0.38 \pm 0.02	0.37
RLVR	—	0.50 \pm 0.00	0.88 \pm 0.01	0.88	—	0.50 \pm 0.00	0.38 \pm 0.02	0.38
RLVR+BCE Classifier	—	0.48 \pm 0.03	0.53 \pm 0.01	0.64	—	0.57 \pm 0.03	0.26 \pm 0.01	0.15
RLVR+Brier Classifier	12.4% \pm 1.0	0.60 \pm 0.03	0.11 \pm 0.01	0.06	62.2% \pm 2.1	0.57 \pm 0.03	0.37 \pm 0.01	0.37
RLVR+Probe	—	0.51 \pm 0.03	0.14 \pm 0.01	0.12	—	0.47 \pm 0.03	0.43 \pm 0.01	0.41
Answer Probability	—	0.42 \pm 0.03	0.83 \pm 0.01	0.85	—	0.50 \pm 0.03	0.37 \pm 0.02	0.36
RLCR (ours)	12.1% \pm 1.0	0.60 \pm 0.02	0.24 \pm 0.01	0.34	60.8% \pm 2.1	0.73 \pm 0.03	0.20 \pm 0.01	0.06

1589 Table 8: Performance on SimpleQA and Trivia datasets. Values indicate the mean with error margins
1590 given as half-widths of the 95% bootstrap confidence intervals. Best values bolded.

Method	CommonsenseQA				GPQA			
	Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
Base	88.6% \pm 1.8	0.62 \pm 0.05	0.10 \pm 0.01	0.00	39.5% \pm 4.4	0.49 \pm 0.05	0.50 \pm 0.04	0.51
RLVR	—	0.50 \pm 0.00	0.09 \pm 0.02	0.09	—	0.50 \pm 0.00	0.60 \pm 0.05	0.60
RLVR+BCE Classifier	—	0.65 \pm 0.06	0.12 \pm 0.01	0.18	—	0.52 \pm 0.05	0.28 \pm 0.02	0.16
RLVR+Brier Classifier	90.8% \pm 1.6	0.65 \pm 0.05	0.26 \pm 0.01	0.42	39.5% \pm 4.6	0.52 \pm 0.06	0.29 \pm 0.03	0.21
RLVR+Probe	—	0.50 \pm 0.06	0.75 \pm 0.01	0.81	—	0.50 \pm 0.05	0.33 \pm 0.04	0.29
Answer Prob	—	0.60 \pm 0.06	0.08 \pm 0.01	0.03	—	0.53 \pm 0.05	0.54 \pm 0.04	0.54
RLCR (ours)	91.3% \pm 1.6	0.73 \pm 0.06	0.17 \pm 0.01	0.30	41.5% \pm 4.7	0.55 \pm 0.05	0.27 \pm 0.01	0.16

1603 Table 9: Performance on CommonsenseQA and GPQA datasets. Values indicate the mean with error
1604 margins given as half-widths of the 95% bootstrap confidence intervals. Best values bolded.

Method	MATH-500				GSM8K			
	Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
Base	46.8% \pm 4.30	0.59 \pm 0.05	0.48 \pm 0.04	0.49	73.5% \pm 2.50	0.52 \pm 0.03	0.24 \pm 0.02	0.22
RLVR	—	0.50 \pm 0.01	0.61 \pm 0.04	0.61	—	0.50 \pm 0.00	0.20 \pm 0.02	0.20
RLVR + Classifier	—	0.70 \pm 0.05	0.26 \pm 0.02	0.22	—	0.57 \pm 0.04	0.16 \pm 0.02	0.07
RLVR + Brier Classifier	38.6% \pm 4.20	0.58 \pm 0.05	0.32 \pm 0.03	0.29	80.1% \pm 2.10	0.66 \pm 0.04	0.55 \pm 0.02	0.63
RLVR + Probe	—	0.67 \pm 0.05	0.24 \pm 0.03	0.15	—	0.53 \pm 0.04	0.41 \pm 0.01	0.48
Answer Probability	—	0.79 \pm 0.05	0.51 \pm 0.04	0.55	—	0.78 \pm 0.02	0.16 \pm 0.02	0.17
RLCR (ours)	45.4% \pm 4.50	0.72 \pm 0.05	0.25 \pm 0.02	0.19	86.3% \pm 1.75	0.74 \pm 0.04	0.14 \pm 0.01	0.20

1617 Table 10: Performance on Math-500 and GSM8K datasets. Values indicate the mean with error
1618 margins given as half-widths of the 95% bootstrap confidence intervals. Best values bolded.

