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ABSTRACT

In this paper, we consider the problem of long-term point tracking, which requires
consistent identification of points across multiple frames in a video, despite changes
in appearance, lighting, perspective, and occlusions. We target online tracking
on a frame-by-frame basis, making it suitable for real-world, streaming scenarios.
Specifically, we introduce Track-On, a simple transformer-based model designed
for online long-term point tracking. Unlike prior methods that depend on full
temporal modeling, our model processes video frames sequentially without access
to future frames, leveraging two memory modules —spatial memory and context
memory— to capture temporal information and maintain reliable point tracking
over long time horizons. At inference time, it employs patch classification and re-
finement to identify correspondences and track points with high accuracy. Through
extensive experiments, we demonstrate that Track-On sets a new state-of-the-art
for online models and delivers superior or competitive results compared to offline
approaches on TAP-Vid benchmark. Our method offers a robust and scalable
solution for real-time tracking in diverse applications.

1 INTRODUCTION

Motion estimation is one of the core challenges in computer vision, with applications spanning video
compression (Jasinschi et al., 1998), video stabilization (Battiato et al., 2007; Lee et al., 2009), and
augmented reality (Marchand et al., 2015). The objective is to track physical points across video
frames accurately. A widely used solution for motion estimation is optical flow, which estimates
pixel-level correspondences between adjacent frames. In principle, long-term motion estimation can
be achieved by chaining together these frame-by-frame estimations.

Recent advances in optical flow techniques, such as PWC-Net (Sun et al., 2018) and RAFT (Teed
& Deng, 2020), have improved accuracy for short-term motion estimation. However, the inherent
limitations of chaining flow estimations remain a challenge, namely error accumulation and the
difficulty of handling occlusions. To address long-term motion estimation, Sand & Teller (2008)
explicitly introduced the concept of pixel tracking, a paradigm shift that focuses on tracking individual
points across a video, rather than relying solely on pairwise frame correspondences. This concept,
often referred to as “particle video” has been revisited in recent deep learning methods like PIPs
(Harley et al., 2022) and TAPIR (Doersch et al., 2023), which leverage dense cost volumes, iterative
optimization, and learned appearance updates to track points through time.

Despite the advancements, the existing methods for long-term point tracking face two major limi-
tations. First, they primarily rely on offline processing, where the entire video or a large window
of frames is processed at once. This allows models to use both past and future frames to improve
predictions but inherently limits their applicability in real-world scenarios (Doersch et al., 2024;
2023; Karaev et al., 2024; Harley et al., 2022; Li et al., 2024). Second, these approaches struggle with
scalability, as they often require full attention computation across all frames, leading to significant
memory overhead, especially for long videos or large frame windows. These limitations hinder
their use in real-world applications, like robotics or augmented reality, where efficient and online
processing of streaming video is crucial.

In this paper, we address the challenge of long-term point tracking in an online processing setting
(Fig. 1, right), where the model processes video frames sequentially, without access to future frames
(Vecerik et al., 2023). We propose a simple transformer-based model, where points of interest are
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Figure 1: Offline vs. Online Point Tracking. We propose an online model, tracking points frame-by-
frame (right), unlike the dominant offline paradigm where models require access to all frames within
a sliding window or the entire video (left). In contrast, our approach allows for frame-by-frame
tracking in videos of any length. To capture temporal information, we introduce two memory modules:
spatial memory, which tracks changes in the target point, and context memory, which stores broader
contextual information from previous states of the point.

treated as queries in the transformer decoder, attending the current frame to update their features.
Unlike existing methods that aggregate temporal information across video frames, we achieve
temporal continuity by updating the query representations with information from two specialized
memory modules: spatial memory and context memory. This design enables the model to maintain
reliable point tracking over time while avoiding the high computational and memory costs associated
with full temporal modeling across entire video sequences.

Specifically, spatial and context memory play distinct but complementary roles. The former aims to
reduce tracking drift by updating the query representation with information from the latest frames.
This ensures that the query reflects the most recent visual appearance of the tracked point, by storing
the content around the model’s predictions in previous frames, rather than relying on features of
the initial point. On the other hand, context memory provides a broader view of the track’s history,
storing the point’s embeddings from past frames. This allows the model to consider changes to visual
content including key information about the point’s status, such as whether the point was occluded
in previous frames. Overall, spatial memory focuses on positional changes in predictions over time
while context memory ensures temporal continuity by providing a full perspective of the track’s
evolution. Together, these two memory modules aggregate useful temporal information across video.

At training time, the queries from the transformer decoder identify the most likely location by
computing embedding similarity with each patch, and are trained using similarity-based classification,
akin to contrastive learning. The prediction is then refined by estimating an offset within the local
region using a deformable attention block to find the final correspondence. We conduct extensive
experiments demonstrating that our simple patch-classification and refinement approach serves as a
strong alternative to the dominant iterative update paradigm (Karaev et al., 2024; Harley et al., 2022;
Doersch et al., 2023). Our method sets a new state-of-the-art among online models and either matches
or surpasses offline approaches on datasets in the TAP-Vid benchmark (Doersch et al., 2022).

In summary, our contributions are as follows: (i) A simple architecture that treats points of interest
as queries in the transformer decoder, identifying correspondences through patch classification and
refinement; (ii) Memory modules that effectively store past content and address feature drift in an
online manner; (iii) Extensive experiments and ablations demonstrating state-of-the-art performance
among online models and competitive results compared to offline models on the TAP-Vid benchmark.

2 METHODOLOGY

2.1 PROBLEM SCENARIO

Given an RGB video of T frames, V =
{
I1, I2, . . . , IT

}
∈ RT×H×W×3, and a set of N predefined

queries, Q =
{
(t1,p1), (t2,p2), . . . , (tN ,pN )

}
∈ RN×3, where each query point is specified

2
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Figure 2: Overview. We introduce Track-On, a simple transformer-based method for online, frame-
by-frame point tracking. The process involves three steps: (i) Visual Encoder, which extracts features
from the given frame; (ii) Query Decoder, which decodes interest point queries using the frame’s
features; (iii) Point Prediction, where correspondences are estimated in a coarse-to-fine manner, first
through patch classification based on similarity, followed by refinement through offset prediction from
the patch center. Note that the squares refer to point queries, while the circles represent predictions,
either as point coordinates or visibility.

by the start time and pixel’s spatial location, our goal is to predict the correspondences p̂t ∈ RN×2

and visibility v̂t ∈ {0, 1}N for all query points in an online manner, i.e. using only frames up to the
current target frame t. To address this problem, we propose a transformer-based point tracking model,
that tracks points frame-by-frame, with dynamic memories M to propagate temporal information
along the video sequence:

p̂t, v̂t, Mt = Φ(It, Q, Mt−1; Θ) (1)

In the following sections, we start by describing the basic transformer architecture for point tracking
in Sec. 2.2, then introduce the two memory modules and their update mechanisms in Sec. 2.3.

2.2 TRACK-ON: POINT TRACKING WITH A TRANSFORMER

Our model is based on transformer, consisting of three components, as illustrated in Fig. 2: Visual
Encoder is tasked to extract visual features of the video frame, and initialize the query points; Query
Decoder enables the queried points to attend the target frame to update their features; and Point
Prediction, to predict the positions of corresponding queried points in a coarse-to-fine (Doersch et al.,
2023) manner.