Method	HotpotQA				HotpotQA-Modified			
	Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
Base	39.7% \pm 3.10	0.54 \pm 0.02	0.53 \pm 0.03	0.53	30.4% \pm 4.30	0.59 \pm 0.04	0.57 \pm 0.04	0.59
RLVR	\top	0.50 \pm 0.00	0.37 \pm 0.03	0.37	\top	0.50 \pm 0.00	0.54 \pm 0.05	0.54
RLVR +BCE Classifier	\top	0.66 \pm 0.04	0.22 \pm 0.01	0.07	\top	0.77 \pm 0.05	0.21 \pm 0.02	0.13
RLVR +Brier Classifier	63.0% \pm 3.05	0.65 \pm 0.04	0.22 \pm 0.02	0.09	46.0% \pm 4.30	0.79 \pm 0.05	0.20 \pm 0.02	0.12
RLVR +Probe	\top	0.55 \pm 0.04	0.24 \pm 0.01	0.10	\top	0.57 \pm 0.05	0.26 \pm 0.01	0.12
Answer Prob	\top	0.72 \pm 0.04	0.36 \pm 0.03	0.36	\top	0.61 \pm 0.05	0.52 \pm 0.04	0.53
RLCR (ours)	62.1% \pm 3.05	0.69 \pm 0.04	0.21 \pm 0.01	0.03	44.4% \pm 4.20	0.80 \pm 0.05	0.19 \pm 0.02	0.08

Table 11: Performance on HotpotQA and HotpotQA-Modified datasets. Values indicate the mean with error margins given as half-widths of the 95% bootstrap confidence intervals. Best values bolded.

M FULL RESULTS: MODELS TRAINED ON MATH

Method	SimpleQA				TriviaQA			
	Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
Base	13.5% \pm 1.01	0.50 \pm 0.01	0.77 \pm 0.01	0.81	57.8% \pm 2.25	0.51 \pm 0.01	0.38 \pm 0.02	0.37
RLVR	\top	0.53 \pm 0.02	0.83 \pm 0.01	0.84	\top	0.50 \pm 0.02	0.43 \pm 0.02	0.43
RLVR+BCE Classifier	\top	0.45 \pm 0.02	0.57 \pm 0.01	0.64	\top	0.57 \pm 0.03	0.29 \pm 0.01	0.22
RLVR+Brier Classifier	15.2% \pm 1.05	0.49 \pm 0.02	0.15 \pm 0.01	0.11	58.3% \pm 2.20	0.61 \pm 0.03	0.30 \pm 0.01	0.25
RLVR+Probe	\top	0.44 \pm 0.02	0.58 \pm 0.01	0.66	\top	0.56 \pm 0.03	0.30 \pm 0.01	0.23
Answer Prob	\top	0.45 \pm 0.02	0.80 \pm 0.01	0.81	\top	0.48 \pm 0.02	0.40 \pm 0.02	0.38
RLCR (ours)	12.0% \pm 0.95	0.52 \pm 0.02	0.43 \pm 0.01	0.54	61.0% \pm 2.13	0.67 \pm 0.02	0.22 \pm 0.01	0.10
RLCR+SFT (ours)	11.4% \pm 0.94	0.60 \pm 0.03	0.29 \pm 0.01	0.40	55.6% \pm 2.20	0.72 \pm 0.02	0.21 \pm 0.01	0.06

Table 12: Performance on SimpleQA and TriviaQA datasets. Values indicate the mean with error margins given as half-widths of the 95% bootstrap confidence intervals. Best values bolded.