2.2.1 VISUAL ENCODER

We adopt a Vision Transformer (ViT) as visual backbone, specifically, DINOv2 (Oquab et al., 2023),
and use ViT-Adapter (Chen et al., 2022b) to upsample the feature. The ViT-Adapter allows us to
obtain dense features at a higher resolution than the standard ViT. We then add learnable spatial
positional embeddings γs to the frame-wise features:

ft = Φvis-enc (It) + γs ∈ R
H
S ×W

S ×D (2)

where D denotes the feature dimension, and S refers to the stride. We use a single-scale feature map
from ViT-Adapter for memory efficiency, specifically with a stride of S = 4.

Query Initialization: To initialize the query features (qinit), we apply bilinear sampling to the
feature map at the query location

(
pi
)
:

qinit =
{

sample(fti , pi)
}N

i=1
∈ RN×D

In practice, we initialize the query based on the features of the start frame ti for i-th query and
propagate them to the subsequent frames.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2.2 QUERY DECODER

After extracting the visual features for the frame and query points, we adopt a variant of transformer
decoder (Vaswani et al., 2017), with 3 layers, i.e. cross-attention followed by a self-attention, with an
additional feed forward network between attentions:

qt = Φq-dec
(
qinit, ft

)
∈ RN×D (3)

The points of interest are treated as queries, which update their features by iteratively attending the
visual features of current frame with cross attention. These updated queries can thus be used to search
for its best match within the current frame, as explained in the following section.

2.2.3 POINT PREDICTION

Unlike previous work that regresses the exact location of the points, we formulate the tracking as a
matching problem to one of the patches, as required by ViT encoding, that provides a coarse estimate
of the correspondence. To further find the exact correspondence with higher precision, we predict
offsets to the patch center. Additionally, we also infer the visibility v̂t ∈ [0, 1]N and the uncertainty
ût ∈ [0, 1]N for the point of interest.

Patch Classification: We first pass the visual features into 4-layer MLP, and downsample the
resulting features to obtain multiscale maps, i.e., ft → ht ∈ RH

S ×W
S ×D → hl

t ∈ R
H

2l.S
× W

2l.S
×D.

We then compute multi-scale similarity maps across the 4 levels, i.e., cosine similarity between the
decoded queries and patch embeddings:

Cl
t =

qt · hl
t

∥qt∥ · ∥hl
t∥

∈ RN× H

2l.S
× W

2l.S , l ∈ {0, . . . , 3} (4)

The final similarity map Ct is computed as the weighted average of these multi-scale similarity maps
using learned coefficients at the highest resolution. We apply a temperature to scale the similarity
map, and take softmax spatially over the patches within the current frame. We train the model
with a classification objective, the patch with points of interest is treated as the ground-truth class.
Specifically, we perform P -class classification, where P is the total number of patches in the frame.
We select the center of the patch with the highest similarity (p̂patch ∈ RN×2) as our coarse prediction.

Offset Prediction: For the exact correspondence (p̂t ∈ RN×2), we further predict an offset
ôt ∈ RN×2 to the patch center by incorporating features from the local region around the inferred
patch, as shown in Fig. 3:

ôt = Φoff(qt, ht, p̂
patch
t ), p̂t = p̂patch

t + ôt (5)

Here, Φoff is a deformable transformer decoder (Zhu et al., 2021) block with 3 layers, excluding
self-attention. In this decoder, the query qt is processed using the key-value pairs ht, with the
reference point set to p̂patch

t . To limit the refinement to the local region, the offsets are constrained by
the S (stride) and mapped to the range [−S, S] using a tanh activation.

In addition, we predict the visibility v̂t and uncertainty ût with two separate 2-layer MLPs, followed
by a sigmoid. At training time, we define a prediction to be uncertain if the prediction error exceeds
a threshold (δu = 8 pixels) or if the point is occluded. During inference, we classify a point as
visible if its probability exceeds a threshold δv . Although we do not directly utilize uncertainty in our
predictions during inference, we found predicting uncertainty to be beneficial for training.

Training: We train our model using the ground-truth trajectories pt ∈ RN×2 and visibility
information vt ∈ {0, 1}N . For patch classification, we apply cross-entropy loss based on the
ground-truth class, patch cpatch. For offset prediction ôt, we minimize the ℓ1 distance between the
predicted offset and the actual offset. We supervise the visibility v̂t and uncertainty ût using binary
cross-entropy loss. The total loss is a weighted combination of these four:

L = λ LCE
(
Ct, c

patch
)
. vt + Lℓ1 (ôt, ot) . vt + LCE(v̂t,vt) + LCE(ût,ut) (6)

Discussion: Till this point, our model has exclusively considered relocating the queried points
within the current frame. However, as the appearance of points consequently changes over time, the
embedding similarity between the initial query point and future correspondences tends to decrease
gradually (Fig. 4). This problem, known as feature drift, leads to inaccurate predictions (Li et al.,
2024) when solely relying on the feature similarity with the initial point.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Offset Head. Starting with a rough
estimation from patch classification (left), where
lighter colors indicate higher correlation, we refine
the prediction using the offset head (right). The
selected patch center and the final prediction are
marked by a blue dot and a red dot, respectively,
with the ground-truth represented by a diamond.
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Figure 4: Feature Drift. For the tracks shown
below (start, middle, and final frames), the plot
above illustrates the decreasing similarity be-
tween the features of the initial query and its
correspondences over time, with the initial sim-
ilarity indicated by horizontal dashed lines.

2.3 TRACK-ON WITH MEMORY

Here, we introduce two types of memories: spatial memory and context memory. Spatial memory
stores information around the predicted locations, allowing us to update the initial queries based on
the latest predictions. Context memory preserves the past states of the track by storing previously
decoded queries, ensuring continuity over time and preventing inconsistencies. This design enables
our model to effectively capture temporal relations in long-term videos while also adapting to changes
in the target’s features to address feature drift.

We store the past features for each of the N queries independently, with up to K embeddings of
dimension D per query in each memory module. Once fully filled, the earliest entry from the memory
will be obsoleted as a new entry arrives, operating as a First-In First-Out (FIFO) queue.

2.3.1 SPATIAL MEMORY

Here, we introduce the spatial memory module that stores fine-grained local information from previous
frames, enabling continuous updates to the initial query points. This adaptation to appearance changes
helps mitigate feature drift.

Memory Construction: We zero-initialize the memory, Ms
0, update its content with each frame.

For the first frame, we make a prediction using initial query qinit without memory.

Memory Write (Φq-wr): To update the memory with the new prediction, Ms
t−1 → Ms

t , we extract a
feature vector around the predicted point p̂t on the feature map ft of the current frame and add it to
the memory:

Ms
t = [Ms

t−1, Φq-wr
(
[qinit,qt], ft, p̂t

)
] (7)

Here, Φq-wr is a 3-layer deformable transformer decoder without self-attention, using the concatenated
qinit and qt over the channel dimension as the query vector, attending a local neighborhood of
predicted point for update. Utilizing deformable attention for the local summarization process helps
prevent error propagation over time, as the query can flexibly select relevant features from any range,
ideally refining itself in cases of inaccurate predictions.

Query Update (Φq-up): With the memory module, the initial query points first read the spatial mem-
ory Ms

t−1, which is then passed into the query decoder to estimate the correspondence. Specifically,
the update is performed by predicting a residual change to the initial query based on the memory
content:

qinit
t = Φq-up

(
qinit, Ms

t−1

)
= qinit + ϕqqm

(
qinit, ϕmm(M

s
t−1 + γs)

)
(8)

Here, ϕmm is a transformer encoder layer that captures dependencies across different time steps, by
sharing information in memory. ϕqqm is a transformer decoder layer without initial self-attention,
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Figure 5: Memory Modules. Spatial memory Ms
t−1 (left) is used to update the initial query qinit

from the first frame to qinit
t on the current frame. The goal is to resolve feature drift by storing the

content around the model’s predictions in previous frames. Context memory Mc
t−1 (right) is input to

the query decoder which updates qinit
t to qt. It provides a broader view of the track’s history with

appearance changes and occlusion status by storing the point’s embeddings from past frames.

where qinit attends to updated memory, followed by a linear layer, and γs ∈ RK×D is learnable,
temporal positional embeddings.

Instead of sequentially updating the query embeddings at each time step, e.g. extracting qinit
t using

qinit
t−1 , we update them with respect to the initial query qinit, conditioned on all previous predictions

stored in the memory. This approach prevents error propagation by taking into account the entire
history of predictions.

2.3.2 CONTEXT MEMORY

In addition to spatial memory, we introduce a context memory that incorporates historical information
of the queried points from a broader context, enabling the model to capture past occlusions and
visual changes. Specifically, we store the decoded query features from previous time steps in context
memory, Mc

t−1. We then integrate it by extending the query decoder with an additional transformer
decoder layer without self-attention, where queries attend to memory with added learnable temporal
embeddings γc ∈ RK×D:

qt = Φq-dec
(
qinit
t , ft, M

c
t−1 + γc

)
(9)

Changes to the query decoder with memory are shown in red. For the writing operation, we add
the most recent qt to Mc

t−1 and remove the oldest item, following the same procedure as in the
spatial memory. Our experiments demonstrate that incorporating past content temporally with context
memory enables more consistent tracking with additional benefits over spatial memory, especially in
visibility prediction, since spatial memory focuses only on the regional content where the point is
currently visible.

2.3.3 INFERENCE-TIME MEMORY EXTENSION

Although the memory size K is fixed at training time, the number of video frames at inference can be
different from the training frame limit, impacting the optimal number of frames stored in memory for
effective content capture. To address this, we extend the memory size during inference by linearly
interpolating the temporal positional embeddings, γs and γc, to sizes Ks and Kc for spatial memory
and context memory, respectively. In particular, we train our memories with K = 12, and extend
them to Ks = Kc = 48 at inference time.
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Table 1: Quantitative Results on TAP-Vid Benchmark. This table shows results in comparison to
the previous work on TAP-Vid under queried first setting, in terms of AJ, δxavg, and OA. † Release
model. ‡ Reproduction using the official checkpoints.

Model
DAVIS RGB-Stacking Kinetics

AJ ↑ δxavg↑ OA ↑ AJ ↑ δxavg↑ OA ↑ AJ ↑ δxavg↑ OA ↑
Offline
TAPIR† 58.3 71.1 87.7 - - - 52.5 65.3 85.5
CoTracker (All) ‡ 60.8 74.8 88.4 60.5 73.3 83.5 48.4 62.2 83.2
CoTracker (Single) ‡ 61.0 75.4 88.3 57.2 73.8 81.1 48.8 63.5 83.2
SpatialTracker 61.1 76.3 89.5 63.5 77.6 88.2 50.1 65.9 86.9
BootsTAPIR 61.4 74.0 88.4 - - - 54.7 68.5 86.3
BootsTAPIR † 62.4 74.6 89.6 - - - 55.8 68.8 86.6
TAPTR 63.0 76.1 91.1 60.8 76.2 87.0 49.0 64.4 85.2

Online
DynOMo 45.8 63.1 81.1 - - - - - -
TAPIR † 56.7 70.2 85.7 67.7 - - 51.5 64.4 85.2
CoTracker (All) ‡ 55.9 68.7 83.7 59.5 71.9 82.4 - - -
SpatialTracker ‡ 57.3 70.6 85.0 52.9 69.4 80.3 - - -
BootsTAPIR † 59.7 72.3 86.9 - - - 55.1 67.5 86.3
Ours 62.9 75.9 89.7 72.1 84.1 93.0 53.2 66.6 87.1

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets: We use TAP-Vid (Doersch et al., 2022) for both training and evaluation, consistent with
previous work. Specifically, we train our model on TAP-Vid Kubric, a synthetic dataset of 11,000
video sequences, each with a fixed length of 24 frames. For evaluation, we use three other datasets
from the TAP-Vid benchmark: TAP-Vid DAVIS, which includes 30 real-world videos from the
DAVIS video dataset; TAP-Vid RGB-Stacking, a synthetic dataset of 50 videos focused on robotic
manipulation tasks, mainly involving textureless objects; TAP-Vid Kinetics, a collection of over
1,000 real-world online videos.

Metrics: We evaluate tracking performance with the following metrics of TAP-Vid benchmark:
Occlusion Accuracy (OA), which measures the accuracy of visibility prediction; δxavg, the average
proportion of visible points tracked within 1, 2, 4, 8, and 16 pixels; Average Jaccard (AJ), which
jointly assesses visibility and localization precision.

Evaluation Protocol: We follow the standard protocol of TAP-Vid benchmark by first downsampling
the videos to 256× 256. We evaluate models in the queried first protocol, which is the natural setting
for causal tracking. In this mode, the first visible point in each trajectory serves as the query, and the
goal is to track that point in subsequent frames.

As most of the models are offline, we perform comparisons to these models using their official
checkpoints under the online setting. In particular, for a video with T frames, we treat each target
frame as the last frame of the video and run the model for that frame. While processing frame t, we
provide the model with all prior frames from the beginning of the video up to frame t. This process is
repeated for each frame sequentially, ensuring predictions are based only on past and present frames,
without access to future frames. This gives an upper bound, for how well the model could work in an
online setting.

3.2 RESULTS

We compare Track-On to previous works in Table 1. We report both the online and offline results
of SpatialTracker (Xiao et al., 2024) and CoTracker (Karaev et al., 2024), with their offline models
evaluated in an online setting, as explained above. The reported results for TAPIR (Doersch et al.,
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Table 2: Offset Head. The effect of removing the
offset head (Φoff) on models with varying strides.

Φoff Stride δ2px ↑ δ4px ↑ δ8px ↑ AJ ↑ δxavg↑ OA ↑
✗ 8 16.2 54.0 88.1 41.0 51.5 89.4
✓ 63.7 81.9 89.9 60.9 73.9 89.4

✗ 4 47.6 79.9 90.1 52.9 65.7 89.4
✓ 67.0 83.3 90.8 62.9 75.9 89.7

Table 3: Memory Components. The effect of
spatial memory (Ms), context memory (Mc),
and inference-time memory extension (IME).