Method	CommonsenseQA				GPQA			
	Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
Base	88.6% \pm 1.76	0.62 \pm 0.05	0.10 \pm 0.01	0.00	39.5% \pm 4.35	0.49 \pm 0.05	0.50 \pm 0.04	0.51
RLVR	\top	0.55 \pm 0.02	0.13 \pm 0.02	0.13	\top	0.50 \pm 0.02	0.53 \pm 0.04	0.53
RLVR+BCE Classifier	\top	0.61 \pm 0.05	0.23 \pm 0.01	0.34	\top	0.51 \pm 0.05	0.33 \pm 0.03	0.27
RLVR+Brier Classifier	89.3% \pm 1.88	0.60 \pm 0.05	0.30 \pm 0.01	0.45	50.0% \pm 4.91	0.53 \pm 0.05	0.33 \pm 0.03	0.28
RLVR+Probe	\top	0.57 \pm 0.05	0.19 \pm 0.01	0.28	\top	0.50 \pm 0.05	0.30 \pm 0.02	0.19
Answer Prob	\top	0.56 \pm 0.05	0.10 \pm 0.02	0.09	\top	0.53 \pm 0.06	0.44 \pm 0.04	0.40
RLCR (ours)	90.1% \pm 1.68	0.62 \pm 0.05	0.21 \pm 0.01	0.34	43.3% \pm 4.46	0.57 \pm 0.05	0.26 \pm 0.02	0.10
SFT+RLCR (ours)	77.6% \pm 2.17	0.73 \pm 0.04	0.22 \pm 0.02	0.25	32.6% \pm 4.35	0.60 \pm 0.06	0.23 \pm 0.02	0.08

Table 13: Performance on CommonsenseQA and GPQA datasets. Values indicate the mean with error margins given as half-widths of the 95% bootstrap confidence intervals. Best values bolded.

1674 1675 1676	Method	MATH-500				GSM8K			
		Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
1677	Base	46.8% \pm 4.20	0.59 \pm 0.05	0.48 \pm 0.04	0.49	73.5% \pm 2.46	0.52 \pm 0.03	0.24 \pm 0.02	0.22
1678	RLVR	\top	0.45 \pm 0.04	0.44 \pm 0.04	0.43	\top	0.47 \pm 0.05	0.09 \pm 0.01	0.05
1679	RLVR +BCE Classifier	\top	0.77 \pm 0.05	0.22 \pm 0.03	0.18	\top	0.77 \pm 0.05	0.08 \pm 0.01	0.06
1680	RLVR +Brier Classifier	59.2% \pm 4.10	0.79 \pm 0.05	0.22 \pm 0.03	0.18	90.6% \pm 1.57	0.76 \pm 0.05	0.08 \pm 0.01	0.05
1681	RLVR +Probe	\top	0.67 \pm 0.05	0.26 \pm 0.03	0.20	\top	0.56 \pm 0.05	0.11 \pm 0.01	0.14
1682	Answer Prob	\top	0.54 \pm 0.05	0.39 \pm 0.04	0.39	\top	0.48 \pm 0.02	0.09 \pm 0.02	0.09
1683	RLCR (ours)	59.8% \pm 4.20	0.67 \pm 0.04	0.23 \pm 0.02	0.12	89.6% \pm 1.71	0.63 \pm 0.03	0.10 \pm 0.01	0.12
1684	SFT+RLCR (ours)	55.8% \pm 4.40	0.81 \pm 0.05	0.19 \pm 0.03	0.16	90.4% \pm 1.67	0.73 \pm 0.04	0.08 \pm 0.01	0.06

Table 14: Performance on MATH-500 and GSM8K datasets. Values indicate the mean with error margins given as half-widths of the 95% bootstrap confidence intervals. Best values bolded.

1685 1686 1687 1688 1689 1690	Method	Big-Math Digits				HotpotQA			
		Acc.	AUROC	Brier	ECE	Acc.	AUROC	Brier	ECE
1692	Base	48.1% \pm 3.10	0.56 \pm 0.03	0.47 \pm 0.03	0.47	39.7% \pm 3.10	0.54 \pm 0.02	0.53 \pm 0.03	0.53
1693	RLVR	\top	0.50 \pm 0.03	0.32 \pm 0.03	0.30	\top	0.50 \pm 0.01	0.55 \pm 0.03	0.55
1694	RLVR+BCE Classifier	\top	0.81 \pm 0.04	0.16 \pm 0.02	0.05	\top	0.58 \pm 0.03	0.28 \pm 0.01	0.20
1695	RLVR+Brier-Classifier	68.8% \pm 2.90	0.79 \pm 0.04	0.17 \pm 0.02	0.05	49.7% \pm 3.15	0.60 \pm 0.04	0.30 \pm 0.02	0.24
1696	RLVR+Probe	\top	0.72 \pm 0.04	0.19 \pm 0.02	0.07	\top	0.58 \pm 0.04	0.28 \pm 0.01	0.16
1697	Answer Prob	\top	0.53 \pm 0.04	0.30 \pm 0.03	0.30	\top	0.60 \pm 0.03	0.47 \pm 0.03	0.47
1698	RLCR (ours)	68.7% \pm 2.75	0.73 \pm 0.03	0.18 \pm 0.01	0.05	48.3% \pm 3.00	0.61 \pm 0.04	0.27 \pm 0.01	0.18
1699	RLCR+SFT (ours)	70.5% \pm 2.70	0.79 \pm 0.04	0.15 \pm 0.02	0.03	41.6% \pm 3.15	0.65 \pm 0.04	0.24 \pm 0.01	0.09