Model Ms Mc IME AJ ↑ δxavg↑ OA ↑
A ✗ ✗ ✗ 52.4 67.8 79.9
B ✓ ✗ ✗ 58.7 73.4 86.5
C ✗ ✓ ✗ 59.3 73.4 88.8
D ✓ ✓ ✗ 62.5 75.7 89.8
E ✓ ✓ ✓ 62.9 75.9 89.7

2023) and BootsTAPIR (Doersch et al., 2024) are also included for both modes, along with their
public release models, which demonstrate better performance than originally reported in the papers.

Comparison on DAVIS. Our model outperforms all online models across all evaluation metrics,
demonstrating a 3.2 AJ improvement over the closest competitor, BootsTAPIR. Furthermore, it
performs comparably to leading offline models, closing the gap with the state-of-the-art TAPTR (Li
et al., 2024). It’s important to note that most offline models exhibit substantial performance declines
when evaluated in an online setting. Specifically, CoTracker, SpatialTracker, and BootsTAPIR show
reductions of 4.9, 3.8, and 2.7 AJ, respectively.

Comparison on RGB-Stacking. The dataset consists of long video sequences, with lengths of up
to 250 frames, making it ideal for evaluating models’ long-term processing capabilities. Our model
significantly surpasses both online and offline competitors, achieving an AJ improvement of 8.6 in
offline mode and 4.4 in online mode. These results underscore a key limitation of the windowed
inference approach used by CoTracker, SpatialTracker, and TAPTR, which struggles with long video
sequences due to limited temporal coverage. By efficiently extending the temporal span through our
memory mechanism, our model achieves substantial performance gains on long videos.

Comparison on Kinetics. The dataset comprises a variety of internet videos. For TAPIR and
BootsTAPIR, the only distinction lies in the use of millions of real-world videos for fine-tuning,
emphasizing the crucial role of training data. All other methods, including ours, are trained on TAP-
Vid Kubric, without access to large-scale data and computational resources. Despite this difference,
our model ranks second in both AJ and δxavg , closely trailing BootsTAPIR in both online and offline
settings, while achieving superior OA. This highlights the potential benefits of training on large-scale
real-world data, which appears to be more advantageous for datasets like Kinetics compared to others.

3.3 ABLATION STUDY

Offset Head and Stride: The offset head is essential for refining patch classification outputs,
enabling more precise localization. Specifically, the offset head allows for precision beyond the patch
size S (stride). In Table 3, we examine the impact of removing the offset head (Φoff) for two stride
values, S = 4 and S = 8. For both values, the addition of the offset head significantly enhances
AJ and δxavgby refining predictions within the local region. With stride 4, the offset head notably
improves δ2px, while for stride 8, it improves both δ2px and δ4px. This demonstrates that while
patch classification offers coarse localization, the offset head provides further refinement, achieving
pixel-level precision.

Larger stride values improve memory efficiency by reducing feature resolution, but they also risk
losing important details necessary for accurate tracking. For instance, increasing the stride from 4 to 8
results in performance drops of 12% for TAPIR and 16% for CoTracker, as reported in their ablation
studies. However, our coarse-to-fine approach mitigates the negative effects of stride 8, leading to
only a minimal decline of 3%, highlighting the robustness of our model to larger stride values.

Memory Modules: To demonstrate the importance of the proposed memory mechanism, we
conduct an ablation study, as shown in Table 3. We start by evaluating the model without memory
(Model-A), which corresponds to the vanilla model described in Sec. 2.2. As expected, due to the
model’s lack of temporal processing, Model-A performs poorly, particularly in OA. Introducing
temporal information through either spatial memory (Model-B) or context memory (Model-C) leads
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Figure 6: Memory Size. The effect of varying
memory sizes set for training and extended dur-
ing inference.
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Figure 7: Efficiency. Inference speed for different
memory sizes and strides.

to significant performance improvements. Model-C, in particular, achieves higher OA by providing a
more comprehensive view of the track’s history, including occlusions. Combining both memory types
(Model-D) further boosts performance, highlighting the complementary strengths of the two memory
modules. Lastly, incorporating the memory extension at inference time yields slight improvements in
AJ and δxavg , leading to an overall enhancement in performance.

Memory Size: We experimented with varying memory sizes, K = {4, 8, 12, 16}, during training
and extended them further during inference, as shown in Fig. 6. When the same memory size is used
for both training and inference, a memory size of 12 (green) yields the best performance, followed by
16 (red), 8 (orange), and 4 (blue). The lower performance of smaller memory sizes (4 and 8) suggests
that memory needs to be sufficiently large to capture meaningful temporal dependencies. However,
increasing memory size does not always lead to better results, as seen in the comparison between 12
and 16. This is because the memory also serves as a bottleneck for summarizing relevant information,
and with a memory size of 16, this summarization function appears to be less effective compared to
size 12, particularly for 24-frame-long training clips. The results indicate that extending memory
during inference can improve performance up to a certain threshold. For example, with K = 12,
performance improves up to a memory size of 48, after which it consistently declines. This suggests
that while memory extension is beneficial, there is an optimal range beyond which performance
begins to degrade.

Efficiency: We plot the inference speed (frames per second, FPS) as a function of memory size in
Fig. 7, comparing stride values of 4 and 8. Unlike offline methods, our approach does not leverage
temporal parallelization in the visual encoder, processing frames sequentially in the online setting.
We report FPS on the TAP-Vid DAVIS dataset, averaging results from tracking 400 points over three
runs on a single NVIDIA V100 GPU. As memory size increases, the model becomes slower due to
the higher computational cost of temporal attention in memory operations. For example, with stride
4, the FPS drops from 20 with K = 8 to 15 with K = 48, and down to 10 with K = 128. In contrast,
using a stride of 8 consistently offers faster inference speeds, ranging from approximately 22 FPS to
12 FPS across all memory sizes, mainly because there are fewer visual tokens to process with this
larger stride. Our framework allows flexibility in adjusting this hyperparameter based on real-time
application needs. Furthermore, our model is highly memory-efficient, requiring only 1.24 GB and
1.20 GB of GPU memory to process a frame with 400 tracks for strides of 4 and 8, respectively,
highlighting the efficiency of our frame-by-frame tracking approach.

4 RELATED WORK

Tracking Any Point: Point tracking, presents significant challenges, particularly for long-term
tracking where maintaining consistent tracking through occlusions is difficult. PIPs (Harley et al.,
2022) was one of the first approaches to address this by predicting motion through iterative updates
within temporal windows. TAP-Vid (Doersch et al., 2022) initiated a benchmark for evaluation.
TAPIR (Doersch et al., 2023) improved upon PIPs by refining initialization and incorporating
depthwise convolutions to enhance temporal accuracy. BootsTAPIR (Doersch et al., 2024) further
advanced TAPIR by utilizing student-teacher distillation on a large corpus of real-world videos. In
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contrast, CoTracker (Karaev et al., 2024) introduced a novel approach by jointly tracking multiple
points, exploiting spatial correlations between points via factorized transformers. More recently,
TAPTR (Li et al., 2024) adopted a design inspired by DETR (Carion et al., 2020; Zhu et al., 2021),
drawing parallels between object detection and point tracking. DINO-Tracker (Tumanyan et al.,
2024) took a different route, using DINO as a foundation for test-time optimization.