Table 15: Performance on Big-Math Digits and HotpotQA. Values indicate the mean with error margins given as half-widths of the 95% bootstrap confidence intervals. Best values bolded.

1728 SIMPLEQA EXAMPLE
 1729

1730 **Question**
 1731

1732 Who was awarded the Oceanography Society's Jerlov Award in 2018? (Ground Truth Answer:
 1733 Annick Bricaud)
 1734

1735 **RLCR (ours)**
 1736

1738 <think> The question asks who was awarded the Oceanography Society's Jerlov Award in 2018. The
 1739 Jerlov Award is given by the Oceanography Society, and it is named after the late Professor Gunnar
 1740 Jerlov, a pioneer in the field of ocean optics. To find the winner of the 2018 award, I would need to
 1741 look up the most recent information on the Oceanography Society's website or other reliable sources.
 1742 </think>

1743 <answer> Dr. David W. Schiedek </answer>

1744 <analysis> The Oceanography Society's website or other reliable sources do not provide information
 1745 on the winner of the 2018 Jerlov Award. It is possible that the information is not readily available
 1746 or that the award was not given in 2018. Additionally, the name "Dr. David W. Schiedek" is not a
 1747 well-known figure in the field of oceanography, which raises uncertainty about the accuracy of this
 1748 answer. </analysis>

1749 <confidence> 0.25 </confidence>

1750 **RLVR**
 1751

1752 <think> The question asks for the person who was awarded the Oceanography Society's Jerlov Award
 1753 in 2018. The Jerlov Award is given by the Oceanography Society to recognize outstanding contributions
 1754 to the field of oceanography. The recipient for 2018 was Dr. Laurence C. Smith. </think>

1755 <answer> Laurence C. Smith </answer>

1756 <confidence> 100. </confidence>

1757 **Qwen-7B-Base**

1758 <think> To find out who was awarded the Oceanography Society's Jerlov Award in 2018, I will search
 1759 for the most recent information on the award winners from the Oceanography Society's official website
 1760 or a reliable source that covers scientific awards. </think>

1761 <answer> The Oceanography Society's Jerlov Award in 2018 was awarded to Dr. Lisa Levin.
 1762 </answer>

1763 <confidence> 0.95 </confidence>

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782 HOTPOTQA-MODIFIED EXAMPLE
1783

1784

1785

1786 All supporting information from the given question has been removed. The only way to answer
1787 correctly is if the model remembers the information in its weights.
1788

1789

1790

1791

1792

Question and Supporting Information

1793

1794 **Question:** Jacques Sernas, actor in *Fugitive in Trieste*, was of what nationality? (Ground
1795 Truth Answer: Lithuanian-born French)

1796

1797 Your answer will be verified with exact match score. To ensure correct verification, only
1798 provide the answer within the <answer> </answer> tags. Do not put any sentences or
1799 reasoning process within the <answer> </answer> tags.
1800

1801

Supporting Information:

1802

Paragraph 0

1803

1804 *Man From 1997* is a time travel episode of the 1956–57 anthology television series *Conflict*
1805 directed by Roy del Ruth, produced by Roy Huggins, written by James Gunn from a story by
1806 Alfred Bester, and starring Jacques Sernas, Charles Ruggles, Gloria Talbott and James Garner.
1807 The music was written by David Buttolph and the cinematographer was Ted D. McCord.
1808 The show was originally telecast on November 27, 1956 and a kinescope of the broadcast
1809 currently exists.
1810

1811

Paragraph 1

1812

1813 *Altair* is a 1956 Italian romantic drama film directed by Leonardo De Miti and starring
1814 Franco Interlenghi, Antonella Lualdi and Jacques Sernas.
1815

1816

Paragraph 2

1817

1818 *Dieci canzoni d'amore da salvare* (English title: "Ten Love Songs") is a 1953 Italian film
1819 directed by Flavio Calzavara. The plot concerns a songwriter, played by Jacques Sernas, who
1820 leaves his sweetheart and publisher when he learns that he is going blind. Supporting Sernas
1821 were Brunella Bovo, Franca Tamantini, and Enrico Viarisio.
1822

1823

Paragraph 3

1824

1825 *Loving You Is My Sin* (Italian: *Amarti è il mio peccato*) is a 1953 Italian melodrama film
1826 directed by Sergio Grieco and starring Jacques Sernas, Luisa Rossi and Elisa Cegani.
1827

1828

Paragraph 4

1829

1830 *It's All Adam's Fault* or *In Six Easy Lessons* (French: *C'est la faute d'Adam*) is a 1958 French
1831 comedy film directed by Jacqueline Audry and starring Dany Robin, Jacques Sernas and
1832 Mijanou Bardot.
1833

1834

Paragraph 5

1835

1836 *Balearic Caper* (Spanish: "Zarabanda bing bing", Italian: "Baleari Operazione Oro",
1837 French: "Barbouze chérie", also known as *Operation Gold*) is a 1966 Spanish-Italian-French
1838 heist-Eurospy comedy film written and directed by José María Forqué and starring Jacques
1839 Sernas, Daniela Bianchi and Mireille Darc. It was shot in Ibiza.
1840

1841

Paragraph 6

1842

1843 *Finishing School* (Italian: *Fanciulle di lusso*) is a 1953 French-Italian comedy film directed
1844 by Bernard Vorhaus and starring Susan Stephen, Anna Maria Ferrero and Jacques Sernas. It
1845 was made at Cinecittà with sets designed by the art director Franco Lolli. It is also known by
1846 the alternative title of *Luxury Girls*.
1847

1848

Paragraph 7

1849

1850 *Jump into Hell* is a 1955 war film directed by David Butler. The film stars Jacques Sernas
1851 (billed as "Jack Sernas") and Kurt Kasznar. The first contemporary Hollywood war film of
1852 the war in Indochina, the story is a fictionalized account of the Battle of Dien Bien Phu.
1853

1836

RLCR

1837

1838

<think> The question asks for the nationality of Jacques Sernas, the actor in Fugitive in Trieste. The information provided mentions Jacques Sernas in several films, but does not specify his nationality. However, it does mention that he starred in Altair, a 1956 Italian romantic drama film, and that he was an actor in several French and Italian films. This suggests that Jacques Sernas might be of French or Italian nationality, as he starred in films produced in those countries. However, there is no direct information about his nationality in the given text. </think>

1843

<answer> French </answer>

1844

1845

<analysis> The information provided mentions Jacques Sernas in several French and Italian films, and he starred in Altair, a 1956 Italian romantic drama film. However, there is no direct information about his nationality. While it is possible that he could be of French or Italian nationality, the lack of specific information makes it uncertain. Additionally, the fact that he starred in both French and Italian films could suggest that he might be of mixed nationality or have connections to both countries. Due to the ambiguity and lack of direct information, the confidence in this answer is relatively low. </analysis>

1850

<confidence> 0.4 </confidence>

1851

1852

RLVR

1853

1854

<think> The question asks for the nationality of Jacques Sernas, the actor in Fugitive in Trieste. Jacques Sernas was an American actor. </think>

1855

<answer> American </answer>

1856

1857

1858

1859

Qwen-7B-Base

1860

<think> To determine Jacques Sernas' nationality, I will analyze the information provided in the supporting information.

1861

From the information given, I can see that Jacques Sernas has appeared in various films from different countries, such as Italy, France, and Spain. However, there is no specific mention of his nationality in the provided information.

1862

Since there is no direct information about Jacques Sernas' nationality, I will analyze the context of the question. The question is about Jacques Sernas' nationality in the context of the film "Fugitive in Trieste." Trieste is a city in Italy, and the film is an Italian romantic drama.