However, all these models are designed for offline tracking, assuming access to all frames within a
sliding window (Karaev et al., 2024) or the entire video (Doersch et al., 2023; 2024). Models with
online variants (Doersch et al., 2024; 2023) are re-trained with a temporally causal mask to process
frames sequentially on a frame-by-frame basis, despite being originally designed for offline tracking.
In contrast, we explicitly focus on online point tracking by design, enabled by novel memory modules
to capture temporal information. Additionally, many of these models use a regression objective with
iterative updates, originally developed for optical flow (Teed & Deng, 2020), while we introduce a
new paradigm based on patch classification and refinement.

Another line of research, orthogonal to ours, explores leveraging scene geometry for point tracking.
SpatialTracker (Xiao et al., 2024) extends CoTracker to the 3D domain by tracking points in three-
dimensional space, while OmniMotion (Wang et al., 2023) employs test-time optimization to learn a
canonical representation of the scene. Concurrent work DynOMO (Seidenschwarz et al., 2024) also
uses test-time optimization, utilizing Gaussian splats for online point tracking.

Causal Processing in Videos: Online, or temporally causal models rely solely on current and
past frames without assuming access to future frames. This is in contrast to current practice in
point tracking with clip-based models, processing frames together. Causal models are particularly
advantageous for streaming video understanding (Yang et al., 2022a; Zhou et al., 2024), embodied
perception (Yao et al., 2019), and processing long videos (Zhang et al., 2024; Xu et al., 2021),
as they process frames sequentially, making them well-suited for activation caching. Due to its
potential, online processing has been studied across various tasks in computer vision, such as pose
estimation (Fan et al., 2021; Nie et al., 2019), action detection (Xu et al., 2019; De Geest et al., 2016;
Kondratyuk et al., 2021; Eun et al., 2020; Yang et al., 2022b; Wang et al., 2021; Zhao & Krähenbühl,
2022; Xu et al., 2021; Chen et al., 2022a), temporal action localization (Buch et al., 2017; Singh
et al., 2017), object tracking (He et al., 2018; Wang et al., 2020), video captioning (Zhou et al., 2024),
and video object segmentation (Cheng & Schwing, 2022; Liang et al., 2020).

In causal models, information from past context is commonly propagated using either sequential
models (De Geest et al., 2016), which are inherently causal, or transformers with causal attention
masks (Wang et al., 2021). However, these models often struggle to retain information over long
contexts or face expanded memory requirements when handling extended past contexts. To address
this, some approaches introduce memory modules for more effective and efficient handling of
complex tasks. For example, LSTR (Xu et al., 2021) separates past context as long-term and short-
term memories for action detection, while XMem (Cheng & Schwing, 2022) incorporates a sensory
memory module for fine-grained information in video object segmentation. Long-term memory-based
modeling is also applied beyond video understanding (Balazevic et al., 2024), including tasks like
long-sequence text processing and video question answering (Zhang et al., 2021). We also employ
an attention-based memory mechanism, which is specialized in point tracking with two types of
memory; one focusing on spatial local regions around points, and another on broader context.

5 CONCLUSION & LIMITATION

In this work, we presented Track-On, a simple yet effective transformer-based model for online point
tracking. To establish correspondences, our model employs patch classification, followed by further
refinement with offset prediction. We proposed two memory modules that enable temporal continuity
efficiently while processing long videos. Our model significantly advances the state-of-the-art in
online point tracking with fast inference and narrows the performance gap between online and offline
models across a variety of public datasets.

Despite the strengths of our proposed model, there remain certain limitations. Specifically, the model
may suffer from precision loss on thin surfaces and struggle to distinguish between instances with
similar appearances, as observed in our failure cases (see Appendix). Future work could address
these challenges by exploring learnable upsampling techniques to achieve higher-resolution feature
maps and improve feature sampling accuracy.
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Appendices
A EXPERIMENT DETAILS

A.1 TRAINING DETAILS

We train our model for 75 epochs, equivalent to approximately 50K iterations, using a batch size
of 4 and a gradient accumulation step of 4, resulting in an effective batch size of 16. The model is
optimized using the AdamW optimizer (Loshchilov & Hutter, 2019) on 4 × L40S GPUs, with mixed
precision. The learning rate is set to a maximum of 5 × 10−4, following a cosine decay schedule
with a linear warmup period covering 1% of the total training time. A weight decay of 1× 10−5 is
applied, and gradient norms are clipped at 1.0 to ensure stable training. Input frames are resized to
384× 512 using bilinear interpolation before processing.

For training, we utilize entire clips of length 24 from TAP-Vid Kubric. We adopt the data augmentation
techniques from CoTracker (Karaev et al., 2024), including random cropping to a size of 384× 512
from the original 512 × 512 frames, followed by random Color Jitter and Gaussian Blur. Each
training sample includes up to N = 480 points. We apply random key masking with a 0.1 ratio
during attention calculations for memory read operations throughout training.

For the training loss coefficients, we set λ to 5. During training, we clip the offset loss to the stride S
to prevent large errors from incorrect patch classifications and stabilize the loss. Deep supervision
is applied to offset head (Φoff), and the average loss across layers is used. We set the softmax
temperature τ to 0.05 in patch classification.

A.2 IMPLEMENTATION DETAILS

All of our modules consist of either a Self-Attention Block, Cross-Attention Block, or Deformable
Cross-Attention Block. Each block includes multi-head self-attention, multi-head cross-attention, or
multi-head deformable cross-attention, followed by a 2-layer feed-forward network with a hidden
dimension expansion ratio of 4. Each multi-head attention uses 8 heads, while deformable multi-
head attention operates with 4 levels, sampling 4 points per head. We extract multi-level feature
maps by downsampling the input feature map and set the feature dimension D to 256. Following
CoTracker (Karaev et al., 2024), we add a global support grid of size 20× 20 during inference.

(a) (b) (c) (d)

Figure 8: Modules. This figure describes the detailed architecture of modules in our approach:
(a) Query Encoder, (b) Offset Head, (c) Query Updater, (d) Query Memory Writer.

Visual Encoder (Φvis-enc): We use the ViT-Adapter (Chen et al., 2022b) with DINOv2 ViT-
S/14 (Oquab et al., 2023) as the backbone. The DINOv2 inputs are resized to 378 × 504, as
the default input size of 384 × 512 is not divisible by the patch size of 14. The backbone outputs,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

with a dimension of 384, are projected to D using a single linear layer, implemented as a 1 × 1
convolution.

Query Decoder (Φq-dec): Query Decoder is shown in Fig. 8a. We set the number of layers Lq to
3. Positional embedding γc from the context memory is applied only to the keys, not the values,
ensuring time-invariance in the queries while enabling the model to differentiate between time steps
during attention score calculation.

Offset Prediction (Φoff): Fig. 8b shows the architecture of the offset prediction head. We set the
number of layers Lo to 3. Following DETR (Carion et al., 2020), we normalize the decoded queries
before projecting them through a linear layer, as the per-layer loss is calculated for the offset head.

Query Update (Φq-up): The query update is detailed in Fig. 8c. In both self-attention and cross-
attention blocks, we mask items corresponding to frames where points are predicted as occluded.

Spatial Memory Write (Φq-wr): The spatial memory writer module is depicted in Fig. 8d. We set
the number of layers Lqm to 3.

B ADDITIONAL COMPARISONS

Table 4: Quantitative Results on Dy-
namic Replica.

Model Online δvisavg ↑
TAP-Net ✓ 53.3
PIPs ✗ 47.1
TAPIR ✗ 66.1
CoTracker (Single) ✗ 68.9
BootsTAPIR ✗ 69.0
TAPTR ✗ 69.5
Ours ✓ 72.7

Table 5: Quantitative Results on RoboTAP.

Model Online AJ ↑ δxavg↑ OA ↑
TAP-Net ✓ 45.1 62.1 82.9
TAPIR ✗ 59.6 73.4 87.0
CoTracker (Single) ✗ 52.0 65.5 78.8
BootsTAPIR ✗ 64.9 80.1 86.3
TAPTR ✗ 60.1 75.3 86.9
Ours ✓ 62.2 75.8 88.8

Dynamic Replica: We compare our model to previous work on the Dynamic Replica dataset (Karaev
et al., 2023), a benchmark designed for 3D reconstruction using 20 sequences, each consisting of 300
frames, as shown in Table 4. Following prior work (Karaev et al., 2024), we evaluate models using
δvis

avg, similar to the evaluation protocol in the TAP-Vid benchmark. Unlike previous work, we do not
report δvis

occ, as our model is not supervised for occluded points. Despite being an online model, our
approach outperforms other offline competitors. In particular, it surpasses TAPTR by 3.2 points and
BootsTAPIR, which was trained on 15M real-world videos, by 3.7 points in δvis

avg. This demonstrates
the robustness of our model, especially in handling longer video sequences.

RoboTAP: We evaluate our model on the RoboTAP dataset (Vecerik et al., 2023), which contains
265 real-world robotic sequences with an average length of over 250 frames, in Table 5. We adopt the
same metrics used in the TAP-Vid benchmark: AJ, δxavg , and OA. Our model ranks second in AJ and
δxavg , trailing BootsTAPIR that works in an offline version, while achieving superior OA. This dataset,
which includes textureless objects, represents a key challenge where fine-tuning on real-world videos
yields significant improvements, as learning to track points on textureless objects is notably difficult,
as noted in BootsTAPIR. Among other models trained on the same dataset (TAP-Vid Kubric), our
model surpasses the closest competitor by 2.1 in AJ, 0.5 in δxavg(TAPTR), and 1.8 in OA (TAPIR).

BADJA: We compare our model to previous work on the BADJA challenge (Biggs et al., 2019)
in Table 6, a dataset for animal joint tracking, consisting of 7 sequences. We use two metrics for
evaluation: δseg, which measures the proportion of points within a threshold relative to the size of
the segmentation mask (specifically, points within a threshold of 0.2

√
A, where A is the area of the

segmentation mask); and δ3px, the ratio of points tracked within a 3-pixel range.

Among online models, our model achieves state-of-the-art results, outperforming CoTracker (Karaev
et al., 2024) by a margin of 4.0 in δseg and also achieving the best performance in δ3px. Among
offline models, our model surpasses several works in δseg, including PIPs (Harley et al., 2022),
Omnimotion (Wang et al., 2023), both modes of CoTracker -single and all-, and TAPTR (Li et al.,
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Table 6: Quantitative Results on BADJA. ‡ Repro-
duction using official checkpoints.

Model δseg ↑ δ3px ↑
Offline
PIPs 61.9 13.5
TAPIR 66.9 15.2
OmniMotion 57.2 13.2
CoTracker (All) ‡ 59.7 16.2
CoTracker (Single) ‡ 66.1 19.1
SpatialTracker 69.2 17.1
TAPTR 64.0 18.2

Online
TAP-Net 54.4 6.3
CoTracker (All) ‡ 56.5 15.0
CoTracker (Single) ‡ 62.7 17.0
SpatialTracker ‡ 62.5 17.6
Ours 66.7 17.8

Table 7: Quantitative Results for Two-View
Matching on TAP-Vid DAVIS. ‡ Reproduc-
tion using official checkpoints.

Model AJ ↑ δxavg↑ OA ↑

CoTracker (Single) ‡ 36.3 52.6 74.3
SpatialTracker ‡ 28.7 44.1 74.4
Ours 52.4 67.8 79.9

2024), while also outperforming SpatialTracker (Xiao et al., 2024) and TAPIR (Doersch et al., 2023)
in δ3px. Overall, no offline model surpasses our model’s performance in both metrics.

Two-View Correspondence: We evaluated the two-view correspondence estimation abilities
of state-of-the-art models with iterative updates, i.e. CoTracker and SpatialTracker on TAP-Vid
DAVIS. Without any temporal cues, we provide the models only with the query and target frames
for matching, rather than the full video. The results, shown in Table 7, clearly demonstrate that our
model performs significantly better in estimating correspondences, improving AJ by 16.1 and 23.7
compared to CoTracker and SpatialTracker, respectively. This improvement can be attributed to patch
classification in our approach, which can operate without requiring simultaneous optimization across
time steps, underscoring the advantages of frame-by-frame matching.
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Figure 9: Temporal Robustness. The effect of ran-
domly dropping frames on AJ on TAP-Vid DAVIS.

12 16 24 32 48 64 128
Context Memory Size

12

16

24

32

48

64

128

Sp
at

ia
l M

em
or

y 
Si

ze

62.4 62.4 62.4 62.6 62.4 62.6 62.5

62.3 62.5 62.5 62.4 62.4 62.6 62.5

62.4 62.5 62.8 62.7 62.4 62.6 62.5

62.6 62.8 62.9 62.9 62.8 62.8 62.8

62.5 62.2 62.7 62.9 62.9 62.8 62.6

62.8 62.7 62.6 62.8 62.7 62.5 62.5

61.9 62.0 62.3 62.3 62.2 62.2 61.7 61.8

62.0

62.2

62.4

62.6

62.8

Figure 10: Inference-Time Memory Ex-
tension. The effect of jointly varying the
sizes of context and spatial memory during
inference on AJ on TAP-Vid DAVIS.

Temporal Robustness: We evaluate the temporal robustness of prior methods, CoTracker (Karaev
et al., 2024) and SpatialTracker (Xiao et al., 2024), which rely on windowed iterative updates, against
our frame-by-frame approach by randomly dropping frames at varying ratios on TAP-Vid DAVIS,
as shown in Fig. 9. The experiments were conducted using 6 different seeds with drop ratios of
0.5, 0.75, and 0.9. All methods perform similarly at a 0.5 drop ratio, demonstrating robustness to
moderate frame loss. However, at a 0.9 drop ratio, the performance of prior methods drops to around
40% of their clean performance in AJ, while our method maintains approximately 65% of its clean
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performance. This highlights that our approach is less dependent on temporal consistency, unlike
previous methods that heavily rely on continuity in a temporal window for iterative updates.