1863

Based on this context, it is reasonable to assume that Jacques Sernas is of Italian nationality. However, without any direct information, I cannot be 100% confident in this assumption. </think>

1864

<answer> Italian </answer>

1865

<confidence> 0.8 </confidence>

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890 MATH EXAMPLE

1891

1892

1893

An example where the analysis from the vanilla RLCR is generic, while the SFT+RLCR model produces a much more specific evaluation that directly references the reasoning process. Although the RLCR model achieves reasonable calibration on Math, the SFT+RLCR model outperforms it, likely because it has learned to generate more effective uncertainty-aware chain-of-thought reasoning.

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

Question

Dalton, Hunter, Alex, Bella, and Chris formed a Superhero Fan Club. They set a goal to watch as many Superhero movies as they could in one summer. Dalton watched 15 movies, Hunter watched 19, Alex watched 25, Bella watched 21, and Chris watched 11. They all watched 5 superhero movies together, while Dalton, Hunter, and Alex watched an additional 3 movies only among themselves, and Bella and Chris watched 2 more movies only with each other. Every other movie they watched was different. How many different movies did they see? (Ground Truth Ans: 63)

RLCR (ours)

<think> To determine the total number of different movies watched by Dalton, Hunter, Alex, Bella, and Chris, we need to account for the movies they watched together and the additional movies they watched among themselves or with each other.

First, let's calculate the total number of movies watched if we didn't account for any overlaps: - Dalton watched 15 movies. - Hunter watched 19 movies. - Alex watched 25 movies. - Bella watched 21 movies. - Chris watched 11 movies.

The sum of these is:

$$15 + 19 + 25 + 21 + 11 = 91$$

Next, we need to subtract the overlaps. They all watched 5 movies together, so we subtract 4 overlaps (since the 5 movies are counted 5 times in the initial sum):

$$91 - 4 \times 5 = 91 - 20 = 71$$

Now, we need to account for the additional movies watched among specific groups: - Dalton, Hunter, and Alex watched 3 additional movies only among themselves. These movies are already subtracted in the previous step, so we don't need to subtract them again. - Bella and Chris watched 2 additional movies only with each other. These movies are also already subtracted in the previous step, so we don't need to subtract them again.

Since all the overlaps have been accounted, the total number of different movies they saw is 71.

<answer> 71 </answer>

<analysis> The solution provided involves a reasonable approach to accounting for the overlaps in the number of movies watched. However, there is uncertainty in the interpretation of the problem statement, particularly the part about "Every other movie they watched was different."

This phrase could be interpreted in two ways: 1. That the 5 movies watched together, the 3 additional movies watched by Dalton, Hunter, and Alex, and the 2 additional movies watched by Bella and Chris are all distinct from each other and from the other movies watched by the individuals. 2. That the total number of movies watched by each individual, minus the overlaps, results in a set of distinct movies. Given the information provided, the first interpretation seems more plausible, but it introduces an element of uncertainty. The problem does not clearly state that all movies watched are distinct, only that "Every other movie they watched was different," which could be interpreted as a subset of the total movies watched.

Therefore, the confidence level in the solution is set at 0.6, acknowledging the potential for misinterpretation and the lack of clear information in the problem statement.</analysis>

<confidence> 0.6 </confidence>

1944
1945**SFT+RLCR (ours)**1946
1947
1948

<think> To determine the total number of different movies the Superhero Fan Club members watched, we need to account for the movies watched individually and in groups, ensuring we don't double-count any movies.

1949
1950
1951

First, let's sum the total number of movies watched by each member without considering overlaps: - Dalton watched 15 movies. - Hunter watched 19 movies. - Alex watched 25 movies. - Bella watched 21 movies. - Chris watched 11 movies.