C ADDITIONAL ABLATIONS

Inference-Time Memory Extension: To explore the behavior of inference-time memory extension
with respect to varying memory sizes and independently determine the optimal range, we extended
the ablation study from Sec. 3.3. We conducted a more detailed search, as shown in Fig. 10, using our
default model trained with a memory size K = 12. We report the AJ score on TAP-Vid DAVIS with
varying context memory size Kc and spatial memory size Ks. The results show that larger values for
Ks degrade performance, likely due to spatial representations becoming obsolete while increasing Kc

impacts the performance less (bottom row vs. rightmost column). Optimal performance is achieved
when both memories are within the range of 24 to 48, corresponding to the middle of the matrix.
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Figure 11: Ablating the Number of Layers. The impact of varying the number of layers in the
query decoder Φq-dec (blue), offset head Φoff (orange), and the spatial memory writer Φq-wr (green).
Our default setting, with 3 layers, is marked with a black diamond.

Number of Layers: We experimented with varying the number of layers for the query decoder
Φq-dec (Sec. 2.2.2), offset head Φoff (Sec. 2.2.3), and memory writer Φq-wr (Sec. 2.3) one at a time,
as shown in Fig. 11, training each configuration for 50 epochs, and without inference-time memory
extension. During these experiments, only the tested hyperparameter was changed, while all other
settings were kept the same as the default model. For the query decoder (blue), increasing the number
of layers from 1 to 3 consistently improves scores across all metrics. However, increasing it to 4
results in either slight drops (AJ and δxavg) or a significant decrease (OA). Conversely, the layer
numbers for the offset head (orange) and spatial memory writer (green) do not show consistent trends,
instead exhibiting slight fluctuations with changes in layer count. Overall, 3 layers provide the best
performance when considering all metrics together. Although different modules achieve their optimal
performance at varying layer counts, the performance differences between these hyperparameter
settings are not substantial, indicating a degree of robustness in our model.

Table 8: Number of Scales. The effect of
changing number of scales for similarity
calculation.

Scale Set (2l) AJ ↑ δxavg↑ OA ↑
{0} 61.4 74.9 88.6
{0, 1} 61.3 74.7 88.8
{0, 1, 2} 61.0 74.7 88.7
{0, 1, 2, 3} 62.1 75.3 89.6

Table 9: Backbone and Number of Learnable Param-
eters. The backbone, number of learnable parameters,
and the AJ score of previous work on TAP-Vid DAVIS.
All models are online.

Model Backbone #L.P. AJ ↑
TAPIR ResNet-18 29M 56.7
CoTracker (All) Residual CNN 45M 55.9
BootsTAPIR ResNet-18 + 4 Conv 78M 59.7

Ours Residual CNN 41M 61.6
ViT-Adapter 23M 62.9

Number of Scales: We experimented with different numbers of scales in the similarity map
Ct (Eq (4)) by varying the set of scales, i.e. downsample ratios, to {0}, {0, 1}, {0, 1, 2}, and {0, 1, 2,
3}, as shown in Table 8. The number of scales corresponds to the size of the scale set. Similar to
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the layer number ablation, we trained our model for 50 epochs for each configuration. Our results
indicate that the model is robust to the choice of scale numbers, except when using 4 scales, which
provides the best overall performance. We observed an increase of 0.7 in AJ and 0.4 in δxavgwhen
comparing {0} to {0, 1, 2, 3}, as well as an improvement of 0.8 in OA when comparing {0, 1} to {0,
1, 2, 3}. These findings demonstrate that using 4 scales, with downsample ratios of 1, 2, 4, and 8,
yields optimal performance.

Backbone: We replaced our ViT-Adapter backbone with the Residual CNN backbone from Co-
Tracker and compared the performance with other models, considering their respective feature
backbones, total number of learnable parameters, and online AJ performance on TAP-Vid DAVIS
in Table 9. Our default model achieves the best performance while using only half the parameters of
CoTracker (23M vs. 45M) and one-third of BootsTAPIR (23M vs. 78M), thanks to the efficiency
of the ViT-Adapter architecture, which leverages DINOv2 features. Even when our model uses the
Residual CNN backbone of CoTracker, it still outperforms other models. However, it lags behind our
default model by 1.3 AJ, despite having 18M additional parameters.

D ANALYSIS OF SPATIAL MEMORY

To evaluate the impact of spatial memory (Sec. 2.3) in reducing feature drift, we conducted an
additional analysis comparing the tracking performance of the initial feature sampled from the query
frame, qinit, with the query feature updated using spatial memory at frame t, denoted as qinit

t . For
this evaluation, we introduced two new metrics: (i) the similarity ratio score (ssr), which measures
how well the updated query features align with the feature at the target point compared to the initial
query, and (ii) the matching score (sm), which quantifies the improvement in matching performance
achieved by the updated queries, based on their similarity to all features in the target frame.

Similarity Ratio Score: Ideally, qinit
t should provide a better starting point for detecting correspon-

dences compared to qinit, particularly when the object’s appearance changes significantly. To assess
whether qinit

t is more similar to the feature at the ground-truth correspondence location than qinit,
we calculate the ratio of their similarity to ground-truth, as a way of quantifying the increase in the
similarity after the update:

ssr(t) =
qinit
t · sample(ft, pt)

qinit · sample(ft, pt)
(10)

Here, pt represents the location of the ground-truth correspondence point, and ft is the feature map
of the target frame. On the DAVIS dataset, we calculated ssr for visible points, achieving a score of
1.20, indicating that spatial memory introduces a 20% increase in similarity compared to the initial
feature. In Fig. 12, we visualize the similarity scores for different tracks over time for a sample video
from the DAVIS dataset. The plot highlights that the similarity increases more significantly toward

Figure 12: Similarity Ratio Score. The simi-
larity ratio score ssr > 1 over frames for differ-
ent tracks, demonstrates increased similarity with
ground-truth location on the target frame when
utilizing spatial memory.

Figure 13: Spatial Memory Effect on Match-
ing Score. The effect of using spatial memory
to update query feature on matching score sm.
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the end of the video, where appearance changes are more severe. Moreover, the score is consistently
greater than 1, showing that qinit

t always provides better initialization than qinit in this video.

Matching Score: While the similarity ratio score indicates how the initial query becomes more
similar to the target frame, it does not account for the similarity between other tokens in the target
frame. To address this, we extend our analysis to track performance based on similarity without any
decoding, using only the initial or updated queries. We define the matching score sm(t, q∗) as:

sm(t, q∗) = sample(softmax(
ft · q∗

τ
), pt) (11)

This metric computes the similarity between the any query feature q∗ and frame features ft using
the dot product, followed by spatial softmax to obtain the probability distribution across all feature
tokens. We then sample the probability at the ground-truth location pt. A higher sm score indicates
greater correlation between q∗ while also accounting for the similarity with all other tokens. We
calculated sm for each visible point on the DAVIS dataset with τ = 0.1, both with and without spatial
memory, i.e. sm(t, qinit

t ) vs. sm(t, qinit). The mean per-video results are shown in Fig. 13. Our
analysis reveals a consistent increase in the matching score across all videos, with the average sm
increasing from 0.22 to 0.29, a 32% improvement in performance.