Adding these gives:

1952
1953
1954

$$15 + 19 + 25 + 21 + 11 = 91$$

Next, we need to subtract the overlaps. They all watched 5 movies together, so we subtract 4 times 5 (since the 5 movies are counted 5 times in the initial sum, once for each person):

1955
1956

$$91 - 4 \times 5 = 91 - 20 = 71$$

1957
1958
1959
1960
1961

Now, we need to account for the additional movies watched in smaller groups. Dalton, Hunter, and Alex watched 3 more movies only among themselves. These 3 movies are already included in the initial counts for Dalton, Hunter, and Alex, but we need to ensure they are not double-counted in the all-together group. Since the 3 movies are only among these three, they are not part of the 5 movies watched together, so we don't need to subtract them again. They are already included in the individual counts and the group of 5, so we add them back to the total after the initial subtraction:

1962
1963

$$71 + 3 = 74$$

1964
1965
1966
1967

Bella and Chris watched 2 more movies only with each other. These 2 movies are already included in the initial counts for Bella and Chris, but we need to ensure they are not double-counted. Since the 2 movies are only between Bella and Chris, they are not part of the 5 movies watched together or the 3 movies watched by Dalton, Hunter, and Alex, so we add them back to the total after the initial subtraction:

1968

$$74 + 2 = 76$$

1969
1970
1971
1972
1973
1974
1975

At this point, we have accounted for all the overlaps, and the total number of different movies they saw is 76. To verify, let's consider the structure of the problem: - The 5 movies watched together are counted 5 times initially but subtracted 4 times, so they are correct. - The 3 movies watched by Dalton, Hunter, and Alex are included in their individual counts and the group of 5, so they are correct. - The 2 movies watched by Bella and Chris are included in their individual counts, so they are correct. The final count of 76 different movies is consistent with the problem constraints. Therefore, the total number of different movies they saw is 76. </think>

1976

<answer> 76 </answer>

1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

<analysis> Upon reviewing the solution, I notice that the reasoning process involves summing the total movies watched individually, subtracting the overlaps, and then adding back the group-specific movies. The initial sum of 91 is correct, and the subtraction of 20 for the 5 movies watched together is appropriate, resulting in 71. However, the addition of the 3 movies watched by Dalton, Hunter, and Alex (3) and the 2 movies watched by Bella and Chris (2) is problematic. These movies are already included in the individual counts and the group of 5, so adding them back is redundant and unnecessary. The reasoning does not clearly explain why these movies are added back, and the final total of 76 does not seem to be derived from a clear, step-by-step logical flow. The explanation about the 3 movies being "only among these three" and not part of the 5 is confusing, as the 3 movies are part of the individual counts and the group of 5, so they should not be added back. The 2 movies watched by Bella and Chris are also problematic, as they are only between Bella and Chris, but the reasoning does not clearly address how they are added back without double-counting. The final answer of 76 is not supported by the reasoning, and the steps are convoluted, making the solution unclear and potentially incorrect.</analysis>

1990
1991
1992
1993
1994
1995
1996
1997

<confidence> 0.3 </confidence>

1998
1999**RLVR**2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

<think> To determine the total number of different movies watched by Dalton, Hunter, Alex, Bella, and Chris, we need to carefully account for the movies they watched together and the movies they watched exclusively among themselves and with each other.

1. **Total movies watched by each individual:** - Dalton: 15 movies - Hunter: 19 movies - Alex: 25 movies - Bella: 21 movies - Chris: 11 movies
2. **Movies watched together:** They all watched 5 movies together.
3. **Movies watched exclusively among themselves:** - Dalton, Hunter, and Alex watched an additional 3 movies only among themselves. - Bella and Chris watched 2 more movies only with each other.
4. **Calculating the total number of movies watched:** - First, sum the total movies watched by each individual:

$$15 + 19 + 25 + 21 + 11 = 91$$

- Subtract the movies watched together (since they are counted multiple times in the individual totals):

$$91 - 5 = 86$$

- Add back the movies watched together (they should only be counted once):

$$86 + 5 = 91$$

- Subtract the movies watched exclusively among themselves and with each other (since they are also counted multiple times): - Dalton, Hunter, and Alex watching 3 movies only among themselves are already subtracted when we subtracted the 5 movies watched together. - Bella and Chris watching 2 movies only with each other are already subtracted when we subtracted the 5 movies watched together.
- Therefore, we do not need to make any further adjustments for these exclusive movies as they are already accounted for in the initial sum and subtraction.

5. **Final calculation:** The total number of different movies they saw is the sum of all individual movies watched, minus the movies watched together (to avoid double-counting), plus the movies watched together again (to include them once), and no further adjustments are needed for the exclusive movies:

$$91 - 5 + 5 = 91$$

Thus, the total number of different movies they saw is:

91

</think>

<answer> 91 </answer>

<confidence> 90 </confidence>