In Fig. 14, we visualize the matching scores with and without spatial memory, highlighting how
spatial memory enhances similarity to the target feature. For example, in Fig. 14a, spatial memory
successfully keeps the search query qinit

t up-to-date, while the initial query qinit yields nearly zero
matching scores during frames 10–20 and 30–50. This clearly demonstrates that spatial memory pro-
vides a significantly better search query compared to the initial features. In another example (Fig. 14b),
the matching score for qinit remains near zero after 15 frames due to changes in the object’s scale
and appearance. In contrast, spatial memory maintains a higher level of similarity, adapting to these
changes effectively. However, spatial memory is not always able to recover from drift. For instance,
in Fig. 14d, the matching score drops to zero after 10 frames, resulting in a complete tracking failure.

(a) (b)

(c) (d)

Figure 14: Matching Score. The effect of using the updated query from spatial memory, qinit
t ,

compared to the initial query sample, qinit, on improving matching based on similarity. The plot in
the upper row shows the matching score sm over time for the point marked in the lower row.
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E ANALYSIS OF TEMPORAL EMBEDDINGS

We initialize the temporal positional embeddings of memories, γc and γs, as learnable parameters
to enable the model to differentiate between memory timestamps. To better understand what these
learned embeddings represent, we visualize the context memory embeddings, γc, trained with memory
size Kc = 12, in Fig. 15. The embeddings are reduced from D = 256 dimensions to 3 using Principal
Component Analysis (PCA), and scaled between 0 and 1, with each dimension mapped to the Red,
Green, and Blue color channels.

The visualization reveals three distinct features corresponding to timestamps: t − 1 (blue), t − 2
(green), and t− 12 (red). The intermediate timestamps between t− 2 and t− 12 appear as smooth
interpolations of these colors, with the midpoint, t− 7, combining blue and red. This indicates that
the model differentiates time steps smoothly, from the most recent to the oldest.

During inference, we apply linear interpolation, where new embeddings are represented as a weighted
average of the learned features. In Fig. 15b, we extend the embeddings to Kc = 48 and apply PCA
in the same manner. The visualization confirms that the temporal order of frames is preserved.

Additionally, we conducted an experiment where we trained the model without temporal positional
embeddings, as shown in Table 10, and reported the results on the TAP-Vid DAVIS dataset without
inference-time memory extension. Including temporal positional embeddings resulted in an increase
of 1.8 AJ, 1.1 δxavg , and 2.1 OA, highlighting the importance of temporal embeddings in the memory
for the model’s performance.

(a) Visualization of γc features with the original size Kc = 12.

(b) Visualization of γc after extension to Kc = 48.

Figure 15: Learned Temporal Embeddings. We visualize
the temporal embeddings by applying Principal Component
Analysis (PCA) and reducing dimension to 3 and scale to 0
and 1, where each dimension corresponds to each channel of
RGB. Upper row (15a) shows the original embeddings, and
lower row (15b) shows the memory after extension.

Table 10: Temporal Positional Em-
beddings. The effect of removing
learnable temporal positional embed-
dings in the memory modules, i.e. γs

and γc, during training.

γ{s,c} AJ ↑ δxavg↑ OA ↑
✗ 60.7 74.6 87.7
✓ 62.5 75.7 89.8

F FAILURE ANALYSIS

We identify two common failure cases: (i) tracking points on thin surfaces, and (ii) localization
on uniform areas. We visualize examples of these failure cases, i.e. predictions with δ8px <
0.9, in Fig. 16. In the visualizations, our predictions are represented as dots, while ground-truth
correspondences are marked with crosses. The line connecting the ground-truth and prediction
indicates the error.

Thin Surfaces: Points of interest on thin surfaces and edges may not be well-represented in feature-
level resolution due to the lack of pixel-level granularity. This limitation causes the model to track
incorrect points by missing the actual point of interest. For instance, in the upper row of Fig. 16a,
which shows an example from the DAVIS dataset, the model fails to track a rope and instead tracks
the background, as the precision is insufficient to accurately represent the thin structure. Similarly,
in the bottom row, from the Kinetics dataset, points of interest on a thin surface (e.g. a drone) are
mislocalized, with the model tracking the background instead of the object.

Uniform Areas: Localization on uniform areas is more challenging, likely because most objects in
the training dataset have descriptive textures (Doersch et al., 2024). While our model can roughly
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localize points, it lacks precision in such cases. This issue is illustrated in Fig. 16b, where the upper
row shows an example from the DAVIS dataset, and the bottom row shows one from RoboTAP.

(a) Failure Cases due to Thin Surfaces.

(b) Failure Cases due to Mislocalization on Uniform Areas.

Figure 16: Common Failure Cases. We identify two common failure cases: tracking points on thin
surfaces (a), and localization on uniform areas (b). We visualize predictions with δ8px < 0.9, where
predictions are shown as dots and ground-truth correspondences are marked with crosses. Different
tracks are depicted in distinct colors.

G QUALITATIVE RESULTS

We provide some qualitative results from TAP-Vid DAVIS videos in Fig. 17. The top row shows
equally sampled frames from the video, with ground truth correspondences indicated by green
diamonds. The local regions around the ground truth points, outlined by green rectangles, are
displayed in the bottom row, along with our model’s patch predictions (blue) and the refined final
points obtained using the offset head (red). The middle row shows the correlation scores for patch
classification, as explained in Sec. 2.2.3, where lighter colors correspond to higher correlation. For
visualization purposes, we do not apply temperature scaling to the correlation scores. We displayed
the frame as grayscale if the point is occluded.

These visualizations demonstrate that our model can accurately predict dynamic points (first video)
and points in the background, moving according to camera motion (second video). Moreover, we
observe that the offset head refines the predictions correctly toward the ground truth locations (third
video). Nevertheless, our model may fail to establish correct correspondences in some cases, as
shown in the last row. For example, in the second column, our model misses the point because the
visual similarity between the wrongly predicted patch and the query point is high.
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Additionally, we provide a visual comparison with previous works, CoTracker (Karaev et al., 2024)
and SpatialTracker (Xiao et al., 2024), on videos from TAP-Vid DAVIS, in Fig. 18. In this figure,
the results are arranged from top to bottom in the following order: ground truth, CoTracker, Spa-
tialTracker, and ours. In the first video, our model tracks background objects more accurately than
CoTracker (middle column) and localizes points on the moving object’s surface with greater precision
(last column). In the second video, our model accurately tracks points on the moving object (the
upper fish) compared to the other models.
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Figure 17: Qualitative Results on TAP-Vid DAVIS. The top row shows the frames and ground-truth
correspondences, with frames in grayscale indicating occlusion. The middle row shows the correlation
map; and the bottom row, the zoomed-in local region around the ground-truth point (marked by a
rectangle in the top row). In this region, the blue dot marks the selected patch center; the red dot, the
refined prediction; and the green diamond, the ground-truth.
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Figure 18: Qualitative Comparison on TAP-Vid DAVIS. We compare to previous work Co-
Tracker (Karaev et al., 2024) and SpatialTracker (Xiao et al., 2024) by marking predictions for
different tracks in different colors.
